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Abstract

Estimating individualized treatment rules (ITRs) is fundamental in causal inference,
particularly for precision medicine applications. Traditional ITR estimation meth-
ods rely on inverse probability weighting (IPW) to address confounding factors and
L1-penalization for simplicity and interpretability. However, IPW can introduce
statistical bias without precise propensity score modeling, while L1-penalization
makes the objective non-smooth, leading to computational bias and requiring sub-
gradient methods. In this paper, we propose a unified ITR estimation framework
formulated as a constrained, weighted, and smooth convex optimization problem.
The optimal ITR can be robustly and effectively computed by projected gradient
descent. Our comprehensive theoretical analysis reveals that weights that balance
the spectrum of a ‘weighted design matrix’ improve both the optimization and
likelihood landscapes, yielding improved computational and statistical estimation
guarantees. In particular, this is achieved by distributional covariate balancing
weights, which are model-free alternatives to IPW. Extensive simulations and
applications demonstrate that our framework achieves significant gains in both
robustness and effectiveness for ITR learning against existing methods.

1 Introduction

Traditional medicine often uses a "one-size-fits-all" approach where the same treatment is applied to
all patients regardless of their unique attributes, aiming to find a single optimal treatment that may be
most effective for a broad population. However, since not everyone fits the mold, precision medicine
has been popular in medical research, emphasizing personalized treatment based on a patient’s unique
characteristics [11].

One key element of precision medicine is the estimation of individualized treatment regime (ITR),
also known as treatment policy or policy. ITRs consider various factors like demographics and socio-
psychological aspects to optimize treatment decisions, thereby maximizing individual outcomes.
Many frameworks have been proposed for learning ITRs [41, 54, 57, 7, 58, 60, 56] and the related
conditional average treatment effect (CATE) estimation problem [3, 53, 46, 13, 36]. For model
interpretation and other practical concerns, researchers often focus on pre-specified rule classes. For
example, the method proposed in [2] focuses on estimating ITRs using shallow-depth decision trees.

The central task in the ITR estimation is controlling confounding factors to isolate the causal effect
of treatment from other factors that may influence the outcome. A standard approach is by weighting
each sample using their inverse probability weights (IPWs), which requires specifying a propensity
score model. However, propensity score methods have long been known to be highly sensitive to
model misspecification, which yields biased estimates of causal effects [25, 30]. Distributional
covariate balancing weights (DCBWs) [24, 27] are modern alternatives to IPWs, directly minimizing
the distance between empirical covariate distributions induced by the weights.

ITR estimation can be framed as an optimization or maximum likelihood estimation (MLE) problem,
where the choice of weights directly impacts both the optimization and likelihood landscapes. This, in
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turn, affects the computational and statistical errors in the ITR estimation, as well as the performance
of the optimization algorithm. The key contribution of this work is to bridge the gap between causal
inference and optimization perspectives in ITR estimation. Our main finding is both simple and
surprising: Covariate balancing weights not only address confounding but also yield near-optimal
optimization and likelihood landscapes for the ITR estimation. We show this claim by formulating
the ITR estimation problem as a constrained, weighted, and smooth convex optimization problem.
Our formulation is grounded in angle-based direct learning (AD-Learning) framework [39], which is
a recent framework for multi-category treatments with a linear decision function class assumption.
While we focus on multi-category treatments—a relatively underexplored area—we believe that the
principles are equally applicable to binary treatments with a linear decision function.

Besides advancing our theoretical understanding of the impact of covariate balancing weights, we
propose a unified computational and statistical framework for the ITR estimation. Notably, we
introduce a hard L1-ball constraint to promote sparsity in regression coefficients, replacing the
traditional soft L1-penalization. This approach keeps the optimization objective smooth, enabling
fast and accurate ITR estimation using projected gradient descent (PGD). Furthermore, we integrate
techniques such as (1) variable screening, (2) outcome augmentation, and (3) inverse variance
weighting to account for heteroscedastic errors, which together show a synergistic effect.

Related Work. Most existing ITR approaches use IPW, which requires specifying a propensity
score model for confounding control. Recent developments in causal inference have also introduced
robust approaches that directly estimate weights based on balance-seeking objectives rather than
relying solely on propensity scores. These approaches include entropy balancing weights [20],
stable balancing weights [61] as well as DCBWs [24, 27]. However, despite the weights serving
a critical role in the estimation process, these advancements have mainly focused on improving
average treatment effect (ATE) and are largely under-explored in the ITR literature. To the best of our
knowledge, this is the first work to apply DCBWs for ITR-Learning under a weighted optimization
framework. While recent works have taken a similar approach by utilizing weighting schemes and
directly optimizing the weights rather than relying on estimated IPW [28, 26], our method differs
in key aspects. Unlike [26], which involves the evaluation of policy effects, our approach directly
learns the optimal decision function, bypassing the need for intermediate policy effect evaluations.
Although [28] introduced the concept of retargeting the population covariate distribution, which is
conceptually related to our analysis, their approach relies on a reference policy, whereas our method
does not. We also explore various statistical techniques to improve ITR-Learning. First, we perform
variable screening using the distance covariance test [48] to retain key effect modifiers and precision
variables that directly impact the outcome. Second, [50, 9] introduced outcome augmentation to
minimize estimator variance in clinical trials and observational studies by IPW involving binary
treatments. Building on these foundations, our work extends these approaches to a broader range of
weighting schemes, such as DCBW particularly for multi-category treatments. Lastly, with inverse
variance weighting, as introduced in stabilized angle-based direct learning (SABD-Learning) to
address heteroscedasticity [44], this combined strategy enhances estimator precision and robustness.

Contributions. We summarize our contributions below.

• Unified Framework of ITR-Learning: We introduce a novel framework that addresses the
limitations of existing ITR estimation methods by formulating the problem as a constrained,
weighted, and smooth convex optimization problem. Under the framework, we propose a
PGD algorithm for ITR-Learning under a hard L1-constraint.

• Improved Computational and Statistical Guarantees: We establish convergence guarantees
(Theorem 3.3). Furthermore, under mild assumptions, we demonstrate that the parameter
of ITR-Learning can be consistently estimated with high probability (Theorem 3.5) and
provide computational and sample complexity. In both cases, we demonstrate that using
covariate balancing weights controls confounding factors and leads to better optimization
and likelihood landscapes, resulting in improved computational and statistical performance.

• Statistical Framework of ITR-Learning: Our main contribution lies in providing a unified
framework that combines DCBWs, variable screening, outcome augmentation, and inverse
variance weighting in a synergistic and effective way. We demonstrated theoretical justi-
fications for the combined approach, which, to our knowledge, have not been previously
established.
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2 Methods for ITR Estimation

2.1 Model Setup

Individualized Treatment Rule and Optimal Decision Function. We observe a random vector
(X, A, Y ) where X = (X1, X2, . . . , Xp) ∈ X denotes the p-dimensional vector of pre-treatment
covariates, a received treatment A ∈ A = {1, 2, . . . ,K}, and the corresponding outcome Y . Without
loss of generality, we assume higher Y values are more favorable. Let Y (a) denote the random
variable that describes the potential outcome that would have been observed were the individual
assigned to treatment a ∈ A. We make the following standard assumptions using the potential
outcome framework [43]: (i) Stable Unit Treatment Value Assumption (SUTVA): Y = Y (A), (ii)
positivity: 0 < π(a,X) := P(A = a|X) < 1 for all a ∈ A and all X ∈ X , (iii) no unmeasured
confounding: Y (a) ⊥ A|X for any a ∈ A.

An ITR, d(x), is a function mapping each covariate x to one of the K treatments. According to [41],
the ITR d can be measured by the value function V (d):

V (d) := E[Y (d(X))] = E[Y |A = d(X)] = E
[
Y 1(A = d(X))

π(A,X)

]
Then the optimal ITR dopt is defined as a function that maximizes the expected potential outcome
dopt(x) ∈ argmaxd∈D V (d) among all functions belonging to the treatment rule class (D). Building
on this, we adopt the following working model:

Y = µ(X) +

K∑
k=1

δk(X)I(A = k) + ϵ, (1)

where µ(X) is treatment-free effect, δk(X) is interaction effect between covariates and kth treatment,
and ϵ is a random noise with mean zero and variance σ2(A,X). For model identifiability, we assume∑K

k=1 δk(x) = 0 for all x. Under this model, δk(X) determines the optimal ITR, while µ(x) has
no impact on the ITR. One approach to identifying the optimal ITR is to use K separate decision
functions for each treatment with the sum-to-zero constraint, but this approach can be computationally
inefficient [55].

Instead, one can opt for simplex coding as an alternative, which inherently satisfies the sum-to-zero
constraint. In AD-Learning [39], each of the K treatments is represented as a vertex simplex on
RK−1, denoted as uk, k = 1, . . . ,K. In particular, uk is defined as

uk =


1√
K−1

1K−1 if k = 1,

− 1+
√
K√

(K−1)3
1K−1 +

√
K

K−1ek−1 if k ≥ 2,

where 1K−1 is a K − 1 dimensional vector with entries 1, and ek−1 is a K − 1 dimensional vector
with entries 0 except its k-th entry being 1. This vertex simplex has K vertices with equal angles
between them and an origin at the center of the simplex. All uk have the same Euclidean norm 1.
Then the optimal ITR is reformulated as follows:

dopt(x) = argmax
k∈{1,...,K}

E[Y |x, A = k] = argmax
k∈{1,...,K}

uT
k E

[
Y u

π(A,x)

∣∣∣∣x]︸ ︷︷ ︸
=:fopt(x)

, (2)

where u is a random treatment vector in RK , corresponding to the random treatment A. Then
estimating the optimal ITR can be converted into estimating the decision function f(x) =
(f1(x), . . . , fK−1(x))

T , assigning a K − 1 dimensional vector to each covariate x. Here, while
the optimal decision function fopt(·) can take a generic form, we assume the linear decision
function within the linear treatment rule class D, induced by the linear decision function class
F = {f(X) = BTX : B ∈ Rp×(K−1)}.
Reduction to Weighted Convex Optimization. Suppose we have a sample (xi, ai, yi)

n
i=1 of size n

from the joint population distribution for (X, A, Y ). Estimating the optimal decision function fopt
from the observed finite sample can be reduced to solving a weighted convex optimization problem:

min
B∈Rp×(K−1)

1

n

n∑
i=1

w(ai,xi) ℓ(yi,xi, ai;B) +R(B). (3)
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There are three key components in the problem (3): the per-sample objective function ℓ, the per-
sample weights w, and the regularization R(B). First, ℓ denotes a model-dependent per-sample
convex objective function given by

ℓ(yi,xi, ai;B) =

{
1
2

(
K

K−1yi − uT
ai
BTxi

)2
for continuous outcome,

log
(
1 + exp(uT

ai
BTxi)

)
− yiu

T
ai
BTxi for binary outcome.

(4)

An important characteristic of causal inference problems is that only one of the possible treatments
can be observed for each subject. Thus, it is critical to control confounding variables to isolate the
causal effect of the treatment from other factors that might influence the outcome. This effectively is
done by choosing the appropriate weight wi = w(ai,xi) for the ith subject. A classic approach is to
use IPW: w(a,x) = 1/π(a,x) [39].

2.2 Proposed ITR Estimation Framework

Reducing Finite Sample Bias. The classic IPW approach requires specifying a propensity score
model for confounding control. However, it is well-known that propensity score methods are highly
sensitive to model misspecification, which yields biased estimates of causal effects [25, 30]. To
address this issue, we investigate incorporating alternative, model-free weighting schemes such
as energy balancing weights (EBWs) [23, 24], which are a type of DCBWs. Other options for
DCBWs include maximum mean discrepancy (MMD) balancing weights [19, 27, 8] and Wasserstein
distance-based balancing weights [52, 1]. Specifically, under the working model assumption (1), the
optimal decision function fopt in (2) can be decomposed as

fopt(x) = µ(x)E
[

u

π(A,x)

∣∣∣∣x]︸ ︷︷ ︸
treatment-free

+

K∑
k=1

δk(x)E
[
uI(A = k)

π(A,x)

∣∣∣∣x]︸ ︷︷ ︸
interaction

+E
[

u

π(A,x)

∣∣∣∣x]E[ϵ|x]. (5)

Since E
[

u
π(A,x)

∣∣x] = 0 and E[ϵ|x] = 0, it follows that fopt(x) =
∑K

k=1 δk(x)uk, depending only
on the interaction term. However, suppose the true propensity score is not correctly estimated. In
that case, the estimated decision function may be biased and include additional factors including the
treatment-free effect, leading to sub-optimal treatment decisions. There are two possible sources
for this estimation error. First, an incorrectly specified propensity score model might lead to an
estimated propensity score P̂n(A = a|x) that deviates from the true propensity score π(A = a|x).
Second, even with correct specification, insufficient sample size may lead to inaccurate finite-sample
approximation P̂n(A = a|x) of the true propensity score π(A = a|x) [31]. It results in systematic
bias for the estimated coefficient of the treatment-free term:

Ên

[
u

π(A,x)

∣∣∣∣x] = K∑
k=1

uk

π(k,x)
P̂n(A = k|x) ̸= 0.

Instead of using IPW, we use DCBWs such as EBWs. Such weights are data-driven and do
not rely on specific model assumptions or large sample approximation. Furthermore, EBWs are
known to promote independence between treatment and confounders [23], so Ên[uw(A,x) |x] ≈
Ên[u] Ên[w(A,x) |x] = 0 since Ên[u] = 0. Thus, EBWs may reduce the unfavorable impacts of
bias on the finite-sample decision function.

Improving Optimization Guarantees. To our best knowledge, the impact of the choice of the
regularization R(B) on the model parameter B on the detailed optimization landscape, especially in
terms of the convergence rate and statistical estimation error bounds has been under-investigated in
the literature. Contrary to the literature, we propose to use the combination of soft L2-regularization
and a hard L1-ball constraint:.

min
B∈Rp×(K−1), ∥B∥≤λ1

[
L(B) :=

1

n

n∑
i=1

w(ai,xi) ℓ(yi, xi, ai;B) +
λ2

2
∥B∥2F

]
. (6)

The above formulation has a smooth objective function that is unaffected by the hard L1-ball
constraint. Also, L2-regularization ensures that the objective is at least λ2-strongly convex. Thus, the
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PGD algorithm (with suitable stepsize) enjoys a strong exponential convergence guarantee toward
the global optimum. In contrast, standard approaches with L1-penalization loss need sub-gradient
methods since it is non-smooth. It is known that the convergence rate of the sub-gradient methods is
much slower than gradient methods [6, 18].

We use the classical PGD to solve the convex-constrained optimization problem in (6). In each
iteration, it involves conducting gradient descent with a suitable stepsize αt, followed by a projection
ΠB onto the L1-ball B := {B ∈ Rp×(K−1) : ∥B∥ ≤ λ1}:

Bt ← ΠB
(
Bt−1 − αt∇BL(Bt−1)

)
. (7)

For the projection onto the L1-projection, we use the algorithm in [14]. Detailed implementation of
this PGD algorithm is discussed in Algorithm 1 in the appendix.

