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ABSTRACT

Infusing inductive biases and knowledge priors in artificial neural networks is
a promising approach for achieving sample efficiency in current deep learning
models. Core knowledge priors of human intelligence have been studied
extensively in developmental science and recent work has postulated the idea that
research on artificial intelligence should revolve around the same basic priors. As
a step towards this direction, in this paper, we introduce LATFORMER, a model
that incorporates lattice geometry and topology priors in attention masks. Our
study of the properties of these masks motivates a modification to the standard
attention mechanism, where attention weights are scaled using soft attention
masks generated by a convolutional neural network. Our experiments on ARC
and on synthetic visual reasoning tasks show that LATFORMER requires 2-orders
of magnitude fewer data than standard attention and transformers in these tasks.
Moreover, our results on ARC tasks that incorporate geometric priors provide
preliminary evidence that deep learning can tackle this complex dataset, which is
widely viewed as an important open challenge for AI research.

1 INTRODUCTION

Infusing inductive biases and knowledge priors in neural networks is regarded as a critical step to
improve their sample efficiency (Battaglia et al., 2018; Bengio, 2017; Lake et al., 2017; Lake &
Baroni, 2018; Bahdanau et al., 2019). The Core Knowledge priors for human intelligence have been
studied extensively in developmental science (Spelke & Kinzler, 2007), following the theory that
humans are endowed with a small number of separable systems of core knowledge, so that new
flexible skills and belief systems can build on these core foundations. Recent research in artificial
intelligence (AI) has postulated the idea that the same priors should be incorporated in AI systems
(Chollet, 2019), but it is an open question how to incorporate these priors in neural networks.

Following this chain of thought, the Abstraction and Reasoning Corpus (ARC) (Chollet, 2019)
was proposed as an AI benchmark built on top of the Core Knowledge priors from developmental
science. Chollet (2019) posits that ARC “cannot be meaningfully approached by current machine
learning techniques, including Deep Learning”. Further, he argues that developing a domain-
specific approach based on the Core Knowledge priors is a challenging first step and that “solving
this specific subproblem is critical to general AI progress”.

An important category of Core Knowledge priors includes geometry and topology priors. Indeed,
significant attention has been devoted to incorporating such priors in deep learning architectures by
rendering neural networks invariant (or equivariant) to transformations represented through group
actions (Bronstein et al., 2021). Group invariant learning helps to build models that systematically
ignore specific transformations applied to the input (such as translations or rotations).

We take a complementary perspective and aim to help neural networks to learn functions
that incorporate geometric transformations of their input (rather than to be invariant to such
transformations). In particular, we focus on group actions that belong to the symmetry group
of a lattice. These transformations are pervasive in machine learning applications, as basic
transformations of sequences, images, and other higher-dimensional regular grids fall in this
category. While attention and transformers can in principle learn these kind of group actions, we
show that they require a significant amount of training data to do so.
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Figure 1: We consider problems that involve learning a geometric transformation on the input data
as a sub-problem. The displayed task (taken from ARC) entails learning to map, for each pair, the
left to the right image. We investigate how to solve such tasks more sample-efficiently by imbuing
self-attention with the ability to exploit lattice symmetry priors.

To address this sample complexity issue, we introduce LATFORMER, a model that relies on attention
masks in order to learn actions belonging to the symmetry group of a lattice, such as translation,
rotation, reflection, and scaling, in a differentiable manner. We show that, for any such action, there
exists an attention mask such that an untrained self-attention mechanism initialized to the identity
function performs that action. We further prove that these attention masks can be expressed as
convolutions of the identity, which motivates a modification to the standard attention module where
the attention weights are modulated by a mask generated by a convolutional neural network (CNN).

Our paper focuses on ARC and its variants. We see the extension of LATFORMER to other tasks
as a promising avenue for future research. Therefore, we conducted an evaluation of our approach
based on synthetic tasks, ARC and the recently proposed LARC (Acquaviva et al., 2021). First,
to probe the sample efficiency of our method, we compared its ability to learn synthetic geometric
transformations against Transformers and attention modules. Then, we annotated ARC tasks based
on the knowledge priors they require, and we evaluated LATFORMER on the ARC and LARC tasks
requiring geometric knowledge priors. Our results provide evidence that LATFORMER can learn
geometric transformations with 2 orders of magnitude fewer training data than transformers and
attention. We also provide the first neural network reaching good performance on a subset of ARC,
suggesting that this kind of problem does not lie out of the reach of deep learning models.

2 FORMALIZING THE GROUP-ACTION LEARNING PROBLEM

We are interested in helping neural networks to learn lattice transformations sample efficiently
by infusing knowledge priors in the model. Motivated by ARC, we focus on learning geometric
transformations that belong to the symmetry group of a lattice. This pertains to the more general
problem of learning group actions given the input and the output of the transformation.

Concretely, we consider input-output transformations involving a group element g taken from some
known group G that can be expressed under the general formulation:

y = f(g ◦ x, x) for some g = g(x) ∈ G (group-action learning)

Above, x ∈ Rdin and y ∈ Rdout are input and output examples, f, g are unknown functions, and ◦
denotes the application of a group action. As seen, the group element g can depend on the input data
itself. More generally, the function f may depend on more than one transformations of x based on
elements belonging to various groups of interest.

