DuoDiff: Accelerating Diffusion Models with a
Dual-Backbone Approach

Daniel Gallo Fernandez* Razvan-Andrei Matisan*
University of Amsterdam University of Amsterdam
daniel.gallo.fernandez@student.uva.nl razvan.matisan@student.uva.nl
Alejandro Monroy Muiioz* Ana-Maria Vasilcoiu™®
University of Amsterdam University of Amsterdam

alejandro.monroy.munoz@student.uva.nl ana-maria.vasilcoiu@student.uva.nl

Janusz Partyka Tin HadZi Veljkovié¢
University of Amsterdam University of Amsterdam
janusz.partyka@student.uva.nl t.hadziveljkovic@uva.nl
Metod Jazbec

University of Amsterdam
m.jazbec@uva.nl

Abstract

Diffusion models have achieved unprecedented performance in image generation,
yet they suffer from slow inference due to their iterative sampling process. To
address this, early-exiting has recently been proposed, where the depth of the
denoising network is made adaptive based on the (estimated) difficulty of each
sampling step. Here, we discover an interesting “phase transition” in the sampling
process of current adaptive diffusion models: the denoising network consistently
exits early during the initial sampling steps, until it suddenly switches to utilizing
the full network. Based on this, we propose accelerating generation by employing
a shallower denoising network in the initial sampling steps and a deeper network
in the later steps. We demonstrate empirically that our dual-backbone approach,
DuoDiff, outperforms existing early-exit diffusion methods in both inference speed
and generation quality. Importantly, DuoDiff is easy to implement and complemen-
tary to existing approaches for accelerating diffusion.

1 Introduction

Diffusion models [21] have recently demonstrated impressive performance in generative tasks across
various modalities, including images [6l 3]], videos [7} |8]], audio [[12], and molecules [9]. However,
generating new samples with diffusion can be slow, as numerous sequential calls to the denoising
network are required [25]. To improve sampling efficiency [26], some of the most promising
approaches focus on reducing the number of sampling steps (e.g., DDIM [22]] and distillation-based
methods [19}15]]) or modifying the sampling space (e.g., latent diffusion [18]]).

Complementary to these efforts to accelerate diffusion, early-exiting [24]] has been proposed in
AdabDiff [23]]. Unlike the aforementioned static methods, AdaDiff is an adaptive approach in which

* Alphabetical order. Equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

the utilized depth of the denoising network can vary between sampling steps. Specifically, the
difficulty of each sampling step ¢ (where ¢ decreases from the total number of steps 1" to 0) is
estimated by computing the uncertainty of the denoising network at each layer. If the uncertainty is
low enough, the forward pass terminates at that layer (i.e., the model exits early), thereby reducing
computation for that step.

In this work, we leverage the adaptive nature of early-exit models to study the dynamics of the
generative process in diffusion models. Interestingly, we find that early in the process (i.e., for large
t), only a few layers of the denoising network are active, whereas later in the process (i.e., when
t approaches 0), the full network is utilized (Figure[I). This suggests that the generation process
in diffusion models begins with an easier phase, followed by a more challenging one. Motivated
by these findings, we propose eliminating dynamic early-exit at every sampling step and instead
introduce a (static) dual-backbone design, DuoDiff. DuoDiff consists of two denoising networks: a
shallower one employed during the initial, easier phase of the generation process, and a deeper one
used in the subsequent, more difficult stage (Figure [3).

We experimentally demonstrate that DuoDiff outperforms existing early-exit diffusion models in both
sampling latency and image generation quality across a range of standard datasets (e.g., ImageNet
256 x 256). Furthermore, compared to early-exit counterparts [23} [16], DuoDiff is better suited for
batch inference, as it does not require per-sample computational paths. Additionally, we show that
DuoDiff can be effectively combined with other popular efficiency-enhancing methods [22} |18]].

2 Background

Diffusion models generate high-quality samples by progressively adding noise to data and learning
to reverse this process. The forward process, which adds noise to the original data, is defined as

mt:\/atm0+\/176‘t€7€NN(07I)7 (1)

where g ~ qo() is a data sample, ¢t € {T'— 1,...,0}, and & is a noise function that decreases
with ¢ (see Figure2)). Learning the generative model then corresponds to the reverse process, which
entails fitting the denoising network f(x;, t) using the (simplified) regression objective [[6]:

L =Etagellf(Varwo + V1 — ave,t) — €l)

After training, new samples are generated by first sampling z7 ~ A(0, I), and then iteratively
applying the denoising network f according to the transition rules from DDPM [6]] or DDIM [22].

