
Factorized Tensor Networks for Multi-Task and
Multi-Domain Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Multi-task and multi-domain learning methods seek to learn multiple tasks/domains,1

jointly or one after another, using a single unified network. The key challenge2

and opportunity is to exploit shared information across tasks and domains to3

improve the efficiency of the unified network. The efficiency can be in terms4

of accuracy, storage cost, computation, or sample complexity. In this paper, we5

propose a factorized tensor network (FTN) that can achieve accuracy comparable6

to independent single-task/domain networks with a small number of additional7

parameters. FTN uses a frozen backbone network from a source model and8

incrementally adds task/domain-specific low-rank tensor factors to the shared9

frozen network. This approach can adapt to a large number of target domains and10

tasks without catastrophic forgetting. Furthermore, FTN requires a significantly11

smaller number of task-specific parameters compared to existing methods. We12

performed experiments on widely used multi-domain and multi-task datasets. We13

observed that FTN achieves similar accuracy as single-task/domain methods while14

using 2–6% additional parameters per task. We also demonstrate the effectiveness15

of FTN with domain adaptation for image generation.16

1 Introduction17

The primary objective in multi-task learning (MTL) is to train a single model to learn multiple related18

tasks, either jointly or sequentially. Multi-domain learning (MDL) aims to achieve the same learning19

objective across multiple domains. MTL and MDL techniques seek to improve overall performance20

by leveraging shared information across multiple tasks and domains. On the other hand, single-task or21

single-domain learning do not have that opportunity. Furthermore, the storage and computational cost22

associated with single-task/domain models quickly grows as the number of tasks/domains increases.23

In contrast, MTL and MDL methods can use the same network resources for multiple tasks/domains,24

which keeps the overall computational and storage cost small [1–10].25

In general, MTL and MDL can have different input/output configurations, but we model them as26

task/domain-specific network representation problems. Let us represent a network for MTL or MDL27

as the following general function:28

yt = Ft(x) ≡ F(x;Wt, ht), (1)

where Ft represents a function for task/domain t that maps input x to output yt. We further assume29

that F represents a network with a fixed architecture and Wt and ht represent the parameters for30

task/domain-specific feature extraction and classification/inference heads, respectively. The function31

in (1) can represent the network for specific task/domain t using the respective Wt, ht. In the case32

of MTL, with T tasks, we can have T outputs y1, . . . ,yT for a given input x. In the case of MDL,33

we usually have a single output for a given input, conditioned on the domain t. Our main goal is to34

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Layer 1

Layer 2

Head 1

Input 1

Output 1

Layer 1

Layer 2

Head 2

Input 2

Output 2

(b) Feature-Extractor

Head 1

Output 1

Head 2

Input 1 or Input 2

Output 2

Shared

shared

(c) Factorized Tensor Network (FTN)

Head 1 Head 2

Input 1 or Input 2

shared

shared

11

22

Frozen 
backbone 

weight

Low-rank tensor BN

Wl

Relu

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Frozen 
backbone 

weight

Low-rank tensor

Wl+1

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Head

Output 1 Output 2

(d) Detailed overview of FTN architecture.

Low-rank tensors 
for task 1

Low-rank tensors 
for task 2

(a) Fine-Tuning

Figure 1: Overview of different MTL/MDL approaches and our proposed method. (a) Fine-Tuning trains
entire network per task/domain. (b) Feature-Extractor trains a backbone network shared by all tasks/domains
with task/domain-specific heads. (c) Our proposed method, Factorized Tensor Network (FTN), adapts to a
new task/domain by adding low-rank factors to shared layers. (d) Detailed overview of FTN. A single network
adapted to three downstream vision tasks (segmentation, depth, and surface normal estimation) by adding
task-specific low-rank tensors (∆Wt). Task/domain-specific blocks are shown in same colors.

learn the Wt, ht for all t that maximize the performance of MTL/MDL with minimal computation35

and memory overhead compared to single task/domain learning.36

Figure 1(a),(b),(c) illustrate three typical approaches for MTL/MDL. First, we can start with a pre-37

trained network and fine-tune all the parameters (Wt) to learn a target task/domain, as shown in38

Figure 1(a). Fine-Tuning approaches can transfer some knowledge from the pretrained network to the39

target task/domain, but they effectively use an independent network for every task/domain [1, 5, 11–40

14]. Second, we can reduce the parameter and computation complexity by using a completely41

shared Feature-Extractor (i.e., Wt = Wshared for all t) and learning task/domain-specific heads as42

last layers, as shown in Figure 1(b). While such approaches reduce the number of parameters, they43

often result in poor overall performance because of limited network capacity and interference among44

features for different tasks/domains [1, 4, 5, 15]. Third, we can divide the network into shared and45

task/domain-specific parameters or pathways, as shown in Figure 1(c). Such an approach can increase46

the network capacity, provide interference-free paths for task/domain-specific feature extraction, and47

enable knowledge sharing across the tasks/domains. In recent years, a number of such methods48

have been proposed for MTL/MDL [1, 4, 5, 9, 16–22]. While existing methods provide performance49

comparable to single-task/domain learning, they require a significantly large number of parameters.50