A simple instance of the group-action learning problem is presented in Figure 1. The example task is
borrowed from ARC (Chollet, 2019) and entails learning to fill out the yellow patches in the leftmost
image (input) so that the resulting image satisfies a 90◦ degree rotation symmetry. The learner is
given only a small set of input-output pairs (the ARC tasks have 3.3 training examples on average)
and the prior knowledge of discrete two-dimensional point groups, one of which is the cyclic group
of 4-fold rotations C4. Though the task is challenging for a general neural network (due to the small
number of samples), under the rotation prior it can be easily solved by the composition of a shallow
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neural network, a group action, and a non-linear activation: 1) mapping yellow to zero, 2) rotating
each image x by some g ∈ C4, and 3) taking a pixel-wise max.

It is important to stress that group-action learning is the exact antithesis of the typical group invariant
and equivariant learning problems (Bronstein et al., 2021):

y = f(g ◦ x) for every g ∈ G (invariant learning)
g ◦ y = f(g ◦ x) for every g ∈ G. (equivariant learning)

Intuitively speaking, whereas in group-action learning one aims to learn functions that involve
specific (and data-dependent) transformations of our data by actions of the group, in in/equivariant
learning the goal is to build models that are oblivious to such group actions in a systematic manner.

3 ATTENTION MASKS FOR CORE GEOMETRY PRIORS

This section prepares some theoretical grounding for LATFORMER, our approach to learn the
transformations for lattice symmetry groups in the form of attention masks. The section defines
attention masks and explains how the former can be leveraged to incorporate geometry priors when
solving group action learning problems on sequences and images.

3.1 MODULATING ATTENTION WEIGHTS WITH SOFT MASKING

Consider the scaled dot-product attention mechanism as defined in Vaswani et al. (2017). In our
formulation, we consider real-valued masks M ∈ [0, 1]nQ×nK that rescale attention weights:

A = softmax
(QK⊤

√
d

)
⊙M ,

where Q ∈ RnQ×d is the query parameter of the attention mechanism, K ∈ RnK×d is the key,
d is the dimensionality of the model, nQ and nK are the sizes of the sets encoded by the query
and key matrices respectively, and ⊙ is the Hadamard product. Attention masks have been widely
used to constrain the values of the attention weights and are usually binary masks applied before the
softmax activation (Vaswani et al., 2017; Sartran et al., 2022). However, as we aim to learn M , we
apply the mask after the softmax operation in order to avoid squashing the gradient. Therefore, we
rescale the attention weights to sum to 1 when calculating the output X of the attention mechanism:

MaskedAttention(Q,K,V ;M) =
A

A · 1nK
1⊤
nK

V ,

with 1n being a vector of ones of size n and V ∈ Rd×nK being the value parameter of the
attention mechanism. Though masking can also be applied in cross-attention, in the following we
primarily focus on self-attention, where Q = K = V = X . For ease of notation, we write
MaskedAttention(X;M) whenever the query, key and value are the same matrix X .

3.2 EXISTENCE OF ATTENTION MASKS FOR LATTICE SYMMETRY ACTIONS

This section discusses group actions that can be represented by attention masks. To develop intuition,
let us first consider the simple example of translation in a one-dimensional lattice. Supposing that
x = (x1, . . . , xn)

⊤ is a vector of n elements, we have:

MaskedAttention(x;M) = (xn, x1, . . . , xn−1)
⊤, M =


0 0 · · · 1
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 .

Hence, when M is the circulant permutation matrix shown above, we have that the mask shifts the
input x by one element to the right.

Beyond translation, it is natural to ask what kinds of group actions we can perform with attention
masks on data with a more high-dimensional topological structure. The following theorem provides
existence statements for data whose underlying topological space is a hypercubic lattice (such as
sequences, images and higher-dimensional regular grids).
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(a) Translation (1, 1) (b) Rotation by 90◦ (c) Vertical reflection (d) Horiz. reflection

Figure 2: Examples of attention masks implementing transformations in two dimensions, including:
(a) translation by 1 pixel on both axes, (b) rotation by 90◦ counterclockwise, (c) vertical reflection
and (d) horizontal reflection around the center. White represents value 1 and black 0.

Transformation Fourier shift Size of X

Identity o(gi)k = 0 n = l1
Translation (by δ) o(gi)k = −δ n = l1
Reflection o(gi)1 = (n− 1), o(g)k = o(g)k−1 − 2 n = l1
Rotation (90◦) o(gi)k = k · (l1 − 1)− ⌊(k − 1)/l1⌋ n = l1 × l2

Upscaling (by h) o(gi)k = (k − 1 mod h) + (h− 1) · ⌊(k − 1)/h⌋ n = l1

Table 1: Fourier shifts for the transformations on the 1-dimensional and square lattices. We denote
with o(gi)k the k-th component of the vector o(gi) ∈ Rn, for k = 1, . . . , n. As stated in Theorem
2, attention masks for higher-dimensional lattices can be obtained by the Kronecker product of
primitive masks defined over the 1-dimensional and square lattices. Composition of actions is given
by matrix multiplication of the masks.

Theorem 1 (Existence). Let Gm be the symmetry group of the m-dimensional hypercubic lattice,
including translational symmetry, 4-fold rotational symmetry and vertical, horizontal and diagonal
reflections. Let X ∈ Rn×d be a vectorized representation of an m-dimensional tensor X ∈
Rl1×···×lm , with n = l1 · . . . · lm. For any group action g ∈ Gm, there exists an attention mask
Mg ∈ {0, 1}n×n, such that:

MaskedAttention(X;Mg) = g ◦X.

In other words, Theorem 1 states that any translation, rotation or reflection can be expressed in terms
of an attention mask. Figure 2 shows some examples of masks corresponding to translation, rotation
and reflection operations on square lattices.

In the following, we adopt the convention of writing Mg to mean the mask that implements action
g. For more details and for a proof of Theorem 1, we refer the reader to Appendix D.

