
Foundations of Top- k Decoding for Language Models

Georgy Noarov^{1*} Soham Mallick^{1*} Tao Wang^{1*}
Sunay Joshi¹ Yan Sun² Yangxinyu Xie¹ Mengxin Yu³ Edgar Dobriban¹

¹ University of Pennsylvania
² New Jersey Institute of Technology ³ Washington University in St. Louis

Abstract

Top- k decoding is a widely used method for sampling from LLMs: at each token, only the largest k next-token-probabilities are kept, and the next token is sampled after renormalizing them to sum to unity. Top- k and other sampling methods are motivated by the intuition that true next-token distributions are sparse, and the noisy LLM probabilities need to be truncated. However, to our knowledge, a precise theoretical motivation for the use of top- k decoding is missing. In this work, we develop a theoretical framework that both explains and generalizes top- k decoding. We view decoding at a fixed token as the recovery of a sparse probability distribution. We introduce *Bregman decoders* obtained by minimizing a separable Bregman divergence (for both the *primal* and *dual* cases) with a sparsity-inducing ℓ_0 -regularization; in particular, these decoders are *adaptive* in the sense that the sparsity parameter k is chosen depending on the underlying token distribution. Despite the combinatorial nature of the sparse Bregman objective, we show how to optimize it efficiently for a large class of divergences. We prove that (i) the optimal decoding strategies are greedy, and further that (ii) the objective is discretely convex in k , such that the optimal k can be identified in logarithmic time. We note that standard top- k decoding arises as a special case for the KL divergence, and construct new decoding strategies with substantially different behaviors (e.g., non-linearly up-weighting larger probabilities after renormalization).

1 Introduction

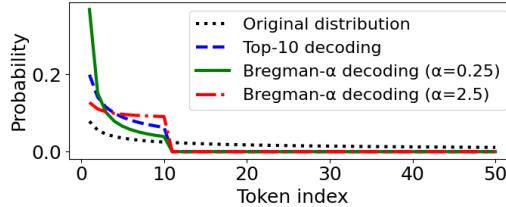
Large language models (LLMs) are powerful generative AI tools for producing text. When pre-trained on large text corpora and aligned according to human preferences, they can be used for a wide range of tasks. On a technical level, they are probability distributions over text: given any user text prompt x , an LLM samples an answer $Y \sim \pi(\cdot|x)$ from a probability distribution $\pi(\cdot|x)$ over text. However, even after obtaining a pre-trained, fine-tuned, and human preference-aligned model π , it is uncommon to directly sample from the model. Instead, several sampling/decoding methods are commonly used, including top- k [21] or top- p sampling [32]. Due to their improved empirical performance compared to direct sampling, they are used by default or as an option in many popular LLMs, including the GPT series, Gemini, and Claude. From a broader perspective, per-token samplers/decoders belong to an expanding collection of post-hoc methods for improving LLM performance, which range from pre-sampling transforms (e.g. temperature decoding), to sequence-level decoding strategies (e.g. beam search), to post-hoc selection (e.g. best-of- N or self-consistency), to a variety of test-time scaling approaches; see e.g., [12, 21, 32].

In this paper, we focus on decoding methods that modify each next-token-probability distribution to induce *sparsity*, i.e., to keep only a small number of tokens with a nonzero probability. This includes the widely used top- k [21] and top- p [32] sampling methods, among others. These methods

*Co-first authors. Correspondence to: gnoarov@seas.upenn.edu, kcillam@wharton.upenn.edu, tawan@wharton.upenn.edu, dobriban@wharton.upenn.edu.

are motivated by the intuition that the noisy LLM probabilities need to be truncated to denoise the “unreliable tail” [32]. In particular, we focus on the popular top- k decoding method, which keeps only the largest k next-token-probabilities at each decoding step. These are renormalized—via dividing by their sum—to a probability distribution from which the next token is sampled.

Despite the wide use and rich intuition behind top- k decoding, to our knowledge, a precise theoretical understanding of top- k decoding is not available (see Section 6 for a discussion of related work). Therefore, in this work, we develop a theoretical framework that flexibly generalizes and sheds light on the key properties of top- k decoding. For a fixed token, we view decoding as recovering a sparse probability distribution from a given (generally non-sparse) LLM token distribution. We consider denoisers obtained by minimizing a Bregman divergence (such as KL divergence or Brier score) from the “raw” LLM token distribution, with a sparsity-inducing ℓ_0 regularization. This approach is motivated by a rich literature of both Bregman divergences and sparsity, see Section 6 for details.



distribution for several values of α . For $\alpha \rightarrow 1$, we obtain standard top- k decoding (for $k = 10$ here). By contrast, for $\alpha = 0.25$, the decoder shifts most of the mass onto the top few tokens; while for $\alpha = 2.5$, the mass is spread much more uniformly across the top- k tokens. This exemplifies how our framework enables the design of novel decoders eliciting a wide range of behaviors.

Provable adaptivity. An important feature of our framework is that it studies, and provides, provably **adaptive** decoding strategies. Namely, given any raw LLM token probability vector p , our Bregman decoders effectively perform (a generalization of) top- k^* decoding of p for an *optimal* $k^* = k^*(p)$: the utilized k^* varies depending on the LLM token distribution p , and is chosen to minimize the decoder’s ℓ_0 -regularized Bregman divergence from p . This rigorous sparse-objective-centric foundation of adaptivity in LLM decoding is, to our knowledge, new in the literature. Moreover, perhaps surprisingly, we are able to show in substantial generality that an optimal k^* can be found provably and efficiently without relying on grid search or other heuristics.

1.1 A roadmap of our contributions

In Section 2, we introduce our theoretical framework. We view top- k decoding strategies as two-step: (i) select a number of tokens k , and (ii) renormalize the selected k tokens’ entries to a probability distribution (Section 2.1). We introduce two rich classes of decoding strategies (Section 2.2): **primal Bregman decoding** and **dual Bregman decoding**. These correspond to ℓ_0 -regularized minimization of a Bregman divergence to the “raw” LLM distribution over tokens, in its first vs. second argument.²

In general, ℓ_0 -regularization leads to combinatorial optimization problems, for which there are no known polynomial-time algorithms [11, 42]. Our main contribution is to show that, despite this, the sparse Bregman decoding objective can be efficiently optimized under mild assumptions, by virtue of having two key structural properties: (1) **Greedy selection**: Choosing the k largest probabilities is optimal (Theorems 3.2 and 3.3 in Section 3.2); (2) **k -convexity**: Searching for the optimal k^* is a (discretely) convex problem in k (Theorem 3.4 in Section 3.3). While simple to state and desirable, these properties are non-trivial to establish, and require a range of novel structural insights into the sparse Bregman objective that could be of independent interest.

In Section 4, we illustrate our theory by introducing α -Bregman decoding strategies, generated by Tsallis α -entropies $x \mapsto x^\alpha / [\alpha(\alpha - 1)]$. We study how their behavior depends on α , and highlight several closed-form cases of interest. One example of the optimization-theoretic elegance of α -decoders is their convergence to *water-filling* as $\alpha \rightarrow \infty$. Finally, in Section 5, we study the empirical performance of some of the novel decoding schemes on open-ended text generation and mathematical problem solving tasks with LLMs, and find that they perform competitively with top- k decoding.

²Bregman divergences being asymmetric in general, their distinct behavior in both arguments has been widely studied in optimization and statistical learning [see e.g., 1, 10, 24, 56, etc].

2 Regularized sparse Bregman decoding

2.1 Top- k decoding preliminaries

Top- k decoding. Given a probability distribution $p = (p_1, \dots, p_V)$ (where V stands for “vocabulary size”), and some $1 \leq k \leq V$, **top- k decoding** first selects the indices $S_k = (i_1, \dots, i_k)$ of the largest k probabilities, breaking ties arbitrarily. Setting all other coordinates to zero in p , one obtains the vector $p[1 : k]$ of the k largest entries. Then, it renormalizes this vector by dividing it by its sum. Letting $(p_{(1)}, p_{(2)}, \dots, p_{(k)}) = (p_{i_1}, \dots, p_{i_k})$ be the largest k entries of p ,

$$\text{top-}k(p) = p[1 : k] / \left(\sum_{j=1}^k p_{(j)} \right). \quad (1)$$

One then draws a sample from the distribution $\text{top-}k(p)$.

Decoding strategies. Next, we aim to generalize top- k decoding. We will refer to any operator Dec on probability distributions as a *decoding strategy*; formally $\text{Dec} : \Delta_V \rightarrow \Delta_V$, where $\Delta_V = \{x \in [0, 1]^V : \sum_{i=1}^V x_i = 1\}$ is the simplex of V -dimensional probability distributions. Observe that top- k decoding consists of two steps: selecting the largest coordinates and renormalizing them. The second step can be viewed as “re-distributing” the probability mass that has been thresholded away by selection among the remaining indices. This step can be performed in a lot of other meaningful ways besides division by the sum. For instance, we may put a larger weight on the larger remaining probabilities, if we consider them more reliable.

Renormalization. Motivated by this, we define the notion of a *renormalization* mapping, which takes as input a thresholded probability vector with k nonzero entries remaining. We consider renormalization maps that are *permutation-equivariant*, i.e., when their input is permuted, their output is permuted accordingly; which clearly holds for the sum-division used in top- k . Therefore, since the sum of probabilities after selection can be less than unity, we can define them as maps from the *sub-probability simplex* $\Delta_{\text{sub},k} = \{x \in [0, 1]^k : \sum_{i=1}^k x_i \leq 1\}$ to the simplex Δ_k .

Definition 2.1 (Renormalization). *For a positive integer k , we call a permutation-equivariant map $T : \Delta_{\text{sub},k} \rightarrow \Delta_k$ a renormalization map.*

A renormalization map can be extended to the full simplex Δ_V , by applying it only on the nonzero coordinates.³ We can now define generalized top- k decoding as renormalizing the top- k entries via a general renormalization map.

Definition 2.2 (Generalized top- k decoding). *For a fixed k , a generalized top- k decoding strategy $\text{Dec}_{k,T} : \Delta_V \rightarrow \Delta_V$, parameterized by the choice of k and renormalization map T , takes as input any V -class probability vector p , thresholds it to the sub-vector $p[1 : k]$ consisting of its top- k elements, and renormalizes it to $T(p[1 : k]) \in \Delta_V$.*

Adaptivity. A natural extension is to choose k adaptively based on p . For this, we consider a k -selector map $\hat{k} : \Delta_V \rightarrow [V] := \{1, \dots, V\}$, and a collection of renormalization maps $T_k : \Delta_{\text{sub},k} \rightarrow \Delta_k$, $k = 1, \dots, V$. We define an *adaptive generalized top- k decoding strategy* $\text{Dec}_T : \Delta_V \rightarrow \Delta_V$ via $p \mapsto T_{\hat{k}(p)}(p[1 : \hat{k}(p)])$. Below, we will design specific renormalizers T and ways to choose k .

2.2 Regularized sparse Bregman decoding

Decoding via sparse divergence minimization. Consider a divergence $\text{Div}(\cdot, \cdot) : \Delta_V \times \Delta_V \rightarrow \mathbb{R}$ between two distributions. Classical examples include the squared error $\text{Div}(p, q) = \|p - q\|_2^2$ and the KL divergence $\text{Div}(p, q) = \sum_{j=1}^V p_j \ln(p_j/q_j)$. We define the decoding strategy Dec_{Div} , via sparsity-regularized divergence minimization⁴ under divergence Div , for any probability vector p as:

$$\text{Dec}_{\text{Div}}(p) \in \arg \min_{\hat{p} \in \Delta_V} \left\{ \text{Div}(\hat{p}, p) + \lambda \|\hat{p}\|_0 \right\} \quad (\text{sparsity-regularized decoding}). \quad (2)$$

³Formally, for any $p \in \mathbb{R}^V$ and $S \subset [V]$, let p_S be the restriction of p to the coordinates in S . Given a vector $p \in \Delta_V$ with $S \subseteq [V]$ indexing its nonzero entries, a renormalization map $T(p)$ can be extended to Δ_V by embedding it into the original coordinates: $[T(p)]_j = [T(p_S)]_j$ for $j \in S$, and $[T(p)]_j = 0$ otherwise.

⁴In our examples of interest, we will show that this optimization problem is well-defined. When there are multiple minimizers, we assume that one is selected in an arbitrary measurable way.

Here, the ℓ_0 -pseudonorm $\|\hat{p}\|_0$ is the number of nonzero entries of \hat{p} , and $\lambda \geq 0$ is a *sparsity cost* hyperparameter. As λ increases, the optimal solution $\hat{p} = p^*$ gets increasingly more sparse.

Separable Bregman divergences. In this work, we shall instantiate Div in Problem 2 with separable Bregman divergences [1, 10]. We will see that this class is expressive enough to induce top- k decoding and many fruitful generalizations of it. For a convex domain $\text{Dom} \subseteq \mathbb{R}$ and a convex differentiable function $\phi : \text{Dom} \rightarrow \mathbb{R}$, the one-dimensional Bregman ϕ -divergence d_ϕ is defined as: $d_\phi(x, y) = \phi(x) - \phi(y) - \phi'(y)(x - y)$, for $x, y \in \text{Dom}$. The separable V -dimensional Bregman ϕ -divergence $D_\phi : \text{Dom}^V \rightarrow \mathbb{R}$ is then defined as:

$$D_\phi(x, y) = \sum_{i \in [V]} d_\phi(x_i, y_i), \quad \text{for } x = (x_1, \dots, x_V), y = (y_1, \dots, y_V) \in \text{Dom}^V.$$

A well-known property of Bregman divergences is that $D_\phi(x, y) \geq 0$ for all x, y , with equality if $x = y$; when ϕ is strictly convex, $x = y$ in fact becomes the unique minimum.

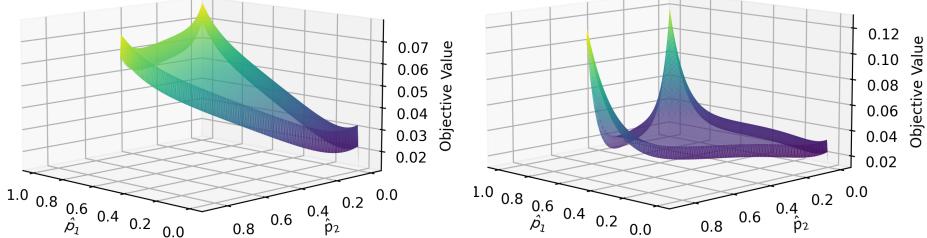


Figure 1: Illustration of the landscape of the sparse Bregman objective for the primal (left) and dual (right) cases. We choose a $V = 3$ dimensional example where the target vector is $p = (0.1, 0.01, 0.001)/0.111$. We show an α -Bregman divergence (see Section 4) with $\alpha = 10$ and $\lambda = 0.01$.

Primal and dual Bregman decoding. Since Bregman divergences are generally non-symmetric in their arguments, we may instantiate the sparse Bregman decoding Problem 2 in two substantially distinct ways: by placing the estimand \hat{p} in the first (*primal*) or second (*dual*) argument:

$$\text{Div}(\hat{p}, p) := D_\phi(\hat{p}, p) \quad (\textbf{primal decoding}), \quad \text{Div}(\hat{p}, p) := D_\phi(p, \hat{p}) \quad (\textbf{dual decoding}). \quad (3)$$

Both formulations possess a sound theoretical motivation. *Bregman projections* are commonly defined as minimization in the first argument, while Bregman-based *proper scoring rules* for mean elicitation correspond to minimization in the second argument [see e.g., 24, 39, etc].

The landscapes of primal and dual decoding are illustrated in Figure 1. The dual objective can be non-convex even in the interior of the simplex. However, crucially, the objectives are discontinuous at the edges of the simplex due to the ℓ_0 penalty. While in general these decoding objectives could be combinatorial problems that may be hard to solve, we will show in Section 3 that for separable Bregman divergences, both the primal and dual problems can be solved efficiently.

In both the primal and the dual Bregman case, when $\lambda = 0$, the corresponding sparse decoding Problem 2 is solved at $\hat{p} = p$ (and uniquely so if ϕ is strictly convex), with the intuition that absent sparsity requirements the best guess is to preserve the original distribution p . Henceforth we focus on the sparse regime $\lambda > 0$, which forces some entries of \hat{p} to be zero at optimality. Our main results in Section 3 show for both primal and dual decoding that, under mild conditions on D_ϕ , the optimal solution keeps exactly the top- k^* coordinates of p , for an objective-chosen $k^* = k^*(p)$. This yields a principled and broad generalization of top- k decoding.

3 Efficient computation of primal and dual Bregman decoding

We now investigate the optimization of the sparse objectives that give rise to primal and dual Bregman decoding. Absent further structure in these objectives, for any fixed k one would have to search over all (combinatorially many) size- k sparsity patterns to decide which k probabilities to keep; and one would have to try all $k \in [V]$ to determine the optimal k . Fortunately, we will now show that Bregman decoding objectives admit computationally efficient optimization, which rests on two pillar properties: (1) **The greedy property:** Given any k , it is optimal to select the top k tokens. (2) **k -convexity:** The sparse Bregman objective is (discretely) convex as a function of k .

First, in Section 3.1, we deal with the innermost optimization layer: the renormalization of the selected token probabilities (which is performed after the optimal k and the optimal sparsity pattern have been identified). Under certain conditions on the Bregman generator, we show that it reduces to scalar root-finding both in the primal and in the dual case (the dual case in fact necessitates *nested* root finding). We then proceed to show the greedy property in Section 3.2. Finally, for the outermost layer of our optimization problem, we demonstrate the k -convexity property in Section 3.3.

3.1 Renormalization for a fixed sparsity pattern

We first investigate the renormalization component of a Bregman decoding strategy. Once the optimal sparsity pattern $S \subseteq [V]$ (of some size $|S| = k$) has been identified, the vector x — which denotes the sub-vector of p restricted to indices in S — needs to be projected onto the simplex Δ_k . Since the ℓ_0 regularization term becomes fixed to λk , Problem 2 becomes equivalent to: $\arg \min_{\hat{p} \in \Delta_k} \text{Div}(\hat{p}, x)$. This is a k -dimensional Bregman projection problem to the simplex (without sparsity regularization). We will now, for both primal and dual decoding, (i) derive conditions under which this problem is well defined, and (ii) show that it can be efficiently solved by reduction to *scalar root finding*.

Primal renormalization. We impose the following mild condition on the Bregman generator ϕ ; compared to a minimal set of assumptions for a Bregman divergence to be well-defined, it additionally requires first-order smoothness and strict convexity to hold on the entirety of the relevant interval.

Assumption 3.1 (Primal validity). *The map ϕ is convex and continuously differentiable on $[0, 1]$ as well as strictly convex on $(0, 1)$.*

Existing results [33, 34] then imply that for a primal valid potential ϕ , denoting $f = \phi'$ (and extending its inverse f^{-1} so that $f^{-1}(x) = 0$ for $x < f(0)$ and $f^{-1}(x) = 1$ for $x > f(1)$, making it continuous and non-decreasing on all of \mathbb{R}), the **primal renormalization** map T_ϕ is given for $x \in \Delta_{\text{sub},k}$ by:

$$[T_\phi(x)]_i = f^{-1}(f(x_i) + \nu) \quad \text{for all } i \in [k], \text{ where } \nu \in \mathbb{R} \text{ is chosen so that } \sum_{i=1}^k [T_\phi(x)]_i = 1. \quad (4)$$

Since $\nu \mapsto f^{-1}(f(x_i) + \nu)$ is non-decreasing⁵ in ν , the solution can be found efficiently using off-the-shelf root-finding algorithms such as Brent's method.

Dual renormalization. In contrast to the primal case, dual Bregman projections have (to our knowledge) not been directly studied in prior literature. They also offer new challenges: even their uniqueness cannot be taken for granted due to the general nonconvexity of Bregman divergences in the second argument [3]. To pave the road towards dual Bregman projections, we will therefore rely on additional structure in ϕ and d_ϕ , expressed as the following dual validity condition.

Assumption 3.2 (Dual validity). *The map ϕ is thrice differentiable on $(0, 1]$ with $\lim_{x \rightarrow 0^+} x\phi''(x) = 0$. For $x \in (0, 1]$, $y \mapsto d_\phi(x, y)$ is strictly convex for $y \in [x, 1]$, and $y \mapsto d_\phi(0, y)$ is strictly convex for $y \in (0, 1]$.*

We establish in Theorem A.1 (see Appendix A) that subject to dual validity, the **dual renormalization** map T_ϕ^* is uniquely defined for any $x \in \Delta_{\text{sub},k}$ with $x \neq 0_k$ by the following implicit equations:

$$[T_\phi^*(x)]_i = x_i + \nu^*/f'([T_\phi^*(x)]_i) \text{ for } i \in [k], \text{ with } \nu^* \in \mathbb{R} \text{ chosen so that } \sum_{i=1}^k [T_\phi^*(x)]_i = 1. \quad (5)$$

This transformation is interpretable despite its implicit nature: For every index $i \in [k]$, Equation 5 has the effect of *increasing* the corresponding probability x_i by a positive additive amount regulated by an auxiliary variable ν^* ; the latter is chosen to make the increased top- k probabilities sum to 1.