Additional Improvements by Variance and Dimension Reduction. To ensure the stability of
estimates for both balancing weights and outcome regression models, a variable screening step is
recommended. We propose adapting distance covariance test [48] for its computational efficiency and
its ability to detect complex dependencies between treatment and outcome. By focusing on screened
variables that significantly impact the outcome, we can improve the estimation of outcome regression
models. Additionally, estimating balancing weights based on effect modifiers rather than all variables
provides more reliable weighting estimates. Hence, the screening approach serves to reduce bias and
enhance the effectiveness of ITR-Learning. See Algorithm 2 in the appendix.

Lastly, we propose using both augmented outcomes and inverse variance weighting for variance reduc-
tion in learning ITRs. Under the working model assumption in (1), the interaction effect determines
optimal treatment assignments, while the treatment-free effect acts as additional noise. Outcome
augmentation helps reduce variance by mitigating residual variability due to the treatment-free effect.
Nevertheless, misspecification of either the outcome or treatment-free effect models can induce
heteroscedastic errors due to residual treatment-free effects [35]. In such scenarios, using inverse
variance weighting, introduced in SABD-Learning, enhances robustness against misspecification
[44]. Consequently, the combination of outcome augmentation and inverse variance weighting offers
a robust and efficient approach to ITR-Learning, as they are complementary methods. Details are
discussed in the appendix C.3 and C.4.

3 Statement of results

Our theoretical analysis shows that a “weighted design matrix”, specifically a p(K − 1)× p(K − 1)
positive semi-definite matrix, plays a central role in the local landscape analysis of the ITR estimation
problem:

Ψ :=
1

n

n∑
i=1

ω(ai,xi)(uai
uT
ai
)⊗

(
xix

T
i

)
, (8)

where ⊗ denotes the Kronecker product. Without loss of generality, we assume
∑

i w(ai,xi) = n.
Note that the weights wi = w(ai,xi), i = 1, . . . , n affect the eigenvalues of the weighted design
matrix Ψ. Our analysis reveals that, for the improved convergence rate of the PGD algorithm
(Theorem 3.3) as well as a smaller statistical estimation error (Theorem 3.5), we need to choose the
weights wi such that the minimum eigenvalue of Ψ is as large as possible. Roughly speaking, this is
achieved when w1, . . . , wn are ‘covariate balancing weights’ where the weighted sample covariance
matrices conditional for each treatment are approximately the same. In the special case when the
covariates are discrete and one-hot encoded, the optimal weights are the ones that exactly balance the
covariate distributions given treatments. Thus this provides an explicit spectral characterization of
the DCBWs in causal inference literature. See the appendix D for more discussions.

3.1 Computational Guarantees

In order to control the strong convexity and the smoothness parameter of the ITR objective (6), we
require that the eigenvalues of Ψ are uniformly bounded.

Assumption 3.1 (Eigenvalue bounds on the weighted design matrix). There are constants 0 ≤ λ− ≤
λ+ such that the eigenvalues of Ψ in (8) is between λ− and λ+,
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For each subject i = 1, . . . , n, let zi and pi denote its ‘activation’ and ‘predictive probability’, where

zi := uT
ai
BTxi, pi := exp(zi)/(1 + exp(zi)). (9)

We need the activation zi to be uniformly bounded for our theoretical analysis of the binary outcome.
Since the simplex vectors uai have unit length, it is enough to require the following assumption.
Assumption 3.2 (Bounded activation). There exists a constant M > 0 such that for all model
parameter B ∈ Rp×(K−1) in the constraint set B and observed sample i = 1, . . . , n, ∥BTxi∥ ≤M .
Consequently, there exist constants 0 < α− ≤ α+ ≤ 1/4 such that α− ≤ pi(1− pi) ≤ α+ for all i.

With our hard L1-norm constraint on the model parameter B, Assumption 3.2 can be easily verified
whenever the covariate vectors xi are uniformly bounded, which is a standard in the literature.

We establish the convergence rate of Algorithm 1 for ITR-Learning with stepsizes that are fixed but
sufficiently small and diminishing rate. An informal statement is given in Theorem 3.3 below, and a
full statement is provided in Theorem E.1 in the appendix. Define

µ :=

{
λ− + λ2

α−λ− + λ2
L :=

{
λ+ + λ2 for continuous outcome
α+λ+ + λ2 for binary outcome

(10)

We say a function f : Rp → R is µ-strongly convex if f(x)− µ
2 ∥x∥

2 is convex and L-smooth if f is
differentiable and∇f is L-Lipschitz continuous.
Theorem 3.3 (Convergence rate of PGD for ITR-Learning). Let (Bt)t≥0 denote the sequence
of parameters obtained by the PGD algorithm (7) for ITR-Learning problem (6) with arbitrary
initialization B0. Suppose Assumptions 3.1 and 3.2 hold. Let B⋆ denote the unique global optimum
of (6). Then the following hold:

(i) (Optimization landscape) The ITR objective L(B) in (6), is µ-strongly convex and L-smooth,
where µ,L are as in (10).

(ii) (Linear convergence with fixed stepsize) Assume constant stepsize αt ≡ α < 2/L. Denote the
contraction constant ρ(α) := max{|1 − αL|, |1 − αµ|} ∈ (0, 1). Then ∥Bt − B⋆∥2F ≤
ρ(α)t∥B0 −B⋆∥2F for all t ≥ 1.

(iii) (Sublinear convergence with diminishing stepsize) Assume diminishing stepsize αt =
β

γ+t , where
β = β(µ,L) > 0 is a sufficiently large constant and γ > 0 is an arbitrary constant. Then
∥Bt −B⋆∥2 ≤ ν

γ+t for all t ≥ 1 for some constant ν > 0.

Our algorithm 1 with soft L2-penalization and hard constraint with L1-ball is guaranteed to converge
to the true solution B⋆ exponentially fast provided stepsizes αt are fixed and sufficiently small.

3.2 Statistical Guarantees

Next, we introduce generative models for the ITR estimation problem, for which we will establish
statistical estimation guarantees in Theorem 3.5. Fix a joint distribution π for the pair (X, A) of
covariates X ∈ Rp and treatment A ∈ {1, . . . ,K}. Fix a true parameter B⋆ ∈ Rp×(K−1). Then we
assume n i.i.d. samples (xi, ai, yi) are drawn as (xi, ai) ∼ π and

yi|(xi, ai) ∼

{
N
(
K−1
K zi, σ

2
)

for continuous outcome

Ber
(

exp(zi)
1+exp(zi)

)
for binary outcome

, where zi := uT
ai
BT

⋆ xi, (11)

where N(µ, σ2) denotes a normal distribution with mean µ and variance σ2, whereas Ber(p) denotes
a Bernoulli distribution with mean p. We assume that π does not depend on B⋆ and the noise
variance σ2 for the continuous case is known. We then seek to estimate the true parameter B⋆ from
the observed samples. It is easy to check that the negative log-likelihood function (up to additive
constants) coincides with the per-sample loss function ℓ in (4). Therefore, the weighted convex
optimization problem (3) corresponds to weighted MLE under the generative models in (11) (see
Section H in the appendix for details).

We assume that the weighted gradient of the per-sample loss ℓ in (4) has uniformly bounded third
moments for our statistical analysis of the generative ITR model above.
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Assumption 3.4 (Bounded moments at B⋆ and weights). Suppose (xi, ai, yi) follows the gener-
ative model above. Denote Ui := wi∇Bℓ(yi,xi, ai;B⋆) ∈ Rp×(K−1) for wi := w(ai,xi) and
U i := Ui − E[Ui]. Suppose there are constants D1, d1 ∈ (0,∞) such that E[∥U i∥3F ] < D1 and
mink,l Var(U i(k, l)) > d1. Also,

∑n
i=1 w

3
i /
(∑n

i=1 w
2
i

)3/2
= O(n−1/2).

Now we state our main result regarding the statistical estimation guarantee for the true generative
model parameter B⋆. With high probability, Algorithm 1 can recover B⋆ up to a statistical error
O(n−1/2).
Theorem 3.5 (Statistical estimation guarantee). Let (xi, ai, yi)

n
i=1 be i.i.d. observations from the

generative models in (11) with true parameter B⋆ ∈ Rp×(K−1) such that ∥B⋆∥1 ≤ λ1 for some
λ1 ≥ 0. Suppose Assumptions 3.1, 3.2, and 3.4 hold. Let B̂T denote the weighted MLE obtained
after T iterations of PGD algorithm (7) for (3). Fix a constant ε > 0.

Then there exists a constant C = C(ε) > 0 such that with probability at least 1− ε and for µ as in
(10) but with λ± = λ±(E[Ψ]),

∥B⋆ − B̂T ∥F ≤
C
√
(p/n) log ϵ−1

µ
+

8λ2∥B⋆∥F
µ

, (12)

provided n, T are large enough. More specifically, the above holds when

(i) (Sample complexity) n ≥ 1 large s.t. (
∑n

i=1 w2
i )

3

(
∑n

i=1 w3
i )

2 ≥ C1ε
−2 for some explicit constant C1 > 0;

(ii) (Computational complexity) T = O(log n) and O(n−1) when constant or diminishing stepsize
as in Theorem 3.3 is used, respectively.

Furthermore, we get
√
n-consistent estimation whenever λ2 = O(n−1/2∥B⋆∥−1

F ).

Notice that both terms in the error bound (12) are proportional to 1/µ, which depends both on the
minimum eigenvalue λ− of E[Ψ] as well as the L2-regularization parameter λ2. Therefore, choosing
the weighting function ω(A,X) to maximize λ− helps minimize the overall statistical estimation
error. (Detailed analysis and discussion on this point can be found in the appendix H.) Another
easy way to increase µ is to use large L2-regularization, but as in the second term in (12), using
L2-regularization gives estimation bias of O(λ2∥B⋆∥F /µ). Hence, we need to choose λ2 is small
enough so that this bias term is also of O(n−1/2). Then we obtain an overall

√
n-consistent estimator.

The key insight in our proof of Theorem 3.5 is that we can decompose the total estimation error
∥B⋆ − B̂T ∥F into computational and statistical parts:

∥B⋆ − B̂T ∥F ≤ ∥B̂− B̂T ∥F︸ ︷︷ ︸
computational error

+ ∥B⋆ − B̂∥F︸ ︷︷ ︸
statistical error

, (13)

where B̂ denotes the exact MLE. The computational error vanishes as the number T of PGD iterations
tends to infinity according to Theorem 3.3. For the statistical error, we show

P
(
∥B⋆ − B̂∥F ≤

2C√
n
+

8λ2∥B⋆∥F
µ

)
≥ 1−O

( ∑n
i=1 w

3
i

(
∑n

i=1 w
2
i )

3/2

)
. (14)

Thus, the ‘skewness’ of the weights wi measured by the ratio
√
n
∑n

i=1 w
3
i /
(∑n

i=1 w
2
i

)3/2
(which

arises from Berry-Esseen bound) acts as a scalar multiple to the standard statistical error of O(n−1/2)
per the central limit theorem. Hence, more balanced weights lead to fewer statistical estimation
errors. If this skewness ratio is uniformly bounded, we can ensure a small statistical error with
probability at least 1− ε, provided we have at least O(ε−2) samples. Then, we simply need to ensure
the PGD iteration T is large enough so that the computational error is at most C/

√
n to achieve the

high-probability total estimation error bound in Theorem 3.5. Another insight from the theorem is
that maximizing λmin(E[Ψ]) promotes heterogeneous balancing weights wi, and we get increased

sample complexity through the bound (
∑n

i=1 w2
i )

3

(
∑n

i=1 w3
i )

2 ≥ C1ϵ
−2 (e.g., if wi ≡ 1, this is n ⪆ ϵ−2, but if

w1 = n,w2 = · · · = wn = 0, this may not be satisfied for any n).
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4 Simulation Studies

We investigate four simulation settings, each designed to evaluate various factors influencing the per-
formance of different ITR estimators. For each setting, we mimic a randomized trial (no-confounding)
and an observational study (with confounding) as per [44]. We consider 4 treatments with sample
sizes n = 200, 600, 1000, and covariate dimensions p = 20, 40, 60. The outcome Y follows the
model (1) with ϵ|A,X ∼ N

(
0, σ2(A,X)

)
. We evaluate method performance using accuracy (i.e.,

correct identification of the optimal treatment for each observation) and empirical value on a test
dataset of 10, 000 observations. Each simulation setting is replicated independently 100 times.

In this section, we provide partial experiment results according to the proposed estimation framework
in Section 2.2. Specifically, we focus on the results from two scenarios: one mimicking randomized
trials with linear ITR as the optimal rule and the other mimicking observational studies with nonlinear
ITR as the optimal rule for continuous outcome. Since our proposed method assumes linear treatment
rule class, the latter involves a situation where our model’s prespecified treatment rule class is
misspecified. Specifically, we use following treatment-free effect function µ(X) and interaction
effect function δ(X) for each scenario:

1. Randomized Trial: Linear ITR as the true optimal
µ(X) = 1 + 2X1 + 2X2,

δ(X) =

{
0.75 + 1.5X1 + 1.5X2 + 1.5X3 + 1.5X4, A = 1; 0.75 + 1.5X1 − 1.5X2 − 1.5X3 + 1.5X4, A = 2;

0.75 + 1.5X1 − 1.5X2 + 1.5X3 − 1.5X4, A = 3; 0.75− 1.5X1 + 1.5X2 − 1.5X3 − 1.5X4, A = 4,

2. Observational Study: Nonlinear ITR as the true optimal

µ(X) = 1 + 2X1 + 2X2 + 2X4 − 2X2
4 + 2X1X2 + 2e−X1X2 + sin(X3),

δ(X) =

{
0.5 + 1.0X1 − 2.0X4 + 0.5X2

4 , A = 1; 1.0 + 1.0X1 + 1.0X4 − 1.0X2
4 , A = 2;

1.5 + 2.0X1 − 1.0X4 − 1.0X2
4 , A = 3; 1.0− 1.0X1 − 1.0X4 − 1.0X2

4 , A = 4.

in the working model (1). Further details about simulation settings, other scenarios, and corresponding
results are available in the appendix I.

Figure 1: Accuracy Comparison: proposed methods vs. benchmark methods. All subplots in
the same row share the same simulation setting, focusing on randomized trials with linear ITR as
the true optimal rule (top) and observational studies with nonlinear ITR as the true optimal rule
(bottom). Each subplot presents (Left) accuracy comparisons based on weights, illustrating the
difference between the standard IPW approach of AD-Learning with the proposed approach using
EBW, (Middle) accuracy comparisons based on optimization algorithms, illustrating the difference
between the standard L1-penalized approach against the proposed constrained optimization with PGD,
(Right) evaluation of accuracies between existing standard approaches and the proposed method,
which integrates EBWs, variance and dimension reduction techniques implemented through PGD.
Error bars represent the standard errors of the mean (SEM) of accuracies across multiple simulations.
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Using Distributional Covariate Balancing Weights. In the left subplots of Figure 1, the incorpora-
tion of DCBWs (e.g., EBWs) shows improvements in classification rates for ITR-Learning. While
EBWs indeed provide more effective balancing weights in observational studies, as depicted in the
lower left subplot in Figure 1, it also results in improvements even in randomized trial settings where
the true propensity score is known. This is achieved by reducing finite sample imbalances, as shown
in the upper left subplot in Figure 1. Moreover, when the underlying true treatment rule class is
nonlinear, the performance of AD-Learning suffers due to a misalignment between the assumed linear
treatment rule class and the actual class. In this scenario, using EBWs yields accuracy improvements
compared to the conventional IPW approach. Further details can be found in the appendix I.