Early-exiting is a popular paradigm for making inference more efficient by allowing the model’s
depth to adapt based on the difficulty of the given input [24]. It has been successfully applied across
various domains, including computer vision [[10} 11]] and language modeling [4} 20]. For diffusion
models, early-exiting has been previously explored in AdaDiff [23]]. To enable dynamic inference in
AdaDiff, intermediate output heads are attached to the original backbone model (U-ViT [1]]) before
each layer i = 0,..., N — 1. Furthermore, an uncertainty estimate, u; ; € [0, 1], is defined at every
sampling step ¢ and at each layer i. The early (noise) prediction is returned once the uncertainty at a
given layer falls below a predefined threshold 6 € [0, 1]:

9o(Lo,t) if ug,y <90,
(e, 1;0) == : 3)
gn-1(Ln—1) ifun_1,: <80,
gN(Lnyt) otherwise.

where L; ; denotes the activations before layer ¢, and g; denotes the ¢-th output head. For more details,
refer to Appendix [A]

3 Methods

Early-Exit Trends in Diffusion Models. We begin by leveraging the adaptivity of AdaDiff [23]]
to study the dynamics of the generative process in diffusion models. Specifically, in Figure [I] we
visualize the average exit layer across test samples for each sampling step ¢. Interestingly, we observe
that early-exit occurs exclusively at the beginning of the reverse process. For example, on ImageNet
64 x 64 with threshold § = 0.09, the average exit layer equals 2 until ¢ ~ 600, after which the full

13 13 17 21
/ vl il
1 [uf 1 i 13
g9 J/ | g9 [) f 215 ‘
Z [z? J Fu I E1 |
e 7 Vi = ! | = 8 | =9
é 5 / i — ez(mr: ﬁ 5 | — H:U.l)? Lﬂx 5 Vu | — 9:(1(12 m>< p — y:u.ui
s/ / =007 5) 0= 0.07 i | =007 | e 0=007
1 — 0=0.09 1 —— 0=0.08 D) *J —— 0=0.09 G B — —— 0=0.09
1000 800 600 400 200 0O 1000 800 600 400 200 O 1000 800 600 400 200 0 1000 800 600 400 200 0
Timestep Timestep Timestep Timestep
(a) CIFAR-10 (b) CelebA (c) ImageNet (64 x 64) (d) ImageNet (256 x 256)

Figure 1: Early-exit trends in AdaDiff . The plots show the average exit layer across 5,120
images for different datasets and various exiting thresholds 6. We observe that early-exiting in the
denoising network occurs only at the start of the generation process (for ¢ close to T'), followed by a
sudden switch to using the full denoising network for the remaining generation steps. The pattern is
consistent across different datasets and resembles a step function.

Input is given by /ayzo + /1 — aze

600 400 200 0
Timestep

t =600

800

t =999 t =800

t =200 t=0

t =400

Figure 2: Denoising objective. Given a noisy image and a timestep, the model must predict the
added noise. As we can observe, this task is easier for high values of ¢, in which the expected output

is very similar to the input.

model is utilized. This suggests that, based on AdaDiff’s exit trends, the diffusion generative process
can be roughly divided into two stages, with the first one being ‘easier’ than the second.

Although such behaviour is surprising at first (and was overlooked in the original AdaDiff paper
[23])), we demonstrate that it can be explained by taking a closer look at the training of diffusion
models. To this end, observe how as ¢ grows, ; becomes increasingly dominated by noise (Eq. [T).
Consequently, the input and expected output of the denoising network f begin to resemble each other
more closely, making the task easier, as the network primarily needs to learn an identity-like behavior
El See Figurefor a more visual explanation. This is also reflected at test time, with the denoising
network consistently early-exiting for larger ¢, indicating an easier task.