Assumption 3.2, short of requiring global convexity of $d_\phi(x, \cdot)$ on $[0, 1]$, only enforces it for $y \in [x, 1]$. To enable this relaxation, the proof of Theorem A.1 carefully excludes optimal solutions belonging to the region $y \leq x$ or to the simplex boundary. Rather than a mere curiosity, this refinement substantially expands the scope of dual decoding. In particular, in our later specialization, it is essential for ensuring that dual α -decoding is uniquely defined for all $\alpha > 1$, not just $\alpha \in (1, 2]$: as plots in Appendix G.4 demonstrate, α -Bregman divergences are nonconvex for $y \leq x$ for $\alpha > 2$.

⁵It is strictly increasing for $\nu \in [-f(x_i), 1 - f(x_i)]$, but the required ν may lie outside this range.

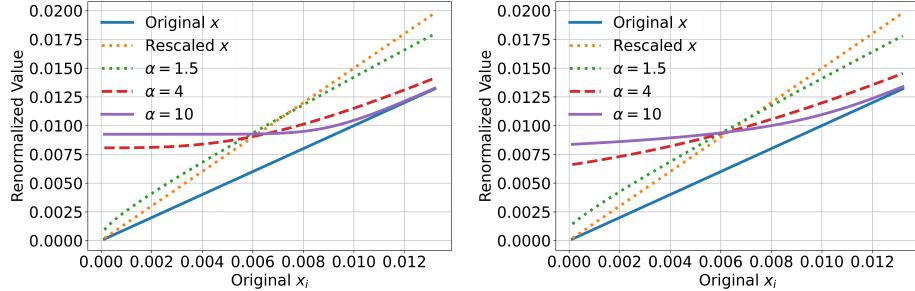


Figure 2: Comparison of primal (left) and dual (right) Bregman α -renormalization maps (see Section 4) on input vector $x = \frac{0.67}{\sum_{i=1}^k \frac{i}{k}} [1, \frac{k-1}{k}, \dots, \frac{1}{k}] \in \Delta_{\text{sub},k}$ with $k = 100$. We plot the renormalized values against the original coordinate values of x .

See Section F for algorithmic details on computing the dual map, as well as pseudocode for our algorithms. Figure 2 illustrates the primal and dual renormalization maps for α -Bregman divergences (introduced in Section 4). In this concrete example, T_ϕ and T_ϕ^* appear similar; however, for different, e.g. more ‘‘peaked’’, inputs $x \in \Delta_{\text{sub},k}$, they are more distinct, as we illustrate in Appendix G.3.

3.2 Greedy property: Justifying top- k selection

The viewpoint that lower-probability tokens can be considered as noisy [32] suggests that it would be natural and indeed desirable for a decoding strategy to be ‘‘greedy’’—dictating that it is optimal to renormalize over the top- k -probability tokens, for some $k \in [V]$. We formalize this as follows.

Definition 3.1 (Greedy decoding). *A decoding strategy $\text{Dec} : \Delta_V \rightarrow \Delta_V$ is called greedy if for every $p \in \Delta_V$, the set of nonzero entries of $\text{Dec}(p)$ is a set of top- \hat{k} entries of p , for some $\hat{k} = \hat{k}(p)$.*

While many popular decoding methods are greedy [12, 21, 32, 38], some are not [22, 36]; justifications for non-greediness, i.e., the ability to occasionally throw out some of the top- k tokens, include that this can e.g. help generate more ‘‘typical’’ text. As such, our assertion that Bregman decoding strategies are greedy is nontrivial and requires proof. First, we state our result for primal Bregman decoding.

Theorem 3.2 (Primal Bregman decoding is greedy). *The primal Bregman decoding strategy from (2) is greedy for any primal valid potential ϕ .*

The proof is provided in Appendix B. It proceeds by decomposing the Bregman objective into several terms, see Lemma B.2, and bounding them with the help of the primal renormalization equations (4).

The dual case, owing i.a. to the implicit form of the dual renormalization formulas (5), is correspondingly more complex to handle. Unlike in Theorem 3.2, our next result requires further conditions, which we state as a menu of two options. The relationship between the extra assumptions is intricate; Assumption (A2) is implied by, but is strictly weaker than, log-convexity of ϕ' .

Theorem 3.3 (Dual Bregman decoding is greedy). *The dual Bregman decoding strategy from (2) is greedy for any dual-valid ϕ with $\phi'(0) = 0$ that further satisfies either of the following conditions:*

- (A1) ϕ' is convex;
- (A2) *The maps⁶ u defined as $u(x) := x\phi''(x)/\phi'(x)$ for $x \in (0, 1]$ and ϕ are nondecreasing.*

The proof is provided in Appendix C. In it, we use two different proof techniques for both conditions: For Condition (A1), our proof in Appendix C.1 leverages the decomposition from the primal case along with the change of variables $d_\phi(x, y) = d_{\phi^*}(\phi'(y), \phi'(x))$, where ϕ^* is the convex conjugate of ϕ . For Condition (A2), we develop a saddle-point proof approach in Appendix C.2. For that, we perform a sensitivity analysis of both the renormalized values $[T_\phi^*(p)]_i$ and of the per-coordinate Bregman loss terms, relative to hypothetical changes in the dual Lagrange multiplier ν^* and in the entries p_i of p ; we carry this out via implicit differentiation of the defining equations (5).

⁶In the economics literature, $u(x) = x\phi''(x)/\phi'(x)$ is referred to as the *elasticity* of the function ϕ' .

3.3 k -convexity: Speeding up the search for optimal adaptive k

We have seen that for fixed k , greedily selecting the top k tokens is optimal. However, without further structure, we would still have to search over all $k \in [V]$ to determine the optimal k^* , which would be cost-prohibitive for large token vocabularies. Fortunately, as we will see, only *logarithmically* many values of k will need to be tried, as under greedy selection, the primal and dual Bregman decoding objectives both enjoy *discrete convexity* with respect to k .

To formally state our result, fix a divergence Div , probability vector $p \in \Delta_V$, and hyperparameter λ . We denote the regularized cost of selecting the top- k entries of p , as a function of $k \in [V]$, by:

$$\text{cost}(k) := \min_{\hat{p} \in \Delta_k} \{ \text{Div}((\hat{p}, 0_{V-k}), p) + \lambda k \}. \quad (6)$$

Recall that a function $h : [V] \rightarrow \mathbb{R}$ is *discretely convex* if for all $k \in \{2, \dots, V-1\}$, its discrete second derivative $\Delta^2 h(k) := \Delta h(k+1) - \Delta h(k) := \{h(k+1) - h(k)\} - \{h(k) - h(k-1)\} \geq 0$.

Theorem 3.4 (Discrete primal and dual cost convexity). $\text{cost}(\cdot)$ is discretely convex in $k \in [V]$ for:

1. $\text{Div}(\hat{p}, p) = D_\phi(\hat{p}, p)$, if ϕ is primal valid;
2. $\text{Div}(\hat{p}, p) = D_\phi(p, \hat{p})$, if ϕ is dual valid.

Figure 6 in Appendix G.5) illustrates the result of Theorem 3.4 by displaying the $\text{cost}(\cdot)$ functions for primal and dual Bregman α -decoding (defined in Section 4 below) for assorted α .

Implications for efficient computation. As a corollary of Theorem 3.4, an optimal k^* is provably identifiable by searching for k for which $\Delta\text{cost}(k) \leq 0$ and $\Delta\text{cost}(k+1) \geq 0$, for which repeated bisection (binary search) over $1 \leq k \leq V$ suffices — and thus, only $O(\log V)$ tries of k are necessary. However, even less computation can suffice if one leverages that the optimal k is typically small. First, if one heuristically sets a hard limit k_u on k (e.g. $k_u = 50$), then identifying an optimal $k \in [k_u]$ requires $O(k_u)$ tries. Secondly, one may use exponential search⁷ instead of binary search over k : this requires only $O(\log k^*)$ tries — very small for typical values of k^* — and has the added benefit that only renormalizations over at most $O(k^*)$ tokens are performed at each step.

Proving Theorem 3.4. Our proof uses two distinct approaches for the primal and the dual cases:

Primal k -convexity. The proof is developed in Appendix D. As its cornerstone, we use the Legendre dual mapping ϕ^* of the generator ϕ to establish and leverage the following cost structure: for any k , $\text{cost}(k)$ can up to additional terms be represented as $\max_{\nu \geq 0} \left[\nu - \sum_{i=1}^k \phi^*(\phi'(p_i) + \nu) \right]$. This expression is concave in ν , and its unique optimizer is ν_k , the optimal Lagrange multiplier for renormalizing the top k probabilities of p from (4). Using this, we then establish $\Delta^2 \text{cost}(k) \geq 0$.

Dual k -convexity. The proof is in Appendix E. The above dualization strategy does not directly apply. Instead, we lower bound $\Delta^2 \text{cost}^*(k)$ by regrouping the loss contributions of the indices $i \in [k+1]$, and —via intricate term rearrangement and bounding—reduce to proving the local concavity of a special transformation (Equation 20) that turns out to hold by our dual-validity assumption.

4 Example: Bregman α -decoding

We now consider, as an illustration, a single-parameter family of Bregman decoding strategies, which arises via the generators of the Havrda–Charvát–Tsallis α -entropies [8, 29, 45, 51, 52]:

$$\phi_\alpha(x) = x^\alpha / [\alpha(\alpha-1)], x \in [0, 1], \quad \text{for } \alpha \in J := (-\infty, 0) \cup (0, 1) \cup (1, \infty).$$

When $\alpha < 0$ and $x = 0$, we set $x^\alpha := +\infty$ so that $\phi_\alpha(0) = \infty$. For $\alpha = 1$, one defines $\phi_1(x) = x \log(x)$, which corresponds to the Shannon entropy, arising in the limit⁸ as $\alpha \rightarrow 1$. Observe that ϕ_α is *primal valid* for all $\alpha \neq 0$, as $\phi_\alpha''(x) = x^{\alpha-2}$. This yields the following primal family of renormalizations, which we will index by α rather than ϕ :

Definition 4.1 (Primal Bregman α -decoding). *Fix $\alpha \in J, k \in [V]$. The renormalization map T_α is given for $p \in \Delta_{\text{sub}, k}$ as: $[T_\alpha(p)]_i = (p_i^{\alpha-1} + \nu)^{\frac{1}{\alpha-1}}$ for $i \in [k]$, with $\nu \in \mathbb{R}$ chosen so that $\sum_{i \in [k]} [T_\alpha(p)]_i = 1$.*

⁷First, identify a *true* upper bound k_u^* on k^* by sequentially trying $k_u = 1, 2, 4, \dots$, and then perform binary search in $O(\log k_u^*)$ rounds.

⁸One conventionally defines the entropies via $(x^\alpha - x)/[\alpha(\alpha-1)]$, in which case the Shannon entropy is obtained in the limit as $\alpha \rightarrow 1$. In our case, we use the definition $\phi_\alpha(x) = x^\alpha / [\alpha(\alpha-1)]$ so that some technical conditions (such as $\phi'_\alpha(0) = 0$) hold in the proofs. Both definitions lead to the same decoding strategies in (4).

Note that for $\alpha = 1$, we have $\phi'_1(x) = \log x + 1$. Hence, (4) implies $e^\nu \sum_{i=1}^k p_i = 1$, and we obtain the “standard” renormalization: $[T_1(p)]_i = p_i / (\sum_{j=1}^k p_j)$, for $i \in [k]$. Therefore, *primal Bregman 1-decoding is top- k decoding*, showing how one recovers top- k in our framework. It turns out that some further values of α also lead to renormalization maps of special interest. For any fixed p , we let $T_{-\infty}(p) = \liminf_{\alpha \rightarrow -\infty} T_\alpha(p)$ and $T_\infty(p) = \liminf_{\alpha \rightarrow \infty} T_\alpha(p)$, where the limits are entrywise.

Proposition 4.2 (Special primal α -renormalization maps). *We have the following special instances⁹ of the primal Bregman α -renormalization map, defined for all $i \in [k]$ as follows:*

$$\begin{aligned} [T_{-\infty}(p)]_i &= p_i + \mathbb{1}[i = i^*] \cdot \left(1 - \sum_{j=1}^k p_j\right), \text{ assuming that } \arg \max_i p_i = \{i^*\}. \\ [T_{1.5}(p)]_i &= \left(\sqrt{p_i} + \left[\sqrt{r^2 + k(1-s)} - r\right] / k\right)^2, \text{ where } r = \sum_{j=1}^k \sqrt{p_j} \text{ and } s = \sum_{j=1}^k p_j. \\ [T_2(p)]_i &= p_i + (1 - \sum_{j=1}^k p_j) / k. \end{aligned}$$

$$[T_\infty(p)]_i = \max\{p_i, \nu\}, \text{ where } \nu \in \mathbb{R} \text{ is the “water level” for which } \sum_{i=1}^k [T_\infty(p)]_i = 1.$$

Along with the primal family, the dual α -decoding family can also be defined based on ϕ_α . Unlike α -decoding, the dual Bregman sparse decoding Problem 2 can be non-convex, as displayed in Figure 1 above. Figure 5 in Appendix G.4 further demonstrates the nonconvexity of D_{ϕ_α} on the unit square for some α . Yet, we can still show that any dual α -decoding with $\alpha > 1$ is valid, greedy and k -convex:

Lemma 4.3. *All generator functions ϕ_α , $\alpha > 1$, are dual-valid and satisfy Assumption (A2).*

We give an illustration contrasting primal and dual α -decoding for various $\alpha > 1$ in Appendix G.3.

5 Experiments

We now illustrate some of the decoding schemes described in our paper in the context of LLMs. Since our goal is to develop the theoretical foundations of top- k decoding, our aim in this section is simply to illustrate that the performance of our novel decoding schemes can be competitive with standard top- k decoding. In particular, we do not aim to compare or compete with other popular and established decoding methods, which is beyond the scope of our theory-focused paper.

5.1 Experimental Setup

Method. In addition to standard top- k decoding, which coincides with the $\alpha = 1$ case of our primal α -decoding family described in Section 4, we illustrate primal α -decoding strategies for $\alpha = 1.5$ and $\alpha = 2$. These have closed-form renormalization maps that are as fast as standard renormalization.

Full and partial evaluation. Further, we perform two types of experiments: (1) For the evaluation of our *full* decoding strategy, we decode by adaptively selecting the optimal sparsity parameter k^* by optimizing our sparse Bregman objective. In this approach, we aim to observe the behavior when adaptively choosing k^* . Since practical choices of k^* are always upper bounded, we set a maximum $k^* \leq k_{\max} := 50$. (2) In the *partial* evaluation approach, we instead directly evaluate—for each fixed choice of k in the grid $k \in \{5, 10, \dots, 50\}$ —our proposed renormalization strategies along with standard top- k renormalization.

Models and benchmarks. We conduct experiments using the GPT-2 Large [43] and Llama 3.1 8B [25] models. We evaluate on two benchmarks: (1) open-ended text generation using the WebText test set from the GPT-2 output dataset [40], and (2) grade school math reasoning using the GSM8K Chain-of-Thought benchmark [13]. Additional experiments with larger models, Qwen2.5-14B-Instruct and Phi-3-Medium-4K-Instruct, as well as evaluations on the TriviaQA benchmark, are presented in Appendix H.

Evaluation metrics. For open-ended text generation, following Chen et al. [12], we use the first 35 tokens of each WebText test sample as a prompt and generate up to 256 tokens. We evaluate the following standard metrics [see e.g., 12, 32, 38, etc]:

(1) *Perplexity difference*, which measures the perplexity (according to base model p_{base}) of human text compared to that obtained from a decoding strategy p_{decoding} derived from the base model, where lower is better. This equals $\mathbb{E}_{X \sim \mathcal{D}} [\mathbb{E}_{Y \sim \mathcal{D}(\cdot | X)} (p_{\text{base}}(Y | X)^{-1/|Y|}) - \mathbb{E}_{Y \sim p_{\text{decoding}}(\cdot | X)} (p_{\text{base}}(Y | X)^{-1/|Y|})]$, where $X \sim \mathcal{D}$ is a

⁹In particular, $T_{-\infty}(p), T_{1.5}(p), T_2(p)$ do not require solving for ν in Definition 4.1, enabling a fast implementation just like in the case of the canonical top- k renormalization.

Table 1: Accuracy on GSM8K for LLaMA 3.1 8B using Bregman primal decoding ($\lambda \in \{0.01, 0.0001\}$, $\alpha \in \{1.5, 2.0\}$) and top- k decoding, for various temperatures. For top- k , k equals the averaged k^* from primal decoding with matching temperature, λ , and α . Standard deviations are over 1000 bootstrap resamples.

Temp	$\lambda = 0.01$		Top- k ($\lambda = 0.01$)	$\lambda = 0.0001$		Top- k ($\lambda = 0.0001$)
	$\alpha = 1.5$	$\alpha = 2.0$		$\alpha = 1.5$	$\alpha = 2.0$	
0.3	85.14 \pm 0.80	84.38 \pm 1.00	83.62 \pm 1.02	84.69 \pm 0.99	84.69 \pm 0.99	84.46 \pm 1.00
0.7	83.24 \pm 1.02	81.73 \pm 1.06	83.78 \pm 1.02	84.69 \pm 0.99	82.03 \pm 1.06	82.03 \pm 1.06
1.0	81.20 \pm 1.08	80.97 \pm 1.08	81.20 \pm 1.08	81.20 \pm 1.08	77.41 \pm 1.15	77.26 \pm 1.15
1.5	79.00 \pm 1.12	80.06 \pm 1.10	75.97 \pm 1.18	75.97 \pm 1.18	57.24 \pm 1.36	64.97 \pm 1.31
						43.21 \pm 1.36
						58.53 \pm 1.36

prompt drawn from the dataset, $Y \sim \mathcal{D}(\cdot | \mathcal{X})$ denotes a human-written continuation drawn from the dataset, and $Y \sim p_{\text{decoding}}(\cdot | X)$ denotes a model-generated continuation using a specific decoding strategy. Here, $|Y|$ is the length of the continuation.

(2) *Repetition difference*: $\mathbb{E}_{X \sim \mathcal{D}} [\mathbb{P}_{Y \sim p_{\text{decoding}}(\cdot | X)} (\text{rep}(Y)) - \mathbb{P}_{Y \sim \mathcal{D}(\cdot | X)} (\text{rep}(Y))]$, where $\text{rep}(Y)$ is the event that Y contains two contiguous and identical token spans of length ≥ 2 ; lower is better.

5.2 Results

Open-ended text generation. Using the *partial* evaluation setup with temperature fixed at 1.0, Figure 3 reports the differences in perplexity and repetition frequency between model-generated and human-written text across a range of k values. Primal decoding strategies are competitive with top- k in terms of both metrics. In particular, $\alpha = 2.0$ has the smallest gaps in perplexity and repetition frequency. The marked decrease in repetitiveness for $\alpha \in \{1.5, 2\}$ relative to standard top- k ($\alpha = 1$) is consistent with the theoretical behavior of α -Bregman renormalization that we have derived. For fixed k , increasing α shifts the renormalization from upweighting the largest probabilities to comparatively upweighting the smaller probabilities within the selected top- k set, thereby increasing sampling diversity.

GSM8K dataset. Using the *full* decoding strategy, we evaluate the LLaMA 3.1 8B model using 8-shot CoT prompting. We test various temperatures, regularization strengths $\lambda \in \{0.01, 0.0001\}$ and primal decoding parameters $\alpha \in \{1.5, 2.0\}$. Results for other settings are in Appendix H. To ensure a matched comparison, we run top- k with $k = k^*$ for the Bregman decoding run with the same temperature, λ , and α , rounded to the nearest integer, see Table 11 in Appendix H. As seen in Table 1, across all temperature settings, primal decoding with adaptive k^* achieves accuracy comparable to top- k . At higher temperatures (such as 1.5), the performance of top- k decoding degrades more rapidly than that of primal decoding.

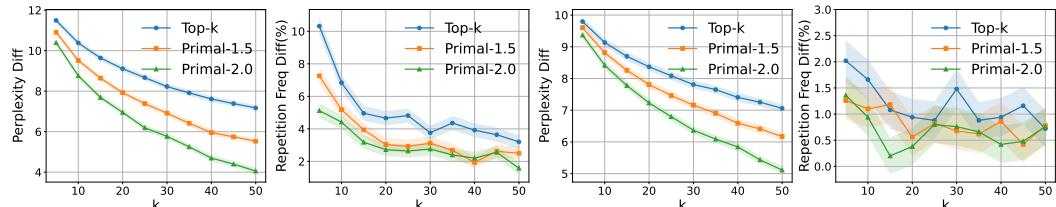


Figure 3: Perplexity and repetition frequency differences between generated and human-written text for GPT2-large (left two panels) and LLaMA 3.1 8B (right two panels), for various k values. We show top- k decoding and primal decoding with $\alpha \in \{1.5, 2.0\}$. Standard deviations are estimated using 1000 bootstrap resamples.