In this paper, we propose a new method to divide network into shared and task/domain-specific51

parameters using a factorized tensor network (FTN). In particular, our method learns task/domain-52

specific low-rank tensor factors and normalization layers. An illustration of our proposed method is53

shown in Figure 1(d), where we represent network parameters as Wt = Wshared +∆Wt, where ∆Wt54

is a low-rank tensor. Furthermore, we also learn task/domain-specific normalization parameters. We55

demonstrate the effectiveness of our method using different MTL and MDL datasets. Our method56

can achieve accuracy comparable to a single-task/domain network with a small number of additional57

parameters. Existing parameter-efficient MTL/MDL methods [1, 2, 23] introduce small task/domain-58

specific parameters while others [15, 24] add many parameters to boost the performance irrespective59

of the task complexity. In our work, we demonstrate the flexibility of FTNs by selecting the rank60

according to the complexity of the task. Finally, we also present an experiment for multi-domain61

image generation using FTNs.62

2



Contributions. The main contributions of this paper can be summarized as follows.63

• We propose a new method for MTL and MDL, called factorized tensor networks (FTN), that adds64

task/domain-specific low-rank tensors to shared weights.65

• We demonstrate that by using as little as 2–6% additional parameters per task/domain, FTNs can66

achieve similar performance as the single-task/domain methods.67

• Our proposed FTNs can be viewed as a plug-in module that can be added to any pretrained network68

and layer.69

• We performed empirical analysis to show that the FTNs enable flexibility by allowing us to vary70

the rank of the task-specific tensors based on the complexity of the problem.71

Limitations. Our proposed method requires a small memory overhead to represent the MTL/MDL72

networks compared to the single task/domain networks. The proposed method does not affect73

the computational cost because we need to compute features for each task/domain using separate74

functional pathways. In our experiments, we used a fixed rank for each layer. In principle, we can75

adaptively select the rank for different layers to further reduce the parameters. MTL/MDL models76

often suffer from task interference or negative transfer learning when multiple conflicting tasks are77

trained jointly. Our method can have similar drawbacks as we did not investigate which tasks/domains78

should be learned jointly.79

2 Related Work80

Multi-task learning (MTL) methods commonly leverage shared and task-specific layers in a unified81

network to solve related tasks [16–18, 25–32]. These methods learn shared and task-specific repre-82

sentation through their respective modules. Optimization based methods [33–37] devise a principled83

way to evaluate gradients and losses in multi-task settings. MTL networks that incrementally learn84

new taks were proposed in [9, 10]. ASTMT [10] proposed a network that emphasizes or suppresses85

features depending on the task at hand. RCM [9] reparameterizes the convolutional layer into86

non-trainable and task-specific trainable modules. We compare our proposed method with these87

incrementally learned networks. Adashare [8] is another related work in MTL that jointly learns88

multiple tasks. It learns task-specific polices and network pathways [38].89

Multi-domain learning (MDL) focuses on adapting one network to multiple unseen domains or90

tasks. MDL setup trains models on task-specific modules built upon the frozen backbone network.91

This setup helps MDL networks to avoid negative transfer learning or catastrophic forgetting, which92

is common among multi-task learning methods. The work by [3, 6] introduces the task-specific93

parameters called residual adapters. The architecture introduces these adapters as a series or parallel94

connection on the backbone for a downstream task. Inspired by pruning techniques, Packnet [2] learns95

on multiple domains sequentially on a single task to decrease the overhead storage, which comes at96

the cost of performance. Similarly, the Piggyback [1] method uses binary masks as the module for97

task-specific parameters. These masks are applied to the weights of the backbone to adapt them to98

new domains. To extend this work, WTPB [7] uses the affine transformations of the binary mask on99

their backbone to extend the flexibility for better learning. BA2 [4] proposed a budget-constrained100

MDL network that selects the feature channels in the convolutional layer. It gives parameter efficient101

network by dropping the feature channels based on budget but at the cost of performance. Spot-Tune102

[24] learns a policy network, which decides whether to pass each image through Fine-Tuning or103

pre-trained networks. It neglects the parameter efficiency factor and emphasises more on performance.104

TAPS [5] adaptively learns to change a small number of layers in pre-trained backbone network for105

the downstream task.106

Our proposed method, FTN, achieves performance comparable to or better than other methods by107

utilizing a fraction of the parameters. We demonstrated that, unlike other methods, easy domains do108

not require the transformation of the backbone by the same complex module, and we can choose the109

flexibility of the task-specific parameter for a given domain.110

Domain adaptation and transfer learning. The work in this field usually focuses on learning a111

network from a given source domain to a closely related target domain. The target domains under112

this kind of learning typically have the same category of classes as source domains [11]. Due to113

this, it benefits from exploiting the labels of source domains to learn about multiple related target114

domains[12, 39]. Some work has a slight domain shift between source and target data like different115