DuoDiff. Building upon the early-exit trends reported above, we propose DuoDiff, a novel diffusion
framework designed to accelerate inference by employing a dual-backbone architecture. During the
initial timesteps of the reverse diffusion process, where the input is largely dominated by noise and
the task is simpler, DuoDiff utilizes a shallow three-layer backbone, as the early-exit layer for most
samples in these timesteps is usually lower than 3 (Figure[I). As the diffusion process progresses and
the input becomes more structured, DuoDiff switches to the full backbone for the remaining, more
complex timesteps. We denote by ¢ the number of steps during which the shallow model is active.
Both the shallow and the complete backbones are trained from scratch on the same dataset using the
same diffusion training objective. In addition, both backbones are trained for all values of ¢ such that
one can freely choose ¢, after training. Figure [3|provides a detailed illustration of DuoDiff’s design.

>This is further supported by the training loss being larger for smaller values of ¢, e.g., see Figure 2 in .

Shallow backbone Full backbone

(e = x1] (e = xe1]

Erty

T XT—tg—1

Figure 3: DuoDiff framework. DuoDiff employs a shallow three-layer U-ViT backbone for the first
t, timesteps to reduce computational overhead, before switching to a full backbone for the remaining
denoising steps, ensuring both efficiency and image quality. Both backbones are trained on the same
dataset using the same diffusion objective.

Unlike AdaDiff, which relies on dynamic early-exit mechanisms based on per-sample uncertainty
levels (Eq. [3), DuoDiff simplifies this process by using a fixed transition point between the two
backbones. While this sacrifices the adaptiveness of early-exiting (i.e., varying compute based on
sample’s difficulty), we believe this is well justified here as we observe very little variability in
exiting patterns between different samples (as indicated by small standard deviation bars in Figure [T).
Moreover, the static approach eliminates the batching inefficiencies caused by AdaDiff’s varying exit
points for different samples (see Appendix [A.3), making batch inference more efficient and easier to
implement.

4 Experiments

In order to illustrate the capabilities of DuoDiff, we compare it to AdaDiff on three widely used
datasets: CIFAR-10 32 x 32 [13]] and CelebA 64 x 64 [|14]] for unconditional generation and ImageNet
[2]] for class-conditional generation. For ImageNet, we evaluate the models on two resolutions: 64 x 64
and 256 x 256, enabling us to assess DuoDiff’s scalability across varying image sizes. For ImageNet
256 x 256, we train our diffusion models in latent space. We utilize the U-ViT [1]] architecture as
the base model. In all experiments, DuoDiff employs a shallow three-layer backbone, while the full
model varies in size depending on the dataset (see Tables [2]and[3).

We evaluate the quality of the generated images using the FID score [5] and measure the performance
by recording the inference time per sample. Additionally, we test DuoDiff with both DDPM and
DDIM samplers and provide evidence that DuoDiff works seamlessly with latent space diffusion. All
metrics are computed over 5,120 images, processed in batches of 128. For AdaDiff, computing the
inference time using batch sampling is challenging. For more details on batching, see Appendix [A23]

Appendix [C| presents the hyperparameters and further implementation details. We also make publicly
available our code on GitHub’| which contains both the DuoDiff and AdaDiff implementations
together with experiments, configuration files, and demo notebooks.

Performance and Image Quality on AdaDiff. In this study, we compare the performance of
AdabDiff and DuoDiff, demonstrating that DuoDiff surpasses AdaDiff in both image quality and
sampling efficiency. Figure]illustrates the FID scores and inference time across ImageNet 64 x 64
and ImageNet 256 x 256. For a tabular view of all the results, please refer to Appendix B

DuoDiff demonstrates superior performance over both the baseline and AdaDiff in terms of inference
time. This outcome is expected, as DuoDiff leverages a shallow U-ViT for the first timesteps, while
AdaDiff incurs additional overhead from its uncertainty-based early-exit mechanism.

*https://github.com/razvanmatisan/duodiff

https://github.com/razvanmatisan/duodiff

= - & - AdaDiff ImageNet 64x64
2 10 —M— DuoDiff ImageNet 256x256
'§ 8
o A
5%
2
; e
g4 A
o | By Tt A

20 0 40 50 60

FID score

Figure 4: Comparison of AdaDiff and DuoDiff. Comparison of AdaDiff and DuoDiff. The plot
shows FID score and generation time per sample (lower is better for both) across two datasets
(ImageNet 64 x 64 and 256 x 256). Each point represents a different parameter configuration,
including the base model, which can be seen as a special case of DuoDiff (t; = 0). We can see how
DuoDiff consistently outperforms AdaDiff in both performance and inference time.

