
Under review as submission to TMLR

On Self-Adaptive Perception Loss Function for Sequential
Lossy Compression

Anonymous authors
Paper under double-blind review

Abstract

We consider causal, low-latency, sequential lossy compression, with mean squared error
(MSE) as the distortion loss, and a perception loss function (PLF) to enhance the realism of
reconstructions. As the main contribution, we propose and analyze a new PLF that considers
the joint distribution between the current source frame and the previous reconstructions. We
establish the theoretical rate-distortion-perception function for first-order Markov sources
and analyze the Gaussian model in detail. From a qualitative perspective, the proposed
loss can simultaneously avoid the error-permanence phenomenon and also better exploit the
temporal correlation between high-quality reconstructions. The proposed loss is referred to
as self-adaptive perception loss function (PLF-SA), as its behavior adapts to the quality of
reconstructed frames. We provide a detailed comparison of the proposed perception loss
function with previous approaches through both information theoretic analysis as well as
experiments involving moving MNIST and UVG datasets.

1 Introduction

In recent years, the topic of lossy compression for videos has received significant attention, driven by the
growing demand for producing visually appealing reconstructions even at lower bitrates. Early versions of
compression algorithms relied on distortion measures, e.g., mean squared error (MSE), MS-SSIM (Golinski
et al., 2020; Rippel et al., 2021; Li et al., 2021) and PSNR (Agustsson et al., 2020a; Yang et al., 2020; Rippel
et al., 2021; Li et al., 2021). However, these metrics often resulted in outputs that were perceived as blurry
and lacking realism. Consequently, there have been efforts to incorporate perception-based loss functions into
compression systems to improve visual quality. These loss functions aim to quantify the divergence between
the distributions of the source and the reconstruction, where achieving perfect perceptual quality means
that the two distributions match with each other. Blau & Michaeli (2019) explored the rate-distortion-
perception (RDP) tradeoff from a theoretical perspective. Subsequently, Zhang et al. (2021) introduced
universal representations, wherein the representation remains fixed during encoding, and only the decoder
can be adjusted to attain near-optimal performance.

With the multitude of frames in a video, there is no unique perception loss function (PLF) that is suitable in
all cases. In fact, at least two different PLFs have been proposed in prior work. One choice is a PLF based on
the framewise marginal distributions (FMD) of the source and reconstruction (Mentzer et al., 2022), where
the perception loss function only preserves the marginal distribution of the reconstructed frames instead
of the joint distribution. In contrast to this choice, other works such as Veerabadran et al. (2021) have
proposed PLF based on the entire joint distribution (JD) of source frames. A recent study, Salehkalaibar
et al. (2023), establishes the rate-distortion-perception (RDP) trade-off for both losses. It is shown that at
low bitrates, PLF-JD encounters error permanence phenomenon, where errors propagate across all future
reconstructions, leaving distortion unchanged across frames. On the other hand, at higher bit rates PLF-JD
is more desirable, as PLF-FMD does not address temporal consistency between frames.

In this work, we study causal, low-latency, sequential video compression when the output is subject to both
a mean squared error (MSE) distortion loss and a new perception loss function, which we refer to as Self-
Adaptive (SA). Our proposed loss function (PLF-SA) considers the joint distribution between the current

1



Under review as submission to TMLR

(a) (b) (c)
Figure 1: (a) Outputs for MovingMNIST with the first frame compressed at a low bitrate R1 = 12 bits. PLF-SA and PLF-
FMD recover from previous errors, while PLF-JD and DCVC-HEM exhibit error permanence. (b) Outputs for UVG with
the first frame compressed at a low bitrate R1 = 0.144 bpp. PLF-SA and PLF-FMD maintain color tone, whereas PLF-JD
propagates color tone errors. DCVC-HEM struggles to reconstruct details like eye pupils, while PLF models perform better. (c)
Outputs for MovingMNIST with the first frame compressed at a high bitrate R1 = ∞ bits. PLF-FMD produces reconstruction
error without maintaining the temporal correlation. PLF-JD propagates the trajectory error while PLF-SA rectifies the error
preserves the temporal correlation across different frames.

source frame and the previous reconstructions. We establish the rate-distortion-perception function for first-
order Markov sources and analyze the Gaussian source in detail for our proposed PLF. We also present
experimental results involving moving MNIST and UVG datasets. Our key observation is that our proposed
PLF mitigates the disadvantages of previously proposed loss functions: 1) when the previous reconstructions
are of lower quality our proposed PLF does not suffer from the error permanence phenomenon observed with
PLF-JD; 2) when the previous reconstructions are of higher quality our proposed PLF preserves the joint
distribution with these frames and yields better temporal consistency than PLF-FMD. We summarize these
below:

• Resilience to error permanence phenomenon: Using theoretical analysis of the rate-distortion-
perception function of first-order Gauss-Markov sources and through experiments (see, e.g., Fig. 1a
and Fig. 1b), we demonstrate that PLF-SA does not suffer from the error permanence phenomenon.
In particular, when the first source frame is compressed at a low bitrate, PLF-JD fails to correct
mistakes appearing in this frame in subsequent reconstructions. PLF-SA does not suffer from this
effect.

• Sensitivity to temporal correlation across frames: Through both theoretical analysis and experimen-
tal findings (see Fig. 1c), we demonstrate that our proposed PLF-SA can better exploit temporal
correlation across frames to yield improved reconstruction. In this setting we assume that the first
frame is compressed at a higher bitrate while the second frame is compressed at a lower bitrate. We
note that while PLF-FMD yields incorrect output in the second frame, PLF-SA is able to exploit
the temporal correlation with the first frame to output the correct digit in the second frame. We
also note that PLF-JD still suffers from error permanence as observed in the incorrect trajectory in
the reconstruction of the third frame in Fig. 1c; PLF-SA also does not suffer from this effect.
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Figure 2: System model for a sequential lossy compression.

PLF-SA does not suffer from the error permanence phenomenon at low bitrates and maintains temporal
correlation among frames, especially when the first frame undergoes high-rate compression. Consequently,
it takes advantage of both loss functions (PLF-FMD or PLF-JD), depending on the operating rate regime.
This adaptability to varying rates is the rationale behind naming this PLF as Self-Adaptive.

2 System Model

Assume that we have T frames of video denoted by (X1, . . . , XT ) ∈ X1 × . . . × XT (where Xi ⊆ R
d)

distributed according to joint distribution PX1...XT
. The encoders and decoders have access to a shared

common randomness K ∈ K. The (possibly stochastic) jth encoding function gets the sources (X1, . . . , Xj)
and the key K and outputs a variable length message Mj ∈Mj(= {0, 1}⋆), i.e.,

fj : X1 × . . .×Xj ×K →Mj , j = 1, . . . , T. (1)

The jth decoding function receives the messages (M1, . . . ,Mj) and using the key K, it outputs a reconstruc-
tion X̂j ∈ Xj , i.e.,

gj : M1 ×M2 × . . .×Mj ×K → Xj . (2)

The mappings {fj}T
j=1 and {gj}T

j=1 induce the conditional distribution PX̂1...X̂T |X1...XT
for the reconstructed

video given the original video. The proposed framework illustrated in Fig. 2 is a one-shot setting i.e., a single
sample of the source is compressed at a time.

Each frame j must be reconstructed such that its distortion remains below a certain level, where the loss
is assumed to be the mean squared error (MSE) function i.e. d(xj , x̂j) = ||xj − x̂j ||2, which is widely used
in many applications. From the perceptual perspective, for given probability distributions PX̂1...X̂j−1Xj

and
PX̂1...X̂j−1X̂j

, let ϕj(PX̂1...X̂j−1Xj
, PX̂1...X̂j−1X̂j

) denote the perception loss function capturing the divergence
between them. We call this PLF, self-adaptive (SA). If ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
) = 0 for j = 1, . . . , T ,

we get

PX̂1...X̂j−1Xj
= PX̂1...X̂j−1X̂j

, j = 1, . . . , T, (3)

which is called self-adaptive zero-perception loss (0-PLF-SA). In the following, we define two other perception
loss functions which are extensively used in many works. For given probability distributions PX1...Xj

and
PX̂1...X̂j

, let ξj(PX1...Xj
, PX̂1...X̂j

) be called perception loss function based on joint distribution (PLF-JD).
Alternatively, the perception loss function based on framewise marginal distribution (PLF-FMD) is shown
by ψj(PXj

, PX̂j
). Notice that 0-PLF-JD and 0-PLF-FMD imply that PX1...Xj

= PX̂1...X̂j
and PXj

= PX̂j

for j = 1, . . . , T , respectively. In most of the paper, for simplicity of presentation, we provide some of our
results for T = 3 frames. In that case, we use the shorthand notation X to denote the tuple (X1, X2, X3),
e.g., M := (M1,M2,M3), D := (D1, D2, D3), P := (P1, P2, P3), f := (f1, f2, f3).
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3 RDP Regions

In this section, we introduce several RDP regions, beginning with the operational RDP region, which is
defined as follows.

Definition 3.1 (Operational RDP region) An RDP tuple (R,D,P) is said to be achievable for the one-
shot setting if there exist encoders and decoders such that:

E[ℓ(Mj)] ≤ Rj , (4)
E[∥Xj − X̂j∥2] ≤ Dj , (5)

ϕj(PX̂1...X̂j−1Xj
, PX̂1...X̂j−1X̂j

) ≤ Pj , j = 1, 2, 3, (6)

where ℓ(Mj) denotes the length of the message Mj. The operational RDP region, denoted by RDP o, is the
closure of the set of all achievable tuples. Moreover, for a given (D,P), the operational rate region, denoted
by Ro(D,P), is the closure of the set of all tuples R such that (R,D,P) ∈ RDP o.

We consider Gauss-Markov sources as follows. We assume that X1 ∼ N (0, σ2) for some σ2 > 0,

X2 = ρX1 +N1, X3 = ρX2 +N2, (7)

for some 0 ≤ ρ ≤ 1, where Nj is Gaussian random variable independent of Xj with mean zero and variance
(1 − ρ2)σ2 for j = 1, 2. The model extends naturally to the case of T time-steps. We assume that the
perception loss is Wasserstein-2 distance, i.e.,

ϕj(PX̂1...X̂j−1Xj
, PX̂1...X̂j−1X̂j

) := W 2
2 (PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
). (8)

Next, we provide an approximation for the operational RDP region and then analyze it for Gauss-Markov
source model. In general, it is not feasible to compute the region RDP

o directly since it involves searching
over all possible encoding-decoding functions. But, for first-order Markov sources where the Markov chain
X1 → X2 → X3 holds, the following region can be used as an approximation.

Definition 3.2 (Information RDP Region) For first-order Markov sources, let the information RDP
region, denoted by RDP , be the set of all tuples (R,D,P) which satisfy the following

R1 ≥ I(X1;Xr,1), (9)
R2 ≥ I(X2;Xr,2|Xr,1), (10)
R3 ≥ I(X3;Xr,3|Xr,1, Xr,2) (11)
Dj ≥ E[∥Xj − X̂j∥2], (12)
Pj ≥ ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
), j = 1, 2, 3, (13)

for auxiliary random variables (Xr,1, Xr,2, Xr,3) and (X̂1, X̂2, X̂3) satisfying the following

X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2), X̂3 = Xr,3, (14)
Xr,1 → X1 → (X2, X3), (15)
Xr,2 → (X2, Xr,1)→ (X1, X3), (16)
Xr,3 → (X3, Xr,1, Xr,2)→ (X1, X2), (17)

for some deterministic functions η1(.) and η2(., .). Moreover, for a given (D,P), the compression rate region,
denoted by R(D,P), is the closure of the set of all tuples R that (R,D,P) ∈ RDP . Similarly, for a given
(R,P), the information distortion region, denoted by D(R,P), is the closure of the set of all tuples D that
(R,D,P) ∈ RDP .

The following theorem provides outer and inner bounds on the operational RDP region.
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Theorem 3.3 For first-order Markov sources, a given (D,P) and R ∈ R(D,P), we have

R + log(R + 1) + 5 ∈ Ro(D,P) ⊆ R(D,P). (18)

Proof: This statement can be proved using similar lines to the proof of Theorem 3 in Salehkalaibar et al.
(2023) which was originally proposed for PLF-JD and PLF-FMD. The proof for PLF-SA is provided in
Appendix A for completeness.

Thus, for sufficiently large rates, we can approximate Ro(D,P) by R(D,P).

The above theorem shows that the operational RDP region can be approximated by the information-theoretic
RDP region at certain rates. The proof of the inner bound in Theorem 3.3, given in Appendix A, also
provides an operational interpretation of the auxiliary random variables Xr = (Xr,1, Xr,2, Xr,3) defined in
the iRDP region in Definition 3.2. In particular, each Xr,j represents a lossy version of the source sample Xj

generated by the encoder at step j. It is compressed and transmitted to the decoder at rate Rj as specified
in equation 9–equation 11. We refer to Xr as the encoded representation of the source X. The Markov chains
in equation 15–equation 17 indicate that without loss of optimality, Xr,j can be computed from the source Xj

and past representations Xr,1, . . . , Xr,j−1 without requiring access to the past source samples X1, . . . , Xj−1.

Building on this interpretation, we consider how the reliability of the first frame’s encoded representation
influences the 0-PLF-SA behavior. If Xr,1 is unreliable, meaning it is almost independent of both X1 and
X2, then 0-PLF-SA imposes independence between X̂1 and X̂2. In this case, 0-PLF-SA effectively reduces
to 0-PLF-FMD, discarding unreliable prior information. In contrast, if Xr,1 is a reliable encoded representa-
tion, i.e., Xr,1 = X1, then 0-PLF-SA simplifies to 0-PLF-JD, leveraging accurate past information in future
reconstructions. These observations suggest that the information RDP region for 0-PLF-SA naturally prior-
itizes retaining the most reliable components of previous reconstructions while disregarding unreliable ones.
Since rate allocation is central to video system design, employing a perception loss that adapts effectively to
both low-rate and high-rate regimes becomes particularly advantageous.

Next, we analyze the region for the Gauss–Markov model. Specifically, we show that one can restrict to
jointly Gaussian distributions over reconstructions and sources without loss of optimality.

Theorem 3.4 For the Gauss-Markov source model, any tuple (R,D,P) ∈ RDP can be achieved by a jointly
Gaussian distribution over (Xr,1, Xr,2, Xr,3) and identity functions for ηj(·). That is, for the Gauss-Markov
source model, the RDP region of Definition 3.2 simplifies to the set of all (R,D,P) tuples such that

R1 ≥ I(X1; X̂1), (19a)
R2 ≥ I(X2; X̂2|X̂1), (19b)
R3 ≥ I(X3; X̂3|X̂1, X̂2) (19c)
Dj ≥ E[∥Xj − X̂j∥2], (19d)
Pj ≥ ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
), j = 1, 2, 3, (19e)

for some auxiliary random variables (X̂1, X̂2, X̂3) which satisfy the following Markov chains

X̂1 → X1 → (X2, X3), (20)
X̂2 → (X2, X̂1)→ (X1, X3), (21)
X̂3 → (X3, X̂1, X̂2)→ (X1, X2). (22)

Proof: The proof uses similar lines to the proof of Theorem 4 in Salehkalaibar et al. (2023). It is provided
in Appendix B for completeness.

Based on the above RDP region, for a given rate tuple R = (R1, R2, R3) and 0-perception loss, we define the
following distortions in the causal setting.
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Definition 3.5 For the Gauss-Markov source model, a given rate tuple (R1, R2, R3) and 0-PLF-SA, distor-
tions Dj,SA(R1, . . . , Rj) for j = 1, 2, 3, are defined by the following optimization problems

D1,SA(R1) = min
PX̂1|X1

E[∥X̂1 −X1∥2] (23a)

s.t. : PX̂1
= PX1 , (23b)

I(X̂1;X1) ≤ R1, (23c)
X̂1 → X1 → (X2, X3), (23d)

where PX̂∗
1 |X1

denotes the optimal solution of equation 23, and

D2,SA(R1, R2) = min
PX̂2|X2X̂∗

1

E[∥X̂2 −X2∥2] (24a)

s.t. : PX̂2X̂∗
1

= PX2X̂∗
1

(24b)

I(X̂2;X2|X̂∗
1 ) ≤ R2 (24c)

X̂2 → (X̂∗
1 , X2)→ (X1, X3), (24d)

where PX̂∗
2 |X2X̂∗

1
denotes the optimal solution of equation 24, and

D3,SA(R1, R2, R3) = min
PX̂3|X3X̂∗

2 X̂∗
1

E[∥X̂3 −X3∥2] (25a)

s.t. : PX̂3X̂∗
2 X̂∗

1
= PX3X̂∗

2 X̂∗
1

(25b)

I(X̂3;X3|X̂∗
2 , X̂

∗
1 ) ≤ R3 (25c)

X̂3 → (X̂∗
1 , X̂

∗
2 , X3)→ (X1, X2). (25d)

Remark 3.6 According to Theorem 3.4, for the Gauss–Markov source with MSE distortion loss, the opti-
mizations in equation 23–equation 25 can be restricted to jointly Gaussian reconstructions without loss of
optimality. In this case, the constraints in equation 23–equation 25 translate into a non-empty compact sub-
set of a finite-dimensional Euclidean space of covariance parameters, and the distortion loss is a continuous
function of these parameters. Hence, the minima in equation 23–equation 25 are attained.

Corollary 3.7 For the Gauss-Markov source model, a given rate tuple R = (R1, R2, R3) and 0-PLF-SA, we
have

(D1,SA(R1), D2,SA(R1, R2), D3,SA(R1, R2, R3)) ∈ D(R, 0). (26)

Proof: Let PX̂∗
1 |X1

, PX̂∗
2 |X2,X̂∗

1
, and PX̂∗

3 |X3,X̂∗
2 ,X̂∗

1
denote the optimal solutions of equation 23–equation 25.

Define the joint distribution of reconstructions conditioned on the sources as follows

PX̂∗
1 ,X̂∗

2 ,X̂∗
3 |X1,X2,X3

= PX̂∗
1 |X1

PX̂∗
2 |X2,X̂∗

1
PX̂∗

3 |X3,X̂∗
2 ,X̂∗

1
.

By construction and by the constraints in equation 23–equation 25, this joint conditional distribution satisfies
the 0-PLF-SA, the rate constraints

I(X̂∗
1 ;X1) ≤ R1, I(X̂∗

2 ;X2|X̂∗
1 ) ≤ R2, I(X̂∗

3 ;X3|X̂∗
2 , X̂

∗
1 ) ≤ R3,

and the Markov conditions required in the definition of D(R,0). Moreover, the resulting distortions are

E∥X̂∗
1 −X1∥2 = D1,SA(R1), E∥X̂∗

2 −X2∥2 = D2,SA(R1, R2), E∥X̂∗
3 −X3∥2 = D3,SA(R1, R2, R3).

Hence the distortion triple (
D1,SA(R1), D2,SA(R1, R2), D3,SA(R1, R2, R3)

)
6
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is induced by a joint conditional distribution that is feasible for D(R,0), which proves the corollary.

Analogous to the above definition and corollary, one can define Dj,FMD(R1, . . . , Rj) and Dj,JD(R1, . . . , Rj),
and study the achievability of the associated information–distortion region by replacing 0-PLF-SA in equa-
tion 23–equation 25 with the corresponding 0-PLF-FMD and 0-PLF-JD, respectively.