3



camera views [40]. At the same time, recent papers have worked on large domain shifts like converting116

targets into sketch or art domains [12, 41]. Transfer learning is related to MDL or domain adaptation,117

but focuses on how to generalize better on target tasks [13, 14, 42]. Most of the work in this field118

uses the popular Imagenet as a source dataset to learn feature representation and learn to transfer to119

target datasets.120

3 Technical Details121

In our proposed method, we use task/domain-specific low-rank tensors to adapt every convolutional122

layer of a pretrained backbone network to new tasks and domains. Let us assume the backbone123

network has L convolution layers that are shared across all task/domains. We represent the shared124

network weights as Wshared = {W1, . . . ,WL} and the low-rank network updates for task/domain125

t as ∆Wt = {∆W1,t, . . . ,∆WL,t}. To compute features for task/domain t, we update weights at126

every layer as Wshared +∆Wt = {W1 +∆W1,t, . . . ,WL +∆WL,t}.127

To keep our notations simple, let us only consider lth convolution layer that has k × k filters, Cin128

channels for input feature tensor, and Cout channels for output feature tensor. We represent the129

corresponding Wl as a tensor of size k2 ×Cin ×Cout. We represent the low-rank tensor update as a130

summation of R rank-1 tensors as131

∆Wl,t =

R∑
r=1

wr
1,t ⊗wr

2,t ⊗wr
3,t, (2)

where wr
1,t,w

r
2,t,w

r
3,t represent vectors of length k2, Cin, Cout, respectively, and ⊗ represents the132

Kronecker product.133

Apart from low-rank tensor update, we also optimize over batchnorm layers (BN) for each task/domain134

[43, 44]. The BN layer learns two vectors Γ and β, each of length Cout. The BN operation along135

Cout dimension can be defined as element-wise multiplication and addition:136

BNΓ,β(u) = Γ

(
u− E[u]√
Var[u] + ϵ

)
+ β. (3)

We represent the output of lth convolution layer for task/domain t as137

Zl,t = BNΓt,βt
(conv(Wl +∆Wl,t,Yl−1,t)), (4)

where Yl−1,t represents the input tensor and Zl,t represents the output tensor for lth layer. In our138

proposed FTN, we learn the task/domain-specific factors {wr
1,t,w

r
2,t,w

r
3,t}Rr=1, and Γt, and βt for139

every layer in the backbone network.140

In the FTN method, since we are learning over only ∆W and BN parameters, the rank, R, plays141

an important role in defining the expressivity of our network. We can define a complex ∆W by142

increasing the rank R of the low-rank tensor and taking their linear combination. Our experiments143

showed that this has resulted in a significant performance gain.144

Initialization. In our approach, the initialization of the low-rank parameter layers and the pre-trained145

weights of the backbone network plays a crucial role due to their sensitivity towards performance. To146

establish a favorable starting point, we adopt a strategy that minimizes substantial modifications to147

the frozen backbone network weights during the initialization of the task-specific parameter layers.148

To achieve this, we initialize each parameter layer from the xavier uniform distribution [45], thereby149

generating ∆W values close to 0 before their addition to the frozen weights. This approach ensures150

the maintenance of a similar initialization state to the frozen weights at iteration 0.151

To acquire an effective initialization for our backbone network, we leverage the pre-trained weights152

obtained from ImageNet. We aim to establish a robust and capable feature extractor for our specific153

task by incorporating these pre-trained weights into our backbone network.154

Number of parameters. In a Fine-Tuning setup with T tasks/domains, the total number of required155

parameters at convolutional layer l can be calculated as T · (k2 × Cin × Cout). Whereas using156

our proposed FTNs, the total number of frozen backbone (Wl) and low-rank R tensor (∆Wl,t)157

parameters are given by (Cout × Cin × k2) + T ·R · (Cout + Cin + k2). In our results section, we158

4



Table 1: Number of parameters and top-1% accuracy for baseline methods, comparative methods, and FTN with
varying ranks on the five domains of the ImageNet-to-Sketch benchmark experiments. Additionally, the mean
top-1% of each method across all domains is shown. The ‘Params’ column gives the number of parameters used
as a multiplier of those for the Feature-Extractor method, along with the absolute number of parameters required
in parentheses.

Methods Params (Abs) Flowers Wikiart Sketch Cars CUB mean

Fine-Tuning 6× (141M) 95.69 78.42 81.02 91.44 83.37 85.98
Feature-Extractor 1× (23.5M) 89.57 57.7 57.07 54.01 67.20 65.11
FC and BN only 1.001× (23.52M) 94.39 70.62 79.15 85.20 78.68 81.60

Piggyback [1] 6× [2.25×] (141M) 94.76 71.33 79.91 89.62 81.59 83.44
Packnet→ [2] [1.60×] (37.6M) 93 69.4 76.20 86.10 80.40 81.02
Packnet← [2] [1.60×] (37.6M) 90.60 70.3 78.7 80.0 71.4 78.2
Spot-Tune [24] 7× [7×] (164.5M) 96.34 75.77 80.2 92.4 84.03 85.74
WTPB [7] 6× [2.25×] (141M) 96.50 74.8 80.2 91.5 82.6 85.12
BA2 [4] 3.8× [1.71×] (89.3M) 95.74 72.32 79.28 92.14 81.19 84.13
TAPS [5] 4.12× (96.82M) 96.68 76.94 80.74 89.76 82.65 85.35