Table 1: Compatibility with DDIM. Image quality (FID score) and inference speed using DuoDiff
with DDIM sampling in a latent space. We observe how DuoDiff successfully increases the sampling
speed without a significant impact in image quality.

Dataset Base model Inference method FID score | Inference Time [s] |
DDIM (n = 0,n_steps = 50) 27.82 0.55
ImageNet . + DuoDiff (t; = 150) 29.17 0.47
256 x 256) O VT2 puoDiff (¢, = 200) 30.06 0.46
+ DuoDiff (ts = 300) 34.36 0.41

However, the decrease in sampling time for both methods is accompanied by a decline in FID scores.
For AdabDiff, this decline is more pronounced, with a clear trade-off between faster inference and
lower image quality as 6 increases. In contrast, while DuoDiff also experiences a reduction in FID
scores as the ¢, value increases, this decline is significantly less severe compared to AdaDiff, with the
image quality remaining more stable and closer to the baseline. For example, on ImageNet 256 x 256
and with a computational budget of 7s per sample, AdaDiff achieves a FID score of 57, whereas
DuoDiff achieves a FID score of 32 — an improvement of roughly 40%. Refer to Table 2| for more
details and quantitative results.

Moreover, Table [I]demonstrates that DuoDiff can be used alongside other techniques such as DDIM
[22] and latent diffusion [[18]].

Hyperparameters Effect on Performance. A general trend can be observed for both AdaDiff
and DuoDiff: as the threshold hyperparameters (6 and ¢, respectively) increase, image quality
progressively degrades, while inference time decreases. This relationship is illustrated qualitatively
in Figure[5)and quantified in Table 2] We leave for future work the incorporation of more principled
mechanisms for threshold selection.

5 Conclusion & Future Work

In this paper, we have introduced DuoDiff, a dual-backbone alternative to adaptive diffusion models
motivated by the consistency of the early-exit trends. We show that DuoDiff substantially decreases
per-sample inference time while maintaining image quality. DuoDiff is also compatible with other
diffusion techniques, including latent space diffusion and DDIM sampling, providing an efficient
solution to address the slow inference speed of diffusion models.

Future research will focus on exploring different DuoDiff configurations, such as increasing the
number of layers in the shallow transformer in order to increase ts. Additionally, a promising
direction involves investigating early-exit trends across different diffusion parametrizations, such as
predicting the original image rather than the added noise.

[)
wHY .~ PEES_ -
N EEEL
R " - BT
=0.075 ;. ¥ ts = 0l im -
= L e — =N

(a) AdaDiff threshold (0) (b) DuoDiff switch time (¢5)

Figure 5: Qualitative hyperparameter analysis. Comparison of image generation results for
AdabDiff (left) and DuoDiff (right) on the ImageNet dataset (256 x 256) using different values for
their respective hyperparameters (¢ in AdaDiff and ¢, in DuoDiff). We observe how higher values of
0 and t¢ diminish the quality of the generated images.

References

[1] Fan Bao et al. “All are worth words: A vit backbone for diffusion models”. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 2023, pp. 22669-22679.

[2] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2009, pp. 248-255. DOI:/10.1109/CVPR |
2009.5206848.

[3] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat gans on image synthesis”. In:
Advances in neural information processing systems 34 (2021), pp. 8780-8794.

[4] Maha Elbayad et al. “Depth-adaptive transformer”. In: arXiv preprint arXiv:1910.10073
(2019).

[5] Martin Heusel et al. “Gans trained by a two time-scale update rule converge to a local nash
equilibrium”. In: NeurIPS (2017).

[6] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic models”. In:
Advances in neural information processing systems 33 (2020), pp. 6840-6851.

[7] Jonathan Ho et al. “Imagen video: High definition video generation with diffusion models”. In:
arXiv preprint arXiv:2210.02303 (2022).