We next discuss various insights from the analysis of the RDP region in Theorem 3.4. We will often consider
asymptotic regimes as follows. When we set the compression rate Rj = ϵ, it will indicate a low-rate regime,
i.e., we will assume that ϵ > 0 is a small constant. When we refer to high-rate compression we will assume
that Rj →∞.

4 Distortion Analysis for Gauss-Markov Sources and Zero-Perception Loss

In this section, we present practical insights from analyzing the Gauss-Markov source model when we have
a zero-perception loss. We study two criteria on different PLFs: resilience to error permanence phenomenon
and sensitivity to temporal correlation across frames.

4.1 Resilience to Error Permanence Phenomenon

In this section, we analyze the Gauss-Markov model at low rates to investigate resilience of different PLFs to
error permanence phenomenon, initially identified in Salehkalaibar et al. (2023). In our analysis, we assume
that the first frame is compressed at a low rate, i.e., R1 = ϵ for sufficiently small ϵ > 0. The rates of the
second and third steps, R2 and R3, can take on any nonnegative values. For simplicity, assume the case of
ρ = 1, i.e., X2 = X1 where the error permanence phenomenon can be clearly demonstrated for PLF-JD (the
results for other values of ρ please see Appendix C).

We note that reconstructions of the first frame in all cases are identical. Using standard analysis of the rate-
distortion-perception function for Gaussian sources, we have that when R1 = ϵ, the reconstruction is given
by: X̂1=

√
2ϵ ln 2X1+Z1 where Z1∼N (0, (1−2ϵ ln 2)σ2) is independent of X1 and the resulting distortion is

given by D1,FMD(ϵ) = D1,JD(ϵ) = D1,SA(ϵ) = 2(1−
√

2ϵ ln 2)σ2.

For the second step, the achievable reconstructions of different 0-PLFs are shown in Table 1. Most strikingly,
we note that regardless of the value of R2, the reconstruction of 0-PLF-JD is of the form X̂2 = X̂1 when
ρ = 1. Intuitively once X̂1 is generated and ρ = 1, the PLF-JD forces all the future reconstructions to be
an identical copy and ignore any new information available to the decoder. This is referred to as the error
permanence phenomenon Salehkalaibar et al., 2023. In contrast note that the reconstructions associated
with PLF-SA and PLF-FMD are of the form: X̂2 = ω1X̂1 +ω2X2 +Z2, where the coefficients ω1 and ω2 are
stated in Table 1. In this case the reconstruction X̂2 incorporates new information available to the decoder
in the second step as reflected in the coefficient ω2. Interestingly, as ϵ approaches 0, the coefficient ω2 in
both cases becomes identical, indicating that both losses capture similar information.

Table 1: Achievable reconstructions and distortions for R1 = ϵ and a nonnegative R2 ≫ ϵ.

Second Frame: X̂2 = ω1X̂1 + ω2X2 + Z2

Coefficients ω1, ω2 Distortion of the second frame Z2

0-PLF-FMD

ω1 =
√

2ϵ ln 2√
1−2−2R2 +2ϵ ln 2

,

ω2 = 1−2−2R2√
1−2−2R2 +(2ϵ ln 2)

2σ2(1 −
√

1 − 2−2R2 + ρ22ϵ ln 2) + O(ϵ)
(Appendix C.2)

N (0, (1 − ω2
1 − ω2

2 − 2ω1ω2
√

2ϵ ln 2)σ2)

0-PLF-SA
ω1 =

√
2ϵ ln 2(1 −

√
1 − 2−2R2 ),

ω2 =
√

1 − 2−2R2

2σ2(1 −
√

1 − 2−2R2 ) + O(
√

ϵ)
(Appendix C.1)

N (0, (2−2R2 − (1 −
√

1 − 2−2R2 )2(2ϵ ln 2))σ2)

0-PLF-JD ω1 = 1, ω2 = 0 2σ2(1 −
√

2ϵ ln 2) = D1,JD(ϵ) 0

(Appendix C.3)

Although our discussion above is limited to the case when the compression rate of the first frame is very
small, similar conclusions also appear to hold for moderate compression rates. We illustrate this behavior
numerically in Fig. 11 in Appendix C. In particular for R1 = 0.1 and R2 ≥ 0.05, the distortion of the second
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frame for 0-PLF-SA outperforms that of 0-PLF-JD. We also discuss the reconstruction associated with the
third frame in the same Appendix. While, by design, PLF-FMD achieves a lower distortion than PLF-SA, it
does not always output the most desired reconstructions. As discussed in the next section, PLF-FMD fails
to effectively preserve temporal correlation across frames.

4.2 Sensitivity to Temporal Correlation Across Frames

In this section, we show that the choice of PLF affects the temporal correlation across different frames.
Specifically, we consider the case where the first and thirds frames are compressed at a high rate, i.e.,
R1, R3 → ∞, and the rate of the second frame is small enough, i.e., R2 = ϵ for a sufficiently small ϵ > 0.
In order to develop a full qualitative understanding, we also consider the case of case of R2 = R3 = ϵ. This
case is more involved and discussed in Appendix D. In the first step, the high rate assumption implies that
X̂1 = X1. The achievable reconstructions of all 0-PLFs for the second and third steps are discussed in the
following and summarized in Table 2.

Table 2: Achievable reconstructions and distortions for R1, R3 → ∞ and R2 = ϵ.

Second Step Third Step
0-PLF-FMD X̂2 = (1 − O(ϵ))X̂1 + O(ϵ)X2 + Z2,FMD X̂3 = X3 (Appendix D.3)
(
√

ϵ ≪ρ< 1) Z2,FMD ∼ N (0, O(ϵ)σ2)
D2,FMD(∞, ϵ) = 2(1 − ρ − O(ϵ))σ2 Table 2 in Salehkalaibar et al. (2023)

0-PLF-FMD X̂2 = O(
√

ϵ)X2 + Z′
2,FMD X̂3 = X3 (Appendix D.3)

(0 <ρ≪
√

ϵ) Z′
2,FMD ∼ N (0, (1 − O(ϵ))σ2)

D2,FMD(∞, ϵ) = 2σ2(1 − O(
√

ϵ)) (Appendix D.3)
0-PLF-JD X̂2 = (ρ − O(

√
ϵ))X̂1 + O(

√
ϵ)X2 + Z2,JD X̂3 = (ρ − O(

√
ϵ))X̂2 + 1√

1+ρ2
(ρN1 + N2) + Z3,JD

Z2,JD ∼ N (0, (1 − ρ2 + O(ϵ))σ2) Z3,JD ∼ N (0, O(
√

ϵ)σ2)

D2,JD(∞, ϵ) = 2σ2(1 − ρ2 − O(
√

ϵ)) Table 2 in Salehkalaibar et al. (2023) D3,JD(∞, ϵ, ∞) = 2σ2
(

1 − ρ4
)(

1 − 1√
1+ρ2

)
+ O(

√
ϵ)

(Appendix D.2)
0-PLF-SA X̂2 = (ρ − O(

√
ϵ))X̂1 + O(

√
ϵ)X2 + Z2,SA X̂3 = X3 (Appendix D.1)

Z2,SA = Z2,JD
D2,SA(∞, ϵ) = D2,JD(∞, ϵ) (Appendix D.1)

Achievable Reconstructions of 0-PLF-FMD:

Large Correlation Coefficient: As it can be observed from the first row of Table 2, for a sufficiently large
correlation coefficient,

√
ϵ ≪ ρ < 1, i.e., the movements between frames are smooth, the reconstruction

based on 0-PLF-FMD for the second frame is given by X̂2 ≈ (1 − O(ϵ))X̂1 + O(ϵ)X2, implying that the
first frame is copied in the future reconstruction. In the third frame we have that X̂3 = X3 as R3 → ∞.
On the other hand PLF-FMD also exhibits a tendency to copy the first frame when R3 is small, as shown
in Appendix D.3. In our experiments we observe that the output of 0-PLF-FMD looks more static when
compared to the other PLFs.

Small Correlation Coefficient: The case when 0 < ρ ≪
√
ϵ, operationally captures the scenario when there

are some sharp movements in frames. In this case we have X̂2 = O(
√
ϵ)X2 + Z ′

2,FMD where Z ′
2,FMD ∼

N (0, (1−O(ϵ))σ2) is independent of X2 and X̂3 = X3. Note that the reconstruction X̂2 largely ignores any
correlation with X1, which is undesirable in practice. We will demonstrate that this property of PLF-FMD
leads to temporal inconsistency in the reconstructed frames in our experiments.

Achievable Reconstructions of 0-PLF-JD:

According to the third row of Table 2, the reconstruction of 0-PLF-JD in the second and third frames are
given by X̂2=(ρ−O(

√
ϵ))X̂1 +O(

√
ϵ)X2 +Z2,JD and X̂3 = (ρ−O(

√
ϵ))X̂2 + 1√

1+ρ2
(ρN1 +N2)+Z3,JD, which

mimic the correlation structure of the source model. One weakness of this decoder is that the noise Z2,JD
introduced in the second step continues to propagate in the third step through the term ρZ2,JD as seen from
X̂3 = (ρ2 −O(

√
ϵ))X̂1 +O(

√
ϵ)X2 + ρZ2,JD + 1√

1+ρ2
(ρN1 +N2) + Z3,JD. We will see in our experiements

that this can lead to undesirable errors in the reconstruction, indicating error propagation effect.

Achievable Reconstructions of 0-PLF-SA:

8
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The 0-PLF-SA in the second frame is expressed as PX̂1X2
= PX̂1X̂2

. When combined with the high com-
pression rate for the initial frame (i.e., R1 → ∞), it reduces to PX1X2 = PX̂1X̂2

, which is equivalent to
the constraint in the 0-PLF-JD framework. Thus, the reconstruction of the second frame for 0-PLF-SA is
similar to that of 0-PLF-JD, i.e., X̂2=(ρ−O(

√
ϵ))X̂1 +O(

√
ϵ)X2 +Z2,SA where Z2,SA = Z2,JD. For the third

frame, the reconstruction is given by X̂3=X3 due to the high rate. Thus, the decoder based PLF-SA differs
from PLF-JD in that the reconstruction is not strongly dependent on the noise in the second step. In our
experiments, we also demonstrate that PLF-SA indeed has an improved reconstruction over PLF-JD.

5 Experimental Results

Our theoretical results for PLF-SA show that PLF-SA is a new perceptual loss that inherits advantages from
both PLF-JD and PLF-FMD. In this section we provide experimental results to further demonstrate this
effect.

5.1 Implementation Details

Expanding upon the experimental framework established in Salehkalaibar et al. (2023), we merge the scale-
space-flow neural video coding architecture introduced by Agustsson et al. (2020b) with Wasserstein GANs
for perceptual quality enhancement, as proposed in Gulrajani et al. (2017). We employ three datasets: the
1-digit MovingMNIST (Srivastava et al., 2015), KTH (Schuldt et al., 2004) and UVG dataset (Mercat et al.,
2020), offering varying levels of video resolution and scene complexity. The MovingMNIST dataset consists
of low-complexity synthetic sequences with dimensions of 64×64. The KTH dataset is for action recognition
which contains video clips of six human actions at 120 × 160. The UVG dataset comprises high-definition
real-life video patches sized at 256× 256. In general, the preference for certain deep learning structures and
datasets aims at confirming the suggested theory rather than developing the most advanced neural network
architectures.

To evaluate the compression performance of the proposed PLF-SA, we compare it with prior perception
loss models, namely PLF-FMD and PLF-JD (Salehkalaibar et al., 2023). We also compare with another
baseline, DCVC-HEM (Li et al., 2022), which makes use of MS-SSIM loss during training and its manually
designed module for capturing strong temporal correlations through multi-scale features from previously
decoded frames. Further experimental details can be found in Appendix E.

5.2 Main Results

We first present the results validating the low-rate regime analysis described in Section 4.1. Following that,
we provide the complementary results for the high-rate regime analysis discussed in Section 4.2.

5.2.1 Low-rate Case R1 = 12 bits

We first validate the achievable reconstructions and distortions for R1 = ϵ discussed in Section 4.1. Fig. 1a
and Fig. 3 show samples of 3-frame MovingMNIST sequences where the first frame is encoded at a low
bitrate R1 = 12 bits.

As shown in third row of Table 1, given an incorrect reconstruction in X̂1, the decoder with 0-PLF-JD exhibit
the error permanence phenomenon for future frame reconstructions, as it tends to replicate the reconstructed
first frame as discussed in Table 1. Furthermore, as in the first and second rows of Table 1, the decoders with
0-PLF-FMD and proposed 0-PLF-SA utilize new information from X2 to recover from wrongly predicted
X̂1 with X̂2 = ω1X̂1 + ω2X2 + Z2. This highlights their capability to rectify previous mistakes. Results for
DCVC-HEM and MMSE-based are also presented. Due to the low bitrate setting, the MMSE reconstructions
tend to be blurry. DCVC-HEM also suffers from error propagation with digit “7” wrongly decoded as “3”
in Fig. 1a.

Analogous results for UVG dataset are shown in Fig. 1b and Fig. 4. When the first frame is compressed at a
low rate R1 = 0.144 bpp, the reconstructed frame X̂1 exhibits a noticeable degradation in overall color tone.
For the decoder with 0-PLF-JD, this error propagates to future reconstructions, X̂2 and X̂3. In contrast,

9
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Figure 3: The reconstruction results on the MovingMNIST dataset when the first frame is compressed at a low rate R1 = 12
bits. Similar to the Guass-Markov case presented in Section 4.1, both PLF-SA and PLF-FMD demonstrate resilience to prior
errors (digit contour errors) by incorporating new information from X2 and X3, while PLF-JD suffers from error permanence
phenomenon as it tends to ignore new information. DCVC-HEM exhibits a comparable tendency for error permanence.

Figure 4: The reconstruction results on the UVG dataset when the first frame is compressed at a low rate R1 = 0.144 bpp.
X̂1 is shared across all models. Similar to the Gauss-Markov case and MovingMNIST results, PLF-SA and PLF-FMD exhibit
robustness to first-frame errors (color tone mismatches) while PLF-JD suffers from error permanence.

0-PLF-FMD and 0-PLF-SA correct the color tone in the reconstructions of X̂2 and X̂3. Additionally, DCVC-
HEM preserves the correct color tone but struggles to reconstruct fine details, such as eye pupils in Fig.1b,
where the PLF models demonstrate better performance.

Furthermore, PSNR and perceptual loss comparisons on UVG dataset are presented in Table 3. All models
are evaluated across 2000 frames for X̂2 and 2000 frames for X̂3 under the same low-bitrate setting (R1 =
0.144 bpp). As discussed in Section 4.1, PLF-FMD achieves the lowest distortion, with PLF-SA closely
following. In contrast, PLF-JD exhibits the worst performance due to the error permanence phenomenon.
For perceptual loss, PLF-SA and PLF-FMD exhibit similar performance.

10
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(a) (b)
Figure 5: Rate-PSNR curves on the second frame of both the UVG (1080p) and Vimeo-90K (448×256p) validation to provide a
fair, rate-matched comparison under R1-ϵ setting. For different PLFs, FMD yields the lowest PSNR, with SA closely matching
its behavior, while JD produces the lowest PSNR. These results offer stronger empirical support for our theoretical claims.

Table 3: PSNR and LPIPS comparisons under the low-bitrate setting R1 = 0.144 bpp on the UVG dataset. Among these
models, PLF-FMD achieves the lowest distortion across two frames X̂2 and X̂3, with PLF-SA closely following. PLF-JD
performs the worse due to error permanence.

PSNR↑ LPIPS↓
X̂2 X̂3 X̂2 X̂3

DCVC-HEM 28.11 28.74 0.039 0.028
PLF-JD 22.38 21.99 0.049 0.053
PLF-SA 30.59 30.67 0.0039 0.0043
PLF-FMD 31.02 30.72 0.0036 0.0041

5.2.2 High-rate Case R1 =∞ bits

We now validate the achievable reconstructions and distortions for R1 =∞ (X̂1 = X1) discussed in Section
4.2. and Table 5 in Appendix D. For MovingMNIST dataset, Fig. 1c and Fig. 6 show results with 3-frame
architecture where R2 = 2 bits and R3 = 16 bits represent low and medium rates. Fig. 7 show results with
4-frame architecture where R2 = 2 bits, R3 = 12 bits and R4 = 2 bits. The source digit maintains its motion
direction across all frames. We evaluate each model’s performance on reconstruction of X̂2 and X̂3 and
analyze the digit moving trajectory across frames. Both small and large values of the correlation coefficient
ρ correspond to scenarios with high and low video sampling rates, respectively.

Results on MovingMNIST. Fig. 1c, Fig. 6a and Fig. 7 show results for a small correlation coefficient,
i.e., 0 < ρ ≪

√
ϵ. Both 0-PLF-SA and 0-PLF-JD fail to identify the correct direction in the second frame,

producing identical reconstructions (X̂2,SA = X̂2,JD) as shown in third and fourth rows of Table 2. By
the third frame, 0-PLF-JD exhibits error permanence, propagating second frame noise (ρZ2,JD) to third
frame (see the third row of Table 2), while 0-PLF-SA reduces noise dependence and accurately reconstructs
X̂3 = X3 when R3 → ∞ (see the fourth row of Table 2). For 0-PLF-FMD, temporal correlation is less
effectively preserved. It introduces synthetic noise in the second frame (X̂2 = O(

√
ϵ)X2 +Z ′

2,FMD) as in the
second row of Table 2, decoding correct direction but often changing digit contours. In contrast, 0-PLF-
SA balances content preservation and error correction, maintaining the digit’s identity and direction under
low bitrate conditions. The MMSE model produces blurry X̂2 at low rates but retains correct direction.
By the third frame, X̂3 improves with a medium bitrate but lacks fine details. DCVC-HEM, using X̂2,SA
from 0-PLF-SA as input, corrects the direction in X̂3 but struggles with digit contours. In Fig. 7, results
with additional 4-th frame are presented to demonstrate consistency with 3-frame setting shown in Fig. 6a,
thereby validating the model’s ability to effectively reconstruct longer sequences. Numerical results in Table 4
show that in the second frame, 0-PLF-JD and 0-PLF-SA exhibit higher distortion than 0-PLF-FMD due to
trajectory errors. By the third frame, 0-PLF-JD propagates these errors to X̂3, whereas 0-PLF-SA corrects
them, approaching 0-PLF-FMD’s distortion. Additionally, 0-PLF-FMD struggles with temporal correlation
in X̂2, resulting in the worst LPIPS score, while 0-PLF-SA achieves the best perceptual quality for both X̂2
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(a) Sharp movement scenario. (b) Slow movement scenario.
Figure 6: The reconstruction results on the MovingMNIST dataset for ∞-R2-R3 with R2 = 2 bits and R3 = 16 bits. Colored
digits highlight trajectory across frames. (a) With small correlation coefficient 0 < ρ ≪

√
ϵ, PLF-FMD preserves direction

but loses temporal consistency in digits’ contour. PLF-JD and PLF-SA fail to identify the direction in the second frame, but
PLF-SA rectifies the error in the third frame. (b) With large correlation coefficient

√
ϵ ≪ ρ < 1, PLF-FMD tends to replicate

the first frame without capturing motion effectively, while PLF-JD and PLF-SA show greater generative diversity.