FTN, R=1 1.004× (23.95M) 94.79 73.03 78.62 86.85 80.86 82.83
FTN, R=50 1.53× (36.02M) 96.42 78.01 80.6 90.83 82.96 85.76

have shown that the absolute number of parameters required by our method is a fraction of what the159

Fine-Tuning counterpart needs.160

Effect of batch normalization. In our experiment section, under the ‘FC and BN only’ setup,161

we have shown that having task-specific batchnorm layers in the backbone network significantly162

affects the performance of a downstream task/domain. For all the experiments with our proposed163

approach, we include batch normalization layers as task-specific along with low-rank tensors and164

classification/decoder layer.165

4 Experiments and Results166

We evaluated the performance of our proposed FTN on several MTL/MDL datasets for three different167

experiments: 1. Multi-domain classification, 2. Multi-task dense prediction, and 3. Multi-domain168

image generation. For each set of benchmarks we report the performance of FTN with different169

rank increments and compare with results from existing methods. All experiments are run on a single170

NVIDIA GeForce RTX 2080 Ti GPU with 12GB memory.171

4.1 Multi-domain classification172

Datasets. We use two MTL/MDL classification-based benchmark datasets. First, ImageNet-to-173

Sketch [1, 2, 5, 7], which contains five different domains: Flowers [46], Cars [47], Sketch [48],174

Caltech-UCSD Birds (CUBs) [49], and WikiArt [50], with different classes. Second, DomainNet175

[51], which contains six domains: Clipart, Sketch, Painting (Paint), Quickdraw (Quick), Inforgraph176

(Info), and Real, with each domain containing an equal 345 classes. The datasets are prepared using177

augmentation techniques as adopted by [5].178

Training details. For each benchmark, we report the performance of FTN for various choices for179

ranks, along with several benchmark-specific comparative and baseline methods. The backbone180

weights are pretrained from ImageNet, using ResNet-50 [52] for the ImageNet-to-Sketch benchmarks,181

and ResNet-34 on the DomainNet benchmarks to keep the same setting as [5]. On ImageNet-to-182

Sketch we run FTNs for ranks, R ∈ {1, 5, 10, 15, 20, 25, 50} and on DomainNet dataset for ranks,183

R ∈ {1, 5, 10, 20, 30, 40}. In the supplementary material, we provide the hyperparameter details to184

train our network.185

Results. We report the top-1% accuracy for each domain and the mean accuracy across all domains186

for each collection of benchmark experiments. We also report the number of frozen and learnable187

parameters in the backbone network. Table 1 compares the FTN method with other methods in terms188

of accuracy and number of parameters (also see Figure 2). FTN outperforms every other method189

while using 36.02 million parameters in the backbone with rank-50 updates for all domains. The190

5



Table 2: Performance of different methods with resnet-34 backbone on DomainNet dataset. Top-1% accuracy is
shown on different domains with different methods along with the number of parameters.

Methods Params (Abs) Clipart Sketch Paint Quick Info Real mean

Fine-Tuning 6× (127.68M) 74.26 67.33 67.11 72.43 40.11 80.36 66.93
Feature-Extractor 1× (21.28M) 60.94 50.03 60.22 54.01 26.19 76.79 54.69
FC and BN only 1.004× (21.35M) 70.24 61.10 64.22 63.09 34.76 78.61 62.00

Adashare [8] 5.73× (121.93M) 74.45 64.15 65.74 68.15 34.11 79.39 64.33
TAPS [5] 4.90× (104.27M) 74.85 66.66 67.28 71.79 38.21 80.28 66.51

FTN, R=1 1.008× (21.44M) 70.73 62.69 65.08 64.81 35.78 79.12 63.03
FTN, R=40 1.18× (25.22M) 74.2 65.67 67.14 71.00 39.10 80.64 66.29

mean accuracy performance is better than other methods and is close to Spot-Tune [24], which191

requires nearly 165M parameters. On the Wikiart dataset, we outperform the top-1 accuracy with192

other baseline methods. The performance of baseline methods is taken from TAPS [5] since we are193

running the experiments under the same settings.194

Table 2 shows the results on the DomainNet dataset, which we compare with TAPS [5] and Adashare195

[8]. Again, using FTN, we significantly outperform comparison methods along the required pa-196

rameters (rank-40 needs 25.22 million parameters only). Also, FTN rank-40 attains better top-1%197

accuracy on the Infograph and Real domain, while it attains similar performance on all other domains.198

On DomainNet with resnet-34 and Imagenet-to-Sketch with resnet-50 backbone, the rank-1 low-rank199

tensors require only 16,291 and 49,204 parameters per task, respectively. We have shown additional200

experiments on this dataset under a joint optimization setup in the supplementary material.201