Using PGD for Constrained Optimization. The middle subplots of Figure 1 show accuracy
comparisons between standard penalized approach and constrained optimization using PGD. Both
optimization algorithms are based on the same proposed statistical approach, integrating EBWs
with SABD-Learning, outcome augmentation, and additional variable screening. For solving the
L1-penalized regression problems, the R package glmnet is a standard choice, which is based on cyclic
coordinate descent with simulated-annealing-style hyperparameter tuning. However, glmnet does
not handle hard L1-ball constraints required for our method. Therefore, to ensure a fair comparison,
we directly implemented standard (projected) (sub)gradient descent to solve optimization problems
for both penalized and constrained problems. In our experiment reported in Figure 1, we observe
significant improvements using our PGD method, especially in the second scenario. One possible
explanation for this improvement is that large penalization may yield a perturbed solution to the ITR
problem. If the minimizer of the ITR problem lies on the boundary of the L1-ball, the solutions
of constrained optimization and penalized optimization coincide. However, if the minimizer is the
interior point of L1-ball, constrained optimization can find the exact solution, while the penalization
may induce a perturbed solution. Furthermore, the trajectory of PGD for the constraint approach
appears to be significantly more stable than that of the subgradient descent in the penalization
approach (see Figure 2).

Figure 2: Comparison of Optimization Methods by λ1. λ1 is L1-ball size of the constraint set in
the constrained optimization and the regularization parameter with additional L1-regularization of
the model parameter in the penalized regression, respectively.

Performance Evaluations between the Proposed Method and Benchmark Methods. In the right
subplots of Figure 1, we evaluate accuracies by comparing benchmark methods to our proposed
approach. The benchmarks include AD-Learning, SABD-Learning, a treatment-covariate interaction
model with L1-regularization ‘linear’, and two popular tree-based methods:‘policytree’ [47, 59]
and double-machine learning-based ‘causalDML’ [10, 29]. Our proposed method integrates EBWs
with SABD-Learning, outcome augmentation, and additional variable screening for variance and
dimension reduction, implemented via PGD. However, causalDML requires a sufficiently large
sample size, thereby making its evaluation unfeasible under a sample size of 200. Our numerical
analysis provides evidence that our proposed approach outperforms existing methods in both scenarios.
‘linear’ performs well in the upper subplot, which simulates a randomized trial with a true optimal
linear rule, as covariates are balanced and the model accurately captures the decision function.
However, in the lower subplot, simulating an observational study with a nonlinear rule, the model
performs poorly because it lacks balancing weights to address confounding and cannot fully capture
nonlinear relationships. Further detailed analysis, including the effectiveness of additional techniques
such as variable screening for performance improvement, is provided in the appendix I.

Additionally, our proposed method processes each dataset (p = 60, n = 1000) in an average of 4.40
seconds, compared to 2.01 seconds for the penalization method using glmnet in R. Other methods
exhibit scalability challenges, with policytree averaging 12.02 seconds and causalDML taking 46.75
seconds. This demonstrates that computational efficiency is a notable advantage of our approach.
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5 Applications

We apply the proposed methods to two datasets from AIDS Clinical Trials Group (ACTG) 175 [21]
and email marketing [22]. ACTG is a randomized trial for 2,139 patients with HIV infection who
were randomly assigned to four different treatments. Twelve covariates including age and gender
were used for the analysis. The outcome is the change in CD4 cell count from baseline to 20 weeks,
where larger values are preferable. Email marketing dataset has 64,000 customers who were randomly
chosen to receive an e-mail campaign among three different marketing methods. Eight covariates
with historical customer attributes and their pairwise interactions were used. The outcome is whether
customers visited the website in the following two weeks. The goal of the analysis using these two
datasets is to find the best treatment/marketing methods based on individuals’ attributes. Similar
to [44], we randomly split the data into a training set of {200, 400, 800, 1000, 1200} observations
for the ACTG dataset and {1000, 3000, 5000} observations for the email dataset. The remaining
observations were used for test data with 10 iterations. We evaluate method performance using
the empirical value function on a test dataset. The benchmarking methods include AD-Learning,
SABD-Learning, and two tree-based methods (policytree [47] and causalDML [29]). However,
causalDML requires a sufficiently large sample size, thereby making its evaluation unfeasible under a
sample size of 200. For the binary outcome in Email dataset, SABD-Learning is not used, since the
homoscedastic assumption is unnecessary for logistic regression. The results are shown in Table 1.

Table 1: Average empirical value functions across different approaches for ACTG/Email datasets.
Mean values with the corresponding standard errors of the mean (SEM) in parentheses are provided.
The highest-performing methods are marked in bold.

Dataset Training size AD SABD policytree causalDML Proposed
200 37.624 (6.9) 33.645 (6.7) 36.871 (4.6) - 42.301 (5.7)
400 51.329 (3.2) 53.644 (1.9) 47.191 (2) 49.552 (0.2) 54.868 (3.4)

ACTG 800 56.021 (1.5) 56.700 (1.6) 52.786 (2.6) 55.506 (2.1) 59.200 (2.5)
1000 56.825 (2.2) 56.963 (2.1) 56.005 (1.7) 56.591 (2.1) 59.552 (2.5)
1200 55.092 (2.6) 55.221 (2.8) 58.819 (3.4) 57.104 (2.8) 58.207 (2.9)
1000 0.169 (0.0) - 0.171 (0.0) 0.172 (0.0) 0.175 (0.0)

Email 3000 0.176 (0.0) - 0.177 (0.0) 0.177 (0.0) 0.181 (0.0)
5000 0.177 (0.0) - 0.178 (0.0) 0.178 (0.0) 0.182 (0.0)

6 Discussion and Limitations

Our method introduces a unified, robust framework for estimating ITR. By formulating the problem
as a weighted, constrained optimization problem, we incorporate DCBWs to control confounding
and propose the PGD algorithm for sparse ITRs with computational and statistical guarantees. Addi-
tionally, we propose variable screening and efficient augmentation, which together show synergistic
effects. We demonstrate our method with continuous and binary outcomes, and it can be readily
extended to other outcomes, such as censored outcomes. Although we focus on learning linear ITR to
facilitate the demonstration of our idea, it can be extended to nonlinear ITR using the basis function
[34]. For example, by taking the covariate powers up to M, the linear function class becomes the class
of degree-M polynomial functions. The linear function class can also serve as a useful approximation
to nonlinear decision functions.

We acknowledge that although most, if not all, types of ITR-Learning frameworks can benefit from
using DCBWs, variable screening, and augmentation, our proposed framework for theoretical analysis
relies on the specific assumption that the model can be formulated as a constrained, weighted, and
convex optimization problem. Furthermore, we restricted the decision function to the linear function
class. Generalizing our theoretical analysis to include nonlinear function classes with nonconvex
problems, such as boosting or deep neural networks, is an interesting direction for future investigation.
Another limitation of our method is its reliance on standard assumptions to identify optimal ITRs
using observational data, including the assumption of no unmeasured confounding. An interesting
future direction would be to extend our framework to cases where this assumption does not hold,
utilizing instrumental variables [12, 38] and proximal causal learning [40, 45].

Our work significantly impacts society by improving patient health outcomes through personal-
ized care and advancing medical research in disease mechanisms and drug development. Beyond
healthcare, these methods can be applied in marketing strategies based on customer characteristics.
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A Preliminaries

In this section, we review several notations and basic facts on linear algebra and matrix calculus.

The Kronecker product, denoted by ⊗, is a binary operation that combines two matrices to create a
new matrix. Given two matrices A = (aij) ∈ Rm×n and B ∈ Rp×q, then A ⊗B is an mp × nq
matrix defined as

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (15)

If A′ ∈ Rm×n′
, then for the horizontally stacked matrix [A,A′] ∈ Rm×(n+n′),

[A,A′]⊗B = [A⊗B,A′ ⊗B]. (16)

For each A = [a1, . . . ,an] ∈ Rm×n, let vec(A) := [aT1 , . . . ,a
T
n ]

T ∈ Rmn denote its vectorization.
The commutation matrix C(a,b), which is a special instance of ab× ab permutation matrix. Namely,
for each integers a, b ≥ 1, there exists a unique matrix C(a,b) ∈ {0, 1}ab×ab such that for all
A ∈ Ra×b, we have C(a,b) vec(A) = vec(AT ). Note that (C(a,b))T = C(b,a). Furthermore,
(C(a,b))TC(a,b) = Iab since (C(a,b))TC(a,b) vec(A) = C(b,a) vec(AT ) = vec(A). Hence C(a,b)

is positive semi-definite. Note that C(a,1) = Ia = C(1,a) since if A ∈ Ra×1 or A ∈ R1×a,
vec(A) = vec(AT ). Also, for every matrices A ∈ Rm×n and B ∈ Rr×q ,

C(r,m)(A⊗B) = (B⊗A)C(q,n). (17)

Also recall the relations for vectorizing product of matrices: for A ∈ Ra×b, B ∈ Rb×c, and
C ∈ Rc×d,

vec(AB) = (Ic ⊗A) vec(B) = (BT ⊗ Ia) vec(A), (18)

vec(ABC) = (CT ⊗A) vec(B) = (Id ⊗AB) vec(C) = (CTBT ⊗ Ia) vec(A). (19)

For A,B,C, and D are matrices of compatible sizes allowing the matrix products AC and BD,

(A⊗B)(C⊗D) = (AC⊗BD).

Next, recall that if f : Ra×1 → Rb×1 and g : Rb×1 → Rc×1 are differentiable functions, then the
Jacobian Jf can be written by using gradients as Jf (x) =

(
∇xf

T
)T

. By chain rule Jg◦f (x) =
Jg(f(x))Jf (x), we have the following chain rule for gradients

∇x

(
g(f(x))T

)
= ∇x

(
f(x)T

)
∇f(x)

(
g(f(x))T

)
. (20)

We will also frequently use the following fact: For A ∈ Ra×b,

∇vec(A) vec(A)T = Iab, (21)

∇vec(A) vec(A
T )T = ∇vec(A) vec(A)TC(b,a) = C(b,a). (22)

For two matrices A,B of the same size, we write A ⪯ B if B−A is positive semi-definite. The
partial ordering ⪯ is called the Loewner ordering.
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B Details of model setup

B.1 Details of angle-based approach

Consider the working model given by Equation (1) in the main text:

Y = µ(X) +

K∑
k=1

δk(X)I(A = k) + ϵ.

To make the optimal ITR identifiable, we impose the constraint
∑K

k=1 δk(x) = 0 for all covariates
x. Under this model, δk(x) determines the optimal ITR for an individual with covariate x, while
µ(x) has no impact on the ITR. However, using K functions with the sum-to-zero constraint can be
computationally inefficient [55]. Instead, one can opt for simplex coding as an alternative, which
inherently satisfies the sum-to-zero constraint.

In AD-Learning, proposed by [39], each of the K treatments is represented as a vertex simplex on
RK−1, denoted as uk, k = 1, . . . ,K. In particular, uk is defined as

uk =


1√
K−1

1K−1 if k = 1,

− 1+
√
K√

(K−1)3
1K−1 +

√
K

K−1ek−1 if k ≥ 2,

where 1K−1 is a K − 1 dimensional vector with entries 1, and ek−1 is a K − 1 dimensional vector
with entries 0 except its k-th entry being 1. This vertex simplex has K vertices with equal angles
between them and an origin at the center of the simplex. All uk have the same Euclidean norm
1. To estimate the optimal ITR, a decision function f(x) = (f1(x), . . . , fK−1(x))

T is constructed,
assigning a K − 1 dimensional vector to each covariate x. Here, f(·) can take a generic form, while
we assume the linear decision function in the main text. The optimal ITR is reformulated by the
authors as follows:

dopt(x) = argmax
k∈{1,...,K}

uT
k f(x) = argmin

k∈{1,...,K}
∠(uk, f(x)),

where ∠(·, ·) represents the angle between two vectors. Note that due to
∑K

k=1 uk = 0,∑K
k=1 u

T
k f(x) = 0 for any given function f and covariate value x. Then we can use(

K∑
k=1

ukI(A = k)

)T

f(x)

instead of
∑K

k=1 δk(X)I(A = k) to encode the treatment and covariate interaction. Specifically,

we use uA to denote
(∑K

k=1 ukI(A = k)
)T

and assume f(x) to be linear in x (with the coefficient

matrix B). Therefore, terms pertaining to ITRs can be expressed as uT
ai
BTxi.

B.2 Details of binary outcome

Again, under prespecified treatment rule class D, the optimal ITR is given by

dopt(x) = argmax
k∈{1,...,K}

E[Y |x, A = k] = argmax
k∈{1,...,K}

uT
k E

[
Y u

π(A,x)

∣∣∣∣x]︸ ︷︷ ︸
=:fopt(x)

.

For the binary response setting, we assume the following logistic model

P[Y = 1|x, A = k] =
exp(uT

k fopt(x))

1 + exp(uT
k fopt(x))

.
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Under this model, fopt is indeed the optimal decision function under the angle-based direct learning
framework since

dopt(x) = argmax
k∈{1,...,K}

P[Y = 1|x, A = k]

= argmax
k∈{1,...,K}

exp(uT
k fopt(x))

1 + exp(uT
k fopt(x))

(23)

= argmax
k∈{1,...,K}

uT
k fopt(x).

Furthermore, it can be checked that the function fopt is an optimal solution to maximizing the
IPW-weighted log-likelihood of the logistic regression model:

argmin
f

E
[
− Y uT f

π(A,x)
+

log(exp(uT f) + 1)

π(A,x)

]
, (24)

under the assumption that the expectation and derivative w.r.t. f can be exchanged ([39]).

For the effective and robust ITR estimation, replacing IPW with DCBW leads to

argmin
f

E
[
w(x, A)

{
−Y uT f + log(exp(uT f) + 1)

}]
. (25)

Now consider restricting it to the linear decision function class F = {f(X) = BTX : B ∈
Rp×(K−1)}. Then the above (25) becomes

argmax
B∈Rp×(K−1)

E
[
w(x, A){Y uTBTx− log(exp(uTBTx) + 1)}

]
.

Then, we can estimate the optimal parameter B by solving the following empirical loss minimization

argmin
B∈Rp×(K−1)

1

n

n∑
i=1

w(xi, ai)
(
−yiuT

i B
Txi + log(exp(uTBTxi) + 1)

)
s.t ∥B∥1 ≤ z, (26)

where we imposed additionally the L1-penalization ∥B∥1 ≤ z, on B to promote a sparse solution.
By the proposed algorithm 1, we can efficiently solve the problem (26).
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C Details of proposed approaches

To keep the appendix as self-contained as possible, we provide descriptions of the building blocks of
the proposed methods.

C.1 Use of distributional covariate balancing weights

In this section, we provide the background about the use of DCBWs for constructing effective and
robust ITRs. For additional details, please refer to the original papers.