Figure 7: The reconstruction results on the MovingMNIST dataset using the ∞-R2-R3-R4 4-frame architecture, with R2 = 2
bits, R3 = 16 bits, and R4 = 16 bits. Consistent with the results observed in the 3-frame architecture, both PLF-JD and
PLF-SA produce direction errors, and PLF-SA is able to eventually correct them. PLF-FMD cannot obviously preserve the
temporal correlation as it reconstructs incorrect digits.

and X̂3. These results highlight PLF-SA’s robustness to small ρ under low-bitrate settings (R2 = 2 bits,
R3 = 16 bits).

Fig. 6b shows results for large correlation coefficient
√
ϵ ≪ ρ < 1. Corresponding to the first row of

Table 2, 0-PLF-FMD tends to copy the first-frame X̂1 when reconstructing the second frame with X̂2 ≈
(1−O(ϵ))X̂1 +O(ϵ)X2, resulting in a lack of generative diversity. In contrast, 0-PLF-JD and 0-PLF-SA do
not exhibit such “static” reconstruction behavior for the second frame. MMSE and DCVC-HEM perform
better compared with small ρ case. However, issues such as blurriness and discrepancies in image details still
persist. Overall, PLF-SA demonstrates a superior ability to balance reconstruction distortion and perceptual
quality across various bitrate settings.

Results on KTH. As shown in Fig. 8, we further evaluate models on the KTH dataset, which contains
grayscale video sequences of human actions such as walking and running. For both X̂2 and X̂3, PLF-SA is
able to successfully reconstruct both the actions (walking versus running) and directions (left versus right),
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Figure 8: The reconstruction results on the KTH dataset for ∞-R2-R3 with R2 = 0 bits and R3 = 32 bits. PLF-SA successfully
reconstructs human motions (running/walking) and directions (left/right) and PLF-JD exhibits a subtle bias in estimating the
exact position. PLF-FMD also struggles to accurately capture both the motion type and direction.

Table 4: PSNR, LPIPS and FloLPIPS comparisons under the high-bitrate setting R1 = ∞ on MovingMNIST with small ρ.
PLF-JD and PLF-SA exhibit higher distortion than PLF-FMD due to trajectory errors. PLF-SA achieves the best perceptual
quality on X̂2, X̂3, while PLF-FMD struggles with temporal correlation.

PSNR↑ LPIPS↓ FloLPIPS↓
X̂2 X̂3 X̂2 X̂3 X̂2 X̂3

DCVC-HEM (9.83-86.21) 14.50 20.42 0.115 0.073 0.141 0.104
PLF-JD (2-16) 13.54 14.82 0.026 0.077 0.154 0.263
PLF-SA (2-16) 13.54 20.47 0.026 0.021 0.126 0.061
PLF-FMD (2-16) 14.74 20.73 0.114 0.024 0.188 0.105

demonstrating its ability to capture temporal consistency under low and moderate rates. Meanwhile, PLF-
JD also captures the correct action and direction, but exhibits a slight bias in estimating the precise spatial
location of the human in X̂3. In contrast, PLF-FMD fails to reliably preserve the action or the directional
consistency in X̂2 due to extremely low rate R2 = 0 bits, generating visually implausible sequences. These
results validate the effectiveness of our proposed method in handling realistic motion dynamics across various
bitrate budgets.

6 Conclusions

We observe that previously proposed perception loss functions (PLF) in video compression can have disad-
vantages in different operating regimes. In particular, the PLF-JD that preserves the joint distribution of
all the frames suffers from the effect of error permanence, where mistakes made in previously reconstructed
frames carry over in subsequent frames. On the other hand, the PLF-FMD that only preserves marginal
distribution of frames and achieves the lowest distortion, does not effectively exploit the temporal correla-
tion during reconstruction. Motivated by these observations, we propose a new loss, PLF-SA, that mitigates
the disadvantages of each. When the previously reconstructed frames are of lower quality, our proposed
loss avoids the error permanence phenomenon in PLF-JD. When the previously reconstructed frames are of
higher quality, the decoder based on PLF-SA effectively exploits temporal correlation between frames. We
validate the merits of our proposed loss through experimental results involving moving-MNIST, KTH, and
UVG datasets in a variety of operating regimes. We also provide information theoretic analysis of the first
order Gauss-Markov source model to further explain the qualitative behavior of each PLF.
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A Operational RDP Region

It is not feasible to compute the region RDP o directly since it involves searching over all possible encoding-
decoding functions. But, for first-order Markov sources where the Markov chain X1 → X2 → X3 holds, the
following region can be used as an approximation. So, with this motivation, we introduce the information
RDP region as follows.

Definition A.1 (Information RDP Region) For first-order Markov sources, let the information RDP
region, denoted by RDP , be the set of all tuples (R,D,P) which satisfy the following

R1 ≥ I(X1;Xr,1), (27)
R2 ≥ I(X2;Xr,2|Xr,1), (28)
R3 ≥ I(X3;Xr,3|Xr,1, Xr,2), (29)
Dj ≥ E[∥Xj − X̂j∥2], j = 1, 2, 3, (30)
Pj ≥ ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
), j = 1, 2, 3, (31)

for auxiliary random variables (Xr,1, Xr,2, Xr,3) and (X̂1, X̂2, X̂3) such that

X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2), X̂3 = Xr,3, (32)
Xr,1 → X1 → (X2, X3), (33)
Xr,2 → (X2, Xr,1)→ (X1, X3), (34)
Xr,3 → (X3, Xr,1, Xr,2)→ (X1, X2), (35)

for some deterministic functions η1(.) and η2(., .). Moreover, for a given (D,P), the compression rate region,
denoted by R(D,P), is the closure of the set of all tuples R that (R,D,P) ∈ RDP .

Proposition A.2 For first-order Markov sources, a given (D,P) and R ∈ R(D,P), we have

R + log(R + 1) + 5 ∈ Ro(D,P). (36)

Moreover, the following holds:

R
o(D,P) ⊆ R(D,P). (37)

To prove the above statement, we first discuss the achievable scheme that results in equation 36. Then, we
will provide the proof of outer bound in equation 37.

Before stating the achievable scheme, we recall the strong functional representation lemma (SFRL) from Li
& El Gamal (2018). It states that for jointly distributed random variables X and Y , there exists a random
variable U independent of X, and function ϕ such that Y = ϕ(X,U). Here, U is not necessarily unique. The
strong functional representation lemma states further that U should be chosen to satisfy

H(Y |U) ≤ I(X;Y ) + log(I(X;Y ) + 1) + 4. (38)

Notice that the strong functional representation lemma can be applied conditionally. Given PXY |W , we can
represent Y as a function of (X,W,U) such that U is independent of (X,W ) and

H(Y |W,U) ≤ I(X;Y |W ) + log(I(X;Y |W ) + 1) + 4.
(39)

Proof of equation 36 (Inner bound):

For a given (D,P) and R ∈ R(D,P), let Xr = (Xr,1, Xr,2, Xr,3) be jointly distributed with X = (X1, X2, X3)
where the Markov chains equation 33–equation 35 hold and the rate constraints in equation 27–equation 29

16



Under review as submission to TMLR

Figure 9: Encoded representations and reconstructions of the iRDP region RDP .

are satisfied such that there exist (X̂1, X̂2, X̂3) for which distortion-perception constraints equation 30–
equation 31 hold. Denote the joint distribution of (X,Xr, X̂) by PXXrX̂ and notice that according to the
Markov chains in equation 33–equation 35, it factorizes as the following

PXXrX̂ = PX1X2X3 · PXr,1|X1 · PXr,2|Xr,1X2 ·
PXr,3|Xr,2Xr,1X3 · 1{X̂1 = g1(Xr,1)} · 1{X̂2 = g2(Xr,1, Xr,3)} · 1{X̂3 = Xr,3}. (40)

For an illustration of encoded representations Xr and reconstructions X̂ in R(D,P) which are induced by
distribution PXXrX̂, see Fig. 9.

Now, we show that R + log(R + 1) + 5 ∈ R(D,P). The achievable scheme is as follows. We construct the
codebook according to the joint distribution in equation 40. By marginalizing this distribution over (X, X̂),
we obtain the following distribution PXr

PXr
= PXr,1PXr,2|Xr,1PXr,3|Xr,2Xr,1 . (41)

From the SFRL (Li & El Gamal, 2018), we know that

• there exist a random variable V1 independent of X1 and a deterministic function q1 such that
Xr,1 = q1(X1, V1) with the distribution given in 41, and

H(Xr,1|V1) ≤ I(X1;Xr,1) + log(I(X1;Xr,1) + 1) + 4. (42)

Thus, the first encoder observes the source X1 and applies the function q1 to get Xr,1;

• according to the conditional SFRL, there exist a random variable V2 independent of (X2, Xr,1) and
a deterministic function q2 such that Xr,2 = q2(Xr,1, X2, V2) with its conditional distribution given
Xr,1 specified in equation 41, and

H(Xr,2|Xr,1, V2) ≤ I(X2;Xr,2|Xr,1) + log(I(X2;Xr,2|Xr,1) + 1) + 4. (43)

At the second step, the representation Xr,1 is available at the second encoder. So, upon observing
the source X2, it applies the function q2 to get Xr,2 (see Fig. 10);

• according to the conditional SFRL, there exist a random variable V3 independent of (X3, Xr,1, Xr,2)
and a deterministic function q3 such that Xr,3 = q3(Xr,1, Xr,2, X3, V3) and

H(Xr,3|Xr,1, Xr,2, V3) ≤ I(X3;Xr,3|Xr,1, Xr,2) + log(I(X3;Xr,3|Xr,1, Xr,2) + 1) + 4. (44)

Now, the encoding and decoding are as follows
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X2

Figure 10: Strong functional representation lemma for T = 2 frames.

• With V1 available at all encoders and decoders, we can have a class of prefix-free binary codes indexed
by V1 with the expected codeword length not larger than I(X1;Xr,1) + log(I(X1;Xr,1) + 1) + 5 to
encode this index losslessly (see Fig. 10).

• With V2 available at the encoders and decoders, we can design a set of prefix-free binary codes indexed
by (V2, Xr,1) with expected codeword length not larger than I(X2;Xr,2|Xr,1)+log(I(X2;Xr,2|Xr,1)+
1) + 5 to encode this index losslessly (see Fig. 10).

• Similarly, with V3 available at the third encoder and decoder, one can represent the discrete index
corresponding to Xr,3 losslessly.

• The decoders can use functions X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2) and X̂3 = Xr,3 to get the
reconstruction X̂.

Taking these facts together with the rate constraints in equation 27-equation 29 shows that R+log(R+1)+5 ∈
R

o(D,P).

Proof of equation 37 (Outer Bound):

For any (D,P), R ∈ Ro(D,P), shared randomness K, encoding functions fj : X1 × . . . × Xj × K → Mj and
decoding functions gj : M1 ×M2 × . . .×Mj ×K → Xj such that

Rj ≥ E[ℓ(Mj)], j = 1, 2, 3, (45)

and

Dj ≥ E[∥Xj − X̂j∥2], j = 1, 2, 3, (46)
Pj ≥ ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j
), j = 1, 2, 3, (47)

we lower bound the expected length of the messages. Define

Xr,1 := (M1,K), (48)
Xr,2 := (M1,M2,K), (49)

and recall that according to the decoding functions, we have

X̂j = gj(M1, . . . ,Mj ,K), j = 1, 2, 3. (50)

We can write

R1 ≥ E[ℓ(M1)] (51)
≥ H(M1|K) (52)
= I(X1;M1|K) (53)
= I(X1;M1,K) (54)
= I(X1;Xr,1). (55)
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Now, consider the following set of inequalities

R2 ≥ E[ℓ(M2)] (56)
≥ H(M2|M1,K) (57)
= I(X1, X2;M2|M1,K) (58)
= I(X1, X2;X2,r|Xr,1). (59)

Similarly, we have

R3 ≥ E[ℓ(M3)] (60)
≥ H(M3|M1,M2,K) (61)
= I(X1, X2, X3;M3|M1,M2,K) (62)
≥ I(X1, X2, X3; X̂3|Xr,1, Xr,2). (63)

Notice that the definitions in equation 48–equation 49 imply the following Markov chains

Xr,1 → X1 → (X2, X3), (64)
Xr,2 → (X1, X2, Xr,1)→ X3. (65)

On the other hand, the decoding functions of the first and second steps are as follows

X̂1 = g1(M1,K), (66)
X̂2 = g2(M1,M2,K), (67)

where together with definitions in equation 48 and equation 49, we can write

X̂1 = g1(M1,K) := η1(Xr,1), (68)
X̂2 = g2(M1,M2,K) := η2(Xr,1, Xr,2), (69)

such that η1(.) and η2(., .) are deterministic functions.

Now, consider the fact that the set of constraints in equation 46–equation 47, equation 55, equation 59,
equation 63 with Markov chains in equation 64–equation 65 and deterministic functions in equation 68–
equation 69 constitute an iRDP region, denoted by RDP

OB, which is the set of all tuples (R,D,P) such
that

R1 ≥ I(X1;Xr,1), (70)
R2 ≥ I(X1, X2;Xr,2|Xr,1), (71)
R3 ≥ I(X1, X2, X3; X̂3|Xr,1, Xr,2), (72)
Dj ≥ E[∥Xj − X̂j∥2], j = 1, 2, 3, (73)
Pj ≥ ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j
), j = 1, 2, 3, (74)

for auxiliary random variables (Xr,1, Xr,2) and (X̂1, X̂2, X̂3) satisfying the following

X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2), (75)
Xr,1 → X1 → (X2, X3), (76)
Xr,2 → (X1, X2, Xr,1)→ X3. (77)

for some deterministic functions η1(.) and η2(., .).

Comparing the two regions RDP OB and RDP , we identify the following differences. The Markov chain in
equation 34 is more restrictive than the one in equation 77. Moreover, the Markov chain in equation 35 does
not appear in RDP

OB. Despite these distinctions, the following lemma shows that RDP OB = RDP . Now,
for a given (D,P), let ROB(D,P) denote the set of rate tuples R such (R,D,P) ∈ RDP OB, then this lemma
implies that ROB(D,P) = R(D,P) which completes the proof of the outer bound.

We conclude this section by the following lemma.
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Lemma A.3 For first-order Markov sources, we have

RDP = RDP
OB
. (78)

Proof: This result for the scenario without perception constraint has been similarly observed in Eq. (12) of
Stavrou et al. (2022). The proof in this section is provided for completeness.

First, observe that the Markov chain constraints in equation 33–equation 35 are more restrictive than those
in equation 76–equation 77. Consequently, we have RDP ⊆ RDP OB. Now, it remains to show that RDP OB ⊆
RDP . To establish this, we need to verify that imposing the Markov chains in equation 33–equation 35 does
not alter the constraints in equation 70–equation 74. Consider the following facts

1. The distortion constraints in equation 73 depend only on the joint distribution of (Xj , X̂j), and thus
on the joint distribution of (Xj , Xr,1, . . . , Xr,j), since X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2), X̂3 = Xr,3.
So, imposing the Markov chain Xr,2 → (X2, Xr,1) → X1 does not affect the expected distor-
tion E[∥X2 − X̂2∥2], as this quantity is independent of the joint distribution between X1 and
(Xr,1, Xr,2, X2). The same reasoning applies to the remaining frames;

2. The perception constraints in equation 74 depend on the joint distributions PX̂1...X̂j−1Xj
and

PX̂1,...,X̂j
, and hence on PXr,1...Xr,j , since X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2), X̂3 = Xr,3. Thus,

imposing Xr,2 → (X2, Xr,1)→ X1 does not affect ϕ2(PX̂1X2
, PX̂1X̂2

) since it does not depend on the
joint distribution of X1 with (Xr,1, Xr,2, X2). A similar argument holds for other frames;

3. Moreover, the rate constraints in equation 71 and equation 72 would be further lower bounded by

R2 ≥ I(X1, X2;Xr,2|Xr,1)
≥ I(X2;Xr,2|Xr,1), (79)

R3 ≥ I(X1, X2, X3; X̂3|Xr,1, Xr,2)
≥ I(X3; X̂3|Xr,1, Xr,2). (80)

Furthermore, the mutual information terms I(X1;Xr,1), I(X2;Xr,2|Xr,1) and I(X3; X̂3|Xr,1, Xr,2)
depend on distributions PX1Xr,1 , PXr,1Xr,2X2 and PX3X̂3Xr,1Xr,2

, respectively. These distributions
must therefore be preserved under the imposed Markov chains equation 33–equation 35. The
first two are maintained by the structure in equation 33–equation 34. Moreover, because the
sources form a first-order Markov chain, preserving PXr,1X1 and PXr,1Xr,2X2 is sufficient to pre-
serve PXr,1Xr,2X3 . As a result, ensuring that the joint distribution PX̂3Xr,1Xr,2

is preserved is enough
to keep I(X3; X̂3|Xr,1, Xr,2) unchanged.

Considering the above four facts, without loss of optimality, one can impose the following Markov chains

Xr,1 → X1 → (X2, X3), (81)
Xr,2 → (X2, Xr,1)→ (X1, X3), (82)
X̂3 → (X3, Xr,1, Xr,2)→ (X1, X2). (83)

This concludes the proof of the lemma.

B Gauss-Markov Source Model

In this section, we prove that for Gaussian sources, jointly Gaussian reconstructions are optimal.

Proposition B.1 For the Gauss-Markov source model, any tuple (R,D,P) ∈ RDP can be attained by a
jointly Gaussian distribution over (Xr,1, Xr,2, Xr,3) and identity mappings for ηj(·) in Definition A.1.
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First, notice that a proof for the setting without perception constraint is provided in Khina et al. (2019).
The following proof is different from Khina et al. (2019) in some steps and also involves the perception
constraint.

For a given tuple (R,D,P) ∈ RDP , let X∗
r,1, X∗

r,2, X̂∗
1 = η1(X∗

r,1), X̂∗
2 = η2(X∗

r,1, X
∗
r,2) and X̂∗

3 be random
variables satisfying equation 32–equation 34. Let PX̂G

1 |X1
, PX̂G

2 |X̂G
1 X2

and PX̂G
3 |X̂G

1 X̂G
2 X3

be jointly Gaussian
distributions such that the following conditions are satisfied:

cov(X̂G
1 , X1) = cov(X̂∗

1 , X1), (84)
cov(X̂G

1 , X̂
G
2 , X2) = cov(X̂∗

1 , X̂
∗
2 , X2), (85)

cov(X̂G
1 , X̂

G
2 , X̂

G
3 , X3) = cov(X̂∗

1 , X̂
∗
2 , X̂

∗
3 , X3). (86)

In general, the Gaussian random variables which satisfy the constraints in equation 84–equation 86 can be
written in the following format

X1 = νX̂G
1 + Z1, (87)

X̂G
2 = ω1X̂

G
1 + ω2X2 + Z2, (88)

X̂G
3 = τ1X̂

G
1 + τ2X̂

G
2 + τ3X3 + Z3, (89)

for some real ν, ω1, ω2, τ1, τ2, τ3 where X̂G
1 ∼ N (0, σ2

X̂G
1

), X̂G
2 ∼ N (0, σ2

X̂G
2

), Z1, Z2 and Z3 are Gaussian

random variables with zero mean and variances α2
1, α

2
2, α

2
3, independent of X̂G

1 , (X̂G
1 , X2) and (X̂G

1 , X̂
G
2 , X3),

respectively.