6 Related work

Bregman projection. Michelot [37] considered the Brier score projection problem and derived an efficient algorithm. Later, Shalev-Shwartz et al. [48] revisited the properties of optimal Brier projection, and Duchi et al. [17] gave and analyzed the explicit algorithm that we discuss in what follows. Wang and Carreira-Perpinán [53] simplified and distilled the proof. [35] further studied the projection as a method for generating sparse probability predictions in multiclass prediction problems. [33, 34] developed methods for efficient Bregman projections to the simplex; for a fixed support, these results characterize our primal decoding. [44, 46] developed differentiable variants of top- k decoding. In contrast to these works, we: (1) consider Bregman projections under ℓ_0 regularization, and (2) offer, to the best of our knowledge, novel analyses of *dual* Bregman projections.

ℓ_0 regularization. Regularization via the ℓ_0 -pseudonorm has been studied widely, with various approximate algorithms (based on surrogates, integer programming, branch-and-bound methods, etc.) developed for problems ranging from linear regression to more general learning tasks [see e.g., 2, 6, 9, 15, 18–20, 30, 41, 49, 50, 58, 61, etc]. In contrast, the algorithms we propose are exact within numerical precision for the specific class of problems we consider.

Bregman divergences. The properties of Bregman divergences [10] have been widely studied; see, e.g., [1, 3, 5, 8, 27, 39, 47, 55, 57], etc. In particular, there are a number of relations between Bregman divergences and their versions with reversed arguments, motivated by the fact that convexity in the first parameter allows for minimization, making it useful to switch the order of the variables, see e.g., [1, 26] etc. We both leverage some of these results in our work, and contribute some, to the best of our knowledge, novel proof techniques and insights into the (primal and dual) Bregman geometry.

LLM decoding. There is a vast range of work on LLM sampling (or decoding), see e.g., [54] and references therein. Classical methods include greedy sampling and beam search. Sparse sampling methods such as top- k sampling [21] are motivated by intuition that the “unreliable tail” of low-probability tokens is mis-estimated [32]. In particular, [32] propose top- p sampling, and [38] propose min- p sampling. Other sampling methods were proposed in [4, 22, 31, 36]. [12] propose the decoding game, a two-player game between an LLM and an adversary that distorts the true distribution. They show that certain sparse truncated sampling methods are approximately minimax optimal. For other approaches to make LLM output probabilities sparse, see e.g., [14, 59, 60]. In contrast, our goal is to develop a deep theoretical understanding of top- k decoding, placing it into a broader framework.

General motivation. The motivation for our general approach is two-fold: (1) Without sparsity considerations, Bregman divergences closely correspond to proper scoring rules, and are minimized at the true probability distribution, see e.g., [10, 24]. This property is highly desirable in probabilistic forecasting and prediction, incentivizing a forecaster to predict the true distribution in order to minimize their loss. (2) The ℓ_0 -pseudonorm has been widely argued to both be a reasonable measure of sparsity, and to have good properties as a regularizer in certain sparse estimation problems such as sparse regression [see e.g., 7, 16, 23, 28, etc]. Combining these two lines of thought provides the motivation for studying ℓ_0 -regularized Bregman divergence minimization.

7 Discussion

This paper develops a theoretical foundation for top- k decoding. We hope that our framework, which rests on the structural pillars of (i) greedy selection and (ii) k -convexity, will spur the development of novel theoretically motivated adaptive sparse decoding methods for LLMs and beyond.

LLM decoding beyond top- k . Our analysis treats per-step decoding as jointly selecting a support size k and applying a renormalization via Bregman projection. A natural extension that future work may address is to develop analogous optimization-theoretic foundations for other popular truncation rules, such as top- p and min- p , which also follow the template “truncate a tail, then renormalize”.

Quantifying and controlling adaptivity. A central feature of our framework is that the parameter $k^*(p)$ is chosen adaptively with p . A useful next step is to characterize how $k^*(p)$ varies with the hyperparameter λ and with properties of the token distribution p (e.g., concentration or tail decay). For α -decoding, our preliminary calculations in stylized settings suggest that there may be natural scaling laws relating k^* to (α, λ) ; an interesting open problem is to rigorously derive such laws under distributional models that reflect LLM next-token probabilities (e.g., peaked or heavy-tailed regimes), and to translate them into practical guidance for targeting a desired average sparsity level.

Primal vs. dual decoding. While we established greedy selection and k -convexity for both primal and dual formulations, their relationship is not yet well understood. As we illustrate via several examples, primal and dual α -decoders are similar yet subtly different for corresponding α . Thus, more generally quantifying the primal-dual Bregman decoding gap would be of interest.

Broader evaluation. Our initial experiments hint that some performance gains over vanilla top- k might be found even amongst α -decoders. It is promising and essential to further understand how Bregman decoders could be optimized towards downstream quality/factuality measures in practice.

Beyond LLM decoding. Finally, at a technical level, our main results identify a broad class of nonconvex sparse optimization problems— ℓ_0 -regularized separable Bregman projection onto the simplex—that nevertheless admit exact, efficient solutions via greedy support selection and discrete convexity in the support size. We conjecture that the resulting general-purpose efficient optimization primitive for sparsifying probability vectors could be applicable well beyond LLM decoding.

References

- [1] Shun-ichi Amari and Hiroshi Nagaoka. *Methods of information geometry*, volume 191. American Mathematical Soc., 2000.
- [2] Sohail Bahmani, Bhiksha Raj, and Petros T Boufounos. Greedy sparsity-constrained optimization. *Journal of Machine Learning Research*, 14(1):807–841, 2013.
- [3] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with Bregman divergences. *Journal of Machine Learning Research*, 6(Oct):1705–1749, 2005.
- [4] Sourya Basu, Govardana Sachitanandam Ramachandran, Nitish Shirish Keskar, and Lav R. Varshney. Mirostat: A neural text decoding algorithm that directly controls perplexity. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=W1G1JZEIy5_.
- [5] Heinz H Bauschke and Patrick L Combettes. Iterating Bregman retractions. *SIAM Journal on Optimization*, 13(4):1159–1173, 2003.
- [6] Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection via a modern optimization lens. *The Annals of Statistics*, 44(2):813, 2016.
- [7] Lucien Birgé and Pascal Massart. Gaussian model selection. *Journal of the European Mathematical Society*, 3(3):203–268, 2001.
- [8] Mathieu Blondel, André F.T. Martins, and Vlad Niculae. Learning with Fenchel-Young losses. *Journal of Machine Learning Research*, 21(35):1–69, 2020. URL <http://jmlr.org/papers/v21/19-021.html>.
- [9] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing. *Applied and Computational Harmonic Analysis*, 27(3):265–274, 2009.
- [10] Lev M Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. *USSR Computational Mathematics and Mathematical Physics*, 7(3):200–217, 1967.
- [11] Emmanuel J Candes and Terence Tao. Decoding by linear programming. *IEEE Transactions on Information Theory*, 51(12):4203–4215, 2005.
- [12] Sijin Chen, Omar Hagrass, and Jason Matthew Klusowski. Decoding game: On minimax optimality of heuristic text generation strategies. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=Wfw4ypsgRZ>.
- [13] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- [14] Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 2174–2184, 2019.
- [15] Antoine Dedieu, Hussein Hazimeh, and Rahul Mazumder. Learning sparse classifiers: Continuous and mixed integer optimization perspectives. *Journal of Machine Learning Research*, 22(135):1–47, 2021. URL <http://jmlr.org/papers/v22/19-1049.html>.
- [16] David L Donoho and Iain M Johnstone. Ideal spatial adaptation by wavelet shrinkage. *Biometrika*, 81(3):425–455, 1994.
- [17] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the ℓ_1 -ball for learning in high dimensions. In *Proceedings of the 25th International Conference on Machine Learning*, pages 272–279, 2008.

[18] M'hamed Essafri, Luca Calatroni, and Emmanuel Soubies. Exact continuous relaxations of ℓ_0 -regularized criteria with non-quadratic data terms, 2024. URL <https://arxiv.org/abs/2402.06483>.

[19] M'hamed Essafri, Luca Calatroni, and Emmanuel Soubies. On ℓ_0 Bregman-relaxations for Kullback-Leibler sparse regression. In *2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP)*, pages 1–6. IEEE, 2024.

[20] Mhamed Essafri, Luca Calatroni, and Emmanuel Soubies. Box-constrained ℓ_0 Bregman-relaxations, 2025. URL <https://arxiv.org/abs/2503.15083>.

[21] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Association for Computational Linguistics, 2018.

[22] Matthew Finlayson, John Hewitt, Alexander Koller, Swabha Swayamdipta, and Ashish Sabharwal. Closing the curious case of neural text degeneration. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=d0NpC9GL1o>.

[23] Dean P Foster and Edward I George. The risk inflation criterion for multiple regression. *The Annals of Statistics*, 22(4):1947–1975, 1994.

[24] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation. *Journal of the American Statistical Association*, 102(477):359–378, 2007.

[25] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

[26] Sebastian Gruber and Florian Buettner. Uncertainty estimates of predictions via a general bias-variance decomposition. In *International Conference on Artificial Intelligence and Statistics*, pages 11331–11354. PMLR, 2023.

[27] Peter D Grünwald and A Philip Dawid. Game theory, maximum entropy, minimum discrepancy and robust bayesian decision theory. *Ann. Statist.*, 32(1):1367–1433, 2004.

[28] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. *Statistical Learning with Sparsity: The Lasso and Generalizations*. CRC Press, 2015.

[29] Jan Havrda and František Charvát. Quantification method of classification processes. concept of structural a -entropy. *Kybernetika*, 3(1):30–35, 1967.

[30] Hussein Hazimeh, Rahul Mazumder, and Tim Nonet. L0learn: A scalable package for sparse learning using ℓ_0 regularization. *Journal of Machine Learning Research*, 24(205):1–8, 2023.

[31] John Hewitt, Christopher D Manning, and Percy Liang. Truncation sampling as language model desmothing. In *Findings of the Association for Computational Linguistics: EMNLP 2022*, pages 3414–3427, 2022.

[32] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=rygGQyrFvH>.

[33] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Efficient Bregman projections onto the simplex. In *2015 54th IEEE Conference on Decision and Control (CDC)*, pages 3291–3298. IEEE, 2015.

[34] Cong Han Lim and Stephen J. Wright. Efficient Bregman projections onto the permutohedron and related polytopes. In Arthur Gretton and Christian C. Robert, editors, *Proceedings of the 19th International Conference on Artificial Intelligence and Statistics*, volume 51 of *Proceedings of Machine Learning Research*, pages 1205–1213, Cadiz, Spain, 09–11 May 2016. PMLR.

[35] Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention and multi-label classification. In *International Conference on Machine Learning*, pages 1614–1623. PMLR, 2016.

[36] Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Locally typical sampling. *Transactions of the Association for Computational Linguistics*, 11:102–121, 2023.

[37] Christian Michelot. A finite algorithm for finding the projection of a point onto the canonical simplex of \mathbb{R}^n . *Journal of Optimization Theory and Applications*, 50:195–200, 1986.

[38] Nguyen Nhat Minh, Andrew Baker, Clement Neo, Allen G Roush, Andreas Kirsch, and Ravid Shwartz-Ziv. Turning up the heat: Min- p sampling for creative and coherent LLM outputs. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=FBkpCyujtS>.

[39] Frank Nielsen. An elementary introduction to information geometry. *Entropy*, 22(10):1100, 2020.

[40] OpenAI. GPT-2 output dataset. <https://github.com/openai/gpt-2-output-dataset>, 2019. URL <https://github.com/openai/gpt-2-output-dataset>.

[41] Jianting Pan and Ming Yan. Efficient sparse probability measures recovery via Bregman gradient. *Journal of Scientific Computing*, 102(3):66, 2025.

[42] Christos H Papadimitriou and Kenneth Steiglitz. *Combinatorial optimization: Algorithms and complexity*. Courier Corporation, 1998.

[43] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

[44] Luca Ragazzi, Paolo Italiani, Gianluca Moro, and Mattia Panni. What are you token about? Differentiable perturbed top- k token selection for scientific document summarization. In *Findings of the Association for Computational Linguistics ACL 2024*, pages 9427–9440, 2024.

[45] Daniel Reem, Simeon Reich, and Alvaro De Pierro. Re-examination of Bregman functions and new properties of their divergences. *Optimization*, 68(1):279–348, 2019.

[46] Michael Eli Sander, Joan Puigcerver, Josip Djolonga, Gabriel Peyré, and Mathieu Blondel. Fast, differentiable and sparse top- k : A convex analysis perspective. In *International Conference on Machine Learning*, pages 29919–29936. PMLR, 2023.

[47] Leonard J Savage. Elicitation of personal probabilities and expectations. *Journal of the American Statistical Association*, 66(336):783–801, 1971.

[48] Shai Shalev-Shwartz, Yoram Singer, Kristin P Bennett, and Emilio Parrado-Hernández. Efficient learning of label ranking by soft projections onto polyhedra. *Journal of Machine Learning Research*, 7(7), 2006.

[49] Yiyuan She, Zhifeng Wang, and Jiuwu Jin. Analysis of generalized Bregman surrogate algorithms for nonsmooth nonconvex statistical learning. *The Annals of Statistics*, 49(6):3434–3459, 2021.

[50] Emmanuel Soubies, Laure Blanc-Féraud, and Gilles Aubert. A continuous exact ℓ_0 penalty (cel0) for least squares regularized problem. *SIAM Journal on Imaging Sciences*, 8(3):1607–1639, 2015.

[51] Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistics. *Journal of Statistical Physics*, 52:479–487, 1988.

[52] Constantino Tsallis. *Introduction to nonextensive statistical mechanics: Approaching a complex world*. Springer, 2009.

[53] Weiran Wang and Miguel A Carreira-Perpinán. Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application. *arXiv preprint arXiv:1309.1541*, 2013.

[54] Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms for large language models. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=eskQMcTbMS>. Survey Certification.

[55] Robert C Williamson, Elodie Vernet, and Mark D Reid. Composite multiclass losses. *Journal of Machine Learning Research*, 17(222):1–52, 2016.

[56] Wotao Yin, Stanley Osher, Donald Goldfarb, and Jerome Darbon. Bregman iterative algorithms for ℓ_1 -minimization with applications to compressed sensing. *SIAM Journal on Imaging Sciences*, 1(1):143–168, 2008.

[57] Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient as variational inference. In Jennifer Dy and Andreas Krause, editors, *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pages 5852–5861. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/zhang181.html>.

[58] Jacky Y Zhang, Rajiv Khanna, Anastasios Kyrillidis, and Oluwasanmi O Koyejo. Learning sparse distributions using iterative hard thresholding. *Advances in Neural Information Processing Systems*, 32, 2019.

[59] Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xuancheng Ren, Qi Su, and Xu Sun. Explicit sparse transformer: Concentrated attention through explicit selection. *arXiv preprint arXiv:1912.11637*, 2019.

[60] Shuai Zhao, Qing Li, Yuer Yang, Jinming Wen, and Weiqi Luo. From softmax to nucleusmax: A novel sparse language model for chinese radiology report summarization. *ACM Transactions on Asian and Low-Resource Language Information Processing*, 22(6):1–21, 2023.

[61] Junxian Zhu, Jin Zhu, Borui Tang, Xuanyu Chen, Hongmei Lin, and Xueqin Wang. Best-subset selection in generalized linear models: A fast and consistent algorithm via splicing technique. *arXiv preprint arXiv:2308.00251*, 2023.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: **[Yes]**

Justification: The claims in the abstract and introduction are supported by the theoretical results throughout the paper and the experiments in the Experiments section.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: **[Yes]**

Justification: We discuss the limitations of our work in the Discussion section with an eye toward future work addressing them.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: **[Yes]**

Justification: All theorems are always stated with their required assumptions, and full proofs are provided in the Appendices.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: **[Yes]**

Justification: All experimental details are provided in Section 5 and Appendix H, including dataset information. Code is included in the supplementary materials, and an open-source GitHub repository will be released upon publication.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: The software package implementing our method and reproducing the experiments is included in the supplementary material. The GPT-2 output dataset and GSM8K dataset used are publicly available.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: The experimental settings are described in Section 5. We evaluate pretrained models without training. Section 5 specifies all datasets, decoding parameters, and metrics needed to reproduce the results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: All plots and tables report bootstrap standard errors; see section 5 and Appendix H for the corresponding figures and tables.

Guidelines:

- The answer NA means that the paper does not include experiments.

- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: Section H.1 provides the details of the computational resources used in the paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: The research conducted in this paper follows the NeurIPS Code of Ethics in all aspects.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[NA\]](#)

Justification: We briefly discuss the potential societal impact of our work in our Discussion. In more detail, our work performs a foundational investigation into the theory of decoding methods, and as such, does not have immediate societal impacts; however, by laying and re-examining the foundations of decoding for language models, one hopes that it can contribute to more transparent and responsible LLM decoding methods in the future, in this way potentially leading to positive societal impacts.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of any pretrained models, image generators, or datasets that pose a high risk of misuse.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets and sources used in this paper are properly cited.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets. However, we provide a well-documented software package.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology in this research does not involve LLMs.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

Appendix Contents

Existence and uniqueness of dual Bregman decoding	22
Proof of the primal greedy property in Theorem 3.2	23
Proof of the dual greedy property in Theorem 3.3	26
Proof of discrete convexity for primal Bregman projection	30
Proof of discrete convexity for dual Bregman projection	31
Algorithmic details	33
Example: α-Bregman decoding	36
Supplementary experimental details	39

A Existence and uniqueness of dual Bregman decoding

Theorem A.1 (Uniqueness and formula for dual Bregman renormalization). *Fix a dual valid potential ϕ . Then, for any $x \in \Delta_{\text{sub},k}$ with $\sum_i x_i > 0$, the renormalization map T_ϕ^* is uniquely defined by:*

$$[T_\phi^*(x)]_i = x_i + \nu^* / f'([T_\phi^*(x)]_i) \quad \text{for all } i \in [k], \text{ where } \nu^* \in \mathbb{R} \text{ is chosen so that } \sum_{i=1}^k [T_\phi^*(x)]_i = 1.$$

Proof. First, assume without loss of generality that $0 < \sum_{i \in [k]} x_i < 1$. Otherwise, if $\sum_{i \in [k]} x_i = 1$ then $x \in \Delta_k$, so the unique unconstrained optimum, which is at x by the standard property of Bregman divergences, is also the unique optimum of our constrained projection problem.

Note that Slater's condition is satisfied for this projection problem as we are optimizing over the simplex (whose relative interior is nonempty). Therefore, in this differentiable problem, its optimal solutions can be characterized via its KKT conditions.

Introduce a Lagrange multiplier $\nu \in \mathbb{R}$ for the simplex constraint, and Lagrange multipliers $(\lambda_i)_{i \in [k]}$ for the nonnegativity constraints. Then, the Lagrangian is as follows:

$$\mathcal{L}(\hat{p}, \nu) = \sum_{i=1}^k [\phi(x_i) - \phi(\hat{p}_i) - \phi'(\hat{p}_i)(x_i - \hat{p}_i)] - \nu \left(\sum_{i=1}^k \hat{p}_i - 1 \right) - \sum_{i=1}^k \lambda_i \hat{p}_i.$$

Here, $\lambda_i \geq 0$ for all i , and by complementary slackness, at optimality $\lambda_i = 0$ whenever $\hat{p}_i > 0$.

For each $i \in [k]$, the stationarity condition reads (except possibly when $\hat{p}_i = 0$, where the second derivative could be infinite):

$$0 = \frac{\partial \mathcal{L}}{\partial \hat{p}_i} = -\phi''(\hat{p}_i)(x_i - \hat{p}_i) - \nu - \lambda_i \iff \phi''(\hat{p}_i)(\hat{p}_i - x_i) = \nu + \lambda_i.$$

In particular, for each coordinate i for which the optimal $\hat{p}_i \in (0, 1)$, the stationarity condition is:

$$\phi''(\hat{p}_i)(\hat{p}_i - x_i) = \nu \implies \hat{p}_i = x_i + \frac{\nu}{\phi''(\hat{p}_i)} = x_i + \frac{\nu}{f'(\hat{p}_i)}. \quad (7)$$

Now, we show that $\nu > 0$. Indeed, observe that there must be at least one index i for which $\hat{p}_i > x_i$. If that was not the case, we would get $\sum_{i \in [k]} \hat{p}_i \leq \sum_{i \in [k]} x_i < 1$ by our assumption, contradicting that $\hat{p} \in \Delta_k$. In particular, then, $\hat{p}_i > x_i \geq 0$, and therefore we have $\phi''(\hat{p}_i)(\hat{p}_i - x_i) = \nu$. Since $\phi''(\hat{p}_i) > 0$ and $\hat{p}_i - x_i > 0$, we thus conclude that $\nu > 0$.