3.3 REPRESENTING ATTENTION MASKS FOR LATTICE TRANSFORMATIONS

To facilitate the learning of lattice symmetries, one needs to determine methods to parameterize the
set of feasible group elements. Fortunately, as precised in the following theorem, the attention masks
considered in Theorem 1 can be expressed conveniently under the same general formulation.
Theorem 2 (Representation). Let Gm be the symmetry group of the m-dimensional hypercubic
lattice and g ∈ Gm be an action on a tensor X ∈ Rl1×···×lm . Then, there exist some primitive
attention masks Mgi ∈ {0, 1}ni×ni such that

Mg =
⊗
i

Mgi and F(Mgi) = F(Ini
) exp(−2πj

ni
o(gi) r

⊤
ni
),

where Mg ∈ {0, 1}n×n is an attention mask implementing g, gi ∈ Gmi
for some mi ∈ {1, 2} is

an action on the one-dimensional or square lattice, ⊗ is the Kronecker product, F is the Fourier
transform applied column-wise, Ini is the ni × ni identity matrix, j is the imaginary unit, rni =
(1, 2, . . . , ni)

⊤, and o(gi) is defined as in Table 1.
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To obtain an intuitive understanding of Theorem 2, it helps to revisit the example of translation by
δ = 1 of a sequence x ∈ Rn on the 1-dimensional lattice (m = 1). Consulting Table 1, we find
that o(g) is a vector containing −1 at every position and we know Mg is the permutation circulant
matrix of Section 3.2. Indeed, by the time-shifting property of the Fourier transform, Mg can be
obtained by shifting the rows of the identity by −1. In general, vector o(g) has a convenient intuitive
interpretation as its k-th component represents the relative position (with respect to k) of the element
that the k-th row of X attends to. For instance, in the one-dimensional example of translation by
one element to the right, each element attends to the one immediately before. Hence, we have
o(g)k = −1 for any k = 1, . . . , n.

For higher-dimensional lattices, attention masks can be expressed as the Kronecker product of the
attention masks for lower-dimensional cases. For instance, on the square lattice, a translation by 1
pixel on both dimensions is the Kronecker product of the two circulant matrices corresponding to
a translation by 1 pixel on the one-dimensional lattice, as shown in Figure 2a. On more than one
dimension, we can additionally define 4-fold rotations, still following the same formulation, with
o(gi) defined as in Table 1.

Although strictly not a symmetry operation, scaling transformations of the lattice can also be defined
in terms of attention masks under the same general formulation of Theorem 2, as reported in Table
1. Therefore, for completeness, we will consider scaling transformations as well in our experiments.

Notice that Theorem 2 allows us to derive a way to calculate the attention masks. In particular, we
can express our attention masks as a convolution operation on the identity, as stated below.

Corollary 1. Let Gm be the symmetry group of the m-dimensional hypercubic lattice and let Mg ∈
Rn×n be an attention mask implementing action g ∈ Gm. Then:

Mg[:, i] = F−1(exp(−2πj

n
· o(g) · r⊤n ))[:, i] ⋆ In[:, i],

where ⋆ denotes the convolution operation.

In other words, we can represent any mask in our framework as a convolution of the identity matrix
with predefined kernels. This motivates us to design a convolutional neural network that produces
our attention masks by successive convolutions of the identity.

4 THE LATFORMER ARCHITECTURE

While in principle the problem of inferring group actions from input-output pairs can be solved via
search over finite groups, in practice the size of the group for lattice symmetry actions makes this
approach unfeasible1. Moreover, we are interested in learning unknown functions jointly with the
transformation, which cannot be solved by searching on the space of group actions. Using a neural
agent to search the space of possible actions would be a viable alternative, but this would make the
problem non-differentiable and we would need to resort to reinforcement learning methods.

In this work, we aim to solve the problem in a differentiable way. Inspired by the observations above,
we introduce LATFORMER, which incorporates the insights of Section 3 into a neural architecture
that leverages our attention masks. We propose to use gated CNNs to parameterize the masks and
we introduce an additional smoothing technique for easier optimization.

4.1 LATTICE MASK EXPERTS AS CONVOLUTIONAL NEURAL NETWORKS

Attention modules in neural networks usually include an attention mechanism with learnable linear
transformations of the inputs2 followed by a feed-forward network (FFN), as in the Transformer
encoder layer (Vaswani et al., 2017).

To infuse core geometry priors in the attention module, we propose to modulate the attention weights
with a mask generated by an additional layer, as shown in Figure 3a. We refer to this layer as Lattice
mask expert, as it specializes towards specific transformations of the lattice. To understand the

1The size of the groups we consider grows with a polynomial of n and exponentially with m.
2For simplicity, we omitted linear transformations in the definition of MaskedAttention in Section 3.1.
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Masked Attention

Lattice Mask Expert

FFN

(a)

   

Lattice Translation Expert

  

     

(b)

Figure 3: A LATFORMER layer (a) and an architecture for a Lattice translation expert (b). The
LATFORMER layer (a) is a standard Transformer encoder layer augmented with a Lattice mask
expert constrained to generate attention masks corresponding to a geometric transformation of the
input. The Lattice translation expert (b) is a particular instance of a Lattice mask expert that
produces translation masks. In the architecture above, every convolutional layer is meant to shift
the input by a power of 2 and can be skipped by a gating function (denoted as σ).

purpose of this layer, it is useful to remember that, by the analysis conducted in Section 3, even if
the attention and FFN layers are initialized to the identity function, the mask expert can generate
attention masks that produce precise geometric transformations of the input.