We explicitly derive the coefficients ν, ω1, ω2, τ1, τ2 and τ3 in the following. Multiplying both sides of equa-
tion 87 by X̂G

1 and taking an expectation, we get

E[X1X̂
G
1 ] = νσ2

X̂G
1
. (90)

According to equation 84, the above equation can be written as follows

E[X1X̂
∗
1 ] = νE[X̂∗2

1 ]. (91)

Multiplying both sides of equation 88 by the vector [X̂G
1 X2] and taking an expectation, we have

[E[X̂G
1 X̂

G
2 ] E[X2X̂

G
2 ]] = [ω1 ω2]

(
σ2

X̂G
1

E[X2X̂
G
1 ]

E[X2X̂
G
1 ] σ2

2

)
. (92)

Considering the fact that E[X2X̂
G
1 ] = ρ1E[X1X̂

G
1 ] and according to equation 85, the above equation can be

written as follows

[E[X̂∗
1 X̂

∗
2 ] E[X2X̂

∗
2 ]] = [ω1 ω2]

(
E[X̂∗2

1 ] ρ1E[X1X̂
∗
1 ]

ρ1E[X1X̂
∗
1 ] σ2

2

)
. (93)

Similarly, multiplying both sides of equation 89 by the vector [X̂G
1 X̂G

2 X3], taking an expectation and
considering equation 86, we get

[E[X̂∗
1 X̂

∗
3 ] E[X̂∗

2 X̂
∗
3 ] E[X3X̂

∗
3 ]] = [τ1 τ2 τ3]

 E[X̂∗2
1 ] E[X̂∗

1 X̂
∗
2 ] ρ1ρ2E[X1X̂

∗
1 ]

E[X̂∗
1 X̂

∗
2 ] E[X̂∗2

2 ] ρ2E[X2X̂
∗
2 ]

ρ1ρ2E[X1X̂
∗
1 ] ρ2E[X2X̂

∗
2 ] E[X̂∗2

3 ]

 . (94)
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Solving equations equation 91, equation 93 and equation 94, we get

σ2
X̂G

1
= E[X̂∗2

1 ], (95)

ν = E[X1X̂
∗
1 ]

E[X̂∗2
1 ]

, (96)

α2
1 = σ2

1 −
E[X1X̂

∗
1 ]

E[X̂∗2
1 ]

, (97)

ω1 = νρ1E[X̂∗
1 X̂

∗
2 ]−E[X2X̂

∗
2 ]

ν2ρ2
1σ

2
X̂G

1
− σ2

2
, (98)

ω2 =
νρ1σ

2
X̂G

1
E[X2X̂

∗
2 ]− σ2

2E[X̂∗
1 X̂

∗
2 ]

ν2ρ2
1σ

4
X̂G

1
− σ2

2σ
2
X̂G

1

, (99)

α2
2 = E[X̂∗2

2 ]− α2
2σ

2
X̂G

1
− ω2

2σ
2
2 − 2ω1ω2ρ1νσ

2
X̂G

1
.

(100)

For the third step, the coefficients and noise variance of equation 89 are given as follows

[τ1 τ2 τ3] = [E[X̂∗
1 X̂

∗
3 ] E[X̂∗

2 X̂
∗
3 ] E[X3X̂

∗
3 ]] ·

 E[X̂∗2
1 ] E[X̂∗

1 X̂
∗
2 ] ρ1ρ2E[X1X̂

∗
1 ]

E[X̂∗
1 X̂

∗
2 ] E[X̂∗2

2 ] ρ2E[X2X̂
∗
2 ]

ρ1ρ2E[X1X̂
∗
1 ] ρ2E[X2X̂

∗
2 ] E[X̂∗2

3 ]

−1

, (101)

α2
3 = E[X̂∗2

3 ]− τ2
1E[X̂∗2

1 ]− τ2
2E[X̂∗2

2 ]− τ2
3E[X2

3 ]− 2τ1τ2E[X̂∗
1 X̂

∗
2 ]− 2τ1τ3ρ1ρ2E[X1X̂

∗
1 ]− 2τ2τ3ρ2E[X2X̂

∗
2 ],

(102)

where (.)−1 denotes the inverse of a matrix.

Now, we look at the rate constraints.

Rate Constraints:

Consider the rate constraint of the first step as follows

R1 ≥ I(X1;X∗
r,1) (103)

= h(X1)− h(X1|X∗
r,1) (104)

≥ h(X1)− h(X1|X̂∗
1 ) (105)

= h(X1)− h(X1 −E[X1|X̂∗
1 ]|X̂∗

1 ) (106)
≥ h(X1)− h(X1 −E[X1|X̂∗

1 ]) (107)
≥ h(X1)− h(X1 −E[X1|X̂G

1 ]) (108)
= h(X1)− h(X1 −E[X1|X̂G

1 ]|X̂G
1 ) (109)

= I(X1; X̂G
1 ), (110)

where

• equation 105 follows because X̂∗
1 is a function of X∗

r,1;

• equation 106 follows because E[X1|X̂∗
1 ] is a deterministic function of X̂∗

1 ;

• equation 108 follows because for a given covariance matrix in equation 84, the Gaussian distribution
maximizes the differential entropy;

• equation 109 follows because the MMSE is uncorrelated from the data and since the random variables
are Gaussian, the MMSE would be independent of the data.
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Next, consider the rate constraint of the second step as the following

R2 ≥ I(X2;X∗
r,2|X∗

r,1) (111)
= h(X2|X∗

r,1)− h(X2|X∗
r,1, X

∗
r,2) (112)

≥ h(X2|X∗
r,1)− h(X2|X̂∗

1 , X̂
∗
2 ) (113)

≥ h(X2|X∗
r,1)− h(X2|X̂G

1 , X̂
G
2 ) (114)

= h(ρ1X1 +N1|X∗
r,1)− h(X2|X̂G

1 , X̂
G
2 ) (115)

≥ 1
2 log

(
ρ2

122h(X1|X∗
r,1) + 22h(N1)

)
− h(X2|X̂G

1 , X̂
G
2 ) (116)

≥ 1
2 log

(
ρ2

12−2R122h(X1) + 22h(N1)
)
− h(X2|X̂G

1 , X̂
G
2 ), (117)

where

• equation 113 follows because X̂∗
1 and X̂∗

2 are deterministic functions of X∗
r,1 and (X∗

r,1, X
∗
r,2), respec-

tively;

• equation 114 follows because for a given covariance matrix in equation 85, the Gaussian distribution
maximizes the differential entropy;

• equation 116 follows from entropy power inequality (EPI) (see pp. 22 of El Gamal & Kim (2011));

• equation 117 follows from equation 104.

Similarly, consider the rate constraint of the third frame as the following,

R3 ≥ I(X3; X̂∗
3 |X∗

r,1, X
∗
r,2) (118)

= h(X3|X∗
r,1, X

∗
r,2)− h(X3|X∗

r,1, X
∗
r,2, X̂

∗
3 ) (119)

≥ h(X3|X∗
r,1, X

∗
r,2)− h(X3|X̂∗

1 , X̂
∗
2 , X̂

∗
3 ) (120)

≥ h(X3|X∗
r,1, X

∗
r,2)− h(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (121)

= h(ρ2X2 +N2|X∗
r,1, X

∗
r,2)− h(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (122)

≥ 1
2 log

(
ρ2

222h(X2|X∗
r,1,X∗

r,2) + 22h(N2)
)
− h(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (123)

≥ 1
2 log

(
ρ2

22−2R222h(X2|X∗
r,1) + 22h(N2)

)
− h(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (124)

≥ 1
2 log

(
ρ2

1ρ
2
22−2R1−2R222h(X1) + ρ2

22−2R222h(N1) + 22h(N2)
)
− h(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ). (125)

Next, we look at the distortion constraint.

Distortion Constraint: The choices in equation 84–equation 86 imply that

Dj ≥ E[∥Xj − X̂∗
j ∥2] = E[∥Xj − X̂G

j ∥2], j = 1, 2, 3. (126)

Finally, we look at the perception constraint

Perception Constraint:

Define the following distribution

PU∗V ∗ := arg inf
P̃UV :

P̃U =PX1
P̃V =PX̂∗

1

EP̃ [∥U − V ∥2]. (127)
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Now, define PUGV G to be a Gaussian joint distribution with the following covariance matrix

cov(UG, V G) = cov(U∗, V ∗). (128)

Then, we have the following set of inequalities:

P1 ≥W 2
2 (PX1 , PX̂∗

1
) (129)

= inf
P̃UV :

P̃U =PX1
P̃V =PX̂∗

1

EP̃ [∥U − V ∥2] (130)

= E[∥U∗ − V ∗∥2] (131)
= E[∥UG − V G∥2] (132)
≥W 2

2 (PUG , PV G) (133)
= inf

P̂UV :
P̂U =PUG

P̂V =PV G

EP̂ [∥U − V ∥2] (134)

= inf
P̂UV :

P̂U =PX1
P̂V =P

X̂G
1

EP̂ [∥U − V ∥2] (135)

= W 2
2 (PX1 , PX̂G

1
), (136)

where

• equation 131 follows from the definition in equation 127;

• equation 132 follows from equation 128 which implies that (U∗, V ∗) and (UG, V G) have the same
second-order statistics;

• equation 135 follows because PV G = PX̂G
1

which is justified in the following. First, notice that both
PV G and PX̂G

1
are Gaussian distributions. Denote the variance of V G by σ2

V G and recall that the
variance of X̂G

1 is denoted by σ2
X̂G

1
. According to equation 128, σ2

V G is equal to the variance of

V ∗. Also, from equation 127, we know that PV ∗ = PX̂∗
1
, hence the variances of V ∗ and X̂∗

1 are the
same. On the other side, according to equation 84, we know that the variance of X̂∗

1 is equal to
σ2

X̂G
1

. Thus, we conclude that σ2
X̂G

1
= σ2

V G , which yields PV G = PX̂G
1

. A similar argument shows
that PUG = PX1 .

A similar argument holds for the perception constraint of the second and third steps for both PLFs.

Thus, we have proved the set of Gaussian auxiliary random variables (X̂G
1 , X̂

G
2 , X̂

G
3 ) given in equation 87–

equation 89 where the coefficients are chosen according to distortion-perception constraints, provides an
outer bound to RDP which is the set of all tuples (R,D,P) such that

R1 ≥ I(X1; X̂G
1 ), (137)

R2 ≥
1
2 log

(
ρ2

12−2R122h(X1) + 22h(N1)
)
− h(X2|X̂G

1 , X̂
G
2 ), (138)

R3 ≥
1
2 log

(
ρ2

1ρ
2
22−2R1−2R222h(X1) + ρ2

22−2R222h(N1) + 22h(N2)
)
− h(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ), (139)

Dj ≥ E[∥Xj − X̂G
j ∥2], j = 1, 2, 3, (140)

Pj ≥W 2
2 (PX1...Xj , PX̂G

1 ...X̂G
j

). (141)
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Now, we need to show that the above RDP region is also an inner bound to RDP . This is simply verified
by the following choice. In iRDP region of equation 27–equation 35, choose the following:

Xr,j = X̂j = X̂G
j , j = 1, 2, 3, (142)

where (X̂G
1 , X̂

G
2 , X̂

G
3 ) satisfy equation 87–equation 89 with coefficients chosen according to distortion-

perception constraints. The lower bounds on distortion and perception constraints in equation 140 and
equation 141 are immediately achieved by this choice. Now, we will look at the rate constraints. The
achievable rate constraint of the first step can be written as follows

R1 ≥ I(X1; X̂G
1 ), (143)

which immediately coincides with equation 137. The achievable rate of the second step can be written as
follows

R2 ≥ I(X2; X̂G
2 |X̂G

1 ) (144)
= h(X2|X̂G

1 )− h(X2|X̂G
1 , X̂

G
2 ) (145)

= h(ρ1X1 +N1|X̂G
1 )− h(X2|X̂G

1 , X̂
G
2 ) (146)

= 1
2 log(ρ2

122h(X1|X̂G
1 ) + 22h(N1))− h(X2|X̂G

1 , X̂
G
2 ) (147)

≥ 1
2 log

(
ρ2

12−2R122h(X1) + 22h(N1)
)
− h(X2|X̂G

1 , X̂
G
2 ), (148)

where

• equation 147 follows because EPI holds with “equality” for jointly Gaussian distributions (see pp.
22 of El Gamal & Kim (2011));

• equation 148 follows from equation 138.

Thus, the bound in equation 148 coincides with equation 117. A similar argument holds for the achievable
rate of the third frame.

Notice that the above proof (both converse and achievability) can be extended to T frames using the sequen-
tial analysis that was presented. Thus, without loss of optimality, one can restrict to the jointly Gaussian
distributions and identity functions η1(.) and η2(., .) in iRDP region RDP .

C Low-rate Regime for the First Frame

In this section, we prove the following theorem when the first frame is compressed at a low rate. The rate
of the second frame is an arbitrary nonnegative value.

Theorem C.1 Let R1 = ϵ for a sufficiently small ϵ > 0 and R2 be an arbitrary nonnegative rate where
R2 ≫ ϵ. The achievabale distortions for the second frame, D2,SA(ϵ, R2) (for 0-PLF-SA), D2,FMD(ϵ, R2) (for
0-PLF-FMD) and D2,JD(ϵ, R2) (for 0-PLF-JD) are given by

D2,SA(ϵ, R2) = 2σ2(1−
√

1− 2−2R2) +O(
√
ϵ), (149)

D2,FMD(ϵ, R2) = 2σ2(1−
√

1− 2−2R2 + ρ22ϵ ln 2) +O(ϵ), (150)
D2,JD(ϵ, R2) = 2σ2(1−

√
1− ρ2

√
1− 2−2R2 − ρ2

√
2ϵ ln 2) +O(ϵ). (151)

To prove the above theorem, we first recall the optimization problems of the Gauss-Markov source model.
Then, we will look at each PLF separately; 0-PLF-SA, 0-PLF-FMD, and 0-PLF-JD. For each of these PLFs,
we discuss the second step and provide the analysis of the third step for completeness.
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Recall the RDP region of the Gauss-Markov model which is the set of all tuples (R,D,P) such that

R1 ≥ I(X1; X̂1), (152a)
R2 ≥ I(X2; X̂2|X̂1), (152b)
R3 ≥ I(X3; X̂3|X̂1, X̂2), (152c)
Dj ≥ E[∥Xj − X̂j∥2], (152d)
Pj ≥ ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
), j = 1, 2, 3,

(152e)

for some auxiliary random variables (X̂1, X̂2, X̂3) which satisfy the following Markov chains

X̂1 → X1 → (X2, X3), X̂2 → (X2, X̂1)→ (X1, X3),
X̂3 → (X3, X̂1, X̂2)→ (X1, X2). (153)

For the Gauss-Markov source model, the reconstructions that satisfy the Markov chains in equation 153 can
be generally written as follows

X̂1 = νX1 + Z1, (154)
X̂2 = ω1X̂1 + ω2X2 + Z2, (155)
X̂3 = τ1X̂1 + τ2X̂2 + τ3X3 + Z3, (156)

where X̂j ∼ N (0, σ̂2
j ) for j = 1, 2, Z1, Z2 and Z3 are independent of X1, (X̂1, X2) and (X̂1, X̂2, X3),

respectively.

According to equation 23, the optimization program of the first step for all 0-PLFs is as follows

min
PX̂1|X1

E[∥X1 − X̂1∥2]

s.t. I(X1; X̂1) ≤ R1,

PX1 = PX̂1
. (157)

Using the choice in equation 154, the optimization program of the first step for simplifies as follows

min
ν

2σ2(1− ν) (158a)

s.t. ν2 ≤ (1− 2−2R1), (158b)

When R1 = ϵ for a sufficiently small ϵ > 0, the solution of the above program is as follows

D1,SA(ϵ) = D1,FMD(ϵ) = D1,JD(ϵ) = 2σ2(1−
√

2ϵ ln 2) +O(ϵ), (159)

where the optimal choice of ν is given by

ν =
√

1− 2−2R1 =
√

2ϵ ln 2 +O(ϵ). (160)

Next, consider the optimization programs for different steps and PLFs as follows.

C.1 0-PLF-SA

In this section, we provide the optimization programs for different steps of 0-PLF-SA. For the second step,
we are able to provide an approximate solution for the low compression rate, i.e., R1 = ϵ. For the third step,
we plot the tradeoff in Fig. 12.

Second Step:

The optimization program of the second step is given as follows.
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Proposition C.2 The optimization program of 0-PLF-SA for the second step, given in equation 24, can be
written as

min
ω1,ω2

2σ2 − 2ω1ρνσ
2 − 2ω2σ

2 (161a)

s.t. ω2
2(1− ρ2ν22−2R2) ≤ (1− ω2

1 − 2ω1ω2ρν)(1− 2−2R2), (161b)
ω1 + νω2ρ = ρν, (161c)
ν =

√
1− 2−2R1 . (161d)

Proof: According to equation 24, the optimization problem of the second step is as follows,

min
PX̂2|X2X̂1

E[∥X2 − X̂2∥2]

s.t. I(X2; X̂2|X̂1) ≤ R2,

PX̂1X2
= PX̂1X̂2

. (162)

We proceed with simplifying the rate constraint as follows,

R2 ≥ I(X2; X̂2|X̂1) (163)
= h(X̂2|X̂1)− h(Z2) (164)
= h(ω2X2 + Z2|X̂1)− h(Z2) (165)

= 1
2 log 2−2h(Z2)

(
ω2

222h(X2|X̂1) + 22h(Z2)
)

(166)

= 1
2 log 2−2h(Z2)

(
ω2

222h(ρX1+N1|X̂1) + 22h(Z2)
)

(167)

= 1
2 log 2−2h(Z2)

(
ω2

2(ρ222h(X1|X̂1) + 22h(N1)) + 22h(Z2)

)
(168)

= 1
2 log 2−2h(Z2)

(
ω2

2(ρ222h(X1|X̂1) + (1− ρ2)σ2) + 22h(Z2)

)
(169)

≥ 1
2 log 2−2h(Z2)

(
ω2

2(ρ2σ22−2R1 + (1− ρ2)σ2) + 22h(Z2)

)
, (170)

where

• equation 164 and equation 165 follow from equation 155;

• equation 166 and equation 168 follow because Entropy Power Inequality (EPI) (see pp. 22 of
El Gamal & Kim (2011)) holds with equality for Gaussian sources;

• equation 167 follows from equation 7 where X2 = ρX1 +N1;

• equation 170 follows from the rate constraint of the first step, i.e., R1 ≥ I(X1; X̂1).

By re-arranging the terms in equation 170 and applying the Gaussian choice in equation 155, we obtain the
following set of inequalities

(ω2
2(ρ2σ22−2R1 + (1− ρ2)σ2))2−2R2 ≥ (1− 2−2R2)22h(Z2) (171)

= (1− 2−2R2) · (1− ω2
1 − ω2

2 − 2ω1ω2νρ)σ2. (172)

Considering that ν =
√

1− 2−2R1 and re-arranging the terms in the above inequality, we get the constraint
in equation 161b.