Having shown that $\nu > 0$, we now proceed to show that all $\hat{p}_i > 0$ at optimality. Note that $\frac{\partial}{\partial y} d_\phi(x, y) = \phi''(y)(y - x)$ for $y > 0$. We will now consider two cases:

1. $\phi''(0)$ is finite;
2. $\lim_{y \rightarrow 0} \phi''(y) = +\infty$.

If $\phi''(0)$ is finite, $\hat{p}_i > 0$ for all i . Indeed, suppose that was not the case, and $\hat{p}_i = 0$ for some i . Then we would have: $\phi''(0)(0 - x_i) = \nu + \lambda_i$, or equivalently, $\phi''(0) \cdot x_i + \nu + \lambda_i = 0$. Each of the three terms is nonnegative, and $\nu > 0$, so we arrive at a contradiction.

Next, consider the case in which $\lim_{y \rightarrow 0} \phi''(y) = +\infty$. Then, $\lim_{y \rightarrow 0} \frac{\partial}{\partial y} d_\phi(x, y) = -\infty$ for all $x \in (0, 1]$. Then, since $\lim_{y \rightarrow 0} \frac{\partial}{\partial y} d_\phi(x, y) = -\infty$ for all $x \in (0, 1]$, for any i such that $x_i > 0$, setting $\hat{p}_i = 0$ would lead to $\nu = -\infty$, hence necessarily $\hat{p}_i > 0$. On the other hand, for any i for which $x_i = 0$, since $\lim_{y \rightarrow 0} y \phi''(y) = 0$, setting $\hat{p}_i = 0$ would lead to $\nu = 0$, which is a contradiction.

In all cases, the optimal \hat{p} is in the strict interior of the simplex, so it suffices to solve (7) over this range. To show that the solution exists and is unique, we collect together the following information about Ψ from (13) with $\Psi(x, y, \nu) := \phi''(y)(y - x) - \nu$ for all x, y, ν . Then, for a fixed ν , (7) is equivalent to solving $\Psi(x_i, \hat{p}_i, \nu) = 0$. First, consider $x > 0$. Then, we have the following:

1. Since the map $y \mapsto d_\phi(x, y)$ is strictly convex for $y \in [x, 1]$, it follows that $\frac{\partial}{\partial y} d_\phi(x, y) = \Psi(x, y, 0)$ is strictly increasing for $y \in [x, 1]$, and so is $\Psi(x, y, \nu)$.
2. We have $\Psi(x, x, \nu) = -\nu \leq 0$. Further, $\Psi(x, 1, \nu) = \phi''(1)(1 - x) - \nu \geq 0$, whenever $\nu \leq \phi''(1)(1 - x)$.

Hence, the map $y \mapsto \Psi(x, y, \nu)$ has a unique zero on the interval $[x, 1]$, as long as $0 < \nu \leq \phi''(1)(1 - x)$.

Next, consider $x = 0$, in which case we need to solve the equation $\phi''(y)y = \nu$. Then, we have the following:

1. Since the map $y \mapsto d_\phi(0, y)$ is strictly convex for $y \in (0, 1]$, it follows that $\frac{\partial}{\partial y} d_\phi(0, y) = \Psi(0, y, 0) = \phi''(y)y$ is strictly increasing for $y \in (0, 1]$, and so is $\Psi(0, y, \nu)$.
2. By assumption, $\lim_{y \rightarrow 0^+} y \phi''(y) = 0$, hence we have $\lim_{y \rightarrow 0^+} \Psi(0, y, \nu) = -\nu \leq 0$. Further, $\Psi(0, 1, \nu) = \phi''(1)(1 - x) - \nu \geq 0$, whenever $\nu \leq \phi''(1)$.

Hence, the map $y \mapsto \Psi(0, y, \nu)$ has a unique zero on the interval $(0, 1]$, as long as $0 < \nu \leq \phi''(1)$.

Now define $M := \min_i \phi''(1)(1 - x_i) = \phi''(1)(1 - \max_i x_i)$. Since by assumption $\sum_i x_i < 1$, it follows that $M > 0$. From the above analysis, it follows that, as long as $\nu \in (0, M]$, for each i , the equation $\phi''(y_i)(y_i - x_i) = \nu$ has a unique solution $y_i(\nu) \in (x_i, 1]$.

Furthermore, as we establish in Lemma C.2, the map $\nu \mapsto y_i(\nu)$ is strictly increasing for $\nu > 0$, also owing to the assumed second-argument convexity of d_ϕ . In particular, define $G(\nu) = \sum_{i=1}^k y_i(\nu)$ for $\nu > 0$; then G is continuous and strictly increasing, and satisfies $\lim_{\nu \rightarrow 0} G(\nu) = \sum_i x_i < 1$ and $G(M) \geq y_{i^*}(M) = 1$, where i^* is any index achieving the maximum among the coordinates of x . Hence there is a unique $\nu^* \in (0, M]$ with $G(\nu^*) = 1$. Setting $\hat{p}_i = y_i(\nu^*)$ yields a vector in Δ_k that satisfies the KKT stationarity.

Finally, note that the solution \hat{p} that we just identified is unique. Indeed, we have earlier excluded boundary solutions from consideration, and then further excluded any solutions in which $\hat{p}_i < x_i$ for any $i \in [k]$; thus, it suffices to recall that the Bregman objective is assumed to be strictly convex in the interior of the region of the simplex given by $\{\hat{p} \in \Delta_k : \hat{p}_i \geq x_i \text{ for all } i \in [k]\}$, thus concluding the proof. \square

B Proof of the primal greedy property in Theorem 3.2

We will first fix some notations. Henceforth, we will assume that the vector p has been sorted, i.e., $p_1 \geq p_2 \geq \dots \geq p_V$. For any subset $Q = \{i_1, \dots, i_k\} \subseteq [V]$ of size k , let $Q^c = [V] \setminus Q$. Let p_Q

denote the sub-probability vector with the entries of p whose indices are in Q . We define the loss $L(Q)$ as

$$L(Q) = \min_{\hat{p} \in \Delta_k} D_\phi((\hat{p}, 0_{V-k}), (p_Q, p_{Q^c})) = \min_{\hat{p} \in \Delta_k} \sum_{j=1}^k d_\phi(\hat{p}_j, p_{i_j}) + S_{Q^c}. \quad (8)$$

Here, $S_{Q^c} = \sum_{j \notin Q} d_\phi(0, p_j)$. To prove Theorem 3.2, we will show that $L(S') \geq L(S)$ for any $S' \subseteq [V]$ of size k , where $S = [k]$ consists of the top- k indices. We will further show that strict inequality always holds if $p_{S'} \neq p_S$. To do this, we proceed in three steps: (1) We first simplify the form of the loss function $L(Q)$ in Lemma B.1, (2) For any two subsets S, S' , we decompose the loss difference $L(S') - L(S)$ into three terms in Lemma B.2, (3) We individually analyze each of the terms in this decomposition and prove they are non-negative.

B.1 Decomposing the Bregman cost function on subsets

Lemma B.1. *For any $Q = \{i_1, i_2, \dots, i_k\} \subseteq [V]$ of size k , the loss function as defined in (8) simplifies to:*

$$L(Q) = \sum_{j=1}^k [\phi([T_Q(p)]_j) - \phi'(p_{i_j})[T_Q(p)]_j] + S_{[V]} - |Q|\phi(0). \quad (9)$$

Proof. Observe that:

$$\begin{aligned} L(Q) &= D_\phi((\hat{p}_Q, 0_{V-k}), (p_Q, p_{Q^c})) = \sum_{j=1}^k d([T_Q(p)]_j, p_{i_j}) + S_{Q^c} \\ &= \sum_{j=1}^k [\phi([T_Q(p)]_j) - \phi(p_{i_j}) - \phi'(p_{i_j})([T_Q(p)]_j - p_{i_j})] + S_{Q^c} \\ &= \sum_{j=1}^k [\phi([T_Q(p)]_j) - \phi'(p_{i_j})[T_Q(p)]_j] + \sum_{j=1}^k [-\phi(p_{i_j}) + f(p_{i_j})p_{i_j}] + S_{Q^c}. \end{aligned}$$

This further equals

$$\begin{aligned} &\sum_{j=1}^k [\phi([T_Q(p)]_j) - \phi'(p_{i_j})[T_Q(p)]_j] + \sum_{j \in Q} d_\phi(0, p_j) + S_{Q^c} - |Q|\phi(0) \\ &= \sum_{j=1}^k [\phi([T_Q(p)]_j) - \phi'(p_{i_j})[T_Q(p)]_j] + S_Q + S_{Q^c} - |Q|\phi(0) \\ &= \sum_{j=1}^k [\phi([T_Q(p)]_j) - \phi'(p_{i_j})[T_Q(p)]_j] + S_{[V]} - |Q|\phi(0). \end{aligned}$$

This finishes the proof. \square

Let $T_Q(p)$ denote a minimizer of the above loss $L(Q)$, i.e.,

$$T_Q(p) \in \arg \min_{\hat{p} \in \Delta_k} D_\phi((\hat{p}, 0_{V-k}), (p_Q, p_{Q^c})) \stackrel{(a)}{=} \arg \min_{\hat{p} \in \Delta_k} \sum_{j=1}^k d_\phi(\hat{p}_j, p_{i_j}).$$

Note that (a) holds above as the term S_{Q^c} does not play any role in the location of the minimizer. However, it does contribute to the final loss $L(Q)$. Also, as the divergence is separable, once we have selected a subset Q , the ordering of its elements does not matter for the calculation of the above loss and minimizer. Thus, without loss of generality, we may assume $i_1 < i_2 < \dots < i_k$ for $k \in [V]$. By forming the Lagrangian and differentiating it, we obtain the primal thresholding from (4):

$$\phi'([T_Q(p)]_j) = \phi'(p_{i_j}) + \nu_Q \quad \forall j \in [k]. \quad (10)$$

Here, ν_Q is chosen such that $\sum_{j=1}^k [T_Q(p)]_j = 1$.

Lemma B.2. Let $S = \{i_1, \dots, i_k\}$, $S' = \{i'_1, \dots, i'_k\} \subseteq [V]$ and $T_S(p)$ and $T_{S'}(p)$ be the corresponding minimizers. Then, the following decomposition holds:

$$\begin{aligned} L(S') - L(S) &= D_\phi(T_{S'}(p), T_S(p)) + \sum_{j=1}^k ([T_{S'}(p)]_j - [T_S(p)]_j) (\phi'([T_S(p)]_j) - \phi'(p_{i_j})) \\ &\quad + \sum_{j=1}^k [T_{S'}(p)]_j (\phi'(p_{i_j}) - \phi'(p_{i'_j})). \end{aligned} \quad (11)$$

Proof. We have from Lemma B.1 that

$$\begin{aligned} L(S') - L(S) &= \sum_{j=1}^k [\phi([T_{S'}(p)]_j) - \phi'(p_{i'_j}) [T_{S'}(p)]_j] - \sum_{j=1}^k [\phi([T_S(p)]_j) - \phi'(p_{i_j}) [T_S(p)]_j] \\ &= \sum_{j=1}^k [\phi([T_{S'}(p)]_j) - \phi([T_S(p)]_j)] + \phi'(p_{i_j}) [T_S(p)]_j - \phi'(p_{i'_j}) [T_{S'}(p)]_j. \end{aligned}$$

This further equals

$$\begin{aligned} &\sum_{j=1}^k [\phi([T_{S'}(p)]_j) - \phi([T_S(p)]_j) - \phi'([T_S(p)]_j) ([T_{S'}(p)]_j - [T_S(p)]_j)] \\ &\quad + \sum_{j=1}^k \left([T_{S'}(p)]_j \left[\phi'([T_S(p)]_j) - \phi'(p_{i'_j}) \right] - [T_S(p)]_j \left[\phi'([T_S(p)]_j) - \phi'(p_{i_j}) \right] \right) \\ &= D_\phi(T_{S'}(p), T_S(p)) + \sum_{j=1}^k ([T_{S'}(p)]_j - [T_S(p)]_j) (\phi'([T_S(p)]_j) - \phi'(p_{i_j})) \\ &\quad + \sum_{j=1}^k [T_{S'}(p)]_j (\phi'(p_{i_j}) - \phi'(p_{i'_j})). \end{aligned}$$

□

Now, returning to our proof, suppose $S = [k]$ and $S' = \{i'_1, \dots, i'_k\}$. We know from Lemma B.2 that

$$\begin{aligned} L(S') - L(S) &= \underbrace{D_\phi(T_{S'}(p), T_S(p))}_{\mathbf{I}} + \underbrace{\sum_{j=1}^k ([T_{S'}(p)]_j - [T_S(p)]_j) (\phi'([T_S(p)]_j) - \phi'(p_{i_j}))}_{\mathbf{II}} \\ &\quad + \underbrace{\sum_{j=1}^k [T_{S'}(p)]_j (\phi'(p_{i_j}) - \phi'(p_{i'_j}))}_{\mathbf{III}}. \end{aligned}$$

Now, consider the term **II**. Using (10), we can simplify this further as follows:

$$\mathbf{II} = \sum_{j=1}^k ([T_{S'}(p)]_j - [T_S(p)]_j) \nu_S = \nu_S \left(\sum_{j=1}^k [T_{S'}(p)]_j - \sum_{j=1}^k [T_S(p)]_j \right) \stackrel{(a)}{=} 0,$$

where (a) follows as $\sum_{j=1}^k [T_{S'}(p)]_j = \sum_{j=1}^k [T_S(p)]_j = 1$. Also, **I** ≥ 0 as D_ϕ is a divergence measure.

Finally, to conclude our proof, we show that **III** ≥ 0 . Since the entries of p are sorted in a non-decreasing order and as the indices in $S = [k]$ and S' are sorted in ascending order, we have

$$\begin{aligned} \forall j \in [k], j = i_j \leq i'_j &\Rightarrow \forall j \in [k], p(i_j) \geq p(i'_j) \\ &\Rightarrow \sum_{j=1}^k [T_{S'}(p)]_j (\phi'(p_{i_j}) - \phi'(p_{i'_j})) = \mathbf{III} \geq 0. \end{aligned}$$

Strict inequality holds as long as some $p_{i'_j}$ is not among the top- k indices of p .

C Proof of the dual greedy property in Theorem 3.3

To prove the greedy property for the two alternate conditions in Theorem 3.3, we will provide two distinct proof techniques for the two cases (A1) and (A2). The first one uses duality and the second one uses a saddle point argument. We will now recall the definition of the Legendre dual of a convex function—in this case, of the generator function ϕ —and its defining property that will help us. Below, $f([0, 1])$ denotes the image of $[0, 1]$ under f .

Lemma C.1 (Classical). *For a valid ϕ , let $\phi^*(x) = \sup_{p \geq 0} \{px - \phi(p)\}$ be the Legendre dual of ϕ , defined for all $x \in f([0, 1])$. Then, we have for every $x \in f([0, 1])$ the identity: $\phi(f^{-1}(x)) = xf^{-1}(x) - \phi^*(x)$. Moreover $(\phi^*)' = f^{-1}$, and ϕ^* is strictly increasing.*

Proof. Since the map $p \mapsto R(p) := px - \phi(p)$ is continuous, it achieves a maximum on $[0, 1]$. From the first order condition of the defining equation for ϕ^* , if the maximum is achieved in $(0, 1)$, we have:

$$\frac{\partial R}{\partial p} = x - \phi'(p) = x - f(p) = 0,$$

so for the maximizer p_{\max} we have $f(p_{\max}) = x \Rightarrow p_{\max} = f^{-1}(x)$. Now, since f is increasing and $x \in f([0, 1])$, we have $R'(0) = x - f(0) \geq 0$, with equality if $x = f(0)$. Similarly, $R'(1) = x - f(1) \leq 0$, with equality if $x = f(1)$. Hence, it follows that the above characterization for the maximizer p_{\max} also applies on the boundaries of $[0, 1]$. To conclude the proof of the identity, it suffices to observe that $\phi^*(x) = p_{\max}x - \phi(p_{\max}) = xf^{-1}(x) - \phi(f^{-1}(x))$. The expression for $(\phi^*)'$ follows by direct calculation. \square

C.1 Proof under Assumption (A1)

With the dual convex conjugate ϕ^* as per Lemma C.1, the divergence measure satisfies:

$$d_\phi(p, q) = d_{\phi^*}(\phi'(q), \phi'(p)). \quad (12)$$

Let the loss for the dual problem be denoted as L^* , (the divergence measure with the arguments swapped), and let T_Q^* be the dual renormalization map from Lemma A.1 applied to p_Q , i.e.,

$$\begin{aligned} L^*(Q) &= \min_{\hat{p} \in \Delta_k} D_\phi((p_Q, p_{Q^c}), (\hat{p}, 0_{V-k})) = \min_{\hat{p} \in \Delta_k} \sum_{j=1}^k d_\phi(p_{i_j}, \hat{p}_j) + S_{Q^c}^*, \text{ where } S_{Q^c}^* = \sum_{j \notin Q} d_\phi(p_j, 0) \\ &= \sum_{j=1}^k d_\phi(p_{i_j}, [T_Q^*(p)]_j) + S_{Q^c}^*. \end{aligned}$$

C.1.1 Decomposition of the loss difference

Using the form of the loss difference in Lemma (B.2) and (12), we can compute the loss difference for the dual problem as follows:

$$\begin{aligned} L^*(S') - L^*(S) &= \sum_{j=1}^V d_\phi(p_{i'_j}, [T_{S'}^*(p)]_j) - \sum_{j=1}^V d_\phi(p_{i_j}, [T_S^*(p)]_j) \\ &\stackrel{\text{(due to (12))}}{=} \sum_{i=1}^V d_{\phi^*}(\phi'([T_{S'}^*(p)]_j), \phi'(p_{i'_j})) - \sum_{i=1}^V d_{\phi^*}(\phi'([T_S^*(p)]_j), \phi'(p_{i_j})) \end{aligned}$$

Indeed, changing the potential ϕ to ϕ^* , and changing all the arguments $p_{i_j}, p_{i'_j}, T_S^*, T_{S'}$ to $\phi'(p_{i_j}), \phi'(p_{i'_j}), \phi'(T_S^*), \phi'(T_{S'})$ respectively in Lemma (B.2) suffices. Thus, under the same setup

of the two subsets $S = [k]$ and S' and denoting $\phi' = f$, we obtain:

$$\begin{aligned} L^*(S') - L^*(S) &= D_{\phi^*}(f(T_{S'}^*(p)), f(T_S^*(p))) \\ &\quad + \sum_{j=1}^k (f([T_{S'}^*(p)]_j) - f([T_S^*(p)]_j)) ((\phi^*)'([T_S^*(p)]_j) - (\phi^*)'([f(p_{i_j}])) \\ &\quad + \sum_{j=1}^k f([T_{S'}^*(p)]_j) ((\phi^*)'([f(p_{i_j})]) - (\phi^*)'([f(p_{i'_j})])). \end{aligned}$$

Since $(\phi^*)' = f^{-1}$, this further equals

$$\begin{aligned} &\underbrace{D_{\phi^*}(f(T_{S'}^*(p)), f(T_S^*(p)))}_{\mathbf{I}'} \\ &\quad + \underbrace{\sum_{j=1}^k (f([T_{S'}^*(p)]_j) - f([T_S^*(p)]_j)) ([T_S^*(p)]_j - p_{i_j})}_{\mathbf{II}'} + \underbrace{\sum_{j=1}^k f([T_{S'}^*(p)]_j) (p_{i_j} - p_{i'_j})}_{\mathbf{III}'}. \end{aligned}$$

C.1.2 Analysis of terms based on the dual solution

Similar to the proof for the primal case, the term $\mathbf{I}' \geq 0$, as D_{ϕ^*} is a divergence, and $\mathbf{III}' \geq 0$ as $\phi' = f \geq 0$, as $f(0) = 0$ and f is increasing. Moreover, as f is strictly increasing, if any of the $p_{i'_j}$ are not among the top- k entries, then strict inequality holds.

To analyze \mathbf{II} , we have

$$\begin{aligned} \mathbf{II} &= \sum_{j=1}^k (f([T_{S'}^*(p)]_j) - f([T_S^*(p)]_j)) ([T_S^*(p)]_j - p_{i_j}) \\ &\stackrel{\text{from Lemma A.1}}{=} \sum_{j=1}^k (f([T_{S'}^*(p)]_j) - f([T_S^*(p)]_j)) \frac{\nu_S^*}{f'([T_S^*(p)]_j)}. \end{aligned}$$

Since f is convex,

$$\begin{aligned} (f([T_{S'}^*(p)]_j) - f([T_S^*(p)]_j)) &\geq f'([T_S^*(p)]_j) ([T_{S'}^*(p)]_j - [T_S^*(p)]_j) \\ &\stackrel{(a)}{\geq} \frac{1}{f'([T_S^*(p)]_j)} \cdot (f([T_{S'}^*(p)]_j) - f([T_S^*(p)]_j)) \geq [T_{S'}^*(p)]_j - [T_S^*(p)]_j \\ &\stackrel{(b)}{\geq} \sum_{j=1}^k \frac{1}{f'([T_S^*(p)]_j)} \cdot (f([T_{S'}^*(p)]_j) - f([T_S^*(p)]_j)) \geq \sum_{j=1}^k ([T_{S'}^*(p)]_j - [T_S^*(p)]_j) = 0. \end{aligned}$$

In the above steps, (a) follows as $f' > 0$ as f is strictly increasing and (b) follows as $\sum_{j=1}^k [T_{S'}^*(p)]_j = \sum_{j=1}^k [T_S^*(p)]_j = 1$. This implies $\mathbf{II}' \geq 0$, finishing the proof.