By Corollary 1, we know that each group action on the lattice can be represented by a mask
that is a convolution of the identity and we have an analytical expression to calculate the kernels
of the convolution. We can leverage this notion to design CNNs that produce attention masks
corresponding to specific group actions by following the general formulation:

M0 = I and Ml+1 = αl Conv(Ml,Kl) + (1− αl)Ml for l = 0, . . . , L− 1,

where ML is the predicted mask, αl = σl(X;θ) = FFNl(X,θ) is the output of a gating function,
θ is a learnable parameter, and Kl is the kernel of the l-th convolutional layer whose weights are
determined based on Corollary 1 and Table 1.

As an example, Figure 3b shows an architecture that generates translation masks. Following
Theorem 2, the expert computes the translations along the two dimensions separately and then
aggregates the resulting masks doing the Kronecker product. Hence, a Lattice translation expert
with L convolutional layers for each dimension can generate any translation up to δ = 2L − 1
elements per dimension. At inference time, the values of the gates can be discretized, in such a way
that the generated mask provably performs a meaningful group action.

Similarly to the expert in Figure 3b, we can define gated CNNs for transformations like rotation,
reflection, and scaling. The product of experts (i.e., the combination of more actions) can be obtained
by either chaining the experts or multiplying the attention masks generated by different experts. For
more details, we refer the reader to Appendix A.

4.2 MASK SMOOTHING FOR EASIER TRAINING

The framework described so far parameterizes discrete transformations of a lattice in a differentiable
manner. Nevertheless, to improve the training of LATFORMER, we found it beneficial to also apply
a smoothing operation on the attention masks w.r.t. the intrinsic metric of the group in question.

Our approach entails defining an adjacency relation between group elements and applying graph
convolution with a heat kernel on the corresponding graph. This encourages the optimizer to favor
weight updates that change the masks in a smooth manner w.r.t. the geodesic distance implied by
the graph. Concretely, we define the neighbors of each element gi on the lattice as those gj = e ◦ gi
reachable by an application of a primitive action e, such as translation by a single pixel in one
dimension, rotation by 90◦, and vertical/horizontal reflection. The notion of neighborhood gives
rise to a graph whose vertex set is the lattice group and that contains one edge for every pair of
neighboring actions.

As before, it helps to consider different kinds of transformations separately. For instance, as
shown in Figure 4, for 2D rotations the underlying graph is a cycle with 4 elements due to the
underlying point group for 4-fold rotations being the cyclic group C4. Performing heat diffusion
can be achieved by repeated neighborhood averaging over the cycle and yields a smoothed rotation
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Smooth rotation mask

Figure 4: Rotational smoothing can be obtained by performing heat diffusion over a cyclic graph
where each node corresponds to a rotation mask.

mask that performs all rotations at the same time (rightmost image in Figure 4). We can extend the
same approach to all lattice transformations: for instance, in the case of translation, the underlying
graph is a grid and the smoothing operation is akin to convolution with a Gaussian kernel.

To train LATFORMER with smoothed masks, we compute two predictions: one with the non-smooth
mask predicted by the model and one with a smoothed version of the same mask. The final loss
is the sum of two terms, one for the original prediction and one for the smoothed prediction. For
smooth predictions, in all our experiments we utilize a mean squared error (MSE) loss, whereas for
the original non-smooth predictions we use the cross-entropy or MSE loss depending on whether
the output data are categorical or continuous.

5 EXPERIMENTS

To evaluate our method, we first developed a set of synthetic tasks in order to compare LATFORMER
to attention modules and Transformers with respect to sample efficiency in learning basic geometric
transformations. Then, we annotated the ARC tasks based on the knowledge priors they require, and
we assessed the performance of our method on this challenging dataset. Finally, we experimented
with the LARC (Acquaviva et al., 2021) dataset and compared our method to stronger baselines
based on neural program synthesis. We report additional experimental results in Appendix B.3.

5.1 SAMPLE EFFICIENCY ON GEOMETRIC TRANSFORMATIONS

As a preliminary study, we probed the ability of LATFORMER to learn geometric transformations
efficiently. To this end, we compared the performance of our model to a transformer (Vaswani et al.,
2017) and an attention module (the same architecture as our approach, without the mask expert)
on synthetic tasks with increasing number of examples. Inspired by ARC, we generated a set tasks
where the model needs to infer a geometric transformation from input-output pairs. The input is a
grid taken from the ARC tasks and the output is either a translation, rotation, reflection or scaling
of the input. The specific transformation applied to the input grid defines the task and is consistent
across all examples in the same task.

We evaluated the models based on the mean accuracy across tasks. Figure 5 shows the accuracy
of our model compared to the baselines and to a version of LATFORMER without smoothing. The
plots show that LATFORMER can generalize better and from fewer examples than transformers and
attention modules both with absolute positional encodings and relative positional encodings (Shaw
et al., 2018). Additionally, our results show that the smoothing operation described in Section 4.2 is
helpful for larger groups. More details on this experiment are reported in Appendix B.1.

5.2 VISUAL REASONING ON ARC TASKS WITH GEOMETRIC KNOWLEDGE PRIORS

To assess the ability of our approach to learn efficiently on a more challenging use case, we focused
on a subset of the ARC dataset (Chollet, 2019) requiring geometric priors for which our method
could be a principled solution. To this end, we annotated the ARC tasks based on the knowledge
priors they require, using the list of priors provided by Chollet (2019) as a reference. Appendix
B.2 provides more details about the annotation of ARC and Figure 7a in the Appendix shows the
knowledge priors that we considered and their distribution across the ARC tasks.
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Figure 5: Sample efficiency of our method compared to the baselines on synthetic tasks on
translation (a), rotation (b), reflection (c) and scaling (d). The y axis denotes the mean accuracy
across tasks belonging to the same category, whereas the error shade is the standard deviation.