The objective function in equation 161a can be obtained as follows,

E[∥X2 − X̂2∥2] = 2σ2 − 2E[X2X̂2] (173)
= 2σ2 − 2(ρνω1 + ω2)σ2, (174)
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where the last equality follows from equation 154 and equation 155.

The derivation of the constraint in equation 161c is as follows. We multiply both sides of equation 154
and equation 155 by X2 and X̂1, respectively, and take an expectation from both sides. Thus, we have

E[X2X̂1] = νE[X1X2] = νρσ2, (175)
E[X̂1X̂2] = ω1σ

2 + ω2E[X2X̂1]. (176)

Notice that the perception constraint PX2X̂1
= PX̂2X̂1

implies that E[X̂1X̂2] = E[X2X̂1] which together
with equation 175 and equation 176 yields the constraint in equation 161c.

Now, we provide an approximate solution for the optimization program when the first frame is compressed
at a low rate, i.e., R1 = ϵ where ϵ is sufficiently small. In this case, we have

1− 2−2R1 = 2ϵ ln 2 +O(ϵ2), (177)
ν =
√

2ϵ ln 2 +O(ϵ), (178)

so the optimization program of the second step in equation 161 simplifies as follows

min
ω1,ω2

2σ2 − 2ω1ρσ
2
√

2ϵ ln 2 +O(ϵ2)− 2ω2σ
2 (179a)

s.t. ω2
2(1− ρ22−2R2(2ϵ ln 2 +O(ϵ2))) ≤ (1− ω2

1 − 2ω1ω2ρ(2ϵ ln 2 +O(ϵ2)))(1− 2−2R2), (179b)
ω1 + νω2ρ = ρν. (179c)

Notice that equation 179c and equation 178 imply that ω1 = Θ(
√
ϵ) which together with equation 179b

yields the following

ω2 ≤
√

1− 2−2R2 +O(
√
ϵ). (180)

On the other side, plugging equation 179c into equation 179a and considering dominant terms, the program
in equation 179 reduces to the following

min
ω2

2σ2 − 2ω2σ
2 +O(ϵ) (181)

s.t. ω2 ≤
√

1− 2−2R2 +O(
√
ϵ). (182)

Considering that the objective function of the above program is decreasing in ω2, the solution of this program
is given by

ω2 =
√

1− 2−2R2 +O(
√
ϵ). (183)

Plugging the above into equation 179c, we get

ω1 = ρ
√

2ϵ ln 2(1−
√

1− 2−2R2) +O(ϵ). (184)

Thus, we have

X̂2 = ρ
√

2ϵ ln 2(1−
√

1− 2−2R2)X̂1 +
√

1− 2−2R2X2 + Z2, (185)

where Z2 ∼ N (0, (2−2R2 − ρ2(1 −
√

1− 2−2R2)2(2ϵ ln 2))σ2) and the solution of optimization program is as
follows

D2,SA(ϵ, R2) = 2σ2(1−
√

1− 2−2R2) +O(
√
ϵ). (186)

Third Step:

For the third step, we have the following optimization program.
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Proposition C.3 The optimization program of 0-PLF-SA for the third step can be written as follows

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1νρ
2σ2 − 2τ1νρ

2σ2 (187a)

s.t. : τ2
3σ

2(1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤ σ2(1− 2−2R3)
(

1− τ2
1 − τ2

2 − 2τ1τ2ω1ν

−2τ1τ2ω2νρ− 2τ2τ3ω1νρ
2 − 2τ2τ3ω2ρ− 2τ1τ3νρ

2
)
, (187b)

ρ2ν = τ1 + τ2ρν + τ3ρ
2ν, (187c)

ω1ρ
2ν + ρω2 = τ1ρν + τ2 + τ3(ω1ρ

2ν + ρω2), (187d)
ν =

√
1− 2−2R1 . (187e)

Proof: According to equation 25, the optimization program of the third step is given as follows

min
PX̂3|X3X̂1X̂2

E[∥X3 − X̂3∥2]

s.t. I(X3; X̂3|X̂1, X̂2) ≤ R3,

PX̂1X̂2X3
= PX̂1X̂2X̂3

. (188)

Using the above program, we first derive the rate expression in equation 187b. Consider the following set of
inequalities

R3 ≥ I(X3; X̂3|X̂1, X̂2) (189)
= h(X̂3|X̂1, X̂2)− h(Z3) (190)
= h(τ3X3 + Z3|X̂1, X̂2)− h(Z3) (191)

= 1
2 log 2−2h(Z3)

(
τ2

3 22h(X3|X̂1,X̂2) + 22h(Z3)
)

(192)

= 1
2 log 2−2h(Z3)

(
τ2

3 22h(ρX2+N2|X̂1,X̂2) + 22h(Z3)
)

(193)

= 1
2 log 2−2h(Z3)

(
τ2

3 (ρ222h(X2|X̂1,X̂2) + 22h(N2)) + 22h(Z3)

)
(194)

= 1
2 log 2−2h(Z3)

(
τ2

3 (ρ222h(X2|X̂1,X̂2) + (1− ρ2)σ2) + 22h(Z3)

)
(195)

≥ 1
2 log 2−2h(Z3)

(
τ2

3 (ρ222h(X2|X̂1)2−2R2 + (1− ρ2)σ2) + 22h(Z3)

)
(196)

= 1
2 log 2−2h(Z3)

(
τ2

3 (ρ222h(ρX1+N1|X̂1)2−2R2 + (1− ρ2)σ2) + 22h(Z3)

)
(197)

= 1
2 log 2−2h(Z3)

(
τ2

3 (ρ42−2R222h(X1|X̂1) + ρ2(1− ρ2)2−2R2σ2 + (1− ρ2)σ2) + 22h(Z3)

)
(198)

≥ 1
2 log 2−2h(Z3)

(
τ2

3 (ρ4σ22−2R1−2R2 + ρ2(1− ρ2)2−2R2σ2 + (1− ρ2)σ2) + 22h(Z3)

)
, (199)

where

• equation 193 follows from equation 7 where X3 = ρX2 +N2;

• equation 194 and equation 198 follow from Entropy Power Inequality (EPI) (see pp. 22 in El Gamal
& Kim (2011)) which holds with equality for Gaussian sources;
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• equation 196 follows from the rate constraint I(X2; X̂2|X̂1) ≤ R2 which yields h(X2|X̂2, X̂1) ≥
h(X2|X̂1)−R2;

• equation 199 follows from the rate constraint I(X1; X̂1) ≤ R1 which yields h(X1) ≥ h(X1|X̂1)−R1.

Thus, re-arranging the terms in equation 199, we have

(τ2
3 (ρ2(1− ρ2)σ22−2R2 + (1− ρ2)σ2))2−2R3 ≥ (1− 2−2R3)22h(Z3) (200)

= σ2(1− 2−2R3)
(

1− τ2
1 − τ2

2 − τ2
3 − 2τ1τ2ω1 − 2τ1τ2ω2ρ

−2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2
)
. (201)

The above constraint can be simplified as follows

τ2
3σ

2(1− ρ22−2R3 + ρ2(1− ρ2)2−2R22−2R3) ≥ σ2(1− 2−2R3)
(

1− τ2
1 − τ2

2 − 2τ1τ2ω1 − 2τ1τ2ω2ρ

−2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2
)
,(202)

which is the rate expression in equation 187b.

The derivation of the perception constraint in equation 187c is given in the following:

ρ2νσ2 = E[X3X̂1] (203)
= E[X̂3X̂1] (204)
= τ1σ

2 + τ2E[X̂2X̂1] + τ3E[X3X̂1] (205)
= τ1σ

2 + τ2E[X2X̂1] + τ3ρ
2
E[X1X̂1] (206)

= τ1σ
2 + τ2ρE[X1X̂1] + τ3ρ

2
E[X1X̂1] (207)

= τ1σ
2 + τ2ρνσ

2 + τ3ρ
2νσ2, (208)

where

• equation 204 follows from 0-PLF-SA, i.e., PX̂3X̂2X̂1
= PX3X̂2X̂1

which implies that E[X3X̂1] =
E[X̂3X̂1] for the Gauss-Markov source model;

• equation 205 follows from equation 156 where we multiply both sides with X̂1 and take an expec-
tation over the distribution;

• equation 206 follows from 0-PLF-SA which implies that E[X̂2X̂1] = E[X2X̂1] and also from equa-
tion 7, we have X3 = ρ2X1 + ρN1 +N2 where (N1, N2) are independent of X̂1;

• equation 207 follows from equation 7 where X2 = ρX1 +N1 and N1 is independent of X̂1.

Similarly, for derivation of equation 187d, we have

ω1ρ
2νσ2 + ρω2σ

2 = E[X̂2X3] (209)
= E[X̂2X̂3] (210)
= τ1E[X̂1X̂2] + τ2σ

2 + τ3E[X3X̂2] (211)
= τ1E[X̂1X2] + τ2σ

2 + τ3E[X3X̂2] (212)
= τ1ρνσ

2 + τ2σ
2 + τ3(ω1ρ

2νσ2 + ρω2σ
2). (213)

The distortion term in equation 187a can be derived as follows

E[∥X3 − X̂3∥2] = E[X2
3 ] +E[X̂2

3 ]− 2E[X3X̂3] (214)
= 2σ2 − 2E[X3X̂3] (215)
= 2σ2 − 2(τ1E[X̂1X3] + τ2E[X̂2X3] + τ3σ

2) (216)
= 2σ2 − 2(τ1ρ

2
E[X̂1X1] + τ2ρE[X̂2X2] + τ3σ

2) (217)
= 2σ2 − 2(τ1ρ

2νσ2 + τ2ρ(ρνω1 + ω2)σ2 + τ3σ
2), (218)

where
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• equation 215 follows because 0-PLF-SA implies that PX3 = PX̂3
;

• equation 216 follows from equation 156 where X3 = τ1X̂1 + τ2X̂2 + τ3X3 + Z3;

• equation 217 follows from equation 7;

• equation 218 follows from equation 154 and equation 155.

This concludes the proof.

The solution of the optimization program in Proposition C.3 is plotted in Fig. 12 for some values of the
parameters.

SA

SA

Figure 11: Distortion of the second frame versus its rate for the low-rate regime and ρ = 1.

C.2 0-PLF-FMD

In this section, we propose the optimization program of 0-PLF-FMD for the second and third steps. We
analytically solve the optimization problem of the second step and provide some numerical evaluations for
the program of the third step.

Second Step:

The optimization program of the second step is similar to that of Proposition C.3 but with a difference that
the condition equation 161c which preserves the joint distribution of (X̂1, X̂2) is not needed for 0-PLF-FMD
and only marginal distributions are fixed. We also use the following approximation for the rate of the first
frame

1− 2−2R1 = 2ϵ ln 2 +O(ϵ2). (219)

Thus, the optimization problem of the second step for 0-PLF-FMD is as follows

min
ω1,ω2

2σ2 − 2ω1ρσ
2
√

2ϵ ln 2 +O(ϵ2)− 2ω2σ
2 (220a)

s.t. ω2
2(1− ρ22−2R2(2ϵ ln 2 +O(ϵ2))) ≤ (1− ω2

1 − 2ω1ω2ρ(2ϵ ln 2 +O(ϵ2)))(1− 2−2R2). (220b)

Now, we proceed with solving the above optimization program analytically. Considering dominant terms
of equation 220b, this condition reduces to the following

ω2
2 ≤ (1− ω2

1)(1− 2−2R2). (221)

Thus, the optimization program of equation 220 with considering the dominant terms reduces to the following

min
ω1,ω2

2σ2 − 2ω1ρσ
2
√

2ϵ ln 2− 2ω2σ
2 (222a)

s.t. ω2
2 ≤ (1− ω2

1)(1− 2−2R2). (222b)
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SA SA

Figure 12: Distortion of the third frame versus its rate for the low-rate regime and ρ = 1.

The above program is convex, with a linear objective function in ω1 and ω2. Since the feasible region is
convex, the solution lies on the boundary, i.e.,

ω2
2 = (1− ω2

1)(1− 2−2R2). (223)

Substituting the above into equation 222a, with ω2 constrained to be nonnegative since a positive value
increases the objective function, we obtain

min
ω1

2σ2(1− ρω1
√

2ϵ ln 2−
√

1− ω2
1

√
1− 2−2R2). (224)

Taking the derivative of the above expression with respect to ω1, we have
ω1√

1− ω2
1

√
1− 2−2R2 = ρ

√
2ϵ ln 2, (225)

which yields

ω1 = ρ
√

2ϵ ln 2√
1− 2−2R2 + ρ22ϵ ln 2

, (226)

and

ω2 = 1− 2−2R2√
1− 2−2R2 + ρ2(2ϵ ln 2)

. (227)

Thus, we get

X̂2 = ρ
√

2ϵ ln 2√
1− 2−2R2 + ρ22ϵ ln 2

X̂1 + 1− 2−2R2√
1− 2−2R2 + ρ2(2ϵ ln 2)

X2 + Z2, (228)

where Z2 ∼ N (0, (1 − ω2
1 − ω2

2 − 2ρνω1ω2)σ2) is a Gaussian random variable independent of (X̂1, X2), and
the optimal distortion is given by

D2,FMD(ϵ, R2) := 2σ2(1−
√

1− 2−2R2 + ρ22ϵ ln 2) +O(ϵ). (229)

Third Step:

The optimization program of the third step for 0 0-PLF-FMD is similar to that of equation 187. The
difference is that the conditions in equation 187c and equation 187d, which preserve the joint distributions
of (X̂1, X̂2, X̂3), are not required because for 0-PLF-FMD only the marginal distributions are fixed. Thus,
we have the following optimization program for the third step

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1νρ
2σ2 − 2τ1νρ

2σ2 (230a)

s.t. : τ2
3σ

2(1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤ σ2(1− 2−2R3)
(

1− τ2
1 − τ2

2

−2τ1τ2ω1ν − 2τ1τ2ω2νρ− 2τ2τ3ω1νρ
2 − 2τ2τ3ω2ρ− 2τ1τ3νρ

2
)
. (230b)

The solution of the above optimization program is plotted for some values of parameters in Fig. 12.
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C.3 0-PLF-JD

In this section, we propose the optimization programs of 0-PLF-JD for the second and third steps. We
analytically solve the optimization problem of the second frame and provide some numerical evaluations for
the third step.

Second Step:

The optimization program of the second step is similar to that of Proposition C.2 with a difference that the
condition in equation 161c is replaced by the corresponding condition of 0-PLF-JD which is PX1X2 = PX̂1X̂2

.
This constraint implies that E[X1X2] = E[X̂1X̂2] which together with equation 154 and equation 155 yields

ω1 + νω2ρ = ρ. (231)

Thus, the optimization problem of the second step for 0-PLF-JD when R1 = ϵ is as follows

min
ω1,ω2

2σ2 − 2ω1ρσ
2
√

2ϵ ln 2 +O(ϵ2)− 2ω2σ
2 (232a)

s.t. ω2
2(1− ρ22−2R2(2ϵ ln 2 +O(ϵ2))) ≤ (1− ω2

1 − 2ω1ω2ρ
√

2ϵ ln 2 +O(ϵ2))(1− 2−2R2) (232b)
ω1 + νω2ρ = ρ. (232c)

The constraint equation 232c implies that

ω1 = ρ− ρω2
√

2ϵ ln 2 +O(ϵ). (233)

Plugging the above into equation 232a and equation 232b, we get

min
ω2

2σ2(1− ρ2
√

2ϵ ln 2− ω2) +O(ϵ) (234a)

s.t.ω2 ≤
√

1− ρ2
√

1− 2−2R2 +O(
√
ϵ). (234b)

The objective function of the above program is decreasing in ω2, so the solution of the above program is
given by

ω2 =
√

1− ρ2
√

1− 2−2R2 +O(
√
ϵ). (235)

Thus, we have

X̂2 = (ρ− ρω2
√

2ϵ ln 2)X̂1 +
√

1− ρ2
√

1− 2−2R2X2 + Z2, (236)

where Z2 ∼ N (0, ((1 − ρ2)2−2R2 − ρ2
√

1− ρ2
√

1− 2−2R2
√

2ϵ ln 2)σ2) is a Gaussian random variable inde-
pendent of (X̂1, X2) and the optimal distortion is given by

D2,JD(ϵ, R2) := 2σ2(1−
√

1− ρ2
√

1− 2−2R2 − ρ2
√

2ϵ ln 2) +O(ϵ). (237)

Third Step:

The optimization program of the third step for 0-PLF-JD is similar to equation 187 but with a difference
that the conditions in equation 187c and equation 187d are replaced by the corresponding conditions of
0-PLF-JD which is PX1X2X3 = PX̂1X̂2X̂3

. This constraint implies that

E[X1X3] = E[X̂1X̂3], (238)
E[X2X3] = E[X̂2X̂3]. (239)

Considering equation 154–equation 156 together with the above conditions, we get

ρ2 = τ1 + τ2ρ+ τ3ρ
2ν, (240)

ρ = τ1ρ+ τ2 + τ3(ω1ρ
2ν + ρω2). (241)
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Thus, we have the following optimization program for the third step

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1νρ
2σ2 − 2τ1νρ

2σ2 (242a)

s.t. : τ2
3σ

2(1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤ σ2(1− 2−2R3)
(

1− τ2
1 − τ2

2 − 2τ1τ2ω1ν

−2τ1τ2ω2νρ− 2τ2τ3ω1νρ
2 − 2τ2τ3ω2ρ− 2τ1τ3νρ

2
)
, (242b)

ρ2 = τ1 + τ2ρ+ τ3ρ
2ν, (242c)

ρ = τ1ρ+ τ2 + τ3(ω1ρ
2ν + ρω2). (242d)

The solution of the above program is plotted in Fig. 12 for some values of parameters. For the case R1 =
R2 = 0.1 (low compression rates) and a large range of rates R3, the performances of 0-PLF-SA and 0-
PLF-FMD are almost the same. For R1 = R2 = 1 (low compression rates), the distortion of 0-PLF-SA
is significantly smaller than that of 0-PLF-JD for all values of R3, and for a large enough R3, it performs
similar to 0-PLF-FMD.

D High-Rate Regime for the First Frame

In this section, we first prove the following theorem where the first frame is compressed at a high rate, i.e.,
R1 →∞. The rates of all subsequent frames are assumed to be small, i.e., Rj = ϵ for sufficiently small ϵ > 0
and j ∈ {2, . . . , T}. Then, we provide proofs for the achievable reconstructions of 0-PLF-FMD as outlined
in Table 5.