C.2 Proof under Assumption (A2)

C.2.1 Extra notation

Since $\frac{\partial}{\partial y} d_\phi(x, y) = \phi''(y)(y - x)$ for $y > 0$, we define for $(x, y, \nu) \in D := [0, 1] \times (0, 1] \times (0, \infty)$,

$$\Psi(x, y, \nu) := \phi''(y)(y - x) - \nu. \quad (13)$$

Define the mapping derived from solving $\Psi(x, y, \nu) = 0$ over y by:

$$\xi(x, \nu) : [0, 1] \times (0, \infty) \rightarrow (0, 1], \text{ such that } [T(p)]_i = \xi(p_i, \nu) \text{ for all } i, \text{ and for optimal } \nu.$$

It follows from the proof of Lemma A.1 that the solution ξ is well-defined. Define two auxiliary functions ψ, h that will be used in the computation of the Bregman costs below, such that for all $(x, y, \nu) \in D$:

$$\psi(x, y) := \phi(y) - \phi'(y)(y - x), \quad \text{and } h(x, \nu) := \psi(x, \xi(x, \nu)).$$

C.2.2 Properties of the auxiliary functions

Lemma C.2 (Derivatives $\frac{\partial \xi}{\partial x}$, $\frac{\partial \xi}{\partial \nu}$). Define $v : [0, 1] \times (0, 1] \rightarrow [0, \infty)$ as $v(x, y) = \phi''(y) + \phi'''(y)(y - x)$. We have for all $(x, \nu) \in [0, 1] \times (0, \infty)$:

$$\frac{\partial \xi}{\partial \nu}(x, \nu) = \frac{1}{v(x, \xi(x, \nu))}, \quad \text{and} \quad \frac{\partial \xi}{\partial x}(x, \nu) = \frac{\phi''(\xi(x, \nu))}{v(x, \xi(x, \nu))}. \quad (14)$$

Proof. The proof of either identity follows by applying implicit differentiation to the function Ψ . Fix $x \in [0, 1]$ and consider

$$F(y, \nu) = \Psi(x, y, \nu) = \phi''(y)(y - x) - \nu \quad \text{for } (y, \nu) \in (0, 1] \times (0, \infty).$$

Because ϕ is \mathcal{C}^3 on $(0, 1]$, F is continuously differentiable, and

$$\frac{\partial F}{\partial y}(y, \nu) = \phi'''(y)(y - x) + \phi''(y) = v(x, y) > 0$$

by Assumption 3.2. Hence, by the implicit function theorem, the map $\nu \mapsto \xi(x, \nu)$ is \mathcal{C}^1 with

$$\frac{\partial \xi}{\partial \nu}(x, \nu) = -\frac{\partial F / \partial \nu}{\partial F / \partial y} = \frac{1}{v(x, \xi(x, \nu))}.$$

For the latter identity, fix $\nu > 0$ and define

$$G(x, y) := \Psi(x, y, \nu) = \phi''(y)(y - x) - \nu, \quad (x, y) \in [0, 1] \times (0, 1].$$

For each $x_0 \in (0, 1]$ let $y_0 := \xi(x_0, \nu) \in (0, 1]$ satisfy $G(x_0, y_0) = 0$. We have $\frac{\partial G}{\partial y}(x, y) = v(x, y)$. Assumption 3.2 gives $v(x, y) > 0$ for all $0 < y \leq 1$ and $0 \leq x \leq y$. Hence $\partial G / \partial y(x_0, y_0) \neq 0$.

Since G is continuously differentiable and $\partial G / \partial y \neq 0$ at (x_0, y_0) , the implicit-function theorem guarantees a C^1 map $x \mapsto \xi(x, \nu)$ in a neighborhood of x_0 with $G(x, \xi(x, \nu)) = 0$.

Differentiating $G(x, \xi(x, \nu)) \equiv 0$ with respect to x and using $\partial G / \partial x = -\phi''(y)$ gives

$$0 = \frac{\partial G}{\partial x} + \frac{\partial G}{\partial y} \frac{\partial \xi}{\partial x} = -\phi''(\xi(x, \nu)) + v(x, \xi(x, \nu)) \frac{\partial \xi}{\partial x},$$

so

$$\frac{\partial \xi}{\partial x}(x, \nu) = \frac{\phi''(\xi(x, \nu))}{v(x, \xi(x, \nu))}.$$

When $x = 0$, the same argument applies, because $\frac{\partial G}{\partial y}(0, y) = v(0, y) > 0$ and $\partial G / \partial x|_{(0, y)} = -\phi''(y)$ is finite (the solution $y = \xi(0, \nu)$ is strictly positive, so $\phi''(y)$ is finite even if $\phi''(y) \rightarrow \infty$ as $y \downarrow 0$). Thus $\partial \xi / \partial x|_{(0, \nu)}$ exists and the same formula holds. This completes the proof. \square

Lemma C.3 (Derivative $\frac{\partial h}{\partial \nu}$). Under the condition that $x \mapsto u(x) := x\phi''(x)/\phi'(x)$ is non-decreasing from Assumption (A2), we have $\frac{\partial h}{\partial \nu}(x, \nu) \leq 0$ for all $x \in [0, 1]$ and $\nu > 0$.

Proof. For the derivative with respect to ν , observe first that

$$\frac{\partial \psi}{\partial y}(x, y) = \phi'(y) - [\phi''(y)y + \phi'(y)] + x\phi''(y) = \phi''(y)(x - y).$$

Hence, by the chain rule,

$$\frac{\partial}{\partial \nu} \psi(x, \xi(x, \nu)) = \frac{\partial \psi}{\partial y}(x, \xi(x, \nu)) \frac{\partial \xi}{\partial \nu}(x, \nu) = \phi''(\xi(x, \nu)) [x - \xi(x, \nu)] \frac{\partial \xi}{\partial \nu}(x, \nu).$$

Due to the defining equation $\phi''(\xi)(\xi - x) = \nu$, this simplifies to

$$\frac{\partial h}{\partial \nu}(x, \nu) = \frac{\partial}{\partial \nu} \psi(x, \xi(x, \nu)) = -\nu \frac{\partial \xi}{\partial \nu}(x, \nu) = -\frac{\nu}{v(x, \xi(x, \nu))} \leq 0,$$

where the last equality uses $\frac{\partial \xi}{\partial \nu}(x, \nu) = \frac{1}{v(x, \xi(x, \nu))}$ and $\nu > 0$. \square

Lemma C.4 (Derivative $\frac{\partial h}{\partial x}$). *Assumption (A2) implies $\frac{\partial h}{\partial x}(x, \nu) \geq 0$ for all $x \in [0, 1]$ and $\nu > 0$.*

Proof. First recall that

$$\psi(x, y) = \phi(y) - \phi'(y)(y - x) \implies \frac{\partial \psi}{\partial x}(x, y) = \phi'(y), \quad \frac{\partial \psi}{\partial y}(x, y) = \phi''(y)(x - y).$$

Hence, with $y = \xi(x, \nu)$,

$$\frac{\partial h}{\partial x}(x, \nu) = \frac{\partial \psi}{\partial x}(x, \xi) + \frac{\partial \psi}{\partial y}(x, \xi) \frac{\partial \xi}{\partial x}(x, \nu) = \phi'(\xi) + \phi''(\xi)[x - \xi] \frac{\partial \xi}{\partial x}(x, \nu).$$

Because $\xi = \xi(x, \nu)$ satisfies $\phi''(\xi)(\xi - x) = \nu$, we have

$$\frac{\partial h}{\partial x}(x, \nu) = \phi'(\xi) - \nu \frac{\partial \xi}{\partial x}(x, \nu) = \phi'(\xi) - \nu \frac{\phi''(\xi)}{v(x, \xi)}.$$

Write

$$N(x, \nu) = \phi'(\xi) \phi''(\xi) + (\xi - x) [\phi'(\xi) \phi'''(\xi) - \phi''(\xi)^2] = \phi'(\xi) \phi''(\xi) + (\xi - x) A(\xi),$$

where $A(t) := \phi'(t) \phi'''(t) - \phi''(t)^2$.

Case 1: $A(\xi) \geq 0$. Because $\xi \geq x$ from Lemma A.1, the second term is non-negative; with $\phi', \phi'' \geq 0$ the first term is also non-negative, so $N \geq 0$.

Case 2: $A(\xi) < 0$. Since $\xi \geq x$, we have

$$N(x, \nu) \geq \phi'(\xi) \phi''(\xi) + \xi A(\xi) = \phi'(\xi)^2 u'(\xi),$$

where $u(t) := t \phi''(t) / \phi'(t)$. Indeed,

$$u'(t) \phi'(t)^2 = \phi'(t) [\phi''(t) + t \phi'''(t)] - t \phi''(t)^2 = \phi'(t) \phi''(t) + t [\phi'(t) \phi'''(t) - \phi''(t)^2].$$

By Assumption (A2), u is non-decreasing, so $u'(\xi) \geq 0$; hence $N(x, \nu) \geq 0$ in this case as well.

Because $v(x, \xi) > 0$ and $N(x, \nu) \geq 0$ in both cases, we conclude $\partial h(x, \nu) / \partial x \geq 0$ for all $x \in [0, 1]$ and $\nu > 0$, thereby proving the lemma. \square

C.2.3 Proving the dual greedy property

Denote an arbitrary subset of the indices by: $S \subseteq [J]$. Let ν_S be the corresponding Lagrange multiplier. Below, for a vector $x \in \mathbb{R}^V$ and a set $S \subset [V]$, we denote by $x[S]$ the sub-vector of x restricted to the coordinates in S . Since $\phi'(0) = 0$ by the assumptions of Theorem 3.3, denoting $\Gamma = \sum_{m=1}^J d_\phi(p_m, 0) + \phi(0)|S|$ we can write for every S :

$$\begin{aligned} D_\phi(p, \hat{p}[S]) &= \sum_{m \in S} \phi(p_m) - \phi([T(p)]_m) - \phi'([T(p)]_m) \cdot (p_m - [T(p)]_m) + \sum_{m \in [J] \setminus S} d_\phi(p_m, 0) \\ &= \sum_{m \in S} -(\phi([T(p)]_m) - \phi'([T(p)]_m) \cdot ([T(p)]_m - p_m)) + \Gamma \\ &= \sum_{m \in S} -\psi(p_m, [T(p)]_m) + \Gamma = \sum_{m \in S} -h(p_m, \nu_S) + \Gamma. \end{aligned}$$

Now, let us prove that the greedy property holds. Suppose S is optimal among all subsets of indices of size k but does not consist of some of the top k probability tokens. Then there exist some $i \neq j$ such that $i \in S$, $j \notin S$, and $p_j > p_i$. Denote $S' = S \setminus \{i\} \cup \{j\}$.

Let $\nu_S, \nu_{S'}$ denote the choice of ν that makes the projected probabilities sum to unity. Now since S' only differs from S in that it includes the larger $p_j > p_i$, we can conclude that $\nu_S > \nu_{S'}$.

Then, using the above formula for the value of the objective function on an arbitrary subset, we have:

$$D_\phi(p, \hat{p}[S]) - D_\phi(p, \hat{p}[S']) = h(p_j, \nu_{S'}) - h(p_i, \nu_S) + \sum_{m \in S \setminus \{i\}} (h(p_m, \nu_{S'}) - h(p_m, \nu_S)).$$

Now, since h decreases in ν by Lemma C.3, we have that the sum is nonnegative since $\nu_{S'} < \nu_S$. As for the remaining term, we have:

$$h(p_j, \nu_{S'}) \geq h(p_j, \nu_S) \geq h(p_i, \nu_S),$$

where the first inequality is by the fact that $\nu_{S'} < \nu_S$ and Lemma C.3, and the second inequality is by the fact that $p_j > p_i$ and Lemma C.4. This concludes the proof of the dual greedy property under Assumption (A2).

D Proof of discrete convexity for primal Bregman projection

We follow the notations that were introduced in the beginning of the proof in Section B. To show that the cost function is discretely convex in k for the primal, it suffices to show that

$$L([k]) := \min_{\hat{p} \in \Delta_k} D_\phi((\hat{p}, 0_{V-k}), p) = D_\phi((T_{[k]}(p), 0_{V-k}), p)$$

is discretely convex in k . Indeed, the difference $\text{cost}(k) - L([k]) = \lambda k$ is linear in k .

To simplify notation, let us denote $L([k])$ by $L(k)$ and $T_{[k]}$ by T_k . From Lemma (B.1) we know that with $\tilde{S}_V := S_{[V]} - k\phi(0)$

$$L(k) = \sum_{j=1}^k \{\phi([T_k(p)]_j) - \phi'(p_j)[T_k(p)]_j\} + \tilde{S}_V.$$

Using (10), we know that $f([T_k(p)]_j) = f(p_j) + \nu_{[k]}$ $\forall j \in [k]$. Again, we simply denote $\nu_{[k]}$ as ν_k . For $j \in [k]$, letting $x = f(p_j) + \nu_k$ in Lemma C.1, we have:

$$\begin{aligned} \phi([T_k(p)]_j) - \phi'(p_j)[T_k(p)]_j &= \phi(f^{-1}(f(p_j) + \nu_k)) - f(p_j)f^{-1}(f(p_j) + \nu_k) \\ &= \phi(f^{-1}(x)) - f(p_j)f^{-1}(x) = xf^{-1}(x) - \phi^*(x) - f(p_j)f^{-1}(x) \\ &= (x - f(p_j))f^{-1}(x) - \phi^*(x) = \nu_k[T_k(p)]_j - \phi^*(f(p_j) + \nu_k). \end{aligned}$$

But now, using that the nonzero entries of $T_k(p)$ must sum to unity, we find the following simplification:

$$\begin{aligned} L(k) &= \sum_{j=1}^k \{\nu_k[T_k(p)]_j - \phi^*(f(p_j) + \nu_k)\} + \tilde{S}_V \\ &= \nu_k \sum_{j=1}^k [T_k(p)]_j - \sum_{j=1}^k \phi^*(f(p_j) + \nu_k) + \tilde{S}_V = \nu_k - \sum_{j=1}^k \phi^*(f(p_j) + \nu_k) + \tilde{S}_V. \end{aligned} \quad (15)$$

Now, define the auxiliary function W for all j, ν for which the expression below is well defined:

$$W(k, \nu) := \nu - \sum_{j=1}^k \phi^*(f(p_j) + \nu), \quad (16)$$

where p is implicitly kept fixed. From the above calculation, we thus obtain after canceling out terms:

$$L(k+1) - 2L(k) + L(k-1) = W(k+1, \nu_{k+1}) - 2W(k, \nu_k) + W(k-1, \nu_{k-1}).$$

To prove that this is nonnegative, we leverage that $W(k, \cdot)$ is strictly concave in ν for each k , which follows as the Legendre dual mapping ϕ^* is strictly convex since so is ϕ . Then, observe that for every j ,

$$\frac{\partial}{\partial \nu} W(k, \nu) = 1 - \sum_{j=1}^k (\phi^*)'(f(p_j) + \nu) = 1 - \sum_{j=1}^k f^{-1}(f(p_j) + \nu). \quad (17)$$

Thus,

$$\frac{\partial}{\partial \nu} W(k, \nu) |_{\nu=\nu_k} = 1 - \sum_{j=1}^k f^{-1}(f(p_j) + \nu_k) = 1 - \sum_{j=1}^k [T_k(p)]_j = 0.$$

As $W(k, \cdot)$ is strictly concave in ν , $W(k, \cdot)$ is maximized at ν_k . Thus, we have: (1) $W(k+1, \nu_{k+1}) \geq W(k+1, \nu_k)$, and (2) $W(k-1, \nu_{k-1}) \geq W(k-1, \nu_k)$. With these in hand, we have:

$$\begin{aligned} L(k+1) - 2L(k) + L(k-1) &= W(k+1, \nu_{k+1}) - 2W(k, \nu_k) + W(k-1, \nu_{k-1}) \\ &\geq [W(k+1, \nu_k) - W(k, \nu_k)] - [W(k, \nu_k) - W(k-1, \nu_k)]. \end{aligned} \quad (18)$$

Now, due to the definition of W , the last display equals

$$-\phi^*(f(p_{k+1}) + \nu_k) + \phi^*(f(p_k) + \nu_k) \geq 0, \quad (19)$$

the inequality holding as $p_k \geq p_{k+1}$, and as the mapping $p \mapsto \phi^*(f(p) + \nu_k)$ is increasing in p since so are ϕ^* and f . This concludes the proof.

E Proof of discrete convexity for dual Bregman projection

We denote $\theta_x(y) = \phi''(y)(y - x)$. As observed before, we have for all admissible x, y that

$$\frac{\partial}{\partial y} d_\phi(x, y) = \theta_x(y),$$

and the convexity condition for the second argument of d_ϕ of Assumption 3.2 is given by:

$$\frac{\partial}{\partial y} \theta_x(y) \geq 0 \Leftrightarrow \phi''(y) + \phi'''(y)(y - x) \geq 0 \quad \text{for all } y \geq x \geq 0.$$

The dual projection for any $1 \leq i \leq V$ is given (for optimal Lagrange multiplier ν_j) by:

$$\theta_{p_i}([T_j^*(p)]_i) = \nu_j \Leftrightarrow \phi''([T_j^*(p)]_i)([T_j^*(p)]_i - p_i) = \nu_j.$$

Denote the dual Bregman objective, as a function of the selected sparsity k , as:

$$\text{cost}^*(k) = D_\phi(p, (T_k^*(p), 0_{V-k})) + \lambda k.$$

We now demonstrate that $\text{cost}^*(k)$ is discretely convex in k . For this, we will directly show that the second-order differences of this function are nonnegative at every $k \in \{2, \dots, V-1\}$. Specifically, we can write:

$$\begin{aligned} \Delta^{*,2}(k) &:= \text{cost}^*(k+1) - 2\text{cost}^*(k) + \text{cost}^*(k-1) \\ &= D_\phi(p, (T_{k+1}^*(p), 0_{V-k-1})) - 2D_\phi(p, (T_k^*(p), 0_{V-k})) + D_\phi(p, (T_{k-1}^*(p), 0_{V-k+1})) \end{aligned}$$

We now decompose this quantity into three terms corresponding to three ranges of index $i \in [V]$, namely $i \in [k-1]$, $i \in \{k, k+1\}$, and $i \in \{k+2, \dots, V\}$. We obtain:

$$\begin{aligned} \Delta^{*,2}(k) &= \sum_{i=1}^{k-1} \left\{ \{d_\phi(p_i, [T_{k+1}^*(p)]_i) - d_\phi(p_i, [T_k^*(p)]_i)\} + \{d_\phi(p_i, [T_{k-1}^*(p)]_i) - d_\phi(p_i, [T_k^*(p)]_i)\} \right\} \\ &\quad + \left\{ (\phi(p_k) - \phi(0) - \phi'(0) \cdot p_k) - 2(\phi(p_k) - \phi([T_k^*(p)]_k) - \phi'([T_k^*(p)]_k) \cdot (p_k - [T_k^*(p)]_k)) \right. \\ &\quad + (\phi(p_k) - \phi([T_{k+1}^*(p)]_k) - \phi'([T_{k+1}^*(p)]_k) \cdot (p_k - [T_{k+1}^*(p)]_k)) \\ &\quad + (\phi(p_{k+1}) - \phi(0) - \phi'(0) \cdot p_{k+1}) - 2(\phi(p_{k+1}) - \phi(0) - \phi'(0) \cdot p_{k+1}) \\ &\quad \left. + (\phi(p_{k+1}) - \phi([T_{k+1}^*(p)]_{k+1}) - \phi'([T_{k+1}^*(p)]_{k+1}) \cdot (p_{k+1} - [T_{k+1}^*(p)]_{k+1})) \right\} \\ &\quad - \sum_{i=k+2}^V \{d_\phi(p_i, 0) - 2d_\phi(p_i, 0) + d_\phi(p_i, 0)\}. \end{aligned}$$

The last sum is identically zero, so we engage with the other two ranges of indices.