Many existing ITR-Learning approaches such as AD-Learning and SABD-Learning use inverse
probability (of treatment) weighting (IPW), which requires specifying a propensity score model
for confounding control. However, propensity score methods have long been known to be highly
sensitive to model misspecification, which yields biased estimates of causal effects [25, 30]. For this
reason, methods that directly estimate weights based on balance-seeking objectives instead of using
IPW have been proposed. These approaches include entropy balancing weights [20], stable balancing
weights [61] as well as DCBWs [24, 27]. However, despite the weights serving a critical role in
the estimation process, these advancements have mainly focused on improving average treatment
effect (ATE) and are largely under-explored in the ITR literature. Significant improvements in the
performance of ITRs are often left on the table when the weights are not treated with the same level
of emphasis and focus as the other aspects of ITR learning.

To tackle these challenges, we propose the use of DCBWs, such as energy balancing weights (EBWs)
[24] and maximum mean discrepancy (MMD) balancing weights [19, 27, 8], as an alternative to IPW
for ITR-Learning. Unlike traditional approaches, these methods do not rely on any pre-specified
functional forms for constructing weights. Instead, they focus on minimizing the distance of the
weighted empirical distributions of covariates across treatment groups to reduce potential confounding.
Even for data from randomized trials, they can help reduce finite sample covariate imbalance. The
emphasis on finite sample balance and the model-independent nature of distributional weighting
methods effectively mitigate biases due to model misspecification, resulting in more precise and
reliable ITR estimation.

In the remainder of this section, we provide additional details about EBWs. The EBWs are derived
from the concept of “weighted energy distance" which modifies the energy distance measure to
allow for measurement of the distance between a weighted empirical distribution and a target
empirical distribution. This measure captures the distance between a weighted empirical cumulative
distribution function (ECDF) of covariates for a specific treatment group a, denoted as {Xi}i:Ai=a,
and the combined ECDF of covariates, denoted as {Xi}ni=1. Specifically, the weighted energy
distance is defined as:

E (Fn,a,w, Fn) ≡
2

nan

n∑
i=1

n∑
j=1

wiI (Ai = a) ∥Xi −Xj∥2 −
1

n2
a

n∑
i=1

n∑
j=1

wiwjI (Ai = Aj = a) ∥Xi −Xj∥2

− 1

n2

n∑
i=1

n∑
j=1

∥Xi −Xj∥2 .

where na =
∑n

i=1 I(Ai = a). The weighted energy distance measures the distance between the
weighted distribution of covariates among those with Ai = a and the empirical distribution of
covariates in the full sample; it takes value 0 if and only if these two distributions are identical.

The optimal weights are obtained by minimizing the sum of all the weighted energy distances of all
treatment groups:

wn ∈ argmin
w=(w1,...,wn)

∑
a∈A
E (Fn,a,w, Fn) s.t.

n∑
i=1

wiI (Ai = a) = na (27)

for all a ∈ A and wi ≥ 0 for i = 1, . . . , n.

Thus, the EBWs encourage the distributions of covariates for each treatment group to look like that
of the target population, i.e. the full sample. Since (27) is a quadratic objective function along with
linear constraints, it can be efficiently solved through interior point methods. Another advantage lies
in the fact that it does not require parameter tuning. The estimated weights are effective in balancing
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all covariates of the covariate distributions, not just limited to the first or second moments. Lastly,
the data-driven characteristic of EBWs that do not rely on specific model assumptions contributes to
more robust ITR estimates.

C.2 Implementation of the PGD algorithm

We provide Algorithm 1 to solve the problem (6) using a projected gradient descent (PGD). The
algorithm applies to either continuous or binary outcomes. For the projection onto the L1-ball, we
use the algorithm in [14].

Algorithm 1 Projected Gradient Descent Algorithm to Estimate Decision Function for ITR-Learning
Input: Data set (xi, ai, yi)

n
i=1 ∈ Rn×p×{1, 2, · · · ,K}n×Rn (▷ yi can be continuous or binary);

loss function L
Parameters: B ∈ Rp×(K−1) (model coefficient), z ≥ 0 (L1-ball size); λ1 ≥ 0 (additional
L2-penalization for R(B)); T ∈ N (number of iterations), αt ≥ 0 (stepsize).
Constraints: L1-ball B := {B ∈ Rp×(K−1) | ∥B∥1 ≤ z}

Compute x∗
i := xiu

T
ai

for all i = 1, · · · , n for faster computation.
Choose any point from B0 ∈ B as initialization.
For t = 1, 2, . . . , T do:

Bt ← ΠB

(
Bt−1 − αt∇BL(Bt−1)

)
.

End for
Output: BT

To help the convenient implementation of the above PGD algorithm, we provide the gradient of the
ITR objective below. For the continuous outcome, we have (see Proposition F.1)

∇B L(B) =
1

n

n∑
i=1

ω(ai,xi)

(
xix

T
i Buai

uT
ai
− K

K − 1
yixiu

T
ai

)
+ λ2B. (28)

For the binary outcome, we have (see Proposition F.2)

∇B L(B) =
1

n

(
n∑

i=1

ω(ai,xi)

(
exp(uT

ai
BTxi)

1 + exp(uT
ai
BTxi)

− yi

)
xiu

T
ai

)
+ λ2B. (29)

C.3 Additional improvements by dimension reduction: variable screening procedure

High dimensional covariates can significantly affect the performance of methods for estimating
weights, outcome regression models, and the final ITR. Specifically, using screened variables is
beneficial in estimating outcome regression models by focusing on fewer variables that significantly
impact the outcome. Additionally, estimating balancing weights based on effect modifiers rather than
all variables provides more reliable weighting estimates. Hence, the screening approach serves to
reduce bias and enhance the efficiency of ITR-Learning.

Several techniques have been developed to choose appropriate variables in causal inference. One
popular approach in the ITR setting is the group-lasso method introduced in [33] which filters out
variables that only affect the treatment-free effect. For the ATE estimation, sure independence
screening (SIS) method [16, 32] is widely used, which involves an initial screening step based on
Pearson correlations between each covariate and the outcome. The covariates are then ranked based on
these correlations, and only the top-ranked ones are used in the downstream analysis. While one could
also use similar variable screening methods in the ITR setting, the use of Pearson correlation may
limit their effectiveness in capturing nonlinear relationships, potentially leading to biased estimates
of the ITR.

To address this issue, alternative approaches that employ non-linear dependence tests are explored,
including the ball covariance, mutual information test, and distance covariance [37, 42, 48]. Ball
covariance, previously applied to variable selection in ATE estimation, has been found to be effective
[49]. Distance covariance is another way to capture the nonlinear dependence between two random
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vectors/variables [48]. The test compares the observed distances between pairs of observations to
the expected distances under the assumption of independence. A zero value of distance covariance
indicates independence between two random vectors. If the observed distances are significantly far
from the expected distances, it indicates statistical dependence between the random vectors. The
p-value is calculated by comparing the observed empirical distance with the distribution of the same
test statistic obtained from random permutations of the data under the assumption of independence.
We propose adapting the distance covariance due to its computational efficiency and empirical
performance for the settings we explored.

Now, we introduce our proposed variable screening procedure. In a setting with K treatments, we
aim to find which covariates have conditional dependence on the outcome given the treatment. Doing
so allows the identification of covariates that either modify the treatment effect or otherwise affect the
outcome (i.e. are precision variables). To do so, for each covariate Xj where j ∈ {1, . . . , p}, conduct
the distance covariance test between covariate and outcome K times, conditioning on each treatment
value. This conditioning on the treatment creates subgroups based on treatment assignments, allowing
the assessment of the dependence between the covariate and the outcome within each subgroup. Then
we set the p-value of the covariate Xj as the minimum p-value from these K tests. This approach
ensures that we retain as many relevant variables as possible during this preliminary variable screening
stage. For the same reason, we avoid the use of multiple comparison adjustments such as Bonferroni
correction. Instead, we opt to select variables with a significance level of 5%. We perform the same
steps for all covariates in the dataset. These procedures are summarized in Algorithm 2.

Algorithm 2 Variable Screening using Distance Covariance
Input: X ∈ Rn×p; Y ∈ Rn; A ∈ {1, . . . ,K}.
Initialize X̂ = {}.
for j = 1, 2, . . . , p do

for k = 1, 2, . . . ,K do
Perform distance covariance test(Xj , Y |A = k) and obtain p-value, pj,k.

end for
pj ← min(pj,1, pj,2, . . . , pj,K).
if pj < 0.05 then

X̂← X̂ ∪ {Xj}.
end if

end for
Output: X̌, the set of screened variables containing effect modifiers and precision variables.

This conditional independence test is crucial to retain effect modifiers and precision variables while
filtering out instrumental variables associated with treatment but not the outcome [49]. While
acknowledging that the procedure is ad-hoc, the simulation results show that it effectively reduces the
number of covariates to estimate covariate balancing weights and outcome regression models, which
improves efficiency and helps avoid overfitting.

C.4 Additional improvements by variance reduction: combining inverse variance weighting
with augmented outcome

Our additional recommendation includes dually using both augmented outcomes and inverse variance
weighting for variance reduction. Under our working model (1), the outcome can be explained by
the sum of the treatment-free effects of covariates, the interaction effect between covariates and
each treatment, and random noise. As the interaction effect alone determines optimal treatment
assignments, the treatment-free effect acts as extra noise. This noise can be mitigated using outcome
model augmentation. One way to implement outcome augmentation is to use the augmented outcomes
Y̌ := Y − µ̂(X) in place of the original outcomes for continuous outcomes when applying an ITR
estimation method. Flexible techniques such as random forest and neural networks can be utilized to
estimate the treatment-free effect. This is the first implementation for multi-category treatments with
DCBWs, whereas previous work focused on binary treatments with IPW [44].

Augmented outcomes can refine ITR estimates when correctly specified. Yet, misspecification of
either outcome or treatment-free effect models can lead to heteroscedastic errors due to residual
treatment-free effects. This is where SABD-Learning’s inverse variance weighting helps, providing
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robustness against misspecification. SABD-Learning extends AD-Learning designed for homoscedas-
ticity [39] to account for heteroscedasticity, i.e. when the conditional variance of the (potential)
outcome given the covariates is not constant [44]. This method estimates the conditional variance of
outcomes and reweights the final objective function by adjusting each sample’s contribution based on
the inverse of the estimated variance. Therefore, we propose to combine outcome augmentation and
inverse variance weighting for robust and efficient ITR learning, as they are complementary methods.

The key idea behind outcome augmentation is to add an asymptotically unbiased quantity to the
objective function (negative log-likelihood function) so that the new optimizer for the ‘augmented
objective function’ has a provably smaller variance than the original estimator. To do this, let h
be some unknown (to be determined) augmentation function depending on the covariate. The key
property of asymptotic unbiasedness is

1

n

n∑
i=1

w(ai,xi)u
T
ai
BTh(xi)→ 0 as n→∞ in probability for all B ∈ Rp×(K−1). (30)

We will justify this property in Corollary C.3 toward the end of this section. Given (30), we have

ℓ(B) ≈ ℓ(B) +
1

n

n∑
i=1

wiu
T
ai
BTh(xi), (31)

where ≈ here means asymptotic equality in probability as n→∞. Denote the ‘augmented objective
function’ on the right-hand side as ℓaug(B).

In the remainder of this section, we introduce the optimal augmented function hopt(X) that minimizes
the variance of the estimator, while maintaining asymptotic unbiasedness. We demonstrate that
outcome augmentation remains valid when IPW is replaced with DCBWs, such as EBWs and MMD
balancing weights. Our approach extends the work of [50, 9] to a more general setting, incorporating
other types of covariate balancing weights that have asymptotic consistency (38) in a multi-category
treatment setting.

Let S(B) be the derivative of the original objective function ℓ(B) with respect to B. Then setting the
optimal h(X) is equivalent to minimizing the conditional variance of

B̂a −B⋆ ≈ S(B)− w(A,X)h(X)uT
A|X = x︸ ︷︷ ︸

=:Z

where B̂a is the minimizer of ℓaug(B), and B⋆ is the minimizer of E[ℓ(B)]. Using the property of
asymptotic unbiasedness Theorem C.2, which is E[Z] = 0, we need to minimize E[∥Z∥2F ] with
respect to h to minimize the conditional variance of Z. Using the property of matrix trace,

∇hE[∥Z∥2F ] = ∇hE[tr(ZTZ)] = −2E[w(A,X)ZuA)|X = x],

and setting∇hE[∥Z∥2F ] = 0. Thus, hopt(X) satisfies

E[w(A,X)(S(B)− w(A,X)hopt(X)uT
A)uA)|X = x] = 0.

Since uT
AuA = 1, we have

hopt(x) =
E[w(A,X)S(B⋆)uA|X = x]

E[w(A,X)2|X = x]
. (32)

Now, we determine the functional form of hopt(X) for both continuous and binary outcomes. For
simplicity, let us define

w := w(A,X), ti := uT
ai
BTxi

R1(x) := E[w2uA|X = x], R2(x) := E[w2Y |X = x], c1 = E[w2|X = x].
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Then for continuous outcomes, using (28) without regularization term for S(B) and (32), we have
ℓaug(B)

=
1

n

n∑
i=1

[
wi

(
K

K − 1
yi − uT

ai
BTxi

)2

− wiu
T
ai
BThopt(xi)

]

=
1

n

n∑
i=1

[
wi

(
K

K − 1
yi − uT

ai
BTxi

)2

− wiu
T
ai
BT 1

ĉ1

(
xix

T
i BR̂1(xi)−

2K

K − 1
xiR̂2(xi)

)]

=
1

n

n∑
i=1

wi

[(
K

K − 1
yi − ti

)2

− ti

(
xT
i B

1

ĉ1
R̂1(xi)

)
+ ti

(
2K

K − 1

1

ĉ1
R̂2(xi)

)]

=
1

n

n∑
i=1

wi

[(
ti −

K

K − 1

(
yi −

1

ĉ1
R̂2(xi)

))2

+ constant w.r.t B

]
,

assuming R̂1(xi)/ĉ1 = 0. Therefore, we obtain the optimal augmented function with the minimum
estimation variance by properly defining R2(X). Our simulation studies demonstrate that setting
R2(X) = E[Y |X = x] leads to significant improvement.

Similarly, for binary outcomes, let us define

Q1(x) := E
[
w2 exp(uT

AB
TX)

1 + exp(uT
AB

TX)

∣∣∣∣X = x

]
, Q2(x) := E[w2Y |X = x].

Then using (29) without regularization term for S(B) and (32), we have

ℓaug(B) =
1

n

n∑
i=1

wi

[
−yiuT

ai
BTxi + log(1 + exp(uT

ai
BTxi)) + uT

ai
BThopt(xi)

]
=

1

n

n∑
i=1

wi

[
−yiti + log(1 + exp(ti)) +

1

ĉ1
ti(Q̂1(x)− Q̂2(x))

]

=
1

n

n∑
i=1

wi

[
−ti

(
yi −

1

ĉ1
(Q̂1(x)− Q̂2(x))

)
+ log(1 + exp(ti))

]
.

Therefore, by selecting proper Q1(X) and Q2(X), the minimizer of ℓaug(B) has smaller variance
than that of the original estimator.