Translate Rotate + Translate Reflect + Translate Scale + Translate
CNN 0.019 0.000 0.000 0.000
Attention (abs. pos.) 0.019 0.000 0.023 0.000
Attention (rel. pos.) 0.019 0.000 0.023 0.000
PixelCNN 0.019 0.000 0.000 0.000
Transformer 0.038 0.000 0.045 0.000
Transformer + data augmentation - 0.200 0.184 0.091
LatFormer 0.365 0.800 0.591 0.545

Table 2: Performance on ARC tasks that involve lattice symmetry priors.

We assessed the performance of our model on the tasks that require only knowledge priors
corresponding to the basic geometrical transformations that we addressed in this work, namely
translation, rotation, reflection and scaling. Table 2 shows our results compared to neural baselines,
including CNNs, attention with relative positional encodings (Shaw et al., 2018), PixelCNN
(Gul et al., 2019), and Transformers (Vaswani et al., 2017). We additionally compared to a
Transformer model that has access to precomputed transformations of the input (Transformer +
data augmentation). Precomputing all group actions is only feasible for smaller groups (rotation,
reflection and scaling). Though we restrict to only a subset of the tasks and there is definitely room
for improvement even on these tasks, we reach considerably better performance than the baselines.
Therefore, we believe our results advocate for the applicability of end-to-end differentiable models
even on problems requiring sample-efficient abstract reasoning. To the extent of our knowledge, this
is the first evidence of a neural network achieving this performance on ARC tasks.

5.3 COMPARISON WITH NEURAL PROGRAM SYNTHESIS ON LARC

Recently, Acquaviva et al. (2021) introduced the Language-complete Abstraction and Reasoning
Corpus (LARC), which provides natural language descriptions of 88% of the ARC tasks, generated
by human participants who where asked to communicate to other humans a set of precise instructions
to solve a task. Acquaviva et al. (2021) evaluated several models based on neural program
synthesis on LARC. All models generate symbolic programs from a carefully designed domain-
specific language (DSL). LARC (IO) is a model that has only access to input-output pairs, as
our LATFORMER. LARC (IO + NL) has access to the natural language descriptions as well and
uses a pre-trained T5 model (Raffel et al., 2020) to represent the text. LARC (IO + NL pseudo)
uses pseudo-annotation to encourage the learning of compositional relationships between language
and programs: during training, the model is given additional synthetic language-to-program pairs
generated by annotating primitive examples in the DSL with linguistic comments.

In order to compare to the work of Acquaviva et al. (2021), we evaluated their models on the set of
LARC tasks that correspond to ARC tasks in our subset requiring geometric knowledge priors.
Additionally, following Acquaviva et al. (2021) we allowed LATFORMER to access the textual
descriptions by using a pre-trained T5 model to generate a representation of the text. This embedding
is provided as input both to the Lattice Mask Expert and the FFN layers of LATFORMER. We refer to
this model as LatFormer + NL. Table 3 shows the results of our experiments on the LARC dataset.
The program-synthesis methods require a training stage on a portion of the tasks. Therefore, the
LATFORMER models where only evaluated on the same testing tasks of LARC, using the same
train-test split of Acquaviva et al. (2021). Overall, our results shows that LATFORMER performs
better than program synthesis on the subset of tasks requiring geometric priors, with no need for a
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Translate Rotate + Translate Reflect + Translate Scale + Translate
LARC (IO) 0.17 0.00 0.42 1.00
LARC (IO + NL) 0.17 0.00 0.42 1.00
LARC (IO + NL pseudo) 0.25 0.00 0.42 1.00
LatFormer 0.33 1.00 0.50 1.00
LatFormer + NL 0.33 1.00 0.58 1.00

Table 3: Comparison of LATFORMER with neural program synthesis methods with access to both
input-output pairs and natural language descriptions on LARC

carefully designed DSL. This advantage comes to the expense of being restricted to tasks involving
geometric priors, whereas program synthesis approaches can be used on a wider set of tasks. We
also observe that the natural language descriptions marginally helped our model on one category of
tasks. Our findings corroborate with Acquaviva et al. (2021) in this remark.

6 RELATED WORK

Our work was inspired by a previous investigation of self-attention layers which identified
sufficient conditions such that they can perform convolution when equipped with relative positional
encodings (Cordonnier et al., 2020; Andreoli, 2019). Rather than relying on relative encodings,
we here show how soft-masking can be used to learn sample efficiently more general input
transformations, such as rotation, reflection, and scaling.

To the extent of our knowledge, the group-action learning problem has not been explicitly and
generally formulated in previous work. That being said, many previous works have focused on
specific instances, such as learning to sort (Graves et al., 2014; Reed & De Freitas, 2015; Li et al.,
2020) by selecting an element of the permutation group Sn, docking/folding by roto-translating
objects according to an action in the special Euclidean group SE(3) (Sverrisson et al., 2022; Stärk
et al., 2022; Jumper et al., 2021), and graph spectrum generation where the learned actions belong
to the Stiefel manifold (Martinkus et al., 2022).

Our work is similar in spirit to recent efforts in neuro-symbolic visual reasoning (Johnson et al.,
2017b;a; Goyal et al., 2017; Mao et al., 2019; Higgins et al., 2018). Many approaches based on
attention mechanisms have been proposed in the past few years (Hudson & Manning, 2018; 2019).
Our work differentiates from the former in that we aim to learn basic geometric reasoning in a
sample-efficient way, rather than modeling relationships between high-level concepts.