Range 1: $i \in [k-1]$. For Range 1, recall that for any convex function ψ , it holds for any two points x, y in its domain that $\psi(x) - \psi(y) \geq \psi'(y)(x - y)$. Now, notice that for each i in Range 1, each of the two terms in figure brackets can be bounded via the convexity of $d_\phi(x, \cdot)$ in its second argument as:

$$\begin{aligned} d_\phi(p_i, [T_{k+1}^*(p)]_i) - d_\phi(p_i, [T_k^*(p)]_i) &\geq \left(\frac{\partial}{\partial y} d_\phi(p_i, y) \right) \Big|_{y=[T_k^*(p)]_i} \cdot ([T_{k+1}^*(p)]_i - [T_k^*(p)]_i) \\ &= \theta_{p_i} ([T_k^*(p)]_i) \cdot ([T_{k+1}^*(p)]_i - [T_k^*(p)]_i) = \nu_k \cdot ([T_{k+1}^*(p)]_i - [T_k^*(p)]_i) \end{aligned}$$

and:

$$\begin{aligned} d_\phi(p_i, [T_{k-1}^*(p)]_i) - d_\phi(p_i, [T_k^*(p)]_i) &\geq \left(\frac{\partial}{\partial y} d_\phi(p_i, y) \right) \Big|_{y=[T_k^*(p)]_i} \cdot ([T_{k-1}^*(p)]_i - [T_k^*(p)]_i) \\ &= \theta_{p_i} ([T_k^*(p)]_i) \cdot ([T_{k-1}^*(p)]_i - [T_k^*(p)]_i) = \nu_k \cdot ([T_{k-1}^*(p)]_i - [T_k^*(p)]_i). \end{aligned}$$

As a result, we may simplify the Range 1 sum as follows, using that by definition, the first j terms in the projection T_j^* for each $j \in \{k-1, k, k+1\}$ sum to unity:

$$\begin{aligned} \text{Range 1 Sum} &\geq \sum_{i=1}^{k-1} \nu_k \cdot (\{[T_{k+1}^*(p)]_i - [T_k^*(p)]_i\} + \{[T_{k-1}^*(p)]_i - [T_k^*(p)]_i\}) \\ &= \nu_k \left(\sum_{i=1}^{k-1} [T_{k+1}^*(p)]_i - 2 \sum_{i=1}^{k-1} [T_k^*(p)]_i + \sum_{i=1}^{k-1} [T_{k-1}^*(p)]_i \right) \\ &= \nu_k ((1 - [T_{k+1}^*(p)]_k - [T_{k+1}^*(p)]_{k+1}) - 2(1 - [T_k^*(p)]_k) + 1) \\ &= \nu_k (2[T_k^*(p)]_k - [T_{k+1}^*(p)]_k - [T_{k+1}^*(p)]_{k+1}). \end{aligned}$$

Range 2: $i \in \{k, k+1\}$. For Range 2, we first note that the following three types of terms cancel out: $\phi(0)$, $\phi(p_k)$, $\phi(p_{k+1})$. Furthermore, terms involving $\phi'(0)$ vanish by assumption.

The remaining terms in the Range 2 sum can then be written as:

$$\begin{aligned} \text{Range 2 Sum} &\geq \left\{ -2(-\phi([T_k^*(p)]_k) - \phi'([T_k^*(p)]_k) \cdot (p_k - [T_k^*(p)]_k)) \right. \\ &\quad + (-\phi([T_{k+1}^*(p)]_k) - \phi'([T_{k+1}^*(p)]_k) \cdot (p_k - [T_{k+1}^*(p)]_k)) \Big\} \\ &\quad + \left\{ -\phi([T_{k+1}^*(p)]_{k+1}) - \phi'([T_{k+1}^*(p)]_{k+1}) \cdot (p_{k+1} - [T_{k+1}^*(p)]_{k+1}) \right\}. \end{aligned}$$

Now, we can bound

$$-\phi'([T_{k+1}^*(p)]_{k+1}) \cdot p_{k+1} \geq -\phi'([T_{k+1}^*(p)]_{k+1}) \cdot p_k,$$

using that $p_k \geq p_{k+1}$ and the strict convexity of ϕ . We find the lower bound

$$\begin{aligned} \text{Range 2 Sum} &\geq -2 \left\{ -\phi([T_k^*(p)]_k) - \phi'([T_k^*(p)]_k) \cdot (p_k - [T_k^*(p)]_k) \right\} \\ &\quad + \left\{ -\phi([T_{k+1}^*(p)]_k) - \phi'([T_{k+1}^*(p)]_k) \cdot (p_k - [T_{k+1}^*(p)]_k) \right\} \\ &\quad + \left\{ -\phi([T_{k+1}^*(p)]_{k+1}) - \phi'([T_{k+1}^*(p)]_{k+1}) \cdot (p_k - [T_{k+1}^*(p)]_{k+1}) \right\}. \end{aligned}$$

By adding and subtracting the term $\phi(p_k)$ twice, we have the following equivalent bound:

$$\begin{aligned} \text{Range 2 Sum} &\geq -2 \left\{ \phi(p_k) - \phi([T_k^*(p)]_k) - \phi'([T_k^*(p)]_k) \cdot (p_k - [T_k^*(p)]_k) \right\} \\ &\quad + \left\{ \phi(p_k) - \phi([T_{k+1}^*(p)]_k) - \phi'([T_{k+1}^*(p)]_k) \cdot (p_k - [T_{k+1}^*(p)]_k) \right\} \\ &\quad + \left\{ \phi(p_k) - \phi([T_{k+1}^*(p)]_{k+1}) - \phi'([T_{k+1}^*(p)]_{k+1}) \cdot (p_k - [T_{k+1}^*(p)]_{k+1}) \right\} \\ &= -2d_\phi(p_k, [T_k^*(p)]_k) + d_\phi(p_k, [T_{k+1}^*(p)]_k) + d_\phi(p_k, [T_{k+1}^*(p)]_{k+1}). \end{aligned}$$

Returning to the main bound We can now merge the cases, resulting in the following tight lower bound of the second differential of the cost function:

$$\begin{aligned}\Delta^{*,2}(k) &\geq \nu_k (2[T_k^*(p)]_k - [T_{k+1}^*(p)]_k - [T_{k+1}^*(p)]_{k+1}) \\ &\quad - 2d_\phi(p_k, [T_k^*(p)]_k) + d_\phi(p_k, [T_{k+1}^*(p)]_k) + d_\phi(p_k, [T_{k+1}^*(p)]_{k+1}).\end{aligned}$$

Now, define the following key auxiliary function $\psi_k : [0, 1] \rightarrow \mathbb{R}$, such that for all $x \in [0, 1]$:

$$\psi_k(x) = \nu_k \cdot x - d_\phi(p_k, x).$$

This lets us rewrite our lower bound equivalently as:

$$\Delta^{*,2}(k) \geq 2\psi([T_k^*(p)]_k) - \psi([T_{k+1}^*(p)]_k) - \psi([T_{k+1}^*(p)]_{k+1}). \quad (20)$$

We now establish a monotonicity property for ψ_k .

Lemma E.1. *For every $k \in [V]$ the function $\psi_k(x)$ is increasing on $x \in [0, [T_k^*(p)]_k]$.*

Proof. We consider the derivative of the function ψ_k :

$$\frac{\partial}{\partial x} \psi_k(x) = \nu_k - \frac{\partial}{\partial x} d_\phi(p_k, x) = \nu_k - \theta_{p_k}(x) = \theta_{p_k}([T_k^*(p)]_k) - \theta_{p_k}(x),$$

where we have used the connection between $\theta_x(y)$ and ν_k (see Lemma A.1).

Now, recalling that by assumption, $\frac{\partial}{\partial y} \theta_x(y) \geq 0$ for all $y \geq x \geq 0$, and using that $[T_k^*(p)]_k \geq p_k$ by the properties of the dual projection method (see Lemma A.1), we have that:

$$\frac{\partial}{\partial x} \psi_k(x) = \theta_{p_k}([T_k^*(p)]_k) - \theta_{p_k}(x) \geq 0,$$

so long as $0 \leq x \leq [T_k^*(p)]_k$. □

Continuing, by the properties of the dual projection, we have:

$$[T_k^*(p)]_k \geq [T_{k+1}^*(p)]_k \geq [T_{k+1}^*(p)]_{k+1}.$$

In view of Lemma E.1, (20) implies that

$$\Delta^{*,2}(k) \geq [\psi([T_k^*(p)]_k) - \psi([T_{k+1}^*(p)]_k)] + [\psi([T_k^*(p)]_k) - \psi([T_{k+1}^*(p)]_{k+1})] \geq 0 + 0 = 0.$$

This concludes the proof of dual discrete convexity of the Bregman cost function.

F Algorithmic details

F.1 Computing the dual renormalization map

Recall that when ϕ is dual valid, the renormalization map T_ϕ^* is uniquely defined for $x \in \Delta_{\text{sub},k}$ with $\sum_i x_i > 0$ by the fixed point equation (see Lemma A.1)

$$[T_\phi^*(x)]_i = x_i + \nu^* / f'([T_\phi^*(x)]_i) \quad \text{for all } i \in [k], \text{ where } \nu^* \in \mathbb{R} \text{ is chosen so that } \sum_{i=1}^k [T_\phi^*(x)]_i = 1.$$

To compute T_ϕ^* , recall from Section C.2.1 the function Ψ from (13) with $\Psi(x, y, \nu) := \phi''(y)(y - x) - \nu$ for all x, y, ν . Then, for a fixed ν , $[T(x)]_i$ satisfying the equation $[T(x)]_i = x_i + \nu / f'([T(x)]_i)$ is equivalent to solving $\Psi(x_i, y_i, \nu) = 0$ for $y_i = [T(x)]_i$. The monotonicity properties from Lemma A.1 then suggest the following algorithm, consisting of a binary search over $\nu \in (0, M]$, and then over each coordinate of T solving $\phi''([T(x)]_i)([T(x)]_i - x_i) = \nu$.

Algorithm 1 Dual Renormalization Map $T_\phi^*(x)$ via Nested Binary Search

Require: Convex generator ϕ with derivatives $f = \phi'$, $f'' = \phi''$; input vector $x \in \Delta_{\text{sub},k}$ with $\sum x_i < 1$; tolerance $\varepsilon > 0$

Ensure: Renormalized vector $\hat{p} = T_\phi^*(x) \in \Delta_k$

```

1: function DUALRENORMALIZE( $x, \phi, \varepsilon$ )
2:    $k \leftarrow$  length of  $x$ 
3:    $f'' \leftarrow \phi''$ 
4:    $M \leftarrow \phi''(1) \cdot (1 - \max_i x_i)$   $\triangleright$  Upper bound on feasible  $\nu$ 
5:   Initialize  $\nu_{\text{low}} \leftarrow 0$ ,  $\nu_{\text{high}} \leftarrow M$ 
6:   while  $\nu_{\text{high}} - \nu_{\text{low}} > \varepsilon$  do
7:      $\nu \leftarrow (\nu_{\text{low}} + \nu_{\text{high}})/2$ 
8:     for  $i = 1$  to  $k$  do
9:        $x_i \leftarrow x[i]$ 
10:       $y[i] \leftarrow \text{SOLVEROOT}(x_i, \nu, f'', \varepsilon)$ 
11:    end for
12:     $G \leftarrow \sum_{i=1}^k y[i]$ 
13:    if  $G < 1$  then
14:       $\nu_{\text{low}} \leftarrow \nu$ 
15:    else
16:       $\nu_{\text{high}} \leftarrow \nu$ 
17:    end if
18:  end while
19:  return  $y$ 
20: end function
21: function SOLVEROOT( $x_i, \nu, f'', \varepsilon$ )
22:    $a \leftarrow x_i$ ,  $b \leftarrow 1$ 
23:   while  $b - a > \varepsilon$  do
24:      $m \leftarrow (a + b)/2$ 
25:      $\Psi \leftarrow f''(m) \cdot (m - x_i) - \nu$ 
26:     if  $\Psi < 0$  then
27:        $a \leftarrow m$ 
28:     else
29:        $b \leftarrow m$ 
30:     end if
31:   end while
32:   return  $(a + b)/2$ 
33: end function

```

F.2 Pseudocode for algorithms

See Algorithm 3 and Algorithm 4 for pseudocode for sparse primal (resp. dual) Bregman decoding.

Algorithm 2 Discrete Binary Search for Unimodal Cost Minimization

Require: Callable function COMPUTECOST, maximum support size V
Ensure: Optimal support size k^* minimizing COMPUTECOST(k)

```

1: function BINARYSEARCH(COMPUTECOST,  $V$ )
2:    $c_1 \leftarrow \text{COMPUTECOST}(1)$ 
3:    $c_2 \leftarrow \text{COMPUTECOST}(2)$ 
4:   if  $c_2 - c_1 \geq 0$  then
5:     return 1
6:   end if
7:    $c_{V-1} \leftarrow \text{COMPUTECOST}(V-1)$ 
8:    $c_V \leftarrow \text{COMPUTECOST}(V)$ 
9:   if  $c_V - c_{V-1} \leq 0$  then
10:    return  $V$ 
11:   end if
12:   Initialize  $L \leftarrow 1$ ,  $R \leftarrow V$ 
13:   while  $R - L > 1$  do
14:      $m \leftarrow \lfloor (L + R)/2 \rfloor$ 
15:      $c_m \leftarrow \text{COMPUTECOST}(m)$ 
16:      $c_{m+1} \leftarrow \text{COMPUTECOST}(m + 1)$ 
17:     if  $c_{m+1} - c_m \geq 0$  then
18:        $R \leftarrow m$ 
19:     else
20:        $L \leftarrow m$ 
21:     end if
22:   end while
23:   return  $R$ 
24: end function

```

Algorithm 3 Regularized Sparse Primal Bregman Decoding

Require: Probability vector $p \in \Delta_V$, valid convex generator ϕ , sparsity penalty $\lambda \geq 0$
Ensure: Sparse decoded distribution $\hat{p} \in \Delta_V$

```

1: function SPARSEPRIMALBREGMANDECODE( $p$ ,  $\phi$ ,  $\lambda$ )
2:   Sort  $p$  in descending order:  $p_{(1)} \geq p_{(2)} \geq \dots \geq p_{(V)}$ 
3:   Define  $f = \phi'$ 
4:   function COMPUTERENORMALIZATION( $x \in \mathbb{R}^k$ )
5:     Solve for  $\nu \in \mathbb{R}$  such that  $\sum_{i=1}^k f^{-1}(f(x_i) + \nu) = 1$ 
6:     return  $\hat{p}^{(k)}$  with  $[\hat{p}^{(k)}]_i = f^{-1}(f(x_i) + \nu)$  for  $i \in [k]$ 
7:   end function
8:   function COMPUTECOST( $k$ )
9:     Let  $x = p[1:k]$ 
10:     $\hat{p}^{(k)} \leftarrow \text{COMPUTERENORMALIZATION}(x)$ 
11:    Pad with zeros:  $\hat{p}^{(k)} \leftarrow (\hat{p}_1^{(k)}, \dots, \hat{p}_k^{(k)}, 0, \dots, 0)$ 
12:    Compute  $D_\phi(\hat{p}^{(k)}, p) = \sum_{i=1}^V [\phi(\hat{p}_i^{(k)}) - \phi(p_i) - f(p_i)(\hat{p}_i^{(k)} - p_i)]$ 
13:    return  $\text{cost}(k) = D_\phi(\hat{p}^{(k)}, p) + \lambda k$ 
14:  end function
15:   $k^* \leftarrow \text{BINARYSEARCH}(\text{ComputeCost}, V)$ 
16:  Recompute  $\hat{p}^{(k^*)}$  using COMPUTERENORMALIZATION( $p[1:k^*]$ )
17:  Pad with zeros to full length  $V$ 
18:  return  $\hat{p}^{(k^*)}$ 
19: end function

```

Algorithm 4 Regularized Sparse Dual Bregman Decoding

Require: Probability vector $p \in \Delta_V$, valid convex generator ϕ , sparsity penalty $\lambda \geq 0$
Ensure: Sparse decoded distribution $\hat{p} \in \Delta_V$

```

1: function SPARSEDUALBREGMANDECODE( $p, \phi, \lambda$ )
2:   Sort  $p$  in descending order:  $p_{(1)} \geq p_{(2)} \geq \dots \geq p_{(V)}$ 
3:   Define  $f = \phi'$ ,  $f' = \phi''$ 
4:   function COMPUTEDUALRENORMALIZATION( $x \in \mathbb{R}^k$ )
5:     Solve for  $\nu \in \mathbb{R}$  such that:  $\sum_{i=1}^k [T_\phi^*(x)]_i = 1$ , where  $[T_\phi^*(x)]_i$  satisfies the fixed-point
       equation:  $[T_\phi^*(x)]_i = x_i + \nu/f'([T_\phi^*(x)]_i)$ .
6:     return  $\hat{p}^{(k)} = T_\phi^*(x)$ 
7:   end function
8:   function COMPUTEDUALCOST( $k$ )
9:     Let  $x = p[1:k]$ 
10:     $\hat{p}^{(k)} \leftarrow$  COMPUTEDUALRENORMALIZATION( $x$ )
11:    Pad with zeros:  $\hat{p}^{(k)} \leftarrow (\hat{p}_1^{(k)}, \dots, \hat{p}_k^{(k)}, 0, \dots, 0)$ 
12:    Compute  $D_\phi(p, \hat{p}^{(k)}) = \sum_{i=1}^V [\phi(p_i) - \phi(\hat{p}_i^{(k)}) - f(\hat{p}_i^{(k)})(p_i - \hat{p}_i^{(k)})]$ 
13:    return  $\text{cost}(k) = D_\phi(p, \hat{p}^{(k)}) + \lambda k$ 
14:  end function
15:   $k^* \leftarrow$  BINARYSEARCH(ComputeDualCost,  $V$ )
16:  Recompute  $\hat{p}^{(k^*)}$  using COMPUTEDUALRENORMALIZATION( $p[1:k^*]$ )
17:  Pad with zeros to full length  $V$ 
18:  return  $\hat{p}^{(k^*)}$ 
19: end function

```

G Example: α -Bregman decoding

G.1 Proof of Lemma 4.3

We first restate the lemma.

Lemma G.1. All generator functions ϕ_α , $\alpha > 1$, are dual-valid and satisfy Assumption (A2).

Proof. For Assumption 3.2, we can explicitly write:

$$d_\phi(x, y) = \frac{x^\alpha}{\alpha(\alpha-1)} - \frac{y^\alpha}{\alpha(\alpha-1)} - \frac{y^{\alpha-1}}{\alpha-1}(x-y) = \frac{y^\alpha}{\alpha} - \frac{x}{\alpha-1}y^{\alpha-1} + \frac{x^\alpha}{\alpha(\alpha-1)}.$$

Therefore, the second derivative in y of this expression is

$$(\alpha-1)y^{\alpha-2} - (\alpha-2)xy^{\alpha-3} = y^{\alpha-3}(y(\alpha-1) - x(\alpha-2)) = y^{\alpha-3}(y(\alpha-1) + x(2-\alpha)).$$

Now, if $y \geq x$, then using $\alpha-1 \geq 0$ we have that the above expression is

$$\geq y^{\alpha-3}(x(\alpha-1) + x(2-\alpha)) = y^{\alpha-3}x \geq 0,$$

confirming the convexity in y . Now for the condition that $x \mapsto u(x) := x\phi''(x)/\phi'(x)$ is non-decreasing from Assumption (A2), we can observe that

$$\phi'(x)\phi'''(x) - \phi''(x)^2 = \frac{x^{\alpha-1}}{\alpha-1} \cdot (\alpha-2)x^{\alpha-3} - (x^{\alpha-2})^2 = -\frac{x^{2\alpha-4}}{\alpha-1}.$$

Therefore, we identically have:

$$\phi'(x)\phi''(x) + x(\phi'(x)\phi'''(x) - \phi''(x)^2) = \frac{x^{2\alpha-3}}{\alpha-1} - x\frac{x^{2\alpha-4}}{\alpha-1} = 0,$$

thus concluding the proof. \square

G.2 Proof of Proposition 4.2

Recall the α -renormalization map $[T_\alpha(p)]_i = (p_i^{\alpha-1} + \nu)^{\frac{1}{\alpha-1}}$, $i \in [k]$, where the shift parameter $\nu = \nu(\alpha, p)$ is chosen so that $\sum_{i=1}^k [T_\alpha(p)]_i = 1$. We treat each value (or limit) of α in turn.

The limit $\alpha \rightarrow -\infty$. Define

$$F_\beta(\nu) := \sum_{i=1}^k (p_i^\beta + \nu)^{1/\beta}, \quad \beta := \alpha - 1 < 0.$$

Because $x \mapsto x^{1/\beta}$ is strictly *decreasing* and convex on $(0, \infty)$ for $\beta < 0$, F_β is strictly decreasing and continuous on the interval $(-\min_i p_i^\beta, \infty)$. Moreover, $\lim_{\nu \downarrow -\min_i p_i^\beta} F_\beta(\nu) = \infty$ and $\lim_{\nu \uparrow \infty} F_\beta(\nu) = 0$, so a unique root ν_β with $F_\beta(\nu_\beta) = 1$ exists. Because $F_\beta(0) = S := \sum_{i=1}^k p_i \leq 1$ and F_β is decreasing, we have $\nu_\beta \leq 0$.