Now we prove asymptotic unbiasedness of 1
n

∑n
i=1 w(ai,xi)u

T
ai
BTh(xi). First, we consider IPW-

based conditions for multi-category treatments.
Lemma C.1. LetA = {1, . . . ,K} be the possible treatment sets. Assume we have i.i.d. observations
(xi, ai) from a population distribution of (X, A) such that P(A = a |x) is uniformly positive for all
a,x. Define

T :=
1

n

n∑
i=1

1

P(A = ai|xi)
h(xi)g(ai). (33)

If g is any function with
∑

j∈A g(j) = 0, then for any function h(X) : Rp → Rp, then T → 0 as
n→∞ in probability.

Proof. First note that by iterated expectation,

E[T ] = E
[
h(X)g(A)

P(A|X)

]
= EX

[
EA

[
h(X)g(A)

P(A|X)

∣∣∣∣X]] (34)

= EX

∑
j∈A

h(X)g(j)

P(A = j|X)
P(A = j|X)

 (35)

= EX

h(X)
∑
j∈A

g(j)

 (36)

= 0. (37)
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Then by the standard weak law of large numbers for i.i.d. samples, the empirical mean T converges
in probability to its population mean E[T ] = 0 as n→∞.

Note that in the statement of the Lemma C.1, the choice of such g(j) can be each treatment vertex
under the AD-Learning [39]. Now we replace IPW P(A = ai|xi) with covariate balancing weights
w(ai,xi) that has the following asymptotic consistency property:

lim
n→∞

1

n

n∑
i=1

(
w(ai,xi)−

1

P(ai|xi)

)2

= 0. (38)

For instance, maximum mean discrepancy (MMD) balancing weights, a type of distributional covariate
energy balancing weight, satisfy the property (38) [8].
Theorem C.2 (Asymptotic unbiasedness of augmented function). Assume we have i.i.d. observations
(xi, ai) from population distribution of (X, A). If g : A → R is any bounded function with∑

j∈A g(j) = 0, then for any bounded function h(x) : Rp → Rp, define

T0 :=
1

n

n∑
i=1

w(ai,xi)h(xi)g(ai), (39)

where the weights w(ai,xi) satisfy (38). Then T0 → 0 as n→∞ in probability. That is, T0 is an
asymptotically mean zero, making it suitable to be used as the augmented function.

Proof. By the weak law of large numbers for i.i.d. samples, the empirical mean T0 converges in
probability to its population mean E[T0] = E[w(A,X)h(X)g(A)]. By continuous mapping theorem,
∥T0∥2 converges to ∥E[T0]∥2 as n→∞ in probability. Then we have

∥E[T0]∥2 = ∥E[w(A,X)h(X)g(A)]∥2 (a)
=

∥∥∥∥E[w(A,X)h(X)g(A)]− E
[
h(X)g(A)

P(A|X)

]∥∥∥∥2
=

∥∥∥∥E [(w(A,X)− 1

P(A|X)

)
h(X)g(A)

]∥∥∥∥2
(b)

≤ E

[∥∥∥∥(w(A,X)− 1

P(A|X)

)
h(X)g(A)

∥∥∥∥2
]

≤ C E

[(
w(A,X)− 1

P(A|X)

)2
]

(c)
= lim

n→∞
C

1

n

n∑
i=1

(
w(ai,xi)−

1

P(ai|xi)

)2

→ 0,

where C is any constant such that ∥h(X)g(A)∥2 ≤ C. For (a), we use Lemma C.1; for (b) and (c),
we use Jensen’s inequality and the law of large numbers, respectively. The last term converges to 0
due to the property (38). Lastly, since ∥T0∥2 converges to 0 in probability, we have T0 converges to 0
in probability by continuous mapping theorem.

The following corollary is useful in deriving outcome augmentation under the AD-Learning frame-
work.
Corollary C.3. Assume the AD-learning setting. For any function h(X) depending only on the
covariate X, and for each parameter matrix B ∈ Rp×(K−1), denoting,

H0(B) := w(A,X)uT
AB

Th(X),

we have E[H0(B)] = 0. Furthermore, assuming the weights w(A,X) satisfying the consistency
property (38), in probability as n→∞,

1

n

n∑
i=1

w(ai,xi)u
T
ai
BTh(xi)→ 0. (40)

Proof. Follows immediately from Theorem C.2 by noting that
∑K

a=1 ua = 0.
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D Spectral characterization of optimal covariate balancing weight

Recall the definition of the weighted design matrix:

Ψ :=
1

n

n∑
i=1

wi(uai
uT
ai
)⊗

(
xix

T
i

)
. (41)

This is the p(K − 1)× p(K − 1) design matrix encoding the sample of patients with covariate xi

and observed treatment ai, for i = 1, . . . , n. We are free to choose the weight wi = ω(ai,xi) for the
ith patient as a function as long as they sum to one. What is the best way to choose such weights?
Our main results (Theorems 3.3, 3.5) suggest that it is best to choose them in a way that the minimum
eigenvalue of Ψ is as large as possible.

To illustrate this point, suppose for simplicity the covariates are categorical and assume values in
a finite set X . We decompose the summation in (41) according to the treatment and covariate as
follows:

Ψ =
1

n

∑
(a,x)∈A×X

w(a,x) (uaiu
T
ai
)⊗

(
xix

T
i

)︸ ︷︷ ︸
=:Σ(a,x)

n∑
i=1

1(ai = a, xi = x)︸ ︷︷ ︸
=:n(a,x)

(42)

=
∑

(a,x)∈A×X

w(a,x)
n(a,x)

n
Σ(a,x). (43)

Note that n(a,x) is the number of patients with covariate x and treatment a, while Σ(a,x) is the
p(K − 1)× p(K − 1) covariance matrix representing the treatment-covariate pair (a,x).

1. Under IPW w(a,x) = 1
π(a|x) , since n(a,x) ∼ Binom(n, π(a|x)) (under suitable assumption),

using a law of large numbers and central limit theorem, we have

w(a,x)
n(a,x)

n
= 1 +OP(n

−1/2).

Consequently, the covariance matrix Σ(a,x) of every treatment-covariate pair (a,x) con-
tributes nearly equally to the weighted design matrix Ψ.
If distinct covariates are encoded as one-hot encoding vectors, then IPW maximizes the
minimum eigenvalue of Ψ. To see this, for simplicity, assume we have binary treatments
(K = 2 and u1 = 1, u2 = −1) and two discrete covariates (e.g., ‘Male’ and ‘Female’)
encoded as one-hot vectors (1, 0)T and (0, 1)T . Then we can write Ψ as

nΨ = w(1,M)n(1,M)

[
1 0
0 0

]
+ w(2,M)n(2,M)

[
1 0
0 0

]
+ w(1, F )n(1, F )

[
0 0
0 1

]
+ w(2, F )n(2, F )

[
0 0
0 1

]
=

[
w(1,M)n(1,M) + w(2,M)n(2,M) 0

0 w(1, F )n(1, F ) + w(2, F )n(2, F )

]
.

Notice that the minimum eigenvalue of the last 2 × 2 matrix is the minimum of its two
diagonal entries. With IPW, each weighted count w(a, x)n(a, x) becomes a constant, and
Ψ above becomes the identity matrix, achieving the largest possible minimum eigenvalue.
Also, in this case, Ψ has condition number 1 so the ITR optimization landscape becomes
well-conditioned.

2. Using the fact that the minimum eigenvalue is a positive homogeneous and concave function on
the space of symmetric matrices, we have

λmin(Ψ) ≥
∑
a∈A

λmin

(∑
x∈X

w(a,x)
n(a,x)

n
Σ(a,x)︸ ︷︷ ︸

=:Σw(a)

)
.
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Here Σw(a) is the aggregated weighted covariance matrix for sub-population with treatment
a. In the above derivation, we used that Ψ =

∑
a Σw(a) by (42) and definition and the

following computation using Jensen’s inequality:

λmin

(∑
a

Σw(a)

)
= |A|λmin

(∑
a

1

|A|
Σw(a)

)

≥ |A|
∑
a

1

|A|
λmin(Σw(a)) =

∑
a

λmin(Σw(a)).

If we choose the weights so that these matrices are identical, then each treatment group
contributes equally to the lower bound above for λmin(Ψ). This condition is satisfied,
for example, when w is distributional covariate balancing weights, which ensure that the
covariate distributions across all treatment groups are identical. There is a remaining degree
of freedom for specifying the common covariate distribution, denoted by µ, for the treatment
groups. To maximize the lower bound for λmin(Ψ), µ should be chosen to maximize
λmin(Σw(·)). The specific solution to this optimization depends on the structure of Ψ. In
three-way balancing methods [8], µ is typically chosen to be close to the target population
distribution. Another common approach, as discussed earlier, is IPW, which sets µ as the
uniform distribution over the covariate space X .
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E Convergence analysis of PGD for ITR estimation

In this section, we analyze the convergence properties of Algorithm 1 for ITR-Learning problem (6).
Below we state the full version of Theorem 3.3 in the main text.
Theorem E.1 (Convergence rate of PGD for ITR-Learning). Let (Bt)t≥0 denote the sequence
of parameters obtained by the PGD algorithm (7) for ITR-Learning problem (6) with arbitrary
initialization B0. Suppose Assumptions 3.1 and 3.2 hold. Let B⋆ denote the unique global optimum
of (6). Then the following hold:

(i) (Optimization landscape) The ITR objective L(B) in (6), is µ-strongly convex and L-smooth,
where µ,L are as in (10).

(ii) (Linear convergence with fixed stepsize) Assume constant stepsize αt ≡ α < 2/L. Denote the
contraction constant ρ(α) := max{|1− αL|, |1− αµ|} ∈ (0, 1). Then for all t ≥ 1,

∥Bt −B⋆∥2F ≤ 4ρ(α)tλ2
1. (44)

In particular, if α = 2
µ+L , then ρ(α) = L−µ

L+µ ∈ [0, 1).

(iii) (Sublinear convergence with diminishing stepsize) Assume diminishing stepsize αt =
β

γ+t , where

ρ := 2µL
µ+L and β > 1/ρ, γ > 0 are constants. Then for all t ≥ 1,

∥Bt −B⋆∥2F ≤
ν

γ + t
, (45)

where ν := max
{

2β2∥∇f(B⋆)∥2
F

βρ−1 , 4(γ + 1)λ2
1

}
. In particular, the assertion holds for

β = 2/ρ = µ+L
µL and ν = max

{
2(µ+L)2∥∇f(B⋆)∥2

F

µ2L2 , 4(γ + 1)λ2
1

}
.

The proof of Theorem E.1 relies on two ingredients: a general result on the convergence of PGD
(Lemma E.2) and a local landscape analysis of the ITR objective (Lemma E.3).

We first establish a general result on the convergence rate of PGD to find the minimizer of a strongly
convex and smooth objective f within a convex constraint B. Our argument is mostly based on the
standard convergence analysis of PGD in the optimization literature [5, 4]. A new element we add is
that for analyzing constrained optimization problems, the gradient of the objective f at the minimizer
B⋆ does not need to be zero, which only needs to be in the negative normal cone at the constraint set
B. In our analysis, we treat the possibly nonzero gradient norm ∥∇f(B⋆)∥F as ‘noise’ (variance) of
a stochastic gradient oracle in standard stochastic gradient descent analysis [4].
Lemma E.2 (Convergence rate of PGD for strongly convex and smooth objectives). Let f :
Rp×(K−1) → R be a L-smooth and µ-strongly convex function for some µ,L > 0. Suppose
f⋆ := infB∈B f(B) > −∞ and denote B⋆ := argminB∈B f(B), where B is a convex constraint
set of Rp×(K−1). Consider the following PGD iterates:

Bt+1 ← ΠB {Bt − αt∇Bf(Bt)} . (46)
Then the following hold:

(i) (Linear convergence with fixed stepsize) Suppose f is twice differentiable and αt ≡ α < 2/L.
Let contraction constant ρ(α) := max{|1− αL|, |1− αµ|} ∈ (0, 1). Then for all t ≥ 1,

∥Bt −B⋆∥2F ≤ ρ(α)t∥B0 −B∗∥2F . (47)

The bound ρ(α) on the linear convergence rate is minimized at α = 2
µ+L with minimum

value L−µ
L+µ .

(ii) (Sublinear convergence with diminishing stepsize) Denote ρ := 2µL
µ+L . Suppose αt =

β
γ+t , where

β > 1/ρ, γ > 0 are constants. Then for all t ≥ 1,

∥Bt −B⋆∥2F ≤
ν

γ + t
, (48)

where ν := max
{

2β2∥∇f(B⋆)∥2
F

βρ−1 , (γ + 1)∥B1 −B⋆∥2F
}

. In particular, the assertion holds

for β = 2/ρ = µ+L
µL and ν = max

{
2(µ+L)2∥∇f(B⋆)∥2

F

µ2L2 , (γ + 1)∥B1 −B⋆∥2F
}

.
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Proof. Let B̄t := Bt − αt∇Bf(Bt). Then
∥B̄t −B∗∥2F = ∥B̄t −Bt∥2F + ∥Bt −B∗∥2F + 2⟨B̄t −Bt, Bt −B∗⟩

= α2
t ∥∇Bf(Bt)∥2F + ∥Bt −B∗∥2F − 2αt⟨Bt −B∗,∇Bf(Bt)⟩

≤ α2
t ∥∇Bf(Bt)∥2F + ∥Bt −B∗∥2F − 2αt⟨Bt −B∗,∇Bf(Bt)−∇Bf(B

⋆)⟩
using that ⟨∇f(B⋆),Bt−B⋆⟩ ≥ 0 since B⋆ is a stationary point of f over B. Using the co-coercivity
of µ-strongly convex and L-smooth functions and, we have
∥B̄t −B∗∥2F ≤ α2

t ∥∇f(Bt)∥2F + ∥Bt −B∗∥2F

− 2αt

(
µL

µ+ L
∥Bt −B∗∥2 + 1

µ+ L
∥∇f(Bt)−∇f(B⋆)∥2F

)
≤
(
1− 2αtµL

µ+ L

)
∥Bt −B∗∥2F + α2

t ∥∇f(Bt)∥2F −
2αt

µ+ L
∥∇f(Bt)−∇f(B⋆)∥2F .

By Young’s inequality,
∥∇f(Bt)∥2F ≤ 2∥∇f(Bt)−∇f(B⋆)∥2F + 2∥∇f(B⋆)∥2F .

Thus the above yields, given that αt ≤ 1/(µ+ L),

∥B̄t −B∗∥2F ≤
(
1− 2αtµL

µ+ L

)
∥Bt −B∗∥2F + 2αt

(
αt −

1

µ+ L

)
∥∇f(Bt)−∇f(B⋆)∥2F

+ 2α2
t ∥∇f(B⋆)∥2F

≤
(
1− 2αtµL

µ+ L

)
∥Bt −B∗∥2F + 2α2

t ∥∇f(B∗)∥2F .

Since the projection onto the convex constraint set B, ΠB, is non-expansive,
∥Bt+1 −B∗∥2F ≤ ∥B̄t −B∗∥2F ≤ (1− αtρ) ∥Bt −B∗∥2F + α2

tσ
2,

where we have denoted ρ := 2µL
µ+L and σ2 := 2∥∇f(B∗)∥2F .