[8] Jonathan Ho et al. “Video diffusion models”. In: Advances in Neural Information Processing
Systems 35 (2022), pp. 8633—-8646.

[9] Emiel Hoogeboom et al. “Equivariant diffusion for molecule generation in 3d”. In: Interna-
tional conference on machine learning. PMLR. 2022, pp. 8867-8887.

[10] Gao Huang et al. “Multi-scale dense networks for resource efficient image classification”. In:
arXiv preprint arXiv:1703.09844 (2017).

[11] Metod Jazbec et al. “Towards anytime classification in early-exit architectures by enforcing
conditional monotonicity”. In: Advances in Neural Information Processing Systems 36 (2024).

[12] Zhifeng Kong et al. “Diffwave: A versatile diffusion model for audio synthesis”. In: arXiv
preprint arXiv:2009.09761 (2020).

[13] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Tech. rep. 0. Toronto, Ontario: University of Toronto, 2009. URL: https://www.cs.toronto!
edu/"kriz/learning-features-2009-TR.pdf.

[14] Ziwei Liu et al. “Deep Learning Face Attributes in the Wild”. In: ICCV. 2015.

[15] Eric Luhman and Troy Luhman. “Knowledge distillation in iterative generative models for
improved sampling speed”. In: arXiv preprint arXiv:2101.02388 (2021).

[16] Taehong Moon et al. “Early exiting for accelerated inference in diffusion models”. In: ICML
2023 Workshop on Structured Probabilistic Inference {\ &} Generative Modeling. 2023.

[17] Alex Nichol and Prafulla Dhariwal. “Improved Denoising Diffusion Probabilistic Models”. In:
CoRR (2021).

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[18]

[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

Robin Rombach et al. “High-resolution image synthesis with latent diffusion models”. In:

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022,
pp- 10684-10695.

Tim Salimans and Jonathan Ho. “Progressive distillation for fast sampling of diffusion models”.
In: arXiv preprint arXiv:2202.00512 (2022).

Tal Schuster et al. “Confident adaptive language modeling”. In: Advances in Neural Information
Processing Systems 35 (2022), pp. 17456-17472.

Jascha Sohl-Dickstein et al. “Deep unsupervised learning using nonequilibrium thermodynam-
ics”. In: International conference on machine learning. PMLR. 2015, pp. 2256-2265.
Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising diffusion implicit models”. In:
arXiv preprint arXiv:2010.02502 (2020).

Shengkun Tang et al. AdaDiff: Accelerating Diffusion Models through Step-Wise Adaptive
Computation. 2024. arXiv: 2309.17074.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. “Branchynet: Fast infer-
ence via early exiting from deep neural networks”. In: 2016 23rd international conference on
pattern recognition (ICPR). IEEE. 2016, pp. 2464-24609.

Jakub M. Tomczak. Deep Generative Modeling. English. Germany: Springer, Feb. 2022. ISBN:
978-3-030-93157-5. DOI:|10.1007/978-3-030-93158-2.

Anwaar Ulhaq, Naveed Akhtar, and Ganna Pogrebna. “Efficient diffusion models for vision: A
survey”. In: arXiv preprint arXiv:2210.09292 (2022).

https://arxiv.org/abs/2309.17074
https://doi.org/10.1007/978-3-030-93158-2

A AdaDiff

A.1 Architecture

AdaDiff implements a dynamic early-exit strategy, where Uncertainty Estimation Modules (UEMs)
are used to determine whether computation can be halted at each layer of the model. This process
is illustrated in Figure[6] which displays the AdaDiff architecture built on top of a 13-layer U-ViT
transformer, and the architectural design of the output heads.

Lysy UViT Final layer &
[:E ‘

Transformer block 13 |«
A

UEM 12 wrgy —><

&
Ly

(Fomerios 1]
Transformer block 12
Unpatchify

Transformer block 2 [«
A

UEM 1 ugy —><

Lyy

Transformer block 1 [<
A

es: Output head 12 €

>—yes Output head 1 &

yes: Output head 0 &

Y

: Exit threshold

(a) Architecture (b) Output head

Figure 6: AdaDiff architecture. AdaDiff architecture integrated in a U-ViT transformer with 13
layers. An Uncertainty Estimation Module is included before each transformer block to check whether
early-exiting can be applied. In the affirmative case, an output head computes the predicted noise
from the output of the previous transformer block. U-ViT skip connections are omitted for simplicity.