Finally, some recent works came to our same conclusion on the advantages of using attention masks
to incorporate prior knowledge in neural networks. As an example, Yan et al. (2020) focus on the
task of learning subroutines (e.g., sorting algorithms) and use a CNN to generate an attention mask
for a Transformer encoder. They show that learning the attention mask allows them to generalize
to longer sequences than the ones provided at training time. Similarly, Sartran et al. (2022) used
precomputed attention masks to incorporate syntactic compositional biases in language models.

7 CONCLUSION

This paper focused on how to help deep learning models to learn geometric transformations
efficiently. Specifically, we proposed to incorporate lattice symmetry biases into attention
mechanisms by modulating the attention weights using learned soft masks. We have shown that
attention masks implementing the actions of the symmetry group of a hypercubic lattice exist, and
we provided a way to represent these masks. This motivated us to introduce LATFORMER, a model
that generates attention masks corresponding to lattice symmetry priors using a CNN. Our results on
synthetic tasks show that our model can generalize better than the same attention modules without
masking and Transformers. Moreover, the performance of our method on a subset of ARC provides
the first evidence that deep learning can be used on this dataset, which is widely considered as an
important challenge for AI research.
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A ADDITIONAL DETAILS ON THE MODEL

This section describes the LATFORMER architecture providing additional details that were not
covered in Section 4.1. As mentioned in Section 4.1, it is possible to design convolutional neural
networks that perform all considered transformations of the lattice. Figure 6 shows the architecture
of the four expert models that generate translation, rotation, reflection and scaling masks.

 

   

Lattice Translation Expert

  

     

 

Lattice Rotation Expert

  

 

Lattice Reflection Expert

 

 

 

 

Lattice Scaling Expert

Figure 6: Model architecture of all the mask experts that we considered.

All models are CNNs applied to the identity matrix. In the figure, we use the following notation:

• M
(δ)
T denotes an attention mask implementing a translation by δ along one dimension;

• M
(90)
R denotes an attention mask implementing a translation by 90◦;

• MF denotes an attention mask implementing a reflection along one dimension;

• M
(h)
S denotes an attention mask implementing an upscaling by h along one dimension.

Using Corollary 1, we can derive the kernels of the convolutional layers shown in Figure 6. These
kernels are frozen at training time, the model only learns the gating function, denoted as σ in the
figure. Notice that all the models follow the same overall structure. However, for scaling, we also
learn an additional gate, denoted as σ(MS ,M

⊤
S ) in the Figure 6. This gate allows the model to

transpose the mask and serves the purpose of implementing down-scaling operations (down-scaling
is the transpose of up-scaling).

The composition of more actions can be obtained by combining different experts. This can be done
either by chaining the experts or by matrix multiplication of the masks. In preliminary experiments,
we did not notice any significant difference in performance between the two options and we rely on
the latter in our implementation.

B ADDITIONAL EXPERIMENTS AND DETAILS ON THE EXPERIMENTAL SETUP

This section provides additional details on the experimental setup of all our experiments, including
further information on the generation of the synthetic tasks and the data annotation process for ARC.

B.1 EXPERIMENTS ON SYNTHETIC DATA

We considered four categories of tasks, namely translation, rotation, reflection and scaling. Each
task is defined in terms of input-output pairs, which are sampled from the set of all ARC grids and
padded to the size of 30× 30 cells. To each input grid, a synthetic transformation is applied in order
to obtain the corresponding output grid. For each task in each category, we generated 2048 training
pairs and 100 test pairs.

For translation tasks, we have a total of 900 possible translations in a 30 × 30 grid. However,
generating data and training models on 900 tasks is computationally expensive, so we randomly
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sampled 5 translations in the interval [1, 29] × [1, 29], obtaining a total of 100 translation tasks.
Rotation tasks include all 4-fold rotations except the identity. Similarly, reflection tasks involve
horizontal, vertical and diagonal reflections. Scaling tasks include all possible up/down scaling
transformations of the input grid by factors of [2, 5]× [2, 5] for a total of 32 scaling tasks.

The models are evaluated based on the mean accuracy on each category. For each task we compute
the accuracy on the test set based on how many of the predicted images match exactly the ground
truth.

B.2 EXPERIMENTS ON ARC

0 20 40 60 80 100 120 140 160
None

Goal directedness
Sorting

Counting
Math

Object influence via contact
Object persistance

Object cohesion
Containment

Projections
Repeating pattern

Scaling
Reflection

Rotation
Translation

(a)

(b)

Figure 7: Distribution of the considered core knowledge priors across the ARC tasks (a) and user
interface built to annotate the dataset (b).

In order to experiment with ARC, we first performed an annotation of the dataset to identify the
underlying knowledge priors for each task. To this end, we built a user interface where the annotator
could browse the tasks and label them by selecting any combination of the available knowledge
priors. Figure 7b shows the user interface provided to the annotator, whereas Figure 7a shows the
distribution of knowledge priors across the ARC tasks. Most tasks follow in more than one of the
categories represented in Figure 7a.

ARC can be regarded as a meta-learning benchmark, as it provides a set of training tasks and a set
of unseen tasks to evaluate the performance of the model learned on the meta-training data. It is
important to emphasize that we do not target this use case, as we instead use the same setup as in
the synthetic data and learn each task from scratch using only its training set.