Now, we show (i) (47). Suppose αt ≡ α > 0. Note that B∗ is a unique minimizer of f over
B because of strong convexity. Since −∇f(B⋆) lies in the normal cone of B at B⋆, we have
B⋆ = ΠB(B

⋆ − α∇f(B⋆)). Using non-expansiveness of convex projection ΠB,
∥Bt+1 −B∗∥F = ∥ΠB(Bt − α∇f(Bt))−ΠB(B

∗ − α∇f(B∗))∥F
≤ ∥(Bt − α∇f(Bt))− (B∗ − α∇f(B∗))∥F

=

∥∥∥∥∫ 1

0

(I − α∇2f(Bt + s(B⋆ −Bt)))(Bt −B⋆) ds

∥∥∥∥
F

≤ sup
B̃

∥I − α∇2f(B̃)∥2 ∥Bt −B⋆∥F

≤ max{|1− αL|, |1− αµ|}︸ ︷︷ ︸
=:ρ(α)

∥Bt −B⋆∥F .

For the last inequality, since the eigenvalues of ∇2f(B̃) are contained in the interval [µ,L], the
eigenvalues of I − α∇2f(z) are between min(1− αL, 1− αµ) and max(1− αL, 1− αµ). Note
that ρ(α) is minimized at α = 2

µ+L with minimum value L−µ
L+µ . It follows that for any t ≥ 0,

∥Bt+1 −B∗∥F ≤ ρ(α)t+1 ∥B0 −B⋆∥F .

Next, we show (ii) (48) by induction. Indeed, it holds for t = 1 by the choice of ν. Denoting
t̂ := γ + t, by the induction hypothesis and by the choices of αt = β/t̂ and ν ≥ β2σ2

βρ−1 ,

∥Bt+1 −B⋆∥2F ≤
(
1− βρ

t̂

)
ν

t̂
+

β2σ2

t̂2

≤
(
t̂− 1

t̂2

)
ν−

(
βρ− 1

t̂2

)
ν +

β2σ2

t̂2︸ ︷︷ ︸
≤0

≤ t̂− 1

(t̂− 1)(t̂+ 1)
ν =

ν

γ + t+ 1
.
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This shows (ii).

Next, we establish the following global landscape result of the ITR learning problem (6) by computing
the Hessian of the objective L(B) in (6).

Lemma E.3 (Local landscape of the ITR objective). Let L(B) denote the ITR objective in (6).

(i) Suppose Assumption 3.1 holds. For the continuous outcome,

(λ− + λ2)Ip(K−1) ⪯ ∇vec(B)∇vec(B)TL(B) ⪯ (λ+ + λ2)Ip(K−1), (49)

where the constants λ± are defined in Assumption 3.1.

(ii) Further Assumptions 3.1 and 3.2 hold. For the binary outcome,

(α−λ− + λ2)Ip(K−1) ⪯ ∇vec(B)∇vec(B)TL(B) ⪯ (α+λ+ + λ2)Ip(K−1). (50)

where the constants λ± and α± are defined in Assumptions 3.1 and 3.2, respectively.

To maintain the flow, we write down the proof of Lemma E.3 to Section F.

Now we can easily deduce Theorem E.1.

Proof of Theorem E.1. Lemma E.3 shows that the eigenvalues of the Hessian ∇vec(B)∇vec(B)TL
of the ITR objective in (6) are uniformly bounded between constants µ and L as defined in (10).
Under Assumptions 3.1 and 3.2, we have 0 < µ ≤ L <∞. This shows that L is µ-strongly convex
and L-smooth over B, as claimed in Theorem E.1 (i).

Next, noting that ∥·∥F ≤ ∥·∥1, triangle inequality and the fact that B̂0,B
⋆ ∈ B yields that, for any

t ≥ 0,

∥Bt −B⋆∥2F ≤ (∥Bt∥F + ∥B⋆∥F )2 (51)

≤ (∥Bt∥1 + ∥B⋆∥1)2 (52)

≤ 4λ2
1. (53)

Hence the assertions (i)-(ii) follow directly from combining Lemmas E.2 and E.3.

F Proof of Lemma E.3

In this section, we prove Lemma E.3. We will first compute the gradient and the Hessian of the ITR
objective in (6) separately for the continuous and binary outcome. We will then prove Lemma E.3 at
the end of the section.

F.1 Continuous outcome

Proposition F.1. Let L(B) denote the ITR objective in (6) with continuous outcome. Then

∇B L(B) =
1

n

n∑
i=1

ω(ai,xi)

(
xix

T
i Buai

uT
ai
− K

K − 1
yixiu

T
ai

)
+ λ2B, (54)

∇vec(B)∇vec(B)TL(B) = Ψ+ λ2 Ip(K−1), (55)

where Ψ is the weighted design matrix defined at (8).

Proof. Recall that the ITR objective for continuous outcome is given by

L(B) =
1

2n

n∑
i=1

ω(ai,xi)

(
K

K − 1
yi − uT

ai
BTxi

)2

+
λ2

2
||B||2F .
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It is trivial to show (54). For the Hessian, using (16),

∇2
B L(B) = ∇vec(B)∇vec(B)T L(vec(B))

= ∇vec(B) vec

(
1

n

n∑
i=1

ω(ai,xi)

(
xix

T
i Buaiu

T
ai
− K

K − 1
yixiu

T
ai

))T

+ λ2∇2
B(B)

= ∇vec(B) vec

(
1

n

n∑
i=1

ω(ai,xi)
(
xix

T
i Buai

uT
ai

))T

+ λ2 Ip(K−1)

= ∇vec(B)

[
1

n

n∑
i=1

ω(ai,xi)

((
(uai

uT
ai
)T ⊗

(
xix

T
i

))
vec(B)

)T
]
+ λ2 Ip(K−1)

= ∇vec(B)

[
1

n

n∑
i=1

ω(ai,xi) vec(B)T
(
(uai

uT
ai
)T ⊗

(
xix

T
i

))T
]
+ λ2 Ip(K−1)

=
1

n

n∑
i=1

ω(ai,xi)

(
(uai

uT
ai
)T ⊗

(
xix

T
i

))T

+ λ2 Ip(K−1)

=
1

n

n∑
i=1

ω(ai,xi)(uaiu
T
ai
)⊗

(
xix

T
i

)
+ λ2 Ip(K−1)

= Ψ+ λ2 Ip(K−1)

This shows the assertion.

F.2 Binary outcome

Given the current model parameter B ∈ Rp×(K−1), define the scalars zi, pi, wi for the i-th sample by

zi := uT
ai
BTxi, pi :=

exp(zi)

1 + exp(zi)
, wi := w(ai,xi). (56)

For each binary label y ∈ {0, 1} and activation z ∈ R, recall the negative log-likelihood of observing
y under the logistic model Ber (pi) is given by

ℓ(y, z) = log(1 + exp(z))− yz.

An easy computation shows

ḣ(y, z) :=
∂

∂z
ℓ(y, z) =

exp(z)

1 + exp(z)
− y, (57)

ḧ(y, z) :=
∂2

∂z2
ℓ(y, z) =

(
exp(z)

1 + exp(z)

)(
1− exp(z)

1 + exp(z)

)
≤ 1

4
. (58)

For the forthcoming computations, define matrices

K := [ḣ(y1, z1), . . . , ḣ(yn, zn)] ∈ R1×n, (59)

M := diag
(
ḧ(y1, z1), . . . , ḧ(yn, zn)

)
∈ Rn×n, (60)

Φ := [ua1 ⊗ x1, . . . ,uan ⊗ xn] ∈ Rp(K−1)×n, (61)

W := diag(w1, . . . , wn) ∈ Rn×n. (62)

Proposition F.2. Let L(B) denote the ITR objective in (6) with binary outcome. Suppose Assumption
3.1 holds. Let zi := uT

ai
BTxi for i = 1, . . . , n. Then

∇B L(B) =
1

n

(
n∑

i=1

wiḣ(yi, zi)xiu
T
ai

)
+ λ2B, (63)

∇vec(B)∇vec(B)TL(B) =
1

n
Φ(MW)ΦT + λ2Ip(K−1) (64)
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Proof. We first claim that

∇vec(B)zi = C(K−1,p)(xi ⊗ uai), (65)

∇vec(B) ℓ(yi, zi) = C(K−1,p)(xi ⊗ uai) ḣ(yi, zi), (66)

∇vec(B) vec(K)T = ∇vec(B)K = ΦM. (67)

Observe that by using (18), we can write

zi = vec(zi) = vec(uT
ai
BTxi) = (xT

i ⊗ uT
ai
) vec(BT ) = vec(BT )T (xi ⊗ uai

).

Noting that vec(BT )T = (C(p,K−1) vec(B))T = vec(B)TC(K−1,p), Hence we get

∇vec(B)zi = ∇vec(B) vec(B
T )T (xi ⊗ uai

)

= C(K−1,p)(xi ⊗ uai).

This verifies (65). Then by using the chain rule (20), we get

∇vec(B)ℓ(yi, zi) = ∇vec(B)zi ∇ziℓ(yi, zi)

= C(K−1,p)(xi ⊗ uai) ḣ(yi, zi),

which verifies (66).

Next, we compute the gradients of K in (63). First, using (65) and the chain rule (20),

∇vec(B) ḣ(yi, zi) = ∇vec(B)zi ∇zi ḣ(yi, zi)

= C(K−1,p)(xi ⊗ uai
)ḧ(yi, zi)

= (uai ⊗ xi)ḧ(yi, zi),

where the last equality uses commutation matrix relation (17). Then noting that vec(K)T = K =

[ḣ(y1, z1), . . . , ḣ(yn, zn)], it follows that

∇vec(B) vec(K)T
(a)
=
[
(ua1 ⊗ x1)ḧ(y1, z1), . . . , (uan ⊗ xn)ḧ(yn, zn)

]
(b)
= [(ua1 ⊗ x1), . . . , (uan ⊗ xn)] diag

(
ḧ(y1, z1), . . . , ḧ(yn, zn)

)
(c)
= ΦM,

where (a) follows from (65) and the chain rule, (b) is an algebra, and (c) follows from the definition.
This shows (67).

Now we compute the gradient:

∇vec(B)

[
1

n

n∑
i=1

wi ℓ(yi, zi)

]
(a)
=

1

n

n∑
i=1

wi

[
C(K−1,p)(xi ⊗ uai

) ḣ(yi, zi)
]

(68)

(b)
=

1

n

n∑
i=1

wi(uai
⊗ xi) ḣ(yi, zi) (69)

=
1

n
[w1(ua1

⊗ x1), . . . , wn(uan
⊗ xn)]

ḣ(y1, z1)...
ḣ(yn, zn)

 (70)

(c)
=

1

n
ΦW vec(K), (71)

where (a) follows from (66), (b) uses the commutation matrix relation (17), and (c) follows from the
definition. Then by using (69) and (18) with the fact that ḣ is a scalar, we deduce (63).

Next, we compute the Hessian. From (71),

∇vec(B)L(B) =
1

n
ΦW vec(K) + λ2 vec(B). (72)
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Then using (66) with (72), we get

∇vec(B)∇vec(B)TL(B) = ∇vec(B)

[
1

n
vec(K)TWΦT + λ2Ip(K−1)

]
(73)

=
1

n
Φ(MW)ΦT + λ2Ip(K−1). (74)

This shows the assertion.

F.3 Proof of Lemma E.3

We are now ready to give proof of Lemma E.3.

Proof of Lemma E.3. Recall that Φ := [ua1
⊗ x1, . . . ,uan

⊗ xn]. Note that

1

n
ΦWΦT =

1

n

n∑
i=1

wi(uai
⊗ xi)(uai

⊗ xi)
T (75)

=
1

n

n∑
i=1

wi(uai
uT
ai
⊗ xix

T
i ) (76)

= Ψ, (77)

where Ψ is the weighted design matrix defined at (8). (In particular, since W is a diagonal matrix of
nonnegative entries, this shows that Ψ is positive semi-definite.)

According to Propositions F.1 and F.2, we have

∇vec(B)∇vec(B)TL(B) =

{
n−1ΦWΦT + λ2Ip(K−1) for continuous outcome
n−1ΦMWΦT + λ2Ip(K−1) for binary outcome.

(78)

Thus the assertion for the continuous outcome follows immediately. For the case of a binary outcome,
by Assumption 3.2 we have

α−In ⪯M ⪯ α+In. (79)

Then

α−
(
1

n
ΦWΦT

)
⪯ 1

n
Φ(MW)ΦT ⪯ α+

(
1

n
ΦWΦT

)
. (80)

It follows that

α−λmin

(
1

n
ΦWΦT

)
Ip(K−1) ⪯

1

n
Φ(MW)ΦT ⪯ α+λmax

(
1

n
ΦWΦT

)
Ip(K−1) (81)

This shows the assertion for the binary outcome holds.
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G A non-asymptotic consistency of weighted, constrained, and regularized
MLE

In this section, we provide a general result on the non-asymptotic consistency of MLE in a general
setting. Here, observations are assumed to be i.i.d. from a generative model, and the unknown true
parameter of the generative model may lie on the boundary of the parameter space.

A generic sample (X,Y ) consists of a random covariate X and outcome Y . (In the ITR setting,
we will specialize X to be the pair of the patient’s covariate and the corresponding treatment.) We
assume the covariate X follows a probability distribution µ(·) and the conditional distribution of
Y given X = x is parameterized as πθ⋆

(· |x) for an unknown parameter θ⋆. Hence the generic
random sample (X,Y ) follows the parameterized distribution πθ⋆(y |x)µ(x). Assume we know a
smooth parametric family of conditional distributions θ 7→ πθ(· |x), where the true parameter θ⋆

lies in a convex parameter space Θ ⊆ Rd. Our goal is to estimate θ⋆ from i.i.d. samples (xi, yi),
i = 1, . . . , n drawn from πθ⋆

(· | ·)µ(·).
To estimate θ⋆, a natural approach is to maximize the empirical joint likelihood function. Since the
marginal distribution of the covariate x is independent of the parameter θ, we can apply the method
of “reweighting” the covariate distribution by introducing an additional random weight ω(x) that
we can control. Namely, fix a weighting function ω(·) : X → [0,∞), where X is covariate space,
that assigns a nonnegative weight to each covariate value x. Consider then the following weighted
expected log-likelihood maximization problem:

argmin
θ∈Θ

E(X,Y ) [−ω(X) log πθ⋆
(Y |X)] , (82)

where we omit the marginal distribution µ(X) as it is independent of θ.

Recall that we get to design the weighting function ω(·). We first observe that the true parameter θ⋆

is a stationary point of the weighted expected log-likelihood function E [−ω(X) log πθ⋆(Y |X)] for
arbitrary weighting function ω. This can be justified under the mild assumption of exchangeability
of the expectation and derivatives (which holds under twice continuous differentiability of the
log-likelihood function by the dominated convergence theorem). Indeed, note that

E(X,Y ) [ω(X)∇θ log πθ(Y |X)] = E(X,Y )

[
ω(X)

∇θπθ(Y |X)

πθ(Y |X)

]
= EX

[
EY

[
ω(X)

∇θπ(Y |X)

πθ(Y |X)

∣∣∣∣X]]
= EX

[
ω(X)EY∼πθ⋆ (· |X)

[
∇θπθ(Y |X)

πθ(Y |X)

∣∣∣∣X]] = 0,

where the last equality follows from

EY∼πθ⋆ (· |X)

[
∇θπθ⋆

(Y |X)

πθ⋆
(Y |X)

∣∣∣∣X] = ∫ ∇θπθ⋆
(y |X) dy

= ∇θ

∫
πθ⋆

(y |X) dy

= ∇θ1 = 0.