Theorem D.1 Let R1 → ∞ and Rj = ϵ for sufficiently small ϵ > 0 and j ∈ {2, . . . , T}. An achievable
reconstruction under 0-PLF-SA in jth frame (j ∈ {1, . . . , T}) is given by

X̂j = ρj−1X̂1 +
j−1∑
i=1

O(
√
ϵ)Ni +

j−2∑
i=2

O(
√
ϵ)Zi,SA +O(

√
ϵ)Zj−1,SA + Zj,SA, (243)

where Zj,SA is a Gaussian random noise independent of ({Ni}j−1
i=1 , {Zi,SA}j−1

i=2 ), with mean zero and variance
(1− ρ2(j−1) +O(ϵ))σ2, and the distortion is as follows

Dj,SA(∞, ϵ, . . . , ϵ︸ ︷︷ ︸
j−1

) = 2(1− ρ2(j−1) −O(
√
ϵ))σ2 +O(ϵ), (244)

and an achievable reconstruction under 0-PLF-JD in jth frame is given by

X̂j = ρj−1X̂1 +
j−1∑
i=1

O(
√
ϵ)Ni +

j−2∑
i=2

O(
√
ϵ)Zi,JD + ρZj−1,JD + Zj,JD, (245)

where Zj,JD is a Gaussian random noise independent of ({Ni}j−1
i=1 , {Zi,JD}j−1

i=2 ) with mean zero and variance
given in Section D.2, and the distortion is as follows

Dj,JD(∞, ϵ, . . . , ϵ︸ ︷︷ ︸
j−1

) = 2
(

1− ρ2(j−1) −O(
√
ϵ)
)
σ2 +O(ϵ). (246)

Before proving the above theorem, we present an important observation based on equation 243 and equa-
tion 245. As seen from equation 243, the 0-PLF-SA scheme incorporates a small portion—on the order of
O(
√
ϵ)—of the noise from the previous reconstruction Zj−1,SA. In contrast, 0-PLF-JD includes a significantly

larger portion, denoted by ρ, of the previous reconstruction’s noise. Particularly at low rates, this noise may
be propagated through subsequent reconstructions. This effect becomes more pronounced when a high rate
is allocated to the third frame, as illustrated in Table 2.

To prove the above theorem, we consider each PLF separately. We provide the analysis for the second, third
and fourth frames. We then use an induction to derive the achievable reconstruction for jth frame. Notice
that the solutions for the second and third frames are also presented in Table 5.
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D.1 0-PLF-SA

In this section, we introduce the optimization programs of the second, third and fourth steps for 0-PLF-SA
and provide the solutions for them. The results are further extended to T frames by induction. Similar
to equation 155–equation 156, we can generally write the achievable reconstructions of as follows

X̂1 = X1, (247)
X̂2 = ω1X̂1 + ω2X2 + Z2,SA, (248)
X̂3 = τ1X̂1 + τ2X̂2 + τ3X3 + Z3,SA, (249)

where Z2,SA and Z3,SA are Gaussian random variables independent of (X̂1, X2) and (X̂1, X̂2, X3), respectively.

Second Step:

The optimization program of the second step for 0-PLF-SA is similar to that of Proposition C.2 but with
a difference that ν = 1 since we have a high compression rate for the first frame. Thus, the optimization
program of the second step is as follows

min
ω1,ω2

2σ2 − 2ω1ρσ
2 − 2ω2σ

2 (250a)

s.t. ω2
2(1− ρ22−2R2) ≤ (1− ω2

1 − 2ω1ω2ρ)(1− 2−2R2), (250b)
ω1 + ω2ρ = ρ. (250c)

For the second frame, the achievable reconstruction is given as follows (see Table 2 in Salehkalaibar et al.
(2023))

X̂2 = (ρ− ρ
√

2ϵ ln 2)X̂1 +
√

2ϵ ln 2X2 + Z2,SA, (251)

where Z2,SA ∼ N (0, (1− ρ2 +O(ϵ))σ2) is independent of (X̂1, X2) and X̂1 = X1 and the distortion is given
as follows

D2,SA(∞, ϵ) := 2(1− ρ2 − (1− ρ2)
√

2ϵ ln 2)σ2. (252)

Third Step:

The optimization program of the third step is similar to that of Proposition C.3 with ν = 1 due to high rate
assumption for the first frame. Thus, we have the following optimization program

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (253a)

s.t. : τ2
3 (1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤ (1− 2−2R3)

(
1− τ2

1 − τ2
2 − 2τ1τ2ω1

−2τ1τ2ω2ρ− 2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2
)
, (253b)

ρ2 = τ1 + τ2ρ+ τ3ρ
2, (253c)

ω1ρ
2 + ρω2 = τ1ρ+ τ2 + τ3(ω1ρ

2 + ρω2). (253d)

Case of R3 →∞: In this case, the solution of the optimization problem is trivially given by X̂3 = X3 since
it satisfies the 0-PLF-SA in the third frame, namely, PX̂3X̂2X̂1

= PX3X̂2X̂1
. This case is shown in Table 2.

Case of R3 = R2 = ϵ: We provide an approximation for the solution of the program in equation 253 when
Rj = ϵ. Consider the following

1− 2−2Rj = 2ϵ ln 2 +O(ϵ2), j ∈ {2, 3}. (254)

We use this approximation for R2, R3, the fact that R1 → ∞, and consider the dominant terms of equa-
tion 253b to simplify it as follows

(1− ρ4)τ2
3 ≤ (1− τ2

1 − τ2
2 )(2ϵ ln 2). (255)
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So, the optimization program in equation 253 simplifies as follows

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (256a)

s.t. : (1− ρ4)τ2
3 ≤ (1− τ2

1 − τ2
2 )(2ϵ ln 2), (256b)

ρ2 = τ1 + τ2ρ+ τ3ρ
2, (256c)

ω1ρ
2 + ρω2 = τ1ρ+ τ2 + τ3(ω1ρ

2 + ρω2). (256d)

The optimization problem described above is convex, and its objective function is linear in τ1, τ2, τ3. This
implies that the solution lies on the boundary of the feasible region. In particular, the condition in equa-
tion 256b holds with equality:

(1− ρ4)τ2
3 = (1− τ2

1 − τ2
2 )(2ϵ ln 2). (257)

As will be seen later, the term 1−τ2
1 −τ2

2 indeed includes a constant term, which ensures that the right-hand
side of equation 257 is of order Θ(ϵ ln 2). This implies that τ3 = Θ(

√
ϵ ln 2). Combined with equation 256c

and equation 256d, this suggests that τ1, τ2, and τ3 can generally be expressed as

τ1 = K1 + δ1
√

2ϵ ln 2, (258)
τ2 = K2 + δ2

√
2ϵ ln 2, (259)

τ3 = δ3
√

2ϵ ln 2, (260)

where K1, K2, δ1, δ2, and δ3 are constants to be determined. Substituting equation 258–equation 260
into equation 253c–equation 253d yields the following set of equations:

ρ2 = K1 + ρK2, (261a)
ρ3 = K1ρ+K2, (261b)
0 = δ1 + ρδ2 + ρ2δ3, (261c)

−ρ3 + ρ = ρδ1 + δ2 + ρ3δ3. (261d)

Note that equation 261a–equation 261b yield

K1 = ρ2, (262)
K2 = 0. (263)

These constant terms which correspond to leading terms of τ1 and τ2 contribute to the dominant terms
in equation 257. Plugging the values of K1 and K2 into equation 257, we obtain the following result

δ3 = 1. (264)

Substituting the above into equation 261c–equation 261d, we get

δ1 = −2ρ2, (265)
δ2 = ρ. (266)

Thus, considering equation 258–equation 260, equation 262–equation 266 and equation 249, we get the
following achievable reconstruction

X̂3 = (ρ2 − 2ρ2
√

2ϵ ln 2)X̂1 + ρ
√

2ϵ ln 2X̂2 +
√

2ϵ ln 2X3 + Z3,SA, (267)

where Z3,SA ∼ N (0, (1− ρ4 +O(ϵ))σ2) and the distortion is given by

D3,SA(∞, ϵ, ϵ) := 2(1− ρ4 − (1− ρ4)
√

2ϵ ln 2)σ2. (268)

Plugging equation 251 into equation 267 yields the following

X̂3 = (ρ2 − ρ2
√

2ϵ ln 2)X̂1 +
√

2ϵ ln 2X3 + ρ
√

2ϵ ln 2Z2,SA + Z3,SA. (269)

36



Under review as submission to TMLR

Table 5: Achievable reconstructions and distortions for R1 → ∞ and R2 = R3 = ϵ.

Second Step Third Step
0-PLF-FMD X̂2 = (1 − O(ϵ))X̂1 + O(ϵ)X2 + Z2,FMD X̂3 = (1 − O(ϵ))X̂1 + O(ϵ)X2 + O(ϵ)X3 + Z2,FMD + Z3,FMD
(
√

ϵ ≪ρ< 1) Z2,FMD ∼ N (0, O(ϵ)σ2) Z3,FMD ∼ N (0, O(ϵ)σ2)
D∞

2,FMD = 2(1 − ρ − O(ϵ))σ2 Table 2 in Salehkalaibar et al. (2023) D∞
3,FMD = 2(1 − ρ2 − O(ϵ))σ2 (Appendix D.3)

0-PLF-FMD X̂2 = O(
√

ϵ)X2 + Z′
2,FMD X̂3 = O(

√
ϵ)X3 + Z′

3,FMD
(0 <ρ≪

√
ϵ) Z′

2,FMD ∼ N (0, (1 − O(ϵ))σ2) Z′
3,FMD ∼ N (0, (1 − O(ϵ))σ2)

D∞
2,FMD = 2σ2(1 − O(

√
ϵ)) (Appendix D.3) D∞

3,FMD = 2σ2(1 − O(
√

ϵ)) (Appendix D.3)

0-PLF-JD X̂2 = (ρ − O(
√

ϵ))X̂1 + O(
√

ϵ)X2 + Z2,JD X̂3 = ρ2X̂1 + O(
√

ϵ)N1 + O(
√

ϵ)N2 + ρZ2,JD + Z3,JD
Z2,JD ∼ N (0, (1 − ρ2 + O(ϵ))σ2) Z3,JD ∼ N (0, (1 − ρ2 + O(ϵ))σ2)
D∞

2,JD = 2σ2(1 − ρ2 − O(
√

ϵ)) Table 2 in Salehkalaibar et al. (2023) D∞
3,JD = 2σ2(1 − ρ4 − O(

√
ϵ)) (Appendix D.2)

0-PLF-SA X̂2 = (ρ − O(
√

ϵ))X̂1 + O(
√

ϵ)X2 + Z2,SA X̂3 = ρ2X̂1 + O(
√

ϵ)N1 + O(
√

ϵ)N2 + O(
√

ϵ)Z2,SA + Z3,SA
Z2,SA = Z2,JD Z3,SA ∼ N (0, (1 − ρ4 + O(ϵ))σ2)
D∞

2,SA = D∞
2,JD (Appendix D.1) D∞

3,SA = 2σ2(1 − ρ4 − O(
√

ϵ)) (Appendix D.1)

Using equation 7, the expression in equation 269 can be written as the following

X̂3 = ρ2X̂1 + ρ
√

2ϵ ln 2N1 +
√

2ϵ ln 2N2 + ρ
√

2ϵ ln 2Z2,SA + Z3,SA. (270)

This result is shown in Table 5.

Fourth Step: We derive the optimization program of the fourth frame and solve it. For the fourth frame, we
write the achievable reconstruction as follows

X̂4 = λ1X̂1 + λ2X̂2 + λ3X̂3 + λ4X4 + Z4,SA, (271)

where Z4,SA is a Gaussian random variable independent of (X̂1, X̂2, X̂3, X4) with mean zero and its variance
will be determined later.

Proposition D.2 The optimization program of the fourth step for 0-PLF-SA when the first frame has a
high compression rate, is given as follows

min
λ1,λ2,λ3,λ4

2σ2(1− λ4 − λ3ρτ3 − λ3ρ
2τ2ω2 − λ3ρ

3τ2ω1 − λ3ρ
3τ1 − λ2ρ

3ω1 − λ2ρ
2ω2 − λ1ρ

3) (272a)

s.t. : 2−2R4σ2(λ2
4ρ

62−2R3−2R2−2R1 + λ2
4ρ

42−2R3−2R2(1− ρ2) + λ2
4ρ

22−2R3(1− ρ2) + λ2
4(1− ρ2))

≤ 22h(Z4,SA)(1− 2−2R4), (272b)

ρ3 = λ1 + ρλ2 + ρ2λ3 + ρ3λ4, (272c)
ρ2(ρω1 + ω2) = ρλ1 + λ2 + ρ(ρω1 + ω2)λ3 + ρ2(ρω1 + ω2)λ4, (272d)
ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3) = ρ2λ1 + ρ(ρω1 + ω2)λ2 + λ3 + ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3)λ4.

(272e)

Proof: An extension of equation 23–equation 25 to the fourth step yields the following optimization program

min
PX̂4|X4X̂1X̂2X̂3

E[∥X4 − X̂4∥2]

s.t. I(X4; X̂4|X̂1, X̂2, X̂3) ≤ R4,

PX̂1X̂2X̂3X4
= PX̂1X̂2X̂3X̂4

. (273)

The perception constraints in equation 272c–equation 272e are derived based on 0-PLF-SA which states that
PX̂4X̂3X̂2X̂1

= PX4X̂3X̂2X̂1
. This implies that E[X̂4X̂1] = E[X4X̂1], E[X̂4X̂2] = E[X4X̂2] and E[X̂4X̂3] =

E[X4X̂3]. These constraints together with equation 154–equation 156, equation 271 lead to constraints
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equation 272c–equation 272e. To derive the rate constraint, consider the following set of inequalities

I(X4; X̂4|X̂1, X̂2, X̂3) (274)
= h(X̂4|X̂1, X̂2, X̂3)− h(Z4,SA) (275)
= h(λ4X4 + Z4,SA|X̂1, X̂2, X̂3)− h(Z4,SA) (276)

= 1
2 log 2−2h(Z4,SA)

(
λ2

422h(X4|X̂1,X̂2,X̂3) + 22h(Z4,SA)
)

(277)

= 1
2 log 2−2h(Z4,SA)

(
λ2

4ρ
222h(X3|X̂1,X̂2,X̂3) + λ2

422h(N3) + 22h(Z4,SA)

)
(278)

≥ 1
2 log 2−2h(Z4,SA)

(
λ2

4ρ
22−2R322h(X3|X̂1,X̂2) + λ2

422h(N3) + 22h(Z4,SA)

)
(279)

= 1
2 log 2−2h(Z4,SA)

(
λ2

4ρ
42−2R322h(X2|X̂1,X̂2) + λ2

4ρ
22−2R322h(N2) + λ2

422h(N3) + 22h(Z4,SA)

)
(280)

≥ 1
2 log 2−2h(Z4,SA)

(
λ2

4ρ
42−2R3−2R222h(X2|X̂1) + λ2

4ρ
22−2R322h(N2) + λ2

422h(N3) + 22h(Z4,SA)

)
(281)

= 1
2 log 2−2h(Z4,SA)

(
λ2

4ρ
62−2R3−2R222h(X1|X̂1) + λ2

4ρ
42−2R3−2R222h(N1) + λ2

4ρ
22−2R322h(N2) + λ2

422h(N3)

+22h(Z4,SA)
)

(282)

≥ 1
2 log 2−2h(Z4,SA)

(
λ2

4ρ
62−2R3−2R2−2R1σ2 + λ2

4ρ
42−2R3−2R222h(N1) + λ2

4ρ
22−2R322h(N2) + λ2

422h(N3)

+22h(Z4,SA)
)
, (283)

where

• equation 277 follows from EPI (see pp. 22 in El Gamal & Kim (2011)) which holds with equality
for Gaussian sources;

• equation 279, equation 281 and equation 283 follow from the rate constraints R3 ≥
I(X3; X̂3|X̂1, X̂2), R2 ≥ I(X2; X̂2|X̂1) and R1 ≥ I(X1; X̂1), respectively;

• equation 280 and equation 282 follow from equation 7 where X3 = ρX2 +N2 and X2 = ρX1 +N1,
respectively, and the fact that EPI holds with equality for Gaussian sources.

Re-arranging the terms in equation 283, we get to the constraint in equation 272b. The objective func-
tion in equation 272a is obtained by the expansion of E[∥X4 − X̂4∥2] using equation 248, equation 249
and equation 271.

Now, we provide the approximate solution of the optimization program in equation 272 when R2 = R3 =
R4 = ϵ for sufficiently small ϵ > 0. Using the following approximation

1− 2−2Rj = 2ϵ ln 2 +O(ϵ2), (284)

and considering the dominant terms of equation 272b, the solution of the optimization program is given by

min
λ1,λ2,λ3,λ4

2σ2(1− λ4σ
2 − 2λ3ρτ3 − λ3ρ

2τ2ω2 − λ3ρ
3τ2ω1 − λ3ρ

3τ1 − λ2ρ
3ω1 − λ2ρ

2ω2 − λ1ρ
3) (285a)

s.t. : λ2
4(1− ρ6) ≤ (1− λ2

1 − λ2
2 − λ2

3)(2ϵ ln 2), (285b)
ρ3 = λ1 + ρλ2 + ρ2λ3 + ρ3λ4, (285c)
ρ2(ρω1 + ω2) = ρλ1 + λ2 + ρ(ρω1 + ω2)λ3 + ρ2(ρω1 + ω2)λ4, (285d)
ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3) = ρ2λ1 + ρ(ρω1 + ω2)λ2 + λ3 + ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3)λ4. (285e)
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We now proceed to solve the above program. Since it is a convex optimization problem and the objective
function is linear, the solution lies on the boundary of the feasible region. In particular, the constraint
in equation 285b is satisfied with equality, i.e.,

λ2
4(1− ρ6) = (1− λ2

1 − λ2
2 − λ2

3)(2ϵ ln 2). (286)

As will be shown later, the expression 1−λ2
1−λ2

2−λ2
3 contains a constant term that ensures the right-hand

side of equation 286 is of order Θ(2ϵ ln 2). Consequently, λ4 = Θ(
√

2ϵ ln 2). Taking this into account along
with the conditions in equation 285c–equation 285e, we observe that the parameters λj can be generally
expressed as

λj = Kj + δj

√
2ϵ ln 2, j ∈ {1, 2, 3}, (287)

λ4 = δ4
√

2ϵ ln 2, (288)

where Kj , δj are constants to be determined. We substitute the parameters in equation 287–equation 288
into equation 285c–equation 285e to get the following set of equations

ρ3 = K1 + ρK2 + ρ2K3, (289)
ρ4 = ρK1 +K2 + ρ3K3, (290)
ρ5 = ρ2K1 + ρ3K2 +K3. (291)

Solving this system yields K1 = ρ3, K2 = K3 = 0. Note that the constant terms {Kj}3
j=1 dominate

in equation 286 which leads to

δ4 = 1. (292)

Thus, the optimization problem in equation 285, considering only the dominant terms, reduces to:

min
δj ,j=1:4

2(1− ρ6 − (1 + ρ5δ3 + ρ4δ2 + ρ3δ1)
√

2ϵ ln 2)σ2 (293a)

s.t. : 0 = δ1 + ρδ2 + ρ2δ3 + ρ3, (293b)
ρ2(1− ρ2) = ρδ1 + δ2 + ρ3δ3 + ρ4, (293c)
ρ(1− ρ4) = ρ2δ1 + ρ3δ2 + δ3 + ρ5. (293d)

Solving the above optimization problem, we get

δ2 = ρ2, δ3 = ρ, δ1 = −3ρ3, δ4 = 1. (294)

In summary, considering equation 271 with equation 287–equation 288, equation 292, equation 294, we get
the following reconstruction

X̂4 = (ρ3 − 3ρ3
√

2ϵ ln 2)X̂1 + ρ2
√

2ϵ ln 2X̂2 + ρ
√

2ϵ ln 2X̂3 +
√

2ϵ ln 2X4 + Z4,SA. (295)

Plugging equation 251 and equation 267 into the above expression, we get

X̂4 = ρ3X̂1 + ρ2
√

2ϵ ln 2N1 + ρ
√

2ϵ ln 2N2 +N3 + ρ2
√

2ϵ ln 2Z2,SA + ρ
√

2ϵ ln 2Z3,SA + Z4,SA, (296)

where Z4,SA has variance (1− ρ6 +O(ϵ))σ2 and the distortion is given by

D∞
4,SA = 2(1− ρ6 −

√
2ϵ ln 2(1− ρ6))σ2 +O(ϵ). (297)

Now, we use an induction to derive the achievable reconstruction of jth frame.

jth Step:
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By applying induction and extending the above analysis (covering the second, third, and fourth frames) to
the jth frame, we obtain the following achievable reconstruction for the jth frame

X̂j = ρj−1X̂1 +
√

2ϵ ln 2
j−1∑
i=1

ρj−1−iNi +
√

2ϵ ln 2
j−1∑
i=2

ρj−iZi,SA + Zj,SA, (298)

where Zj,SA ∼ N (0, (1 − ρ2(j−1) + O(ϵ))σ2) is a Gaussian random variable independent of
(X̂1, {Ni}j−1

i=1 , {Zi,SA}j−1
i=2 ) and the distortion is given by

D∞
j,SA = 2σ2(1− ρ2(j−1) −

√
2ϵ ln 2(1− ρ2)

j−1∑
i=1

ρ2(j−1−i)) +O(ϵ). (299)

D.2 0-PLF-JD

Second Step: When the first frame is compressed at a high rate, the optimization program in the second step
for 0-PLF-JD closely resembles that in equation 250 for 0-PLF-SA, and its solution is given by equation 251.