Though simple and elegant, the supervised-learning formulation prevents our models from reusing
knowledge that can be shared between different tasks. In order to mitigate this issue, we rely on a
data-augmentation strategy. At training time, for each model and every iteration, we augment each
grid 10 times by mapping each color to a different color (using the same mapping across training
examples). The rationale behind this data-augmentation strategy is that (1) we assume that for
tasks involving only geometric knowledge priors to be not affected by color mapping and (2) all
models (including LATFORMER) need to learn a function from d-dimensional color representations
to categorical variables, hence it is beneficial if all colors are represented in the training set.
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Aerial data Cytological data
α-AMD SIFT LatFormer α-AMD SIFT LatFormer

CycleGAN (A −→ B) 5.3 ± 3.1 67.2 ± 16.8 68.3 ± 4.5 74.2 ± 3.8 30.2 ± 4.2 68.3 ± 2.2
CycleGAN (B −→ A) 65.7 ± 6.7 84.0 ± 2.5 86.1 ± 3.1 21.3 ± 1.8 18.2 ± 3.5 24.2 ± 3.3
DRIT++ (A −→ B) 35.3 ± 2.4 38.1 ± 8.1 38.2 ± 5.9 50.4 ± 12.1 24.2 ± 2.7 62.7 ± 10.2
DRIT++ (B −→ A) 20.2 ± 2.1 38.3 ± 4.5 43.2 ± 4.1 30.1 ± 4.5 5.2 ± 3.1 15.6 ± 3.5
pixel2pixel (A −→ B) 84.2 ± 4.0 98.7 ± 0.4 89.3 ± 2.2 53.2 ± 6.9 9.5 ± 1.0 61.2 ± 5.5
pixel2pixel (B −→ A) 68.2 ± 7.5 87.5 ± 4.03 89.7 ± 3.3 0.2 ± 0.1 4.0 ± 1.0 4.2 ± 1.1
StarGAN (A −→ B) 63.1 ± 7.8 7.4 ± 2.7 72.2 ± 6.3 60.2 ± 12.2 12.2 ± 2.0 59.5 ± 5.9
StarGAN (B −→ A) 52.1 ± 4.0 7.9 ± 1.3 53.3 ± 4.0 20.8 ± 3.9 4.1 ± 0.9 13.4 ± 3.1
CoMIR 94.2 ± 5.7 100.0 ± 0.0 90.2 ± 3.3 76.2 ± 12.1 74.1 ± 6.3 78.1 ± 3.4

Table 4: Results of the experiment on image registration. The rows represent different models
trained to translate images from modality A to B (A −→ B) or viceversa (B −→ A).

All models are evaluated based on the ratio of solved tasks and a task is considered solved if the
model can predict the correct output grid for all examples in the test set.

B.3 ADDITIONAL EXPERIMENTS ON IMAGE REGISTRATION

As an additional experiment, to assess the applicability of our LATFORMER on natural images, we
performed experiments on multimodal image registration, namely the problem of spatially aligning
images from different modalities. Image registration is a well-studied problem in computer vision
and we do not aim to establish state-of-the-art performance. The main purpose of this experiment is
giving a hint on the applicability of our method to natural images beyond ARC. We refer the reader
to SuperGlue (Sarlin et al., 2020) and COTR (Jiang et al., 2021) to have a sense of approaches
specifically designed for this task.

Popular approaches to multimodal image registrations work in two stages: first, they learn a model
that converts one modality into the other (or to transfer both modalities in the same representation
as proposed by Pielawski et al. (2020)), then they align the two images using traditional techniques.

We follow the experimental setup of Lu et al. (2021) and experiment with two datasets, one
containing aerial views of a urban neighborhood and one containing cytological images. The images
we employ are views of the same scene, but they are taken with different modalities and they are
translated with respect to one another. We use the code of the authors to generate data involving
only translations. Lu et al. (2021) additionally consider small rotations, but these transformations
are not actions in the symmetry group of a lattice, so we are not interested in resolving them.

We employ several state-of-the-art methods for modality translation and we compare our method
to α-AMD (Lindblad & Sladoje, 2014) and SIFT (Lowe, 1999) based on the success rate metric
defined by Lu et al. (2021). A registration is considered successful if the relative registration error
(i.e., the residual distance between the reference patch and the transformed patch after registration
normalized by the height and width of the patch) is below 2%. Table 4 reports our results on the
image registration tasks and shows that our approach performs well on both datasets coupled with
different methods for modality translation. We use the same models of Lu et al. (2021) for the
modality translation task. Then, in order to solve the image registration task with LATFORMER, we
divide each image into 30 × 30 patches and we run our model to predict the translation from one
patch in an image to its counterpart in the corresponding image.

C LIMITATIONS AND FUTURE WORK

Although we believe our results are interesting and promising for learning group actions with neural
networks, we would like to point out some limitations of our approach.

First, our method is limited to actions on the symmetry group of the hypercubic lattice and it is
not immediately extendable to other groups. For instance, though permutation matrices are still
convolutions of the identity and they can be generated by a CNN, providing an architecture with
predefined kernels that can compute any permutation matrix is not feasible. Second, the model is
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hard to fine-tune: we noticed that once the gates of the CNN have been trained, it is hard for the
model to adapt to different actions.

We believe that both limitations can be addressed by still keeping the same overall idea of
modulating attention weights using soft attention masks, possibly with a different parametrization
of the masks. Future work will focus on this research direction and on extending our work to cover
a wider set of the ARC tasks.

D DEFERRED PROOFS

We prove both Theorem 1 and 2 by induction on the dimensionality of the hypercubic lattice m.

D.1 BASE CASE FOR THEOREMS 1 AND 2

First, it is useful to notice that whenever M ∈ {0, 1}n×n has exactly a single 1 per row, in other
words M · 1n = 1n, then, for any X ∈ Rn×d

MaskedAttention(X;M) =
A

A · 1n1⊤
n

X

=
softmax

(
XX⊤
√
d

)
⊙M

softmax
(
XX⊤√

d

)
⊙M · 1n1⊤

n

X

= M ·X.