Therefore, θ⋆ is a critical point of E [ω(X) log πθ(Y |X)]. In particular, if we assume that
the log-likelihood function log πθ(y |x)µ(x) is convex in θ, then θ⋆ is a global maximizer of
E [ω(X) log πθ(Y |X)].

Next, we introduce the finite-sample approximation of (82). Denote wi := ω(xi) for the weight of
the ith sample (xi, yi). Then the weighted negative log-likelihood of the observed samples under the
model parameter θ is

L(θ) := − 1

n

n∑
i=1

wi log πθ(yi |xi)︸ ︷︷ ︸
=:L0(θ)

+R(θ), (83)

where R(θ) is a suitable choice of regularizer for parameter θ. The regularization term can be
considered as prior knowledge about the model parameter θ.
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Let θ̂n denote a (possibly non-unique) minimizer of the above function over Θ. This is a minimizer
of the loss function L over the constraint set Θ, which we call the weighted, constrained, and
regularized MLE of θ⋆.

As in the standard MLE analysis, we assume that the negative log-likelihood function θ 7→ L0(θ)
is differentiable and strictly convex for all x ∈ Rp. Statistical literature typically assumes that the
true parameter lies in the interior of the constrained parameter space, Θ, a convex subset of Rd. In
contrast, we allow the true parameter θ⋆ to lie on the boundary of Θ. Regardless of that, we have
seen above that the gradient of the weighted expected log-likelihood function vanishes at the true
parameter θ⋆.

In this setting, we aim to provide a high-probability guarantee that there exists a global minimizer
of (83) that is close to the true parameter θ⋆ for an arbitrary weighting function ω(·), which we
will optimize later for the best statistical guarantee. In Theorem G.1 below, we obtain such a result
in the non-asymptotic, weighted, constrained, and regularized setting. For its proof, we combine a
classical approach from [15] with concentration inequalities, namely, a classical Berry-Esseen bound
for deviations from the standard normal distribution for independent but non-identically distributed
random variables and a uniform McDirmid bound (Lemma G.2). The Berry-Esseen bound controls
the linear term in the second-order Taylor expansion of the log-likelihood function (Tn(θ) in (96)),
while the McDirmid bound controls the quadratic term (Sn(θ) in (96)). By using an ε-net argument,
the latter concentration inequality can be extended to a setting where the random variables are
parameterized within a compact set.
Theorem G.1 (Non-asymptotic consistency of weighted, constrained, and regularized MLE). Con-
sider the constrained, regularized, and weighted MLE problem (83) with unknown parameter θ⋆ from
a convex subset Θ ⊆ Rd. Fix an arbitrary weighting function ω(·). Assume the following holds:

(a1) (Smoothness) For each sample (x, y), the per-sample negative log-likelihood function θ 7→
log πθ(y |x)µ(x) is strictly convex, three-times continuously differentiable, and R(θ) is
differentiable. Furthermore, denote U := ω(X)∇θ log πθ⋆

(Y |X) ∈ Rd and U := U −
E[U ]. Suppose there are constants D1, d1 ∈ (0,∞) such that for all i,

E[∥U∥3] < D1, min
1≤k≤d

Var(U(k)) > d1. (84)

(a2) (First-order optimality) The true parameter θ⋆ is a stationary point of the expected negative
weighted log-likelihood function L0(θ) := Eθ⋆

[−ω(X) log πθ(Y |X)] over Θ:

⟨∇θ L0(θ⋆), θ − θ⋆⟩ ≥ 0 ∀θ ∈ Θ. (85)

(a3) (Approximate second-order optimality) Let L̄(θ) := L0(θ) +R(θ) denote the expected regu-
larized negative log- likelihood function. Then the regularized Fisher information ∇2L̄(θ)
is positive definite at θ = θ⋆ with minimum eigenvalue ρ > 0.

Fix a constant C > 0. Let D = Cn−1/2 + 8∥∇R(θ⋆)∥
ρ and M = M(D) > 0 denote the supremum of

the absolute values of all third-order partial derivatives of L over all θ with ∥θ− θ⋆∥ ≤ D. Suppose
∥∇R(θ⋆)∥ is small enough so that

D ≤ 3ρ

4M(D)
. (86)

Then there are constants c1, c2, c3 > 0 such that

P
(∥∥∥∥θ⋆ − argmin

θ∈Θ
L(θ)

∥∥∥∥ ≤ D

)
≥ 1− c1 exp

(
− C2ρ2

2 · 322d

)
−

c2
∑n

i=1 w
3
i

(
∑n

i=1 w
2
i )

3/2

−O(exp(−c3n)). (87)

That is, with high probability explicitly depending on C, ρ, d, and n, there exists a global minimizer
of θ 7→ L(θ) in Θ within distance D from θ⋆.

It is important to notice that the minimum eigenvalue ρ of the weighted regularized Fisher information
∇2L(θ) depends on the choice of weighting function ω(·). Therefore, Theorem G.1 suggests that

19



it is best to choose the weighting function to maximize the minimum eigenvalue of the weighted
regularized Fisher information in order to minimize the statistical estimation error. We elaborate
more on this point in the proof of Theorem 3.5.

We devote the rest of this section to proving Theorem G.1 using Lemma G.2 and Theorem G.3.
Lemma G.2 (A uniform McDirmid’s inequality). Let X1, . . . ,Xn be independent random vectors
in Rp from a joint distribution π. Fix a compact parameter space Θ ⊆ Rd and fθ : Rd → [−J, J ] is
a bounded functional for each θ ∈ Θ such that

∥fθ − fθ′∥∞ ≤ L∥θ − θ′∥, ∀θ,θ′ ∈ Θ (88)

for some constant L > 0. Further assume that E[fθ(Xk)] = 0 for all θ ∈ Θ and k = 1, . . . , n.
Then there exist constant J > 0 such that for each n ≥ 0, and η > 0,

P

(
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

k=1

fθ(Xk)

∣∣∣∣∣ ≥ η

)
≤
(
2L diam(Θ)

η

)d

exp

(
−η2n

2J2

)
. (89)

Proof. Since Θ ⊆ Rd is compact, it can be covered by a finite number of L2-balls of any given
radius ε > 0. Let Uε be such an open cover using the least number of balls of radius ε > 0. Let
N(ε) = |Uε| denote the least number of such balls to cover Θ. Moreover, let diam(Θ) denote the
diameter of Θ, which is finite since Θ is compact. Then Θ is contained in a d-dimensional box of
side length diam(Θ). This box can be covered by (diam(Θ)/ε)d cubes of side length ε. Covering
each such cube of side length ε by a ball of radius ε, it follows that

N(ε) ≤
(

diam(Θ)

ε

)d

. (90)

Next, fix η > 0, θ ∈ Θ, and ε > 0. Let θ1, · · · ,θN(ε) be the centers of balls in the open cover
Uε. Then there exists 1 ≤ j ≤ N(ε) such that ∥θ − θj∥ < ε. By the hypothesis, fθ depends on θ
uniformly continuously with respect to the supremum norm. Hence there exists δ = δ(ε) > 0 such
that

∥fθ − fθj
∥∞ ≤ Lε. (91)

Denote Hn(θ) := n−1
∑n

k=1 fθ(Xk). Then this yields, almost surely,

|Hn(θ)−Hn(θj)| ≤ Lε. (92)

Furthermore, by the assumption, ∥fθ∥∞ is uniformly bounded by J > 0. It follows that for each
θ ∈ Θ, Hn(θ) changes its value at most by M when one of X1, . . . ,Xn is replaced arbitrarily.
Therefore, by the standard McDirmid’s inequality (see Theorem 2.9.1. in [51]) and a union bound,
with choosing ε = η/(2L),

P (|Hn(θ)| ≥ η) ≤
N(η/2L)∑

j=1

P (|Hn(θj)| ≥ η/2) ≤ K

(
2L diam(Θ)

η

)d

exp

(
−η2n

2J2

)
. (93)

The above holds for all n ≥ 1 and η > 0. This shows the assertion.

Next, we recall the classical Berry-Esseen theorem for the rate of convergence of normal approxima-
tion for the sum of independent random variables due to Feller.
Theorem G.3 (Berry-Esseen, Theorem 2 in Ch. XVI.5 of Feller ’91[17]). Let X1, X2, . . . , Xn be
independent and not necessarily identically distributed random variables with zero means and finite
variances. Define W =

∑n
i=1 Xi let F be the distribution function of W and Φ be the standard

normal distribution function. Then

∥F − Φ∥∞ ≤
6
∑n

i=1 E[|Xi|3]
(
∑n

i=1 E[X2
i ])

3/2
. (94)

Now we prove Theorem G.1.
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Proof of Theorem G.1. Suppose we have n i.i.d. observed samples (xi, yi) for i = 1, . . . , n from
distribution πθ⋆(y |x)µ(x). Also by the assumption, L0 is twice continuously differentiable and
n−1

∑n
i=1 wi = 1, so E[∇L0] = ∇E[L0] and E[∇2L0] = ∇2E[L0] by the dominated convergence

theorem.

Note that, for any r > 0,{∥∥∥∥θ⋆ − argmin
θ∈Θ

L(θ)
∥∥∥∥ ≤ r

}
=

 inf
θ∈Θ

∥θ−θ⋆∥=r

L(θ)− L(θ⋆) > 0

 . (95)

The inclusion ⊆ is clear. Conversely, since L is strictly convex, the event on the right implies that its
unique global minimizer is within r from θ⋆, as desired. Thus in order to show the main result in (87),
it suffices to show that the probability of the event on the right with r = D = Cn−1/2 + 8∥∇R(θ⋆)∥

ρ

is at least the right-hand side of (87).

Fix θ ∈ Θ such that ∥θ − θ⋆∥ = D. We introduce two random variables that we will bound to be
small by using some concentration inequalities:

Tn(θ) :=

√
n

∥θ − θ⋆∥
⟨∇θL0(θ⋆)− E [ω(X)∇θL0(θ⋆)] , θ − θ⋆⟩ , (96)

Sn(θ) :=
1

∥θ − θ⋆∥2
(θ − θ⋆)

T (∇θ∇θTL(θ⋆)−∇θ∇θT (E [ω(X)L(θ⋆)])) (θ − θ⋆). (97)

Roughly speaking, these quantities are of order 1 with high probability, Tn by Central Limit Theorem
and Sn by the law of large numbers. Later in this proof, we will use non-asymptotic versions of these
classical limit theorems to obtain high probability bounds for related quantities.

Since θ 7→ L(θ) is assumed to be three-time continuously differentiable, the quantity M ≥ 0 in the
assertion is well-defined and is finite. Then, using the Taylor expansion, we may write

L(θ)− L(θ⋆) ≥ ⟨∇θL(θ⋆), θ − θ⋆⟩+
1

2
(θ − θ⋆)

T∇θ∇θTL(θ⋆)(θ − θ⋆)

− M(∥θ − θ⋆∥)
6

∥θ − θ⋆∥3. (98)

We will lower bound the first two terms on the right-hand side above. Note that

⟨∇θL(θ⋆), θ − θ⋆⟩ = ⟨∇θL0(θ⋆), θ − θ⋆⟩ − E [ω(X)⟨∇θL0(θ⋆), θ − θ⋆⟩]
+ ⟨∇θE[ω(X)L0(θ⋆)], θ − θ⋆⟩+ ⟨∇R(θ⋆), θ − θ⋆⟩

(a)

≥ ⟨∇θL0(θ⋆), θ − θ⋆⟩ − E [ω(X)⟨∇θL0(θ⋆), θ − θ⋆⟩]
−∥∇R(θ∗)∥ · ∥θ − θ∗∥

(b)
= −∥θ − θ⋆∥√

n
Tn(θ)− ∥∇R(θ∗)∥ · ∥θ − θ∗∥,

where for (a) we use the fact that θ⋆ is a stationary point of E[L0(θ)] over Θ and Cauchy-Schwarz
inequality; for (b) we use the definition of Tn(θ).

Next, we turn our attention to the second-order term in the Taylor expansion (98). Recall that from
the assumption (a3) in Theorem G.1,

E [ω(X)∇θ∇θTL(θ⋆)] = ∇θ∇θT (E [ω(X)L(θ⋆)]) ⪰ ρIp, (99)

where ρ > 0 is a constant. It follows that

(θ − θ⋆)
T∇θ∇θTL(θ⋆)(θ − θ⋆) (100)

≥ (θ − θ⋆)
T [∇θ∇θTL(θ⋆)−∇θ∇θT (E [ω(X)L(θ⋆)])] (θ − θ⋆) + ρ∥θ − θ⋆∥2 (101)

≥ ∥θ − θ⋆∥2 (Sn(θ) + ρ) . (102)
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Combining the above inequalities with noting that ∥θ − θ⋆∥2 = D2, we obtain

L(θ)− L(θ⋆)

∥θ − θ⋆∥2

≥ 1

∥θ − θ⋆∥2

[
⟨∇θL(θ⋆), θ − θ⋆⟩+

1

2
(θ − θ⋆)

T∇θ∇θTL(θ⋆)(θ − θ⋆)

− M(∥θ − θ⋆∥)
6

∥θ − θ⋆∥3
]

≥ − 1

∥θ − θ⋆∥

[
Tn(θ)√

n
+ ∥∇R(θ⋆)∥

]
+

1

2
(Sn(θ) + ρ)− M(∥θ − θ⋆∥)

6
∥θ − θ⋆∥

=
1

∥θ − θ⋆∥

(
−∥∇R(θ⋆)∥+

ρ

4
D − M(D)

6
D2

)
︸ ︷︷ ︸

=:I1

+

(
1

2

(
Sn(θ) +

ρ

2

)
− 1√

nD
Tn(θ)

)
︸ ︷︷ ︸

=:I2

.

Note that I1 ≥ 0 if

ρ

8
D ≥ ∥∇R(θ⋆)∥ and

ρ

8
D ≥ M(D)

6
D2.

The choice of D holds the former condition, and the latter by the assumption (86). Thus, I1 ≥ 0.