1 2 3 4 5 6 7
Parameter multiplier with baseline

75

80

85

90

95

To
p-

1 
ac

cu
ra

cy
 [%

]

mean
Flowers
Wikiart
Sketch
Cars
CUBS
Spot-Tune
WTPB
BA2
TAPS
FTN, R=1
FTN, R=25
FTN, R=50

(a) Imagenet-to-sketch dataset

1 2 3 4 5
Parameter multiplier with baseline

40

50

60

70

80

To
p-

1 
ac

cu
ra

cy
 [%

]

mean
Clipart
Sketch
Painting
Quickdraw
Infograph
Real
Adashare
TAPS
FTN, R=1
FTN, R=40

(b) DomainNet dataset

Figure 2: Accuracy vs Parameter multiplier with baseline: We show the top-1% accuracy against the number
of parameter increments through our approach in the backbone network with the baseline backbone. We plot the
performance of our method with other baseline methods, which has shown that our approach attains competitive
performance with an extremely small number of parameters.

Analysis on rank. We showed the effect of rank on FTNs by performing experiments with multiple202

ranks on both datasets. Figure 3 shows the accuracy vs. ranks plot, where we observe a trend of203

performance improvement as we increase the rank from 1 to 50 on the ImageNet-to-Sketch and from204

1 to 40 on the DomainNet dataset. Also, not all domains need a high rank, as Figure 3 shows that the205

Flowers and Cars domain attains good accuracy at rank 20 and 15, respectively. We can argue that,206

unlike prior works [24, 23], which consume the same task-specific module for easy and complex207

tasks, we can provide different flexibility to each task. Also, in supplementary material, we have a208

heatmap plot showing the adaption of low-rank tensor at every layer upon increasing the rank.209

4.2 Multi-task dense prediction210

Dataset. The widely-used NYUD dataset [53] with 795 training and 654 testing images of indoor211

scenes is used for dense prediction experiments in multi-task learning. The dataset contains four tasks:212

edge detection (Edge), semantic segmentation (SemSeg), surface normals estimation (Normals), and213

depth estimation (Depth). We follow the same data-augmentation technique as used by [9].214

Metrics. On the tasks of the NYUD dataset, we report mean intersection over union for semantic215

segmentation, mean error for surface normal estimation, optimal dataset F-measure [54] for edge216

6



R=1 R=5 R=10 R=15 R=20 R=25 R=50
Differnet ranks

60

65

70

75

80

85

90

95

100

To
p-
1 
ac
cu
ra
cy
 [%

]

Flower
Wikiart
Sketch

Cars
CUBS
Fine-Tuning

(a) Imagenet-to-sketch dataset

R=1 R=5 R=10 R=20 R=30 R=40
Differnet ranks

10

20

30

40

50

60

70

80

To
p-
1 
ac

cu
ra
cy
 [%

]

Clipart
Sketch
Painting
Quickdraw

Infograph
Real
Fine-Tuning

(b) DomainNet dataset

Figure 3: Accuracy vs Low-ranks: We show the top-1% accuracy against the different low-ranks used in our
method for different domains. We start with an ‘only BN’ setup where without any low-rank we keep the BN
(batchnorm) layers as task-specific. Then we show the performance improvement through our approach upon
increasing the rank, R.

detection, and root mean squared error for depth estimation. We also report the number of parameters217

used in the backbone for each method.218

Training details. ResNet-18 is used as the backbone network, and DeepLabv3+ [55] as the decoder219

architecture. The Fine-Tuning and Feature-Extractor experiments are implemented in the same220

way as in the classification-based experiments above. We showed experiments for FTNs with221

R ∈ {1, 10, 20, 30}. Further details are in the supplementary material.222

Results. Table 3 shows the performance of FTN with various ranks and of other baseline comparison223

methods for dense prediction tasks on the NYUD dataset. We observe performance improvement by224

increasing flexibility through higher rank. FTN with rank-30 performs better than all comparison225

methods and utilizes the least number of parameters. Also, on the Depth and Edge task we can attain226

good performance by using only rank-20. We take the performance of baseline comparison methods227

from the RCM paper [9] as we run our experiments under the same setting.

Table 3: Dense prediction performance on NYUD dataset using ResNet-18 backbone with DeepLabv3+ decoder.
The proposed FTN approach with R = {1, 10, 20, 30} and other methods. The best performing method in bold.