Third Step:

The optimization program of the third step for 0-PLF-JD is similar to equation 253, except that the percep-
tion constraints in equation 253c–equation 253d are replaced by the following

ρ2 = τ1 + τ2ρ+ τ3ρ
2, (300)

ρ = τ1ρ+ τ2 + τ3(ω1ρ
2 + ρω2). (301)

These equations follow from the condition PX1X2X3 = PX̂1X̂2X̂3
, which implies that the second-order statistics

are preserved. In particular, E[X̂1X̂3] = E[X1X3] = ρ2σ2 and E[X̂2X̂3] = E[X2X3] = ρσ2. Accordingly,
the optimization problem for the third step of 0-PLF-JD, assuming that the first frame is encoded at a high
rate, can be written as follows:

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (302a)

s.t. : τ2
3 (1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤ (1− 2−2R3)

(
1− τ2

1 − τ2
2

−2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2
)
, (302b)

ρ2 = τ1 + τ2ρ+ τ3ρ
2, (302c)

ρ = τ1ρ+ τ2 + τ3(ω1ρ
2 + ρω2). (302d)

Case of R3 →∞: In this case, the optimization problem in equation 302 simplifies to the following:

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (303a)

s.t. : τ2
3 ≤ 1− τ2

1 − τ2
2 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ

2 − 2τ2τ3ω2ρ− 2τ1τ3ρ
2, (303b)

ρ2 = τ1 + τ2ρ+ τ3ρ
2, (303c)

ρ = τ1ρ+ τ2 + τ3(ω1ρ
2 + ρω2). (303d)

The above optimization program is convex and the objective function is linear, so the solution lies on the
boundary of feasible region. In particular, we have

τ2
3 = 1− τ2

1 − τ2
2 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ

2 − 2τ2τ3ω2ρ− 2τ1τ3ρ
2, (304)

ρ2 = τ1 + τ2ρ+ τ3ρ
2, (305)

ρ = τ1ρ+ τ2 + τ3(ω1ρ
2 + ρω2). (306)

So, based on the above set of equations and the fact that ω1 and ω2 include constant terms as well as terms of
order O(

√
2ϵ ln 2), τ1, τ2 and τ3 can be expressed in the general form τ1 = K1+δ1

√
2ϵ ln 2, τ2 = K2+δ2

√
2ϵ ln 2
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and τ3 = K3 + δ3
√

2ϵ ln 2. Substituting these expressions into equation 303c–equation 303d yields the
following set of equations

ρ2 = K1 + ρK2 + ρ2K3, (307)
ρ = ρK1 +K2 + ρ3K3, (308)
0 = δ1 + ρδ2 + ρ2δ3, (309)
0 = ρδ1 + δ2 +K3(ρ− ρ3) + δ3ρ

3. (310)

The above set of equations yields the following

K2 = ρ, (311)
K1 = −ρ2K3, (312)
δ2 = −ρK3. (313)

Also, the constraint in equation 304 yields the following for the first-order terms:

K2
3 = 1−K2

1 −K2
2 − 2K1K2ρ− 2K2K3ρ

3 − 2K1K3ρ
2. (314)

Substituting the expressions from equation 311 and equation 312 into the equation above, we obtain

K3 = 1√
1 + ρ2

, (315)

and

K1 = − ρ2√
1 + ρ2

. (316)

Additionally, from equation 313, we have

δ2 = − ρ√
1 + ρ2

. (317)

Since in this optimization problem all first-order coefficients (K1, K2, and K3) are nonzero, the third recon-
struction can be expressed as:

X̂3 = (− ρ2√
1 + ρ2

+O(
√
ϵ))X̂1 + (ρ−O(

√
ϵ))X̂2 + ( 1√

1 + ρ2
+O(

√
ϵ))X3 + Z3,JD, (318)

where Z3,JD ∼ N (0, O(
√
ϵ)σ2). Finally, since X̂1 = X1 due to the high-rate assumption, the reconstruction

can be further simplified as:

X̂3 = (ρ−O(
√
ϵ))X̂2 + 1√

1 + ρ2
(ρN1 +N2 +O(

√
ϵ)) + Z3,JD. (319)

This result is shown in Table 2.

Case of R3 = R2 = ϵ: Similar to equation 285, we focus on the dominant terms of the constraint in equa-
tion 302b and formulate the following optimization problem:

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (320a)

s.t. : (1− ρ4)τ2
3 ≤ (1− τ2

1 − τ2
2 )(2ϵ ln 2), (320b)

ρ2 = τ1 + τ2ρ+ τ3ρ
2, (320c)

ρ = τ1ρ+ τ2 + τ3(ω1ρ
2 + ρω2). (320d)

The above program is convex and the objective function is linear, so the solution lies on the boundary of the
feasible region. In particular, we have:

(1− ρ4)τ2
3 = (1− τ2

1 − τ2
2 )(2ϵ ln 2). (321)
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As will be shown later, the expression 1 − τ2
1 − τ2

2 includes a constant term that ensures the right-
hand side of equation 321 is of the order Θ(2ϵ ln 2). This implies that τ3 = Θ(

√
2ϵ ln 2). Together

with equation 320c–equation 320d, this suggests that τ1, τ2, τ3 can be expressed as τ1 = K1 + δ1
√

2ϵ ln 2,
τ2 = K2 + δ2

√
2ϵ ln 2 and τ3 = δ3

√
2ϵ ln 2 where Kj , δj are constants to be determined. Substituting these

expressions into equation 320c–equation 320d, we obtain the following equations:

ρ2 = K1 + ρK2, (322a)
ρ = K1ρ+K2, (322b)
0 = δ1 + ρδ2 + ρ2δ3, (322c)
0 = ρδ1 + δ2 + ρ3δ3. (322d)

Notice that equation 322a and equation 322b yield K1 = 0 and K2 = ρ. Note that the constant terms of
{τj}2

j=1 (i.e., {Kj}2
j=1) contribute to the dominant terms of the inequality equation 321. As a result, we

obtain the following condition

δ3 = 1√
1 + ρ2

. (323)

The optimization program in equation 320 can thus be simplified as:

min
δ1,δ2,δ3

2σ2(1− ρ4 − ( 1√
1 + ρ2

+ δ1ρ
2 + δ2ρ

3 + ρ2 − ρ4)
√

2ϵ ln 2) (324a)

s.t. 0 = δ1 + ρδ2 + ρ2√
1 + ρ2

, (324b)

0 = ρδ1 + δ2 + ρ3√
1 + ρ2

. (324c)

Solving the above optimization program, we get

δ2 = 0, δ1 = − ρ2√
1 + ρ2

. (325)

Thus, by substituting the values of τj (expressed in terms of δj and Kj as derived above) into equation 249,
we obtain

X̂3 = ρX̂2 −
ρ2√

1 + ρ2

√
2ϵ ln 2X̂1 + 1√

1 + ρ2

√
2ϵ ln 2X3 + Z3,JD, (326)

where Z3,JD ∼ N (0, (1−ρ2 +O(ϵ))σ2) is independent of (X̂1, X̂2, X3). Plugging equation 251 into the above
expression yields the following

X̂3 =
(
ρ2 − (ρ2 + ρ2√

1 + ρ2
)
√

2ϵ ln 2
)
X̂1 + ρ

√
2ϵ ln 2X2 +

√
2ϵ ln 2√
1 + ρ2

X3 + ρZ2,JD + Z3,JD, (327)

where the distortion is given as follows

D3,JD(∞, ϵ, ϵ) := 2(1− ρ4 − (1− ρ2)(ρ2 +
√

1 + ρ2)
√

2ϵ ln 2)σ2 +O(ϵ). (328)

Using equation 7, equation 327 can be further simplified as follows

X̂3 = ρ2X̂1 +
(
ρ+ ρ√

1 + ρ2

)
√

2ϵ ln 2N1 + 1√
1 + ρ2

√
2ϵ ln 2N2 + ρZ2,JD + Z3,JD. (329)

This case is shown in Table 5.

Fourth Step:
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The optimization program for the fourth step in the case of 0-PLF-JD closely resembles the one described
in Proposition D.2, except that conditions equation 285c–equation 285e are replaced by the corresponding
constraints for 0-PLF-JD, given by

E[X̂4X̂3] = E[X4X̂3], E[X̂4X̂2] = E[X4X̂2], E[X̂4X̂1] = E[X4X̂1]. (330)

Using expressions equation 155–equation 156 and equation 271, these conditions can be further simplified as
follows:

ρ3 = λ1 + ρλ2 + ρ2λ3 + ρ3λ4, (331)
ρ2 = ρλ1 + λ2 + ρλ3 + ρ2(ρω1 + ω2)λ4, (332)
ρ = ρ2λ1 + ρλ2 + λ3 + ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3)λ4. (333)

Therefore, focusing on the dominant terms, the optimization problem for the fourth step of 0-PLF-JD,
assuming the first frame is compressed at a high rate, is given by

min
λ1,λ2,λ3,λ4

2σ2(1− λ4 − λ3ρτ3 − λ3ρ
2τ2ω2 − λ3ρ

3τ2ω1 − λ3ρ
3τ1 − λ2ρ

3ω1 − λ2ρ
2ω2 − λ1ρ

3) (334a)

s.t.λ2
4(1− ρ6) ≤ (1− λ2

1 − λ2
2 − λ2

3 +O(ϵ))(2ϵ ln 2), (334b)
ρ3 = λ1 + ρλ2 + ρ2λ3 + ρ3λ4, (334c)
ρ2 = ρλ1 + λ2 + ρλ3 + ρ2(ρω1 + ω2)λ4, (334d)
ρ = ρ2λ1 + ρλ2 + λ3 + ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3)λ4. (334e)

The above program is convex and the objective function is linear, so the solution lies on the boundary of the
feasible region. Particularly, equation 334b holds with equality, i.e.,

λ2
4(1− ρ6) = (1− λ2

1 − λ2
2 − λ2

3 +O(ϵ))(2ϵ ln 2), (335)

which implies that λ4 = Θ(
√

2ϵ ln 2). In fact, as will be confirmed later, the expression 1−λ2
1−λ2

2−λ2
3 includes

a constant term that ensures the right-hand side of the above condition is of order Θ(
√

2ϵ ln 2), reinforcing
that λ4 = Θ(

√
2ϵ ln 2). Considering this fact together with conditions equation 334c–equation 334e, we can

generally write λj = Kj + δj

√
2ϵ ln 2 for j ∈ {1, 2, 3} and λ4 = δ4

√
2ϵ ln 2 where Kj , δj are constants to

be determined. Plugging these expressions into equation 334c–equation 334e, we get the following set of
equations

ρ3 = K1 + ρK2 + ρ2K3, (336)
ρ2 = ρK1 +K2 + ρK3, (337)
ρ = ρ2K1 + ρK2 +K3, (338)
0 = δ1 + ρδ2 + ρ2δ3 + ρ3δ4, (339)
0 = ρδ1 + δ2 + ρδ3 + ρ4δ4, (340)
0 = ρ2δ1 + ρδ2 + δ3 + ρ5δ4. (341)

From the first three equations, we obtain K1 = K2 = 0, K3 = ρ. Since the constant terms Kj contribute to
the dominant part of equation 335, it simplifies to

δ4 =

√
1− ρ2

1− ρ6 . (342)
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The optimization program in equation 334 further reduces to the following

min
δ1,δ2,δ3,δ4

2(1− ρ6 − (

√
1− ρ2

1− ρ6 + δ1ρ
3 + δ2ρ

4 + δ3ρ
5 + ρ2 − ρ6)

√
2ϵ ln 2)σ2 (343a)

s.t. 0 = δ1 + ρδ2 + ρ2δ3 + ρ3

√
1− ρ2

1− ρ6 , (343b)

0 = ρδ1 + δ2 + ρδ3 + ρ4

√
1− ρ2

1− ρ6 , (343c)

0 = ρ2δ1 + ρδ2 + δ3 + ρ5

√
1− ρ2

1− ρ6 . (343d)

Solving the above optimization program, we get

δ1 = −ρ3

√
1− ρ2

1− ρ6 , δ2 = δ3 = 0.

(344)

In summary, by substituting these values of λj expressed in terms of Kj and δj into equation 271, the
achievable reconstruction is

X̂4 = −ρ3

√
1− ρ2

1− ρ6

√
2ϵ ln 2X̂1 + ρX̂3 +

√
1− ρ2

1− ρ6

√
2ϵ ln 2X4 + Z4,JD, (345)

where Z4,JD ∼ N (0, (1−ρ2 +ρ4−ρ6 +O(ϵ))σ2) is a Gaussian random variable independent of (X̂1, X̂3, X4).
Now, we plug equation 251 and equation 267 into the above expression and we get

X̂4 = ρ3X̂1 +
(
ρ2 + ρ2

√
1− ρ2

1− ρ6

)
√

2ϵ ln 2N1 +
(
ρ+ ρ

√
1− ρ2

1− ρ6

)
√

2ϵ ln 2N2 +

√
1− ρ2

1− ρ6

√
2ϵ ln 2N3

+ρ2
√

2ϵ ln 2Z2,JD + ρZ3,JD + Z4,JD, (346)

where the distortion is given by

D∞
4,JD := 2σ2

(
1− ρ6 −

√
2ϵ ln 2(1− ρ2)

(√
1− ρ6

1− ρ2 + ρ2 − ρ6

))
+O(ϵ). (347)

jth Step:

Using induction and extension of the above analysis for the j-th frame yields the following achievable recon-
struction

X̂j = ρj−1X̂1 +
√

2ϵ ln 2
(

1 +

√
1− ρ2

1− ρ2(j−1)

)
j−2∑
i=1

ρj−1−iNi +

√
1− ρ2

1− ρ2(j−1)

√
2ϵ ln 2Nj−1

+
√

2ϵ ln 2
j−2∑
i=2

ρiZj−i,JD + ρZj−1,JD + Zj,JD, (348)

where Zj,JD is a Gaussian random variable independent of ({Ni}j−1
i=1 , {Zi,JD}j−1

i=2 ) with mean zero and the
following variance

E[Z2
j,JD] =

{
((1− ρ2)

∑ j
2 −1
i=0 ρ4i +O(ϵ))σ2 if j is even,

((1− ρ2)
∑ j−1

2 −1
i=0 ρ4i +O(ϵ))σ2 if j is odd,

(349)
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and the distortion is given by

Dj,JD(∞, ϵ, . . . , ϵ) := 2σ2

(
1− ρ2(j−1) −

√
2ϵ ln 2(1− ρ2)

√1− ρ2(j−1)

1− ρ2 +
j−2∑
i=1

ρ2(j−1−i)

)+O(ϵ).

(350)

D.3 0-PLF-FMD

In this section, we provide the optimization programs for the second and third steps of 0-PLF-FMD and solve
them. These results were presented in the first and second rows of Table 5. Recall that for the Gauss-Markov
source model, the reconstructions exploit the structure in equation 154–equation 156.

Second Step:

For the second step, similarly to equation 155, the achievable reconstruction can be expressed as

X̂2 = ω1X̂1 + ω2X2 + Z2,FMD, (351)

where Z2,FMD is independent of (X̂1, X2) and notice that X̂1 = X1 since we have high compression rate for
the first frame. The optimization program of the second step is similar to that of Proposition C.2, but with
ν = 1 and the perception constraint in equation 161c, which ensures preservation of the joint distribution of
(X̂1, X̂2) is removed. Instead, only the marginal distribution is constrained. Consequently, the optimization
program for the second step of 0-PLF-FMD is given by

min
ω1,ω2

2σ2 − 2ω1ρσ
2 − 2ω2σ

2 (352a)

s.t. ω2
2(1− ρ22−2R2) ≤ (1− ω2

1 − 2ω1ω2ρ)(1− 2−2R2). (352b)

The solution of the above program when R2 = ϵ (for a sufficiently small ϵ) is given by (see Table 2 in
Salehkalaibar et al. (2023))

X̂2 = (1− (1 + ρ2)2ϵ ln 2
2ρ2 )X̂1 + 2ϵ ln 2

ρ
X2 + Z2,FMD, (353)

where Z2,FMD ∼ N (0, ( 1−ρ2

ρ2 )2σ2ϵ ln 2) is independent of (X̂1, X2).

Notice that when ρ = Θ(
√
ϵ), the term (1+ρ2)2ϵ ln 2

2ρ2 becomes a constant. In this case, the approximation
in equation 353 is not valid anymore. This case should be handled separately as follows.

Case of 0 < ρ ≪
√
ϵ: In this case, considering the dominant terms of equation 352, this program reduces

to the following

min
ω1,ω2

2σ2 − 2ω2σ
2 (354a)

s.t. ω2
2 ≤ (1− ω2

1)(2ϵ ln 2). (354b)

The solution of the above program is as follows

ω1 = 0, (355)
ω2 =

√
2ϵ ln 2. (356)

Thus, the reconstruction of the second step can be written as follows

X̂2 =
√

2ϵ ln 2X2 + Z ′
2,FMD, (357)

where Z ′
2,FMD ∼ N (0, (1− 2ϵ ln 2)σ2) is independent of X2.

Third Step:
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For the third step, similar to equation 156, we write the achievable reconstruction as

X̂3 = τ1X̂1 + τ2X̂2 + τ3X3 + Z3,FMD, (358)

where Z3,FMD is a Gaussian random variable independent of (X̂1, X̂2, X3). The optimization program of the
third step is similar to that of Proposition C.3 but with ν = 1 and when the constraints in equation 187c
and equation 187d which preserve the joint distribution of PX̂1X̂2X̂3

are removed and only the marginal
distributions are fixed. Thus, we get the following optimization program

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (359a)

s.t. : τ2
3 (1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤ (1− 2−2R3)

(
1− τ2

1 − τ2
2 − 2τ1τ2ω1

−2τ1τ2ω2ρ− 2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2
)
. (359b)

Case of R3 → ∞: In this case, the solution of the optimization is trivially given by X̂3 = X3 since it
satisfies 0-PLF-FMD in the third frame which is PX̂3

= PX3 . This case is shown in Table 2.