Let $q_i^{(\alpha)} = [T_\alpha(p)]_i = (p_i^\beta + \nu_\beta)^{1/\beta}$, and i^* be the index where p_i is largest. Using the constraint $\sum_i q_i^{(\alpha)} = 1$,

$$q_{i^*}^{(\alpha)} = 1 - \sum_{i \neq i^*} q_i^{(\alpha)} = \delta + p_{i^*} + \sum_{i \neq i^*} (p_i - q_i^{(\alpha)}) \geq p_{i^*} + \delta.$$

Raising $q_{i^*}^{(\alpha)} = (p_{i^*}^\beta + \nu_\beta)^{1/\beta}$ to the power $\beta < 0$ yields

$$\nu_\beta = (p_{i^*} + \delta + R_\beta)^{\beta} - p_{i^*}^\beta, \quad R_\beta := \sum_{i \neq i^*} (p_i - q_i^{(\alpha)}) \in [0, \delta]. \quad (21)$$

For $i \neq i^*$, we have $\nu_\beta / p_i^\beta \rightarrow 0$. Indeed, (21) implies $|\nu_\beta| \leq p_{i^*}^\beta (c^\beta - 1)$ with $c := (p_{i^*} + \delta) / p_{i^*} > 1$. Because $\beta \rightarrow -\infty$, $c^\beta \rightarrow 0$, we have $|\nu_\beta| = O(p_{i^*}^\beta) = o(p_{i^*}^\beta)$. Then,

$$q_i^{(\alpha)} = p_i \left(1 + \frac{\nu_\beta}{p_i^\beta}\right)^{1/\beta} \rightarrow p_i, \quad i \neq i^*. \quad (22)$$

Summing (22) over $i \neq i^*$ and using $\sum_i q_i^{(\alpha)} = 1$ gives

$$q_{i^*}^{(\alpha)} = 1 - \sum_{i \neq i^*} q_i^{(\alpha)} \rightarrow 1 - \sum_{i \neq i^*} p_i = p_{i^*} + \delta. \quad (23)$$

Equations (22) and (23) establish $q^{(\alpha)} \rightarrow T_{-\infty}(p)$ component-wise, completing the proof.

The case $\alpha = \frac{3}{2}$. Now $\alpha - 1 = \frac{1}{2}$, hence $[T_{1.5}(p)]_i = (\sqrt{p_i} + \nu)^2$, $i \in [k]$. Set $s := \sum_{j=1}^k \sqrt{p_j}$ and $A := \sum_{j=1}^k p_j$. The normalization condition becomes

$$1 = \sum_{i=1}^k (\sqrt{p_i} + \nu)^2 = A + 2s\nu + k\nu^2.$$

Solving $k\nu^2 + 2s\nu + (A - 1) = 0$ for the root that yields non-negative probabilities gives $\nu = \frac{-s + \sqrt{s^2 + k(1-A)}}{k}$. Hence

$$[T_{1.5}(p)]_i = \left(\sqrt{p_i} + \frac{\sqrt{s^2 + k(1-A)} - s}{k} \right)^2, \quad i \in [k].$$

The case $\alpha = 2$. Here $\alpha - 1 = 1$, so Definition 4.1 yields $[T_2(p)]_i = p_i + \nu$, $i \in [k]$. The normalization condition gives $1 = \sum_{i=1}^k (p_i + \nu) = \sum_{i=1}^k p_i + k\nu$, hence $\nu = \frac{1 - \sum_{j=1}^k p_j}{k}$. Substituting yields

$$[T_2(p)]_i = p_i + \frac{1 - \sum_{j=1}^k p_j}{k}, \quad i \in [k].$$

The limit $\alpha \rightarrow +\infty$. Write $\beta := \alpha - 1 \rightarrow +\infty$. Let $\nu = c^\beta$ with $c \in [0, 1]$. Then

$$[T_\alpha(p)]_i = (p_i^\beta + c^\beta)^{1/\beta} = \exp\left\{\frac{1}{\beta} \log(p_i^\beta + c^\beta)\right\}.$$

Using $\frac{1}{\beta} \log(a^\beta + b^\beta) \rightarrow \log(\max\{a, b\})$ as $\beta \rightarrow \infty$ gives $\lim_{\alpha \rightarrow \infty} [T_\alpha(p)]_i = \max\{p_i, c\}$. Choose the *water level* c so that $\sum_{i=1}^k \max\{p_i, c\} = 1$. This furnishes the claimed water-filling rule.

The four cases above prove Proposition 4.2. □

G.3 Illustrating primal and dual renormalization

We consider the peaked vector $v = [0.1, 0.001, 0.001, 0.001, 0.001]$, and plot how both of its distinct constituent values get transformed by the primal and dual Bregman α -renormalization (by symmetry, all copies of 0.001 are guaranteed to get mapped to the same value by any of our renormalizations). The resulting plots are in Figure 4. As predicted by our theory, both renormalization families coincide at three values of the parameter, namely at $\alpha \in \{1, 2, \infty\}$. Furthermore, the primal family evolves more gradually than the dual family between the endpoints of the parameter interval $\alpha \in (1, 2]$, while the reverse behavior occurs for $\alpha \in (2, \infty)$ (where both renormalizations gradually converge to the water-filling limit which, in this case, is the uniform distribution).

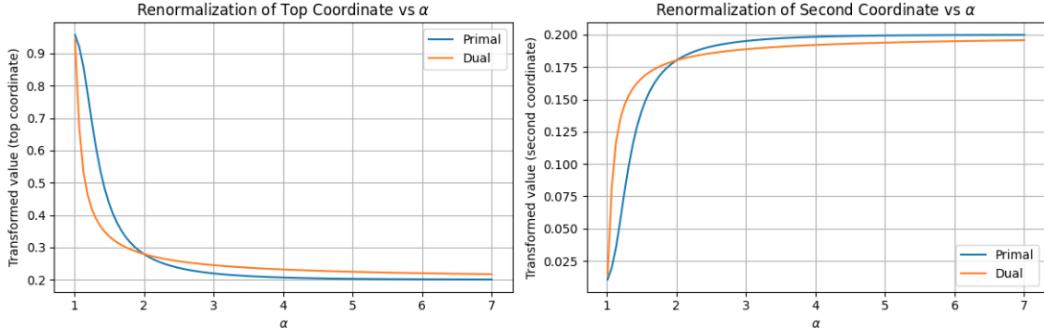


Figure 4: Comparison of primal and dual renormalization maps: The transformation of the larger value (0.1, left) and of the smaller value (0.001, right).

G.4 Illustrating general nonconvexity of dual renormalization

Figure 5 illustrates that the dual Bregman objective can in general be non-convex for large α .

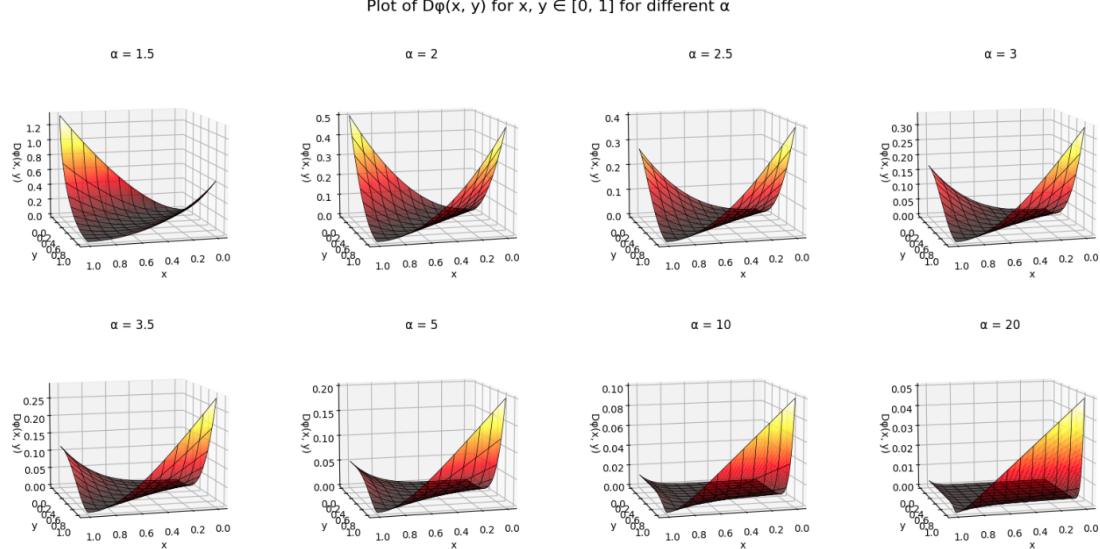


Figure 5: Nonconvexity of the Bregman dual landscape on the square $(x, y) \in [0, 1]^2$.

G.5 Illustrating discrete convexity

Figure 6 illustrates that the loss function $\text{cost}(\cdot)$ defined in (6) is discretely convex for both the primal and dual decoding strategies. Here, we have chosen $V = 80$ and the regularization parameter λ as $1/80$. When k is close to V , the renormalization maps are all close to the true vector p , regardless of the value of α , and hence the loss primarily depends on the regularization term λk , which here equals $\lambda k = 1$ for $k = 80$. Thus, all curves (corresponding to different values of α) for both the primal and dual plots, asymptote to linearity and converge to this value at $k = 80$.

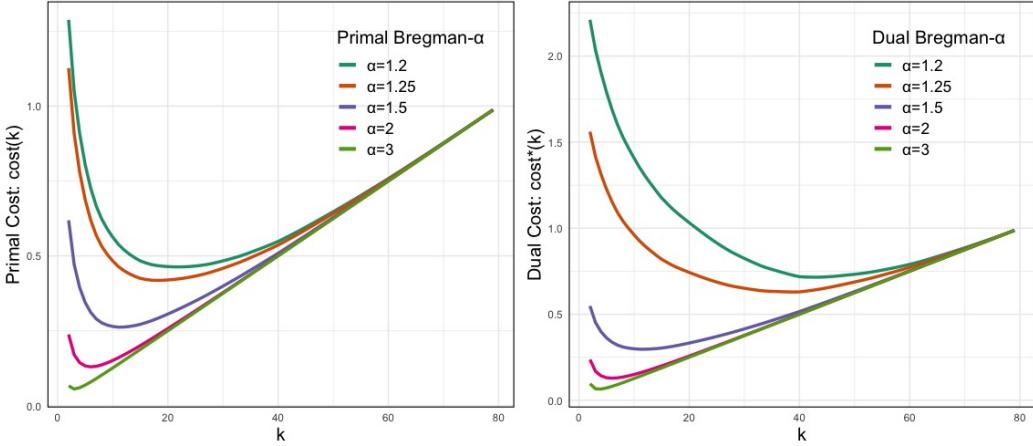


Figure 6: Discrete convexity of the function $k \mapsto \text{cost}(k)$ for primal and dual Bregman α -decoding.

G.6 The simultaneous effects of Bregman decoding and temperature scaling

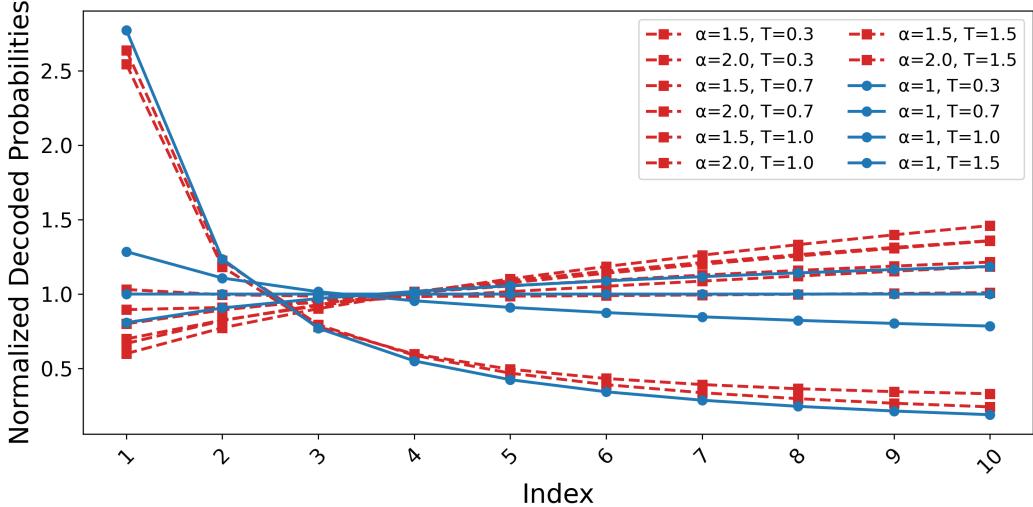


Figure 7: Comparison with changing the temperature.

Here, we provide a plot to help compare the simultaneous effects of Bregman decoding and temperature scaling. We use the same simulation setting and plotting style as in our figure from the introduction (Section 1); except we only plot the nonzero probabilities (i.e., the top $k = 10$ probabilities), and we plot the *relative* sizes of the probabilities compared to the standard top- k decoding. Further, we use the same α and temperature hyperparameters used in our experiments in Table 1. The results are shown in Figure 7. Standard top- k decoding corresponds to $\alpha = 1$ and $T = 1$. From the figure, it appears that the effect of $\alpha > 1$ is to moderate/regularize the amount by which the small probabilities are pushed to zero; which could potentially be one reason why α -Bregman decoding with $\alpha > 1$ can perform better at high temperatures.

H Supplementary experimental details

H.1 Compute resources

The experiments were conducted on a system running Rocky Linux 8.10, with 64 CPU cores of Intel(R) Xeon(R) Gold 6448Y processors at 2.10 GHz, 1 TB of RAM, and 8 NVIDIA L40S GPUs with 46 GB of memory each. All experiments can be done with only one GPU and multiple GPUs

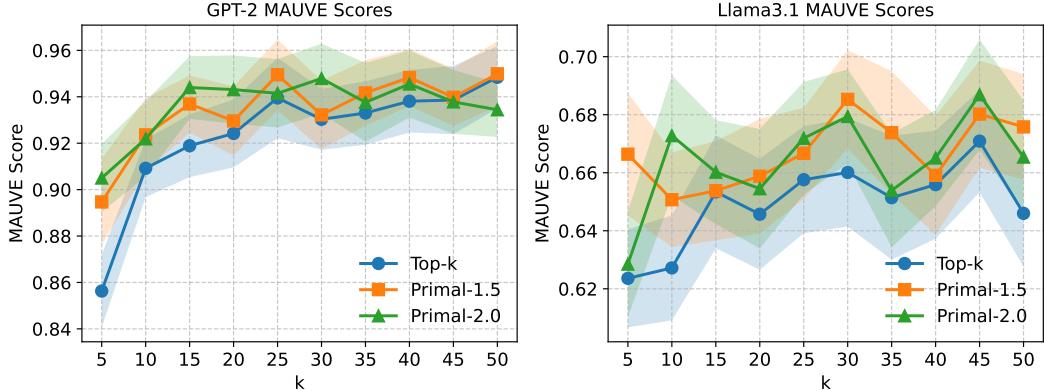


Figure 8: MAUVE scores results between generated and human-written text for GPT2-large (left panel) and LLaMA 3.1 8B (right panel), for various k values. We show top- k decoding and primal decoding with $\alpha \in \{1.5, 2.0\}$. Standard deviations are estimated using 50 bootstrap resamples

were used only to parallelize experiments. The software environment used Python 3.11.11, PyTorch 2.5.1, and CUDA 12.4.

H.2 Supplementary experimental results

In this section, we provide additional experimental results to supplement those from Section 5.

Table 2 shows results analogous to those in Table 1 for $\lambda \in \{0.1, 0.001\}$.

Table 2: Accuracy on GSM8K for LLaMA 3.1 8B using Bregman primal decoding ($\lambda \in \{0.1, 0.001\}$, $\alpha \in \{1.5, 2.0\}$) and top- k decoding, across different temperature settings. For top- k , k equals the averaged optimal k^* from the corresponding primal decoding run (matching temperature, λ , and α). Standard deviations are estimated using 1000 bootstrap resamples.

Temp	$\lambda = 0.1$		$\lambda = 0.001$		Top- k ($\lambda = 0.001$)
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	
0.3	83.93 ± 1.01	84.46 ± 1.00	84.69 ± 0.99	84.69 ± 0.99	83.93 ± 1.01
0.7	83.47 ± 1.02	85.29 ± 0.98	84.69 ± 0.99	84.69 ± 0.99	85.29 ± 0.98
1.0	84.46 ± 1.00	84.38 ± 1.00	84.69 ± 0.99	84.69 ± 0.99	85.29 ± 0.98
1.5	83.78 ± 1.02	84.38 ± 1.00	84.69 ± 0.99	84.69 ± 0.99	83.62 ± 1.02

Figure 8 presents the MAUVE scores comparing generated and human-written text under different decoding strategies. While primal decoding shows a slight advantage over top- k decoding, the differences are not statistically significant. We report standard deviations estimated from 50 bootstrap resamples; a higher number of resamples was not used due to the high computational cost of MAUVE score evaluation.

H.3 Experiments for Larger models: Qwen and Phi

We repeat our experiments for Qwen2.5-14B-Instruct and Phi-3-medium-4k-instruct.

Figure 9 shows results analogous to those in Figure 3. Table 3 and 4 show the accuracy on GSM8K, analogously to Table 1 and 2. Table 5 and 6 show results for the Phi-3-medium-4k-instruct model.

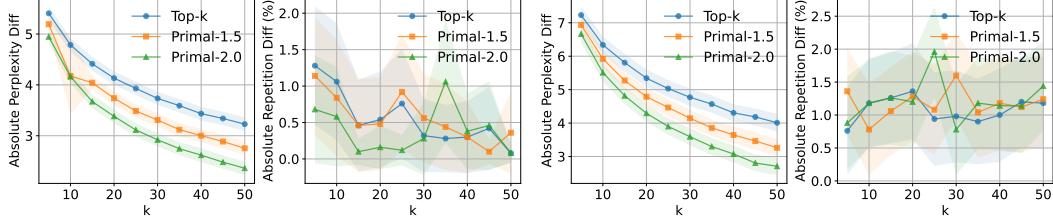


Figure 9: Perplexity and repetition frequency differences between generated and human-written text for Phi-3-medium-4k-instruct (left two panels) and Qwen2.5-14B-Instruct (right two panels), for various k values. We show top- k decoding and primal decoding with $\alpha \in \{1.5, 2.0\}$. Standard deviations are estimated using 1000 bootstrap resamples.

Table 3: Accuracy on GSM8K for Qwen2.5-14B-Instruct using Bregman primal decoding ($\lambda \in \{0.1, 0.01\}$, $\alpha \in \{1.5, 2.0\}$) and top- k decoding, for various temperatures. For top- k , k equals the averaged k^* from primal decoding with matching temperature, λ , and α . Standard deviations are over 1000 bootstrap resamples.

Temp	$\lambda = 0.1$		Top- k ($\lambda = 0.1$)	$\lambda = 0.01$		Top- k ($\lambda = 0.01$)		
	$\alpha = 1.5$	$\alpha = 2.0$		$\alpha = 1.5$	$\alpha = 2.0$			
0.3	82.71 \pm 1.04	82.26 \pm 1.05	81.42 \pm 1.07	81.43 \pm 1.07	82.64 \pm 1.04	82.18 \pm 1.05	81.43 \pm 1.07	81.43 \pm 1.07
0.7	81.73 \pm 1.06	81.05 \pm 1.08	81.43 \pm 1.07	81.43 \pm 1.07	79.53 \pm 1.11	80.21 \pm 1.10	80.21 \pm 1.10	81.43 \pm 1.07
1.0	80.59 \pm 1.09	81.50 \pm 1.07	81.43 \pm 1.07	81.43 \pm 1.07	78.85 \pm 1.12	80.29 \pm 1.10	79.30 \pm 1.12	81.43 \pm 1.07
1.5	80.89 \pm 1.08	81.73 \pm 1.06	81.43 \pm 1.07	81.43 \pm 1.07	77.18 \pm 1.16	78.99 \pm 1.12	77.48 \pm 1.15	81.43 \pm 1.07

Table 4: Accuracy on GSM8K for Qwen2.5-14B-Instruct using Bregman primal decoding ($\lambda \in \{0.001, 0.0001\}$, $\alpha \in \{1.5, 2.0\}$) and top- k decoding, for various temperatures. For top- k , k equals the averaged k^* from primal decoding with matching temperature, λ , and α . Standard deviations are over 1000 bootstrap resamples.