Methods Params (Abs) Semseg↑ Depth↓ Normals↓ Edge↑
Single Task 4× (44.68M) 35.34 0.56 22.20 73.5
Decoder only 1× (11.17M) 24.84 0.71 28.56 71.3
Decoder + BN only 1.002× (11.19M) 29.26 0.61 24.82 71.3

ASTMT (R-18 w/o SE) [10] 1.25× (13.99M) 30.69 0.60 23.94 68.60
ASTMT (R-26 w SE) [10] 2.00× (22.42M) 30.07 0.63 24.32 73.50
Series RA [3] 1.56× (17.51M) 31.87 0.60 23.35 67.56
Parallel RA [6] 1.50× (16.77M) 32.13 0.59 23.20 68.02
RCM [9] 1.56× (17.49M) 34.20 0.57 22.41 68.44

FTN, R=1 1.005× (11.23M) 29.83 0.60 23.56 72.7
FTN, R=10 1.03× (11.54M) 33.66 0.57 22.15 73.5
FTN, R=20 1.06× (11.89M) 34.06 0.55 21.84 73.9
FTN, R=30 1.09× (12.24M) 35.46 0.56 21.78 73.8

228

4.3 Multi-domain image generation229

A deep generative network G, parameterized by W , can learn to map a low-dimensional latent code230

z to a high-dimensional natural image x [56–58]. To find a latent representation for a set of images231

given a pre-trained generative network, we can solve the following optimization problem:232

min
zi

N∑
i=1

∥xi −G(zi;W)∥pp . (5)

7



Summer 
(original)

Summer 
(generated)

Winter 
(generated)

Spring 
(generated)

Autumn 
(generated)

Figure 4: Generated images for different seasons using FTN.

The work in [58] as well as our experimental results show that this approach is very limited in233

handling complex and diverse images. If x is an image that belongs to a domain that is different234

from the source domain used to train the generator, we are not guaranteed to find a latent vector z∗235

such that x ≈ G(z∗). We showed FTNs can be used to expand the range of G by reparametrizing it236

as G(zi;W,∆Wt), where ∆Wt are the domain-specific low-rank factors and Batch Normalization237

parameters. By optimizing over the latent vectors zi and domain specific parameters, we learned to238

generate images from new domains.239

Dataset. We used the multi-domain Transient Attributes [59] dataset that contains outdoor scenes240

under different weather, lighting, and seasons. We extracted season information, "summer", "winter",241

"spring", and "autumn", for each image and categorized them accordingly. Our goal is to learn a242

single FTN network that can generate images from all seasons.243

Training details. Our base network follows the BigGAN architecture [60]. We com-244

pared our proposed FTN network with models trained under two different setups. In245

the first setup, which serves as our baseline, we fine-tuned a pre-trained generator on im-246

ages from all seasons. For the second setup, we fine-tuned the same network separately247

for each season. Additional training details can be found in the supplementary material.248

Table 4: Image generation PSNR for different methods
and seasons

Season Baseline Single domain FTN

Summer 10.80 25.30 25.30
Winter 9.24 21.30 22.23
Spring 11.08 22.07 20.50
Autumn 10.92 19.87 20.08

249

Results. Table 4 shows the performance, in250

terms of Peak Signal-to-Noise Ratio (PSNR),251

for three methods. The baseline model is a sin-252

gle network trained on all images and shows253

overall poor performance. Our proposed FTN254

network achieved a comparable performance to255

the single-domain networks. Each single do-256

main network has 71.4M trainable parameters,257

while the FTN network adds an additional 3.9M258

parameters per domain over the base network. Figure 4 shows examples of images generated by our259

proposed FTN network.260

5 Conclusion261

We have proposed a simple, architecture-agnostic, and easy-to-implement FTN method that adapts262

to new unseen domains/tasks by using low-rank task-specific tensors. In our work, we have shown263

FTN requires the least number of parameters than other baseline methods in MDL/MTL experiments264

and attains better or comparable performance. We can adapt the backbone network with different265

flexibility using low-ranks based on the complexity of the domain/task. We conducted experiments266

with different backbone architectures, and our work can be extended to transformer-based architecture.267

Furthermore, we demonstrate experiments with FTN on image generation.268

8



References269

[1] A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single network to multiple tasks270

by learning to mask weights,” in Proceedings of the European Conference on Computer Vision271

(ECCV), 2018, pp. 67–82.272

[2] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single network by iterative273

pruning,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,274

2018, pp. 7765–7773.275

[3] S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Learning multiple visual domains with residual276

adapters,” Advances in neural information processing systems, vol. 30, 2017.277

[4] R. Berriel, S. Lathuillere, M. Nabi, T. Klein, T. Oliveira-Santos, N. Sebe, and E. Ricci, “Budget-278

aware adapters for multi-domain learning,” in Proceedings of the IEEE/CVF International279

Conference on Computer Vision, 2019, pp. 382–391.280

[5] M. Wallingford, H. Li, A. Achille, A. Ravichandran, C. Fowlkes, R. Bhotika, and S. Soatto,281

“Task adaptive parameter sharing for multi-task learning,” in Proceedings of the IEEE/CVF282

Conference on Computer Vision and Pattern Recognition, 2022, pp. 7561–7570.283

[6] S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Efficient parametrization of multi-domain deep neural284

networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,285

2018, pp. 8119–8127.286

[7] M. Mancini, E. Ricci, B. Caputo, and S. Rota Bulo, “Adding new tasks to a single network with287

weight transformations using binary masks,” in Proceedings of the European Conference on288