In order to prove the theorem, we need to show that, for any action g ∈ G1, including translations,
reflections and rotations, there exists a mask Mg such that:

MaskedAttention(X;Mg) = g ◦X.

Let us consider different families of actions separately.

Translation. As mentioned in Section 3.2, in the 1-dimensional case, a translation by one element
to the right for a vector x = (x1, x2, . . . , xn)

⊤ is given by the circulant permutation matrix:

M = M
(1)
T =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

 .

This holds because M
(1)
T · 1n = 1n, so:

MaskedAttention(x;M
(1)
T ) = M

(1)
T · x = (xn, x1, x2, . . . , xn−1)

⊤.

In general, a translation by δ elements is given by the circulant matrix M
(δ)
T = (M

(1)
T )δ . Therefore,

masks implementing translation operations exist in the 1-dimensional case and they are circulant
permutation matrices. This is enough for a base case for Theorem 1.

For Theorem 2, simply notice that:

M
(δ)
T = F−1

(
F(In) exp(−

2πj

n
o
(δ)
T r⊤n )

)
where o

(δ)
T =


−δ
−δ

...
−δ

 .

This comes directly from the time-shifting property of the Fourier transform.
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Reflection. In the 1-dimensional case, the reflection of a vector x = (x0, x1, . . . , xn)
⊤ is:

MaskedAttention(x;MF ) = MF · x = (xn, xn−1, . . . , x2, x1)
⊤

with

MF =


0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 1 0 0
... · · ·

...
...

...
1 · · · 0 0 0

 .

The attention mask MF can be obtained by shifting the rows of the identity matrix by:

oF =


n− 1
n− 3
n− 5

...
1

 .

Therefore, by the time-shifting property of the Fourier transform we have:

MF = F−1
(
F(In) exp(−

2πj

n
oF r⊤n )

)
.

Rotation. Rotation (4-fold) is not defined in one dimension, so for a base case we need to consider
the square lattice. Let X ∈ Rl1·l2 be a vectorized representaiton of a n = l1×l2 dimensional matrix.
We need to define a vector oR ∈ Rn such that:

M
(90)
R = F−1

(
F(In) exp(−

2πj

n
oR r⊤n )

)
is a rotation mask. Since rotation is a permutation of the identity, we know the vector exists. As X
is vectorized, the o

(90)
R needs to take into account the size of the first dimension l1. For example, in

order to perform a rotation on a vectorized representation, we need to map the first element of X to
the position (l1 − 1). The reader can check that the vector given by

(o
(90)
R )k = k · (l1 − 1)− ⌊(k − 1)/l1⌋

satisfies the equation above.

Scaling. Although scaling is not a group action of the symmetry group of the lattice, we pointed
out that it still can be defined within the same general formulation as the other transformations. We
can take the 1-dimensional lattice as a base case and consider a vector x = (x0, x1, . . . , xn)

⊤. Let
h ∈ N be a parameter specifying the filter size of the scaling operation. As an example, for h = 2
we have:

MaskedAttention(x;M
(h)
S ) = M

(h)
S · x = (x1, x1, x2, x2, . . . , x⌊n/2⌋)

⊤,

where:

M
(h)
S =



1 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 0 0

 .

This kind of matrix can also be obtained by shifting the rows of the identity as follows:

M
(h)
S = F−1

(
F(In) exp(−

2πj

n
o
(h)
S r⊤n )

)
,

where o
(h)
S = (k − 1 mod h) + (h− 1) · ⌊(k − 1)/h⌋.
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D.2 INDUCTIVE STEP FOR THEOREMS 1 AND 2

Suppose that Mg1 ∈ {0, 1}n1×n1 and Mg2 ∈ {0, 1}n2×n2 are attention masks implementing
actions g1 ∈ Gm1

and g2 ∈ Gm2
on some tensors X1 ∈ Rl1×···×lm1 and X2 ∈ Rl′1×···×l′m2 , with

n1 = l1 · . . . · lm1
and n2 = l′1 · . . . · l′m2

. Consider a tensor X ∈ Rl1×···×lm1
×l′1×···×l′m2 and its

vectorization X ∈ Rn with n = n1n2.

We have:

MaskedAttention(X;Mg1 ⊗Mg2) =

= (Mg1 ⊗Mg2)X

= (Mg1 ⊗ In2
)(In1

⊗Mg2)X

= MaskedAttention(MaskedAttention(X; In1 ⊗Mg2);Mg1 ⊗ In2).

Now notice that:

MaskedAttention(X; In1 ⊗Mg2) = (In1 ⊗Mg2)X

= vec(Mg2 vec
−1(X) In1

)

= vec(Mg2 vec
−1(X)),

and similarly

MaskedAttention(X;Mg1 ⊗ In2
) = (Mg1 ⊗ In2

)X

= vec(In2 vec
−1(X)M⊤

g1)

= vec((Mg1 vec
−1(X)⊤)⊤).

Therefore, we conclude that performing masked attention with the mask Mg1 ⊗ Mg2 on X is
equivalent to applying g1 on the first m1 dimensions and g2 on the last m2 dimensions of X.
This provides a way for building attention masks for higher-dimensional lattices using the primitive
masks defined in Section D.1, proving both Theorem 1 and 2.

D.3 PROOF OF COROLLARY 1

The proof of Corollary 1 follows immediately from Theorem 2 and from the property of the Fourier
transform according to which multiplying in the Fourier domain implements a convolution in the
original domain.
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