A.2 Timestep-Aware Uncertainty Estimation Module (UEM)

For the implementation of the uncertainty estimation networks, they propose a timestep-aware UEM
in the form of a fully-connected layer:

uip=f (WtT [Li: ,timesteps | + by))

where wy, by, f, and timesteps are the weight matrix, weight bias, activation function, and timestep
embeddings, respectively. The pseudo-uncertainty ground truth is constructed as follows:

Ui = F (|gi (Liyt) — €l) (%)

where g; is the output head, € is the ground truth noise value and F' is a function to keep the output
smaller than one (the authors use F' = tanh). The implementation of the output layer, shown in
Figure[6b] is inspired on the final layer of the U-VIiT architecture. This brings forth the loss function
of this module, designed as the MSE loss of the estimated and pseudo-uncertainty ground truth:

Z, (6)

N-1
L= iy — il
i=0

During inference, early-exiting is then achieved by comparing the estimated uncertainty of the output
prediction from each layer with a predefined threshold. Figure [7] provides a visual representation of
the UEM.

Uit

Aggregate

4)
[%j %]
[Linear]

o /

-
Ly

Figure 7: Uncertainty Estimation Module. We design the UEM as an multilayer perceptron, as
specified by the AdaDiff’s authors.

A.3 Uncertainty-Aware Layer-wise Loss

The authors also propose an uncertainty-aware layer-wise loss. They draw inspiration from previous
work, with one important modification, a weighting term to give more importance to the output layers
where the uncertainty is lower (i.e., early-exiting will happen).

N-1

Lyar =Y (L —uis) x |gi (Liy) — el ™
i=0

A.4 Training Strategy

AdaDiff utilizes a joint training strategy to balance the effect between uncertainty estimation loss and
uncertainty-aware layer-wise loss, added to the orignal diffusion loss:

Lat = Llpie (8) + ALY + BLY 41 ®)

In their experiments, the authors chose A = 1 and 8 = 1, which we keep the same throughout our
study.

A.5 Batching Issues

Implementing early-exiting is problematic when the batch size is larger than one, as some samples
are “ready” to exit early while others are not. A possible implementation would be to use a shrinking
batch size: start with a fixed batch size (e.g., 128) and as it goes through the transformer, take out the
samples that are ready.

To simplify, we simulated early-exiting: we make all samples go through the entire transformer, and
keep the intermediate activations. Then, we compute where each sample would have exited, and
replace the output with the corresponding intermediate activations. Thus, the output is the same as if
we had used the shrinking batch size implementation.

We also record the exit-layer per sample in order to approximate the inference time. Since all layers
and uncertainty modules are identical, we linearly interpolate the total running time using the average
exit layer. Note that the shrinking batch size implementation would likely result in longer inference

times, as it would need to use batch sizes that are not powers of two. Thus, we are underestimating
the inference time for AdaDiff.

B Quantitative results

Table 2] shows the FID score and inference time obtained for all experiments.

Table 2: Quantitative image generation results. Image generation quality and speed results for
the different datasets. *Linearly interpolating with mean exit layer. In practice, it is hard to apply
early-exiting with a large batch size. More details regarding the computation of inference time can be
found in Appendix[A.3|