Case of R3 = R2 = ϵ: We use the following approximation

1− 2−2Rj = 2ϵ ln 2 +O(ϵ2), j ∈ {2, 3}. (360)

Thus, considering the dominant terms of the constraint in equation 359b, we have

(1− τ2
1 − τ2

2 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2)(2ϵ ln 2) ≥ (1− ρ4)τ2
3 . (361)

Thus, for the third frame, we have the following optimization program,

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (362a)

s.t. (1− τ2
1 − τ2

2 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2)(2ϵ ln 2) ≥ (1− ρ4)τ2
3 . (362b)

The above optimization program is convex and the objective function is linear, the optimal solution occurs
when the constraint equation 362b holds with equality, i.e.,

(1− τ2
1 − τ2

2 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2)(2ϵ ln 2) = (1− ρ4)τ2
3 . (363)

Note that according to equation 353, ω1 and ω2 consists of constant terms as well as terms of order O(2ϵ ln 2).
The left-hand side of equation 363 is itself of order O(2ϵ ln 2). This implies that τ3 cannot include a constant
term. Based on these observations and the structure of equation 363, the dominant components of τ1 and
τ2 can be expressed in the following general form

τ1 = K1 + δ1(2ϵ ln 2), (364)
τ2 = K2 + δ2(2ϵ ln 2), (365)
τ3 = δ3(2ϵ ln 2), (366)

where Kj , δj are constants to be determined. Substituting the above expressions into the objective function
in equation 362a and the constraint in equation 363, and retaining only the dominant terms, leads to the
following optimization program:

min
τ1,τ2,τ3

2σ2(1− (K1 +K2)ρ2 − 2ϵ ln 2(1 + δ3 + (δ1 + δ2)ρ2 + K2

2 (1− ρ2))) (367a)

s.t. (1− (K1 +K2)2 − 2(2ϵ ln 2)(K1δ1 +K2δ2 +K1δ3ρ
2 + δ3K2ρ

2 +K1K2 +K1δ2 +K2δ1 −K1K2
1 + ρ2

2ρ2 ))

= (1− ρ4)δ2
3(2ϵ ln 2). (367b)
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Note that the constant terms on the left-hand side of equation 367b must be zero, as there are no constant
terms on the right-hand side, i.e.,

K1 +K2 = 1. (368)

Furthermore, by equating the terms of order O(2ϵ ln 2) on both sides, we obtain the following equation

K1K2( 1
ρ2 − 1)− 2δ1 − 2δ2 = (1− ρ4)δ2

3 + 2ρ2δ3. (369)

Considering equation 368–equation 369, one can rewrite the program in equation 367 as follows

min
δ3,K2

2σ2(1− ρ2 − 2ϵ ln 2(1 + (1− ρ4)δ3 −
1
2(1− ρ4)δ2

3ρ
2 + K2(2−K2)(1− ρ2)

2 )). (370)

The solution to the above program is obtained by setting the gradient to zero, which yields the following

K2 = 1, (371)

δ3 = 1
ρ2 . (372)

Plugging the above into equation 368–equation 369, we have

K1 = 0, (373)

δ1 + δ2 = 1− ρ4

2ρ4 . (374)

Combining equation 371–equation 374 with equation 353 and 351 and retaining only the dominant terms,
we obtain

X̂3 = (1− (1− 1− ρ2

2ρ4 )2ϵ ln 2)X̂1 + 2ϵ ln 2
ρ

X2 + 2ϵ ln 2
ρ2 X3 + Z2,FMD + Z3,FMD, (375)

where the distortion is given by

D3,FMD(∞, ϵ, ϵ) = 2σ2(1− ρ2 − 2ϵ ln 2(1 + 3 + ρ2 − 2ρ4

2ρ2 )). (376)

This case is shown in Table 5.

Case of 0 < ρ≪
√
ϵ: In this case, considering the dominant terms of equation 362, the program reduces to

the following:

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 (377a)

s.t. (1− τ2
1 − τ2

2 )(2ϵ ln 2) ≥ τ2
3 . (377b)

The solution of the above program is simply given by

τ1 = 0, (378)
τ2 = 0, (379)
τ3 =

√
2ϵ ln 2. (380)

Thus, the reconstruction is given by

X̂3 =
√

2ϵ ln 2X3 + Z ′
3,FMD, (381)

where Z ′
3,FMD ∼ N (0, (1− 2ϵ ln 2)σ2) is independent of X3.

The achievable reconstructions derived in this section are summarized in Table 5 for the first three frames.
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E Experimental Setup Details

As described in Section 5, our experimental setup is based on the one proposed in Salehkalaibar et al. (2023).
We briefly describe our setup as follows.

E.1 Video Compressor

In our experiments, we use both traditional and neural-based video compression methods. As a classical
baseline, we adopt the H.264 codec for traditional video compression, with results shown in Fig. 14b. For
neural compressors, we use two models to compress frame data: the scale-space flow model (Agustsson
et al., 2020b) as presented in Salehkalaibar et al. (2023), and the DCVC-HEM framework. Scale-space flow
model is adopted as it allows us to efficiently learn the statistical characteristics of the source distribution
without relying on pre-trained optical flow estimators. To control the bit rate, we vary the dimension of
the latent representation while keeping the quantization interval fixed at 2. Dithered quantization is applied
to simulate the common randomness in our setting, following Zhang et al. (2021). For each frame Xj , the
encoder-decoder pair is optimized based on the latent representations obtained from previously optimized
frames.

E.2 Loss Function

Our theoretical formulation involves solving a constrained optimization problem, which is intractable in
practice due to the complexity and non-convexity introduced by neural networks. To circumvent this, we
instead adopt a Lagrangian approximation and optimize the following objective:

minE[∥Xj − X̂j∥2] + λϕj(PX̂1...X̂j−1Xj
, PX̂1...X̂j−1X̂j

),

where the first term represents the mean squared error (MSE) distortion between the original frame Xj and
its reconstruction X̂j , and the second term represents the perceptual constraint in our proposed PLF-SA.
It measures the divergence between the true and generated frame distributions conditioned on the previous
reconstructions. The hyperparameter λ balances the trade-off between distortion and perceptual quality, with
larger values imposing a stronger perception constraint. Similar to prior work, we use the WGAN (Gulrajani
et al., 2017) to approximate the perception term.

E.3 Training Details

We adopt two primary training setups for experiments on the UVG and MovingMNIST datasets. For
evaluation on the UVG dataset, the neural compressors are trained on 256 × 256 patches from the Vimeo-
90K dataset (Xue et al., 2019). In the case of MovingMNIST dataset, each encoder-decoder pair is trained
directly on digit sequences generated from the dataset itself, with digit trajectories constructed as described
in Section E.5. Training on Vimeo-90K requires approximately two days on a single NVIDIA A100 GPU,
while MovingMNIST training completes in roughly one day. For each bitrate regime, we first pre-train the
model to minimize MMSE loss, followed by fine-tuning with the joint distortion–perception loss, which we
found to be more stable and effective than optimizing the full objective end-to-end. For optimization, we
use the RMSProp optimizer (Graves, 2014) for MovingMNIST experiments, and the Adam optimizer (Kingma
& Ba, 2017) for training on Vimeo-90K.

As shown in Section 5.1, DCVC-HEM (Li et al., 2022) is adopted for comparisons. For the MovingMNIST
dataset, since DCVC-HEM is not specifically trained for low-bitrate scenarios (R1 = ϵ) on this dataset, we
fine-tune the pre-trained DCVC-HEM to ensure a fair comparison. During fine-tuning, the quantization
scales are adjusted to {qI-frame = 3.5, qP-frame = 1.5} to enhance its compression performance under low-
bitrate settings. In the high-bitrate scenario (R1 = ∞) on MovingMNIST, where the bitrate for second
frame is fixed at R2 = 2 bits across all PLF models, achieving this bitrate with DCVC-HEM is challenging.
To address this, we directly input the second-frame reconstruction results from 0-PLF-SA into DCVC-HEM
to produce the reconstruction of the third frame. For UVG dataset, we use the pre-trained DCVC-HEM
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Algorithm 1 Random Trajectory sequence generation.
1: inputs: maximum step size S, sequence length N , frame size F , digit size D.
2: sequence← [ ]
3: (x, y) ∼ U(0, F −D)
4: sequence[1]← gen_frame((x, y))
5: for frame ∈ {2, ..., N} do
6: (dx, dy) ∼ U(−S, S)
7: if (y < 0) then
8: y ← 0
9: dy ∼ U(0, S)

10: else if (y > F −D) then
11: y ← F −D
12: dy ∼ U(−S, 0)
13: end if
14: if (x < 0) then
15: x← 0
16: dx ∼ U(0, S)
17: else if (x > F −D) then
18: x← F −D
19: dx ∼ U(−S, 0)
20: end if
21: (x, y)← (x, y) + (dx, dy)
22: sequence[frame]← gen_frame((x, y))
23: end for
24: return sequence

checkpoint without additional fine-tuning. All results presented in Section 5 ensure that the average per-
frame bitrate of DCVC-HEM is slightly greater than or equal to the bitrate settings of the proposed PLF-SA
models.

E.4 Perceptual Quality Evaluations

To evaluate the perceptual quality of different compressors, we first use the widely adopted LPIPS met-
ric (Zhang et al., 2018), computed as

d(Xi, X̂i) = 1
HW

∑
h,w

∥f(Xi)h,w − f(X̂i)h,w∥2
2,

where f(·) denotes a pretrained, fixed deep network used to extract spatial features. For the UVG dataset,
we follow standard setting and use an ImageNet-pretrained VGG network as the feature extractor. For the
MovingMNIST dataset, the domain gap between ImageNet and MNIST datasets causes the VGG net to
overlook meaningful feature differences, even when digit identities change. To address this, we train two
4-layer convolutional networks on the second and third frames of MovingMNIST, each for 10 epochs using
the Adam optimizer. Once trained, these models serve as feature extractors and we compute LPIPS metric
between embeddings of source and reconstructed frames on MovingMNIST.

In addition to LPIPS, we also adopt Fréchet Video Distance (FVD) and Kernel Video Distance (KVD) to
evaluate the perceptual quality. FVD (Unterthiner et al., 2019) is a video-level extension of the well-known
Fréchet Inception Distance (FID), which models the distribution of entire video sequences in a learned feature
space and compares the real and generated video distributions via the Fréchet distance. KVD (Unterthiner
et al., 2019) is a variant of FVD which uses the learned features of I3D network to compute distance instead
of traditional polynomial kernel. For both metrics, we use the I3D network pretrained on Kinetics-400 as
the feature extractor, following established best practices in generative video modeling.
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Algorithm 2 Consistent Trajectory sequence generation.
1: inputs: maximum step size S, sequence length N , frame size F , digit size D.
2: sequence← [ ]
3: (x, y) ∼ U(0, F −D)
4: (dx, dy) ∼ U(−S, S)
5: for frame ∈ {1, ..., N} do
6: (x, y)← (x, y) + (dx, dy)
7: sequence[frame]← gen_frame((x, y))
8: end for
9: return sequence

Table 6: Perceptual loss comparisons on the UVG dataset. First frame is compressed at low-rate R1 = 0.144 bpp and
second/third frames are compressed at high-rate R2 = 4.632 bpp, R3 = 4.632 bpp.

DCVC-HEM PLF-JD PLF-SA PLF-FMD
FVD ↓ 158.99 330.09 26.57 30.86
KVD ↓ 64.97 147.33 13.34 13.70

E.5 MovingMNIST Digit Trajectory

This subsection describes the algorithms developed to generate digit trajectories for the MovingMNIST
experiments. Section 5 addresses the two main rate regimes discussed in our work. First, we describe our
Random Trajectory algorithm, utilized when the first frame X1 is encoded with a low rate (Section 4.1).
Following that, we discuss Consistent Trajectory algorithm, applied to experiments where the first frame X1
is encoded with a high rate (Section 4.2).

Algorithm 1 describes how Random Trajectory generates a MovingMNIST sequence. The required inputs
are the maximum step size S, sequence length N , frame size F , and digit size D. We first sample the initial
digit position (x, y) from a uniform distribution U(0, F − D), generating frame X1 by placing the digit in
the sampled initial position (lines 3 − 4). For the subsequent frames X2, . . . , XN , we check if the moving
digit has reached the frame boundaries (lines 7, 10, 14, 17). We then sample the vertical and horizontal shifts
(dx, dy) accordingly (lines 6, 9, 12, 15, 19). The shift is then applied to the current position (x, y), and the
frame is generated by placing the digit in the updated position (lines 21 − 22). This conditional sampling
strategy guarantees that the digit “bounces” in the opposite direction if the margins are reached, keeping
the digit always in-frame. In Section 5, we utilize S = 5, N = 3, F = 64, and D = 32 for the regime with a
low rate at the first frame (Section 4.1).

Algorithm 2 displays the Constant Trajectory MovingMNIST sequence generation. Given the same set of
inputs as Algorithm 1, we sample a starting position (x, y) ∼ U(0, F − D) and a spatial frame-wise shift
(dx, dy) (lines 3 − 4). For every frame, the same pair (dx, dy) is applied to the current (x, y) position to
generate the next frame (lines 5− 7). The conditional sampling strategy is not utilized, with digits possibly
reaching and crossing the frame boundaries. Utilizing the same shift (dx, dy) across frames and not applying
any direction changes close to the frame edges provide a frame-wise consistent trajectory across the whole
sequence. This characteristic enables the trajectory analysis conducted in Section 5 (Fig. 6) for the rate
regime with X1 encoded with a high rate (Section 4.2). We utilize sequence length N = 3, frame size
F = 64, and digit size D = 32. For sharp movements (Fig. 6a), we have a maximum step size S = 20. For
slow movements (Fig. 6b), we utilize maximum step size S = 5.

F Supplementary Results

In this section, We display additional results to the experimental discussion in Section 5.

First, in Tab. 6, we present a quantitative comparison of perceptual quality on the UVG dataset. All models
are evaluated under the same rate setting: the first frame is compressed at a low rate (R1 = 0.144 bpp), while
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(a) Distortion-Perception curve.

(b) Rate-Distortion curve.
Figure 13: (a) Distortion-Perception curve and (b) Rate-Distortion curve for second frame on the MovingMNIST dataset with
different perception loss functions. First frame is compressed at low-rate R1 = 12 bits.

the second and third frames are encoded at higher rates (R2 = R3 = 4.632 bpp). We report two standard
perceptual quality metrics: Fréchet Video Distance (FVD) and Kernel Video Distance (KVD). Among all
models, our proposed PLF-SA achieves the best performance, yielding the lowest FVD (26.57) and KVD
(13.34), outperforming all other models. PLF-FMD follows closely, while PLF-JD and DCVC-HEM exhibit
considerably higher scores, indicating weaker perceptual consistency due to low rate setting. These results
highlight the strength of PLF-SA in preserving perceptual quality under low rate allocations in realistic
video data.

In Fig. 13, we analyze the impact of different perceptual loss functions on both the distortion-perception and
rate-distortion trade-offs for the second frame on the MovingMNIST dataset. The first frame is encoded at a
low rate of R1 = 12 bits. Specifically, Fig. 13a shows the distortion-perception curve across different bitrate
levels (R2 = 4, 8, 12 bits). PLF-SA and PLF-FMD demonstrate comparable performance, maintaining
a favorable balance between distortion and perception. In contrast, PLF-JD consistently underperforms,
exhibiting higher Wasserstein distances for the same distortion levels. Fig. 13b presents the rate-distortion
curves for each model. As expected, the MMSE baseline achieves the lowest distortion at every bitrate, as it
is trained purely with a rate-distortion objective without any perception constraint. Among the perception
models, PLF-FMD achieves the best rate-distortion trade-off, with PLF-SA closely following. PLF-JD again
performs the worst. These findings validate the effectiveness of PLF-SA in adapting to rate-distortion-
perception trade-offs.

Furthermore, additional reconstruction results are provided in Fig. 14, Fig. 15 and Fig. 16. In Fig. 14, we
include comparisons with the traditional codec H.264. Fig. 14a shows the reconstruction results on the UVG
dataset. It highlights that PLF-JD suffers from a noticeable color tone shift across frames, indicating the
error permanence issue under low bitrate. In contrast, both PLF-SA and PLF-FMD maintain stable color
fidelity. Fig. 14b depicts results on the MovingMNIST dataset under the same setting as in Fig.6. While
H.264 preserves motion trajectories of digits in both low and high temporal correlation cases, it fails to
reconstruct clear digit shapes compared to PLF-based methods. Fig. 15 presents additional results for the
4-frame architecture with a slightly different bitrate setting, showing that PLF-JD exhibits direction errors
and PLF-SA correcting them, while PLF-FMD fails to reconstruct correct digits. Finally, Fig.16 presents
more reconstruction results on the UVG dataset under the same low bitrate setting as in Fig. 14a (R1 = 0.144
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(a) (b)
Figure 14: (a) The reconstruction results on the UVG dataset with highlighting the color tone changing of PLF-JD. First frame
is compressed at R1 = 0.144 bpp. (b) The reconstruction results on the MovingMNIST dataset with added results of H.264
where R1 = ∞ bits, R2 = 2 bits and R3 = 12 bits. Left: Low correlation. Right: High correlation.

Figure 15: Additional reconstruction results on the MovingMNIST dataset using the ∞-R2-R3-R4 4-frame architecture, with
R2 = 2 bits, R3 = 12 bits, and R4 = 2 bits. Consistent with the results observed previously, both PLF-JD and PLF-SA
produce direction errors, and PLF-SA is able to correct them. PLF-FMD cannot obviously preserve the temporal correlation
as it reconstructs incorrect digits.

bpp, R2 = R3 = 4.632 bpp). These results further validate the robustness of PLF-SA and PLF-FMD in
handling low-rate reference frames, consistent with our earlier findings in Fig. 4.
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Figure 16: Additional reconstruction results on the UVG dataset. First frame is compressed at low-rate R1 = 0.144 bpp and
second/third frame are compressed at high-rate R2 = 4.632 bpp, R3 = 4.632 bpp.

53


	Introduction
	System Model
	RDP Regions
	Distortion Analysis for Gauss-Markov Sources and Zero-Perception Loss
	Resilience to Error Permanence Phenomenon
	Sensitivity to Temporal Correlation Across Frames

	Experimental Results
	Implementation Details
	Main Results
	Low-rate Case R1 = 12 bits
	High-rate Case R1 =  bits


	Conclusions
	Operational RDP Region
	Gauss-Markov Source Model
	Low-rate Regime for the First Frame
	0-PLF-SA
	0-PLF-FMD
	0-PLF-JD

	High-Rate Regime for the First Frame
	0-PLF-SA
	0-PLF-JD
	0-PLF-FMD

	Experimental Setup Details
	Video Compressor
	Loss Function
	Training Details
	Perceptual Quality Evaluations
	MovingMNIST Digit Trajectory

	Supplementary Results