Computer Vision (ECCV) Workshops, 2018, pp. 0–0.289

[8] X. Sun, R. Panda, R. Feris, and K. Saenko, “Adashare: Learning what to share for efficient290

deep multi-task learning,” Advances in Neural Information Processing Systems, vol. 33, pp.291

8728–8740, 2020.292

[9] M. Kanakis, D. Bruggemann, S. Saha, S. Georgoulis, A. Obukhov, and L. V. Gool, “Repa-293

rameterizing convolutions for incremental multi-task learning without task interference,” in294

European Conference on Computer Vision. Springer, 2020, pp. 689–707.295

[10] K.-K. Maninis, I. Radosavovic, and I. Kokkinos, “Attentive single-tasking of multiple tasks,” in296

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,297

pp. 1851–1860.298

[11] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative domain adaptation,”299

in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp.300

7167–7176.301

[12] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan, “Deep hashing network for302

unsupervised domain adaptation,” in Proceedings of the IEEE conference on computer vision303

and pattern recognition, 2017, pp. 5018–5027.304

[13] B. Mustafa, A. Loh, J. Freyberg, P. MacWilliams, M. Wilson, S. M. McKinney, M. Sieniek,305

J. Winkens, Y. Liu, P. Bui et al., “Supervised transfer learning at scale for medical imaging,”306

arXiv preprint arXiv:2101.05913, 2021.307

[14] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby, “Big transfer308

(bit): General visual representation learning,” in Computer Vision–ECCV 2020: 16th European309

Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16. Springer, 2020, pp.310

491–507.311

[15] J. O. Zhang, A. Sax, A. Zamir, L. Guibas, and J. Malik, “Side-tuning: a baseline for network312

adaptation via additive side networks,” in Computer Vision–ECCV 2020: 16th European313

Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. Springer, 2020, pp.314

698–714.315

9



[16] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch networks for multi-task316

learning,” in Proceedings of the IEEE conference on computer vision and pattern recognition,317

2016, pp. 3994–4003.318

[17] S. Ruder, J. Bingel, I. Augenstein, and A. Søgaard, “Latent multi-task architecture learning,”319

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.320

4822–4829.321

[18] Y. Gao, J. Ma, M. Zhao, W. Liu, and A. L. Yuille, “Nddr-cnn: Layerwise feature fusing in multi-322

task cnns by neural discriminative dimensionality reduction,” in Proceedings of the IEEE/CVF323

Conference on Computer Vision and Pattern Recognition, 2019, pp. 3205–3214.324

[19] G. Strezoski, N. v. Noord, and M. Worring, “Many task learning with task routing,” in Proceed-325

ings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1375–1384.326

[20] J. Liang, E. Meyerson, and R. Miikkulainen, “Evolutionary architecture search for deep multi-327

task networks,” in Proceedings of the genetic and evolutionary computation conference, 2018,328

pp. 466–473.329

[21] Y. Gao, H. Bai, Z. Jie, J. Ma, K. Jia, and W. Liu, “Mtl-nas: Task-agnostic neural architecture330

search towards general-purpose multi-task learning,” in IEEE Conference on Computer Vision331

and Pattern Recognition (CVPR), 2020.332

[22] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Gradient surgery for multi-333

task learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 5824–5836,334

2020.335

[23] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch normalization for practical domain336

adaptation,” arXiv preprint arXiv:1603.04779, 2016.337

[24] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris, “Spottune: transfer learning338

through adaptive fine-tuning,” in Proceedings of the IEEE/CVF conference on computer vision339

and pattern recognition, 2019, pp. 4805–4814.340

[25] S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task learning with attention,” in Pro-341

ceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.342

1871–1880.343

[26] S. Vandenhende, S. Georgoulis, B. De Brabandere, and L. Van Gool, “Branched multi-task344

networks: Deciding what layers to share,” Proceedings BMVC, 20202.345

[27] D. Bruggemann, M. Kanakis, S. Georgoulis, and L. Van Gool, “Automated search for resource-346

efficient branched multi-task networks,” Proceedings BMVC, 2020.347

[28] P. Guo, C.-Y. Lee, and D. Ulbricht, “Learning to branch for multi-task learning,” in International348

Conference on Machine Learning. PMLR, 2020, pp. 3854–3863.349

[29] D. Xu, W. Ouyang, X. Wang, and N. Sebe, “Pad-net: Multi-tasks guided prediction-and-350

distillation network for simultaneous depth estimation and scene parsing,” in Proceedings of the351

IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 675–684.352

[30] Z. Zhang, Z. Cui, C. Xu, Y. Yan, N. Sebe, and J. Yang, “Pattern-affinitive propagation across353

depth, surface normal and semantic segmentation,” in Proceedings of the IEEE/CVF conference354

on computer vision and pattern recognition, 2019, pp. 4106–4115.355

[31] Z. Zhang, Z. Cui, C. Xu, Z. Jie, X. Li, and J. Yang, “Joint task-recursive learning for semantic356

segmentation and depth estimation,” in Proceedings of the European Conference on Computer357