Dataset Base model Inference method FID score | Inference time [s] |
DDPM 17.89 1.88
+ AdaDiff (# = 0.05) 17.89 1.93
+ AdaDiff (f = 0.07) 17.55 1.63*
g; /:11312(; U-VIT-S/2 + AdaDiff (9 = 0.09) 24.60 1.32°
+ DuoDiff (t5 = 300) 17.81 1.45
+ DuoDiff (ts = 400) 17.95 1.30
+ DuoDiff (t5 = 500) 18.67 1.16
DDPM 9.98 1.88
+ AdaDiff (# = 0.06) 9.75 1.96*
CelebA + AdaDiff (¢ = 0.07) 9.99 1.92%
(64 % 64) U-ViT-S/4 + AdaDiff (# = 0.08) 3141 1.36*
+ DuoDiff (t5 = 300) 10.08 1.45
+ DuoDiff (ts = 400) 10.61 1.30
+ DuoDiff (t5 = 500) 12.18 1.16
DDPM 19.19 5.12
+ AdaDiff (# = 0.05) 19.19 5.25
TmageNet . + AdaD@ff (6 =0.07) 32.52 3.90%
(64 x 64) U-ViT-M/4 + AdabDiff (f = 0.09) 51.94 3.24*
+ DuoDiff (¢, = 300) 21.49 3.86
+ DuoDiff (t5 = 400) 25.31 3.45
+ DuoDiff (5 = 500) 31.26 3.02
DDPM 25.38 10.94
+ AdaDiff (f = 0.05) 28.86 8.66*
TmageNet . + AdaD@ff (6 =0.07) 44.65 7.67*
(256 x 256) U-ViT-L/2 + AdaDiff (f = 0.09) 57.64 7.13*
+ DuoDiff (s = 300) 27.86 8.14
+ DuoDiff (t5 = 400) 32.34 7.21
+ DuoDiff (s = 500) 43.43 6.27
DDIM (n = 0, n_steps = 50) 27.82 0.55
ImageNet . + DuoDiff (¢, = 150) 29.17 0.47
@56 x 256) U VITL2 4 puoDitt (1, = 200) 30.06 0.46
+ DuoDiff (t5 = 300) 34.36 0.41

C Model specifications

Inspired by the authors of U-ViT, we use the 13-layer configuration for CIFAR-10 (U-ViT-S/2) and
CelebA (U-ViT-S/4), as well as 17-layer (U-ViT-M/4) and 21-layer (U-ViT-L/2) configurations for
the 64 x 64 and 256 x 256 ImageNet datasets, respectively. We train everything on a single 40 GB
Nvidia A100 GPU except for the full-models for ImageNet, for which we used the weights made
public by the authors [1]].

The training loss and strategy for AdaDiff are presented in Appendix [A] In our experiments, we keep
the backbone frozen and train just the output heads and UEMs, as it yielded better performance.

10

For DuoDiff, we train two U-ViT backbones: a shallow U-ViT with just three layers, and a large one
(its size depends on the dataset they were trained, as described previously in this section). The two
backbones are trained independently and for all values of ¢. This is important so we can freely decide
t, after training, and to ensure a smooth transition between models. For the ImageNet 256 x 256
dataset, we perform diffusion in latent space rather than directly in pixel space due to the large size of
the images, which significantly reduces computational overhead. We use a pre-trained autoencoder to
map images into latent space, which remains frozen during training. Additionally, we experiment
with both DDPM and DDIM samplers, evaluating DuoDiff’s performance in terms of inference speed
and image quality with each approach.

In Tables 3] and 4] we present a comprehensive list of the hyperparameters that we used in our
experiments.

Table 3: U-ViT configurations. Hyperparameters of the U-ViT backbones. We used a different
backbone depending on the dataset and image resolutions used, similar to the official implementation
of U-ViT [1]]. *For DuoDiff, the shallow backbone will have the same model specifications except
for the number of layers, which is 3.

CIFAR-10 | CelebA | ImageNet (64 x 64) | ImageNet (256 x 256)
Image size 32 64 64 32
Patch size 2 4 4 2
Input channels 3 3 3 4
Embedding dimension | 512 512 768 1,024
Number of layers* 13 13 17 21
Number of heads 8 8 12 16
Number of classes - - 1,000 1,000
Latent space diffusion | No No No Yes

Table 4: Training hyperparameters. Training hyperparameters for the baseline, AdaDiff, and
DuoDiff.

Parameter Training value
Training iterations

U-ViT (CIFAR10 and CelebA) 500,000

U-ViT (ImageNet) 300,000

AdaDiff (output heads and UEMs) | 100,000
Batch size 128
Optimizer AdamW
Learning rate 2e-4
Weight decay 3e-2

1 0.99

Ba 0.999
Warmup steps 1,500

11

	Introduction
	Background
	Methods
	Experiments
	Conclusion & Future Work
	AdaDiff
	Architecture
	Timestep-Aware Uncertainty Estimation Module (UEM)
	Uncertainty-Aware Layer-wise Loss
	Training Strategy
	Batching Issues

	Quantitative results
	Model specifications