Temp	$\lambda = 0.001$		Top- k ($\lambda = 0.001$)	$\lambda = 0.0001$		Top- k ($\lambda = 0.0001$)		
	$\alpha = 1.5$	$\alpha = 2.0$		$\alpha = 1.5$	$\alpha = 2.0$			
0.3	82.11 \pm 1.06	82.49 \pm 1.05	82.41 \pm 1.05	82.56 \pm 1.05	81.88 \pm 1.06	82.26 \pm 1.05	82.03 \pm 1.06	82.41 \pm 1.05
0.7	80.21 \pm 1.10	79.76 \pm 1.11	80.06 \pm 1.10	80.21 \pm 1.10	79.61 \pm 1.11	79.76 \pm 1.11	79.98 \pm 1.10	80.06 \pm 1.10
1.0	78.92 \pm 1.12	78.32 \pm 1.14	79.38 \pm 1.11	79.30 \pm 1.12	78.47 \pm 1.13	79.30 \pm 1.12	78.77 \pm 1.13	79.38 \pm 1.11
1.5	76.72 \pm 1.16	78.01 \pm 1.14	75.89 \pm 1.18	77.48 \pm 1.15	74.91 \pm 1.19	74.91 \pm 1.19	71.19 \pm 1.25	75.89 \pm 1.18

Table 5: Accuracy on GSM8K for Phi-3-medium-4k-instruct using Bregman primal decoding ($\lambda \in \{0.1, 0.01\}$, $\alpha \in \{1.5, 2.0\}$) and top- k decoding, for various temperatures. For top- k , k equals the averaged k^* from primal decoding with matching temperature, μ , and α . Standard deviations are over 1000 bootstrap resamples.

Temp	$\lambda = 0.1$		Top- k ($\lambda = 0.1$)	$\lambda = 0.01$		Top- k ($\lambda = 0.01$)		
	$\alpha = 1.5$	$\alpha = 2.0$		$\alpha = 1.5$	$\alpha = 2.0$			
0.3	86.81 \pm 0.93	87.87 \pm 0.90	85.97 \pm 0.96	85.97 \pm 0.96	87.41 \pm 0.91	87.04 \pm 0.93	87.26 \pm 0.92	87.26 \pm 0.92
0.7	86.96 \pm 0.93	88.17 \pm 0.89	85.97 \pm 0.96	85.97 \pm 0.96	85.67 \pm 0.97	86.88 \pm 0.93	88.10 \pm 0.89	88.10 \pm 0.89
1.0	86.35 \pm 0.95	87.11 \pm 0.92	85.97 \pm 0.96	85.97 \pm 0.96	84.99 \pm 0.98	83.93 \pm 1.01	85.44 \pm 0.97	85.44 \pm 0.97
1.5	87.19 \pm 0.92	86.58 \pm 0.94	85.97 \pm 0.96	85.97 \pm 0.96	82.94 \pm 1.04	83.70 \pm 1.02	80.14 \pm 1.10	80.14 \pm 1.10

Table 6: Accuracy on GSM8K for Phi-3-medium-4k-instruct using Bregman primal decoding ($\lambda \in \{0.001, 0.0001\}$, $\alpha \in \{1.5, 2.0\}$) and top- k decoding, for various temperatures. For top- k , k equals the averaged k^* from primal decoding with matching temperature, μ , and α . Standard deviations are over 1000 bootstrap resamples.

Temp	$\lambda = 0.001$		Top- k ($\lambda = 0.001$)	$\lambda = 0.0001$		Top- k ($\lambda = 0.0001$)		
	$\alpha = 1.5$	$\alpha = 2.0$		$\alpha = 1.5$	$\alpha = 2.0$			
0.3	87.11 \pm 0.92	86.88 \pm 0.93	86.50 \pm 0.94	86.81 \pm 0.93	87.49 \pm 0.91	87.49 \pm 0.91	86.20 \pm 0.95	86.50 \pm 0.94
0.7	86.81 \pm 0.93	86.50 \pm 0.94	85.29 \pm 0.98	85.67 \pm 0.97	84.99 \pm 0.98	84.91 \pm 0.99	85.60 \pm 0.97	85.29 \pm 0.98
1.0	83.62 \pm 1.02	82.34 \pm 1.05	82.71 \pm 1.04	82.79 \pm 1.04	82.71 \pm 1.04	82.11 \pm 1.06	81.35 \pm 1.07	82.71 \pm 1.04
1.5	76.95 \pm 1.16	78.92 \pm 1.12	69.75 \pm 1.27	73.84 \pm 1.21	72.25 \pm 1.23	76.04 \pm 1.18	62.62 \pm 1.33	65.81 \pm 1.31

H.4 Experiments for TriviaQA

Table 7 and 8 show accuracy on TriviaQA for LLaMA3.1-8B model. Here we choose 10% (≈ 1800 questions) proportion of TriviaQA validation dataset for evaluation.

Table 7: Accuracy on TriviaQA for LLaMA 3.1 8B using Bregman primal decoding ($\lambda \in \{0.1, 0.01\}$, $\alpha \in \{1.5, 2.0\}$) and top- k decoding, for various temperatures. For top- k , k equals the averaged k^* from primal decoding with matching temperature, λ , and α . Standard deviations are over 1000 bootstrap resamples.

Temp	$\lambda = 0.1$		Top- k ($\lambda = 0.1$)		$\lambda = 0.01$		Top- k ($\lambda = 0.01$)	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	67.80 \pm 1.10	67.47 \pm 1.11	67.58 \pm 1.11	67.58 \pm 1.11	66.57 \pm 1.11	66.69 \pm 1.11	66.74 \pm 1.11	66.74 \pm 1.11
0.7	65.68 \pm 1.12	66.35 \pm 1.12	67.58 \pm 1.11	67.58 \pm 1.11	64.23 \pm 1.13	63.84 \pm 1.13	65.01 \pm 1.13	65.01 \pm 1.13
1.0	65.63 \pm 1.12	66.69 \pm 1.11	67.58 \pm 1.11	67.58 \pm 1.11	61.06 \pm 1.15	61.17 \pm 1.15	62.67 \pm 1.14	62.67 \pm 1.14
1.5	64.85 \pm 1.13	66.96 \pm 1.11	67.58 \pm 1.11	67.58 \pm 1.11	59.78 \pm 1.16	60.84 \pm 1.15	60.84 \pm 1.15	60.84 \pm 1.15

Table 8: Accuracy on TriviaQA for LLaMA 3.1 8B using Bregman primal decoding ($\lambda \in \{0.001, 0.0001\}$, $\alpha \in \{1.5, 2.0\}$) and top- k decoding, for various temperatures. For top- k , k equals the averaged k^* from primal decoding with matching temperature, λ , and α . Standard deviations are over 1000 bootstrap resamples.

Temp	$\lambda = 0.001$		Top- k ($\lambda = 0.001$)		$\lambda = 0.0001$		Top- k ($\lambda = 0.0001$)	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	66.85 \pm 1.11	67.58 \pm 1.11	67.13 \pm 1.11	67.13 \pm 1.11	66.69 \pm 1.11	67.08 \pm 1.11	67.19 \pm 1.11	67.58 \pm 1.11
0.7	63.40 \pm 1.14	63.18 \pm 1.14	64.68 \pm 1.13	64.79 \pm 1.13	62.73 \pm 1.14	62.73 \pm 1.14	63.79 \pm 1.13	63.68 \pm 1.14
1.0	59.00 \pm 1.16	59.00 \pm 1.16	60.17 \pm 1.16	62.23 \pm 1.14	57.99 \pm 1.17	59.11 \pm 1.16	58.55 \pm 1.16	60.11 \pm 1.16
1.5	55.04 \pm 1.17	55.71 \pm 1.17	52.81 \pm 1.18	56.38 \pm 1.17	49.19 \pm 1.18	52.59 \pm 1.18	50.19 \pm 1.18	51.31 \pm 1.18

Table 9 and 10 show analogous accuracy results for Phi3-medium-4k-instruct on TriviaQA.

Table 9: Accuracy on TriviaQA for Phi-3-medium-4k-instruct using Bregman primal decoding ($\lambda \in \{0.1, 0.01\}$, $\alpha \in \{1.5, 2.0\}$) and top- k decoding, for various temperatures. For top- k , k equals the averaged k^* from primal decoding with matching temperature, λ , and α . Standard deviations are over 1000 bootstrap resamples.

Temp	$\lambda = 0.1$		Top- k ($\lambda = 0.1$)		$\lambda = 0.01$		Top- k ($\lambda = 0.01$)	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	58.44 \pm 1.16	59.67 \pm 1.16	59.05 \pm 1.16	60.50 \pm 1.15	59.33 \pm 1.16	59.22 \pm 1.16	59.11 \pm 1.16	59.39 \pm 1.16
0.7	57.44 \pm 1.17	58.22 \pm 1.16	56.77 \pm 1.17	60.50 \pm 1.15	55.21 \pm 1.17	55.88 \pm 1.17	55.54 \pm 1.17	56.77 \pm 1.17
1.0	56.60 \pm 1.17	56.94 \pm 1.17	54.54 \pm 1.18	60.50 \pm 1.15	52.09 \pm 1.18	51.75 \pm 1.18	50.31 \pm 1.18	52.37 \pm 1.18
1.5	57.16 \pm 1.17	58.22 \pm 1.16	50.14 \pm 1.18	60.50 \pm 1.15	49.47 \pm 1.18	50.19 \pm 1.18	43.57 \pm 1.17	45.29 \pm 1.18

Table 10: Accuracy on TriviaQA for Phi-3-medium-4k-instruct using Bregman primal decoding ($\lambda \in \{0.001, 0.0001\}$, $\alpha \in \{1.5, 2.0\}$) and top- k decoding, for various temperatures. For top- k , k equals the averaged k^* from primal decoding with matching temperature, λ , and α . Standard deviations are over 1000 bootstrap resamples.

Temp	$\lambda = 0.001$		Top- k ($\lambda = 0.001$)		$\lambda = 0.0001$		Top- k ($\lambda = 0.0001$)	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	59.72 \pm 1.16	58.61 \pm 1.16	59.44 \pm 1.16	59.22 \pm 1.16	59.83 \pm 1.16	59.39 \pm 1.16	59.44 \pm 1.16	59.44 \pm 1.16
0.7	54.82 \pm 1.17	54.04 \pm 1.18	53.70 \pm 1.18	54.60 \pm 1.18	54.54 \pm 1.18	54.43 \pm 1.18	56.21 \pm 1.17	54.71 \pm 1.18
1.0	48.13 \pm 1.18	49.19 \pm 1.18	49.58 \pm 1.18	50.64 \pm 1.18	48.69 \pm 1.18	48.58 \pm 1.18	48.64 \pm 1.18	48.64 \pm 1.18
1.5	42.51 \pm 1.17	44.18 \pm 1.17	39.55 \pm 1.15	42.67 \pm 1.17	38.22 \pm 1.15	39.94 \pm 1.16	36.04 \pm 1.13	37.72 \pm 1.14

H.5 Adaptivity

In this section, we consider the adaptivity of primal decoding by presenting the mean, standard deviation and entropy of the k^* chosen by our method during evaluation on GSM8K and TriviaQA datasets.

In Table 11, we show the average k^* values (and their values rounded to the nearest integer) selected by primal Bregman decoding on GSM8K with LLaMA 3.1 8B for various temperatures, α , and λ . Table 12 shows corresponding standard deviation and entropy.

Table 11: Mean (and rounded) average k^* values on GSM8K with LLaMA 3.1 8B for various temperatures, α , and λ .

Temp	$\lambda = 0.1$		$\lambda = 0.01$		$\lambda = 0.001$		$\lambda = 0.0001$	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	1.2231(1)	1.1537 (1)	1.6201 (2)	1.4453 (1)	2.1274 (2)	1.7964 (2)	2.8578 (3)	2.2112 (2)
0.7	1.2295 (1)	1.1554 (1)	1.6689 (2)	1.4794 (1)	2.3193 (2)	1.9048 (2)	3.2554 (3)	2.4974 (2)
1.0	1.2287 (1)	1.1594 (1)	1.7519 (2)	1.5048 (2)	2.7231 (3)	2.0234 (2)	4.6926 (5)	3.0924 (3)
1.5	1.2331 (1)	1.1566 (1)	1.8106 (2)	1.5189 (2)	4.1842 (4)	2.4067 (2)	14.2539 (14)	5.6002 (6)

Table 12: Standard deviation (and entropy) of average k^* values on GSM8K with LLaMA 3.1 8B for various temperatures, α , and λ .

Temp	$\lambda = 0.1$		$\lambda = 0.01$		$\lambda = 0.001$		$\lambda = 0.0001$	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	0.46 (0.82)	0.36 (0.62)	1.07 (1.55)	0.77 (1.28)	1.89 (2.08)	1.31 (1.77)	3.11 (2.58)	2.00 (2.16)
0.7	0.47 (0.84)	0.36 (0.62)	1.12 (1.62)	0.80 (1.34)	2.21 (2.24)	1.47 (1.89)	3.98 (2.78)	2.53 (2.37)
1.0	0.47 (0.84)	0.37 (0.63)	1.23 (1.72)	0.83 (1.38)	3.03 (2.49)	1.65 (2.00)	7.31 (3.21)	3.69 (2.69)
1.5	0.47 (0.85)	0.36 (0.63)	1.30 (1.79)	0.84 (1.40)	5.37 (3.13)	2.19 (2.32)	18.01 (4.04)	7.77 (3.51)

Table 13-14 show analogous adaptivity results for Qwen2.5-14B-Instruct.

Table 13: Mean (and rounded) average k^* values on GSM8K with Qwen2.5-14B-Instruct for various temperatures, α , and λ .

Temp	$\lambda = 0.1$		$\lambda = 0.01$		$\lambda = 0.001$		$\lambda = 0.0001$	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	1.0973(1)	1.0660(1)	1.4899(1)	1.3425(1)	2.7614(3)	1.9317(2)	5.4537(5)	3.1726(3)
0.7	1.1010(1)	1.0672(1)	1.5043(2)	1.3534(1)	2.7778(3)	1.9522(2)	5.5047(6)	3.1911(3)
1.0	1.1000(1)	1.0666(1)	1.5171(2)	1.3591(1)	2.7985(3)	1.9723(2)	5.5603(6)	3.2493(3)
1.5	1.1008(1)	1.0662(1)	1.5211(2)	1.3628(1)	2.8761(3)	2.0028(2)	5.7831(6)	3.3285(3)

Table 14: Standard deviation (and entropy) of average k^* values on GSM8K with Qwen2.5-14B-Instruct under $\lambda = 0.0001$ and varying temperatures.

Temp	$\alpha = 1.5$		$\alpha = 2.0$					
	0.3	10.75 (2.81)	0.7	10.71 (2.86)	1.0	10.70 (2.90)	1.5	10.75 (3.03)
0.3	10.75 (2.81)	4.88 (2.26)	0.7	10.71 (2.86)	4.85 (2.29)	1.0	10.70 (2.90)	4.88 (2.34)
1.0	10.70 (2.90)	4.88 (2.34)	1.5	10.75 (3.03)	4.90 (2.42)			

Table 15-16 show analogous adaptivity results for Phi-3-medium-4k-instruct.

Table 15: Mean (and rounded) average k^* values on GSM8K with Phi-3-medium-4k-instruct for various temperatures, α , and μ .

Temp	$\lambda = 0.1$		$\lambda = 0.01$		$\lambda = 0.001$		$\lambda = 0.0001$	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	1.4048(1)	1.2609(1)	2.4123(2)	1.9287(2)	4.7186(5)	3.1299(3)	8.6473(9)	5.2889(5)
0.7	1.4074(1)	1.2601(1)	2.4337(2)	1.9409(2)	4.6706(5)	3.1307(3)	8.6958(9)	5.3697(5)
1.0	1.4073(1)	1.2603(1)	2.4541(2)	1.9364(2)	4.7772(5)	3.1792(3)	8.8501(9)	5.4394(5)
1.5	1.4098(1)	1.2575(1)	2.4667(2)	1.9498(2)	4.9289(5)	3.2335(3)	9.4782(9)	5.6113(6)

Table 16: Standard deviation (and entropy) of average k^* values on GSM8K with Phi-3-medium-4k-instruct under $\lambda = 0.0001$ for varying temperatures and α .

Temp	$\alpha = 1.5$		$\alpha = 2.0$					
	0.3	12.09 (3.83)	0.7	12.01 (3.89)	1.0	11.98 (3.98)	1.5	11.79 (4.24)
0.3	12.09 (3.83)	6.77 (3.32)	0.7	12.01 (3.89)	7.23 (3.61)	1.0	11.98 (3.98)	6.74 (3.45)
1.0	11.98 (3.98)	6.74 (3.45)	1.5	11.79 (4.24)	7.29 (3.79)			

In Table 17, we show the average k^* values (and their values rounded to the nearest integer) selected by primal Bregman decoding on TriviaQA with LLaMA 3.1 8B for various temperatures, α , and λ . Table 18 shows corresponding standard deviation and entropy.

Table 17: Mean (and rounded) average k^* values on TriviaQA with LLaMA 3.1 8B for various temperatures, α , and λ .

Temp	$\lambda = 0.1$		$\lambda = 0.01$		$\lambda = 0.001$		$\lambda = 0.0001$	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	1.1536(1)	1.1452(1)	1.9135(2)	1.5291(2)	3.4193(3)	2.5753(3)	6.9406(7)	4.5149(5)
0.7	1.2265(1)	1.1275(1)	2.0109(2)	1.6265(2)	3.8877(4)	2.7593(3)	8.8845(9)	5.1892(5)
1.0	1.2138(1)	1.1324(1)	2.0273(2)	1.6818(2)	3.9715(4)	2.9759(3)	8.4552(8)	5.7381(6)
1.5	1.2013(1)	1.1384(1)	2.0289(2)	1.7032(2)	4.1749(4)	2.9398(3)	8.4399(8)	5.5166(6)

Table 18: Standard deviation (and entropy) of average k^* values on TriviaQA with LLaMA 3.1 8B for various temperatures, α , and λ .

Temp	$\lambda = 0.1$		$\lambda = 0.01$		$\lambda = 0.001$		$\lambda = 0.0001$	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	0.41 (0.65)	0.35 (0.60)	1.37 (1.90)	0.86 (1.42)	3.65 (2.85)	2.09 (2.42)	10.36 (3.63)	5.35 (3.28)
0.7	0.48 (0.83)	0.33 (0.55)	1.44 (2.00)	0.93 (1.56)	4.24 (3.09)	2.20 (2.53)	12.18 (4.10)	5.98 (3.56)
1.0	0.47 (0.81)	0.34 (0.56)	1.42 (2.01)	0.98 (1.63)	4.42 (3.03)	2.43 (2.68)	12.07 (3.77)	6.54 (3.68)
1.5	0.46 (0.78)	0.35 (0.58)	1.42 (2.01)	1.00 (1.66)	5.07 (3.02)	2.46 (2.62)	12.90 (3.34)	7.18 (3.35)

Table 19-20 show analogous adaptivity results for Phi-3-medium-4k-instruct on TriviaQA.

Table 19: Mean (and rounded) average k^* values on TriviaQA with Phi-3-medium-4k-instruct for various temperatures, α , and λ .

Temp	$\lambda = 0.1$		$\lambda = 0.01$		$\lambda = 0.001$		$\lambda = 0.0001$	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	1.7393(2)	1.4142(1)	3.6184(4)	2.8184(3)	9.2976(9)	5.2226(5)	18.7026(19)	10.4901(10)
0.7	1.7148(2)	1.4288(1)	3.6134(4)	2.6381(3)	8.4512(8)	4.8061(5)	16.8627(17)	9.3718(9)
1.0	1.7348(2)	1.4216(1)	3.6840(4)	2.6050(3)	8.3500(8)	4.8924(5)	16.7567(17)	9.6411(10)
1.5	1.6687(2)	1.4378(1)	3.6081(4)	2.6601(3)	8.6007(9)	5.1906(5)	18.2735(18)	9.7162(10)

Table 20: Standard deviation (and entropy) of average k^* values on TriviaQA with Phi-3-medium-4k-instruct for various temperatures, α , and λ .

Temp	$\lambda = 0.1$		$\lambda = 0.01$		$\lambda = 0.001$		$\lambda = 0.0001$	
	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$	$\alpha = 1.5$	$\alpha = 2.0$
0.3	0.87 (1.43)	0.49 (0.98)	2.84 (2.65)	1.76 (2.26)	8.19 (4.18)	3.99 (3.32)	16.54 (5.06)	8.88 (4.33)
0.7	0.87 (1.41)	0.49 (0.99)	2.69 (2.76)	1.70 (2.22)	7.50 (4.16)	3.78 (3.28)	15.26 (5.16)	8.38 (4.31)
1.0	0.87 (1.43)	0.49 (0.98)	2.68 (2.82)	1.65 (2.24)	7.04 (4.22)	3.62 (3.37)	13.81 (5.27)	7.75 (4.46)
1.5	0.84 (1.40)	0.50 (0.99)	2.58 (2.84)	1.63 (2.27)	6.60 (4.30)	3.58 (3.45)	13.94 (5.37)	7.51 (4.51)