Vision (ECCV), 2018, pp. 235–251.358

[32] S. Vandenhende, S. Georgoulis, and L. V. Gool, “Mti-net: Multi-scale task interaction networks359

for multi-task learning,” in European Conference on Computer Vision. Springer, 2020, pp.360

527–543.361

10



[33] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Gradnorm: Gradient normalization362

for adaptive loss balancing in deep multitask networks,” in International conference on machine363

learning. PMLR, 2018, pp. 794–803.364

[34] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh losses for365

scene geometry and semantics,” in Proceedings of the IEEE conference on computer vision and366

pattern recognition, 2018, pp. 7482–7491.367

[35] M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, “Dynamic task prioritization for368

multitask learning,” in Proceedings of the European conference on computer vision (ECCV),369

2018, pp. 270–287.370

[36] X. Lin, H.-L. Zhen, Z. Li, Q.-F. Zhang, and S. Kwong, “Pareto multi-task learning,” Advances371

in neural information processing systems, vol. 32, 2019.372

[37] Z. Chen, J. Ngiam, Y. Huang, T. Luong, H. Kretzschmar, Y. Chai, and D. Anguelov, “Just pick373

a sign: Optimizing deep multitask models with gradient sign dropout,” Advances in Neural374

Information Processing Systems, vol. 33, pp. 2039–2050, 2020.375

[38] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” in376

International Conference on Learning Representations, 2017.377

[39] K. Li, C. Liu, H. Zhao, Y. Zhang, and Y. Fu, “Ecacl: A holistic framework for semi-supervised378

domain adaptation,” in Proceedings of the IEEE/CVF International Conference on Computer379

Vision, 2021, pp. 8578–8587.380

[40] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,”381

in European Conference on Computer Vision (ECCV). Springer, 2010, pp. 213–226.382

[41] Y. Zhao, H. Ali, and R. Vidal, “Stretching domain adaptation: How far is too far?” arXiv383

preprint arXiv:1712.02286, 2017.384

[42] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,385

M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16386

words: Transformers for image recognition at scale,” International Conference on Learning387

Representations, 2021.388

[43] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing389

internal covariate shift,” in International conference on machine learning. pmlr, 2015, pp.390

448–456.391

[44] Q. Pham, C. Liu, and H. Steven, “Continual normalization: Rethinking batch normalization for392

online continual learning,” in International Conference on Learning Representations, 2022.393

[45] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural394

networks,” in Proceedings of the thirteenth international conference on artificial intelligence395

and statistics. JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.396

[46] M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large number of397

classes,” in 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing.398

IEEE, 2008, pp. 722–729.399

[47] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-grained400

categorization,” in Proceedings of the IEEE international conference on computer vision401

workshops, 2013, pp. 554–561.402

[48] M. Eitz, J. Hays, and M. Alexa, “How do humans sketch objects?” ACM Transactions on403

graphics (TOG), vol. 31, no. 4, pp. 1–10, 2012.404

[49] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-ucsd birds-200-2011405

dataset,” 2011.406

[50] B. Saleh and A. Elgammal, “Large-scale classification of fine-art paintings: Learning the right407

metric on the right feature,” International Journal for Digital Art History, no. 2, 2016.408

11



[51] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment matching for multi-source409

domain adaptation,” in Proceedings of the IEEE/CVF international conference on computer410

vision, 2019, pp. 1406–1415.411

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in412

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.413

770–778.414

[53] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and support inference415

from rgbd images.” ECCV (5), vol. 7576, pp. 746–760, 2012.416

[54] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using417

local brightness, color, and texture cues,” IEEE transactions on pattern analysis and machine418

intelligence, vol. 26, no. 5, pp. 530–549, 2004.419

[55] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous420

separable convolution for semantic image segmentation,” in Proceedings of the European421

conference on computer vision (ECCV), 2018, pp. 801–818.422

[56] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proceedings of the IEEE423

conference on computer vision and pattern recognition, 2018, pp. 9446–9454.424

[57] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Generative visual manipulation425

on the natural image manifold,” in Computer Vision–ECCV 2016: 14th European Conference,426

Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14. Springer, 2016,427

pp. 597–613.428

[58] X. Pan, X. Zhan, B. Dai, D. Lin, C. C. Loy, and P. Luo, “Exploiting deep generative prior429

for versatile image restoration and manipulation,” IEEE Transactions on Pattern Analysis and430

Machine Intelligence, vol. 44, no. 11, pp. 7474–7489, 2021.431

[59] P.-Y. Laffont, Z. Ren, X. Tao, C. Qian, and J. Hays, “Transient attributes for high-level un-432

derstanding and editing of outdoor scenes,” ACM Transactions on Graphics (proceedings of433

SIGGRAPH), vol. 33, no. 4, 2014.434

[60] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity natural435

image synthesis,” in International Conference on Learning Representations, 2019.436

12


	Introduction
	Related Work
	Technical Details
	Experiments and Results
	Multi-domain classification
	Multi-task dense prediction
	Multi-domain image generation

	Conclusion