We now take infimum over all θ ∈ Θ such that ∥θ − θ⋆∥ = D. It suffices to show that the random
variable I2 defined above is positive with high probability, since I1 does not depend on θ. To this
end, write

inf
θ∈Θ

∥θ−θ⋆∥=D

I2 ≥

 inf
θ∈Θ

∥θ−θ⋆∥=D

− 1√
nD

Tn(θ)


︸ ︷︷ ︸

=:A

+

 inf
θ∈Θ

∥θ−θ⋆∥=D

1

2

(
Sn(θ) +

ρ

2

)
︸ ︷︷ ︸

=:B

. (103)

Then the last expression in (103) is at least ρ/16 if A ≥ −ρ/16 and B ≥ ρ/8. By the hypothesis,
D = O(1) so it is uniformly bounded. Then by the uniform McDirmid’s inequality in Lemma G.2,
there exist constants C ′, C ′′ > 0 such that

P
(
B <

ρ

8

)
= P

 inf
θ∈Θ

∥θ−θ⋆∥=D

Sn(θ) < −
ρ

4

 ≤ DdC ′ exp(−C ′′n). (104)

Next, we will show the following inequalities: For K = 6D1/d
3/2
1 ,

P
(
A < − ρ

16

)
= P

 inf
θ∈Θ

∥θ−θ⋆∥=D

Tn(θ) ≥
√
nDρ

16


(c)

≤ d

(
P
(
Z ≥

√
nDρ

32
√
d

)
+

K
∑n

i=1 w
3
i√

n (
∑n

i=1 w
2
i )

3/2

)
(d)

≤ d

(
32
√
d

Cρ
√
2π

exp

(
− nD2ρ2

2 · 322d

)
+

K
∑n

i=1 w
3
i√

n (
∑n

i=1 w
2
i )

3/2

)
(e)

≤ d

(
32
√
d

Cρ
√
2π

exp

(
− C2ρ2

2 · 322d

)
+

K
∑n

i=1 w
3
i√

n (
∑n

i=1 w
2
i )

3/2

)
, (105)

where Z ∼ N(0, 1) is an independent standard normal random variable. (d) above is a simple

consequence of the standard Gaussian tail bound P(N(0, 1) > x) ≤ e−x2/2

x
√
2π

and (d), (e) are from the
choice of D which yields nD2 ≥ C2. We will show (c) at the end of this proof. Note that for any
two events E1, E2 defined on the same probability space, P(E1 ∩ E2) ≥ P(E1) + P(E2)− 1. Then
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by combining (103), (104), and (105), we have

P

 inf
θ∈Θ

∥θ−θ⋆∥=D

L(θ)− L(θ⋆)

∥θ − θ⋆∥2
≥ ρ

16


≥ P

(
A ≥ − ρ

16

)
+ P

(
B ≥ ρ

8

)
− 1

≥ 1− d

(
32
√
d

Cρ
√
2π

exp

(
− C2ρ2

2 · 322d

)
+

K
∑n

i=1 w
3
i

(
∑n

i=1 w
2
i )

3/2

)
+
(
1−DdC ′ exp(−C ′′n)

)
− 1

= 1− c1 exp

(
− C2ρ2

2 · 322d

)
−

c2
∑n

i=1 w
3
i

(
∑n

i=1 w
2
i )

3/2
−O(exp(−c3n)),

with the corresponding constants c1, c2, c3 > 0. Then the assertion (87) will follow using (95).

It remains to verify (c) in (105). To this end, write

∇θL0(θ⋆)− E [ω(X)∇θL0(θ⋆)] = −
1

n

n∑
i=1

wiU i,

where Ui = ω(Xi)∇θ log πθ⋆
(Yi |Xi) ∈ Rd and U i = Ui − E[Ui] as in the statement. Then by

using Cauchy-Schwarz inequality and noting that ∥θ − θ⋆∥ = D, we get

Tn(θ) =

〈
− 1√

n

n∑
i=1

wiUi,
θ − θ⋆

D

〉
≤

∥∥∥∥∥ 1√
n

n∑
i=1

wiUi

∥∥∥∥∥ =

√√√√ d∑
k=1

∣∣∣∣∣ 1√
n

n∑
i=1

wiU i(k)

∣∣∣∣∣
2

.

It is important to note that the distribution of the random variable on the last term above does not
depend on θ. Note that wiU i for i = 1, . . . , n are independent mean zero (but possibly non-identical
distributions due to the weights wi) random vectors in Rd, and by the hypothesis, their respective
coordinates have uniformly bounded variances. Hence by a union bound,

P

 inf
θ∈Θ

∥θ−θ⋆∥=D

Tn(θ) ≥ t

 ≤ d∑
k=1

P

(∣∣∣∣∣ 1√
n

n∑
i=1

wiU i(k)

∣∣∣∣∣ ≥ t√
d

)
. (106)

Let Qk
n = 1√

n

∑n
i=1 wiU i(k). Then by the Berry-Esseen Theorem (Theorem G.3) and the hypothesis,

for Z ∼ N(0, 1),

sup
z∈R

∣∣P (Qk
n ≤ z

)
− P (Z ≤ z)

∣∣ ≤ 6
∑n

i=1 w
3
iE[∥U i∥3](∑n

i=1 w
2
i Var(U i(k))

)3/2
=

6E[∥U1∥3]
∑n

i=1 w
3
i(

Var(U1(k))
)3/2

(
∑n

i=1 w
2
i )

3/2

≤
6D1

∑n
i=1 w

3
i

d
3/2
1 (

∑n
i=1 w

2
i )

3/2

=
K
∑n

i=1 w
3
i

(
∑n

i=1 w
2
i )

3/2
for k = 1, . . . , d.

with K = 6D1/d
3/2
1 . Combining with (106) and using a triangle inequality, we obtain

P

 inf
θ∈Θ

∥θ−θ⋆∥=D

Tn(θ) ≥ t

 ≤ d

(
P
(
Z ≥ t

2
√
d

)
+

K
∑n

i=1 w
3
i

(
∑n

i=1 w
2
i )

3/2

)
. (107)

Thus (c) in (105) follows.
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H Proof of Theorem 3.5

In this section, we provide proof of the computational and statistical estimation guarantee stated
in Theorem (3.5) under the generative ITR model (11). Two key ingredients in our proof are the
computational guarantee (Theorem. E.1) and non-asymptotic estimation guarantee of constrained
and regularized MLE (Theorem. G.1).

As we have briefly explained in the main text, the connection between the weighted convex optimiza-
tion (6) for ITR learning and the statistical estimation problem under the generative model (11) is
established by writing down the corresponding maximum likelihood estimation problem. To see this,
recall that covariate-treatment pair (xi, ai) follows a joint distribution π that does not depend on the
true parameter B⋆. Further, assume that π admits a density function fπ. Then, for the continuous
setting, the joint log-likelihood of observing the triple (xi, ai, yi) gives under the generative model
with parameter B

− 1

2σ2

n∑
i=1

(
yi −

K − 1

K
uT
ai
BTxi

)2

+

n∑
i=1

log fπ(xi, ai) + constant.

Thus, the standard (unweighted) maximum likelihood estimation of the true parameter B⋆ can be
written as

min
B∈Rp×(K−1), ∥B∥≤λ1

n∑
i=1

(
K

K − 1
yi − uT

ai
BTxi

)2

,

where we imposed additional L1-ball constraint for the parameter B. Now, if we use covariate-
balancing weight w(xi, ai) for each subject i, the corresponding weighted MLE problem reads
as

min
B∈Rp×(K−1), ∥B∥≤λ1

n∑
i=1

w(xi, ai)

(
K

K − 1
yi − uT

ai
BTxi

)2

, (108)

which is exactly the weighted convex optimization problem (6) for continuous outcome. A similar
discussion applies to the binary outcome simply by noting that the joint log-likelihood is given by

n∑
i=1

(
− log

(
1 + exp(uT

ai
BTxi)

)
+ yiu

T
ai
BTxi

)
+

n∑
i=1

log fπ(xi, ai).

Proof of Theorem 3.5. Consider the generative ITR model (11) with true parameter B⋆. Fix ε > 0.
Let (B̂t)t≥0 denote the estimated parameters by using the PGD algorithm (7) for the weighted
empirical maximum likelihood estimation problem (6). Decompose the total estimation error into
computational and statistical parts as

∥B⋆ − B̂T ∥F ≤ ∥B̂− B̂T ∥F︸ ︷︷ ︸
=:I1

+ ∥B̂− B̂⋆∥F︸ ︷︷ ︸
=:I2

.

By Theorem E.1, we have

I1 ≤

{
4ρ(α)Tλ2

1 with constant stepsize
ν

γ+T with diminishing stepsize.

We wish to apply our general result on weighted and constrained MLE in (Theorem G.1) with
L2-regularization R(B) = λ2

2 ∥B∥
2
F in order to get a high-probability bound on the term I2. For this,

we first verify the hypothesis in Theorem G.1 for our generative ITR model (11). Assumption (a1) in
Theorem G.1 follows from Assumption 3.4. For Assumption (a3) in Theorem G.1, denoting by ρ the
minimum eigenvalue of the expected regularized Fisher information, by Lemma E.3 (also see (10)),

ρ = µ =

{
λ− + λ2 for continuous outcome
α−λ− + λ2 for binary outcome.

where λ− is the minimum eigenvalue of the expected weighted design matrix E[Ψ] in (8) (see
Assumption 3.1). The above quantity is positive under the hypothesis.
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Lastly, for Assumption (a2) in Theorem G.1, we need to show that the true parameter B⋆ is a global
maximizer of the expected log-likelihood function of our generative ITR model (11). This can
be shown by a standard argument under the mild assumption that expectations and derivatives are
exchangeable. For simplicity, we prove this for the case when B⋆ is in the interior of the constraint
set Θ. (The general case can be shown similarly by considering the first-order optimality condition
for stationary points.) First note that, if we denote the likelihood of observing the triple (X,A, Y )
under the model parameter B as pB(X,A, Y ) = pB(Y |X,A) p(X,A), then log pB(X,A, Y ) is a
concave function in B. Thus we only need to show that the true parameter B⋆ is a critical point of
the expected weighted log-likelihood function E [ω(A,X) log pB(X,A, Y )]. Indeed,

∇BE [ω(A,X) log pB(X,A, Y )]

= E [ω(A,X)∇B (log pB(Y |X,A) + log p(X,A))]

= E [ω(A,X)∇B log pB(Y |X,A)]

= E
[
ω(A,X)

∇BpB(Y |X,A)

pB(Y |X,A)

]
= EX

[
E(Y,A)

[
ω(A,X)

∇BpB(Y |X,A)

pB(Y |X,A)

∣∣∣∣X]]
= EX

[
K∑

a=0

ω(a,X)π(a,X)EY∼pB⋆ (· |X,a)

[
∇BpB(Y |X,A)

pB(Y |X,A)

∣∣∣∣X,A = a

]]
,

where we have used iterated expectation to condition first on the covariate X and then integrate out
the treatment-response pair (A, Y ). Now note that

EY∼pB⋆ (· |X,a)

[
∇BpB⋆(Y |X,A)

pB⋆
(Y |X,A)

∣∣∣∣X,A = a

]
=

∫
∇BpB⋆(Y |X,A) dy (109)

= ∇B

∫
pB⋆(Y |X,A) dy (110)

= ∇B1 = 0. (111)

Thus B⋆ is a critical point of E [log pB(X,A, Y )]. By the concavity of the log-likelihood function, it
follows that B⋆ is a global maximizer of E [ω(A,X) log pB(X,A, Y )]. In particular, this verifies the
assumption G.1 (a2).

Now we can apply Theorem G.1 with L2-regularization R(B) = λ2

2 ∥B∥
2
F for our generative ITR

model. Denoting

D :=
C√
n
+

8∥∇R(B⋆)∥F
µ

=
C√
n
+

8λ2∥B⋆∥F
µ

(112)

for C > 0 any constant, this gives

P (I2 > D) ≤ c1 exp

(
− C2µ2

2 · 322d

)
+

c2
∑n

i=1 w
3
i

(
∑n

i=1 w
2
i )

3/2
+O(exp(−c3n)),

where c1, c2, c3 > 0 are constants and d = p(K − 1). By Assumption 3.4, the quantities
√
n
∑n

i=1 w
3
i /
(∑n

i=1 w
2
i

)3/2
are uniformly bounded in n. Hence we can first choose n large

enough so that the last two terms combined in the right-hand side in (113) are at most ε/2, for which
n ≳ ε−2 is sufficient. Then we can choose C > 0 large enough so that the first term on the right-hand
side of (113) is at most ε/2. For this, we choose

C =
32
√
2d

µ

√
log

2c1
ε

= Ω

(√
p log ε−1

µ

)

Accordingly, we can choose T large enough so that I1 ≤ C/
√
n. Then the above gives

P
(
∥B⋆ − B̂T ∥F >

2C√
n
+

8λ2∥B⋆∥F
µ

)
≤ P (I2 ≥ D) ≤ ε. (113)

This shows the assertion.
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I Additional simulation details and results

The code supporting this study is available at https://github.com/ljw9510/effective-ITR, with plans
for release as an R package soon.

I.1 Details of data-generating mechanism

In this section, we explain how data are generated and treatment assignments are allocated in our
simulation studies. The outcome is generated under the working model assumption given by Equation
1 with heteroscedastic random noise ϵ ∼ N(0, σ2(A,X)). We have four different settings/cases for
the treatment-free effect and interaction effect functions, which are outlined below.

Case 1: Linear interaction functions with simple treatment-free effect functions

For Case 1, our randomized study aligns with Scenario 7 and our observational study mirrors Scenario
8 described in [44]. Specifically, we consider the following settings for the treatment-free effects and
interaction effects:

Randomized trial:
µ(X) = 1 + 2X1 + 2X2,

δ(X) =


0.75 + 1.5X1 + 1.5X2 + 1.5X3 + 1.5X4, A = 1;

0.75 + 1.5X1 − 1.5X2 − 1.5X3 + 1.5X4, A = 2;

0.75 + 1.5X1 − 1.5X2 + 1.5X3 − 1.5X4, A = 3;

0.75− 1.5X1 + 1.5X2 − 1.5X3 − 1.5X4, A = 4,

Observational study:
µ(X) = 1 +X5 + 3X6 + 2X1X2,

δ(X) =

{
0.5 + 2X1 +X2 +X3, A = 1; 1 +X1 −X2 −X3, A = 2;

1.5 + 3X1 −X2 +X3, A = 3; 1−X1 −X2 +X3, A = 4,

Case 2: Linear interaction functions with complicated treatment-free effect functions

For Case 2, we consider the following treatment-free effect function for model assumptions of Y :

µ(X) = 1 +X5 +X2
5 + 2e−X1X2 + sin(X3).

Case 3: Non-linear interaction functions with simple treatment-free effect functions

For Case 3, we consider the following non-linear interaction functions for model assumptions of Y :

µ(X) = 1 + 2X1 + 2X2 + 2X4 − 2X2
4 + 2X1X2,

δ(X) =

{
0.5 + 1.0X1 − 2.0X4 + 0.5X2

4 , A = 1; 1.0 + 1.0X1 + 1.0X4 − 1.0X2
4 , A = 2;

1.5 + 2.0X1 − 1.0X4 − 1.0X2
4 , A = 3; 1.0− 1.0X1 − 1.0X4 − 1.0X2

4 , A = 4.

Case 4: Non-linear interaction functions with a complicated treatment-free effect function

For Case 4, we consider the following complicated treatment-free effect function for model assump-
tions of Y :

µ(X) = 1 + 2X1 + 2X2 + 2X4 − 2X2
4 + 2X1X2 + 2e−X1X2 + sin(X3).

In all four cases, we adopt the same treatment assignment principles and variance function σ2(A,X)
that induces heteroscedastic error for observational studies as outlined in [44]:

π(A,X) =

{
0.25 · I(X1 < 0) + 0.4 · I(X1 > 0), A = 1,

0.25 · I(X1 < 0) + 0.2 · I(X1 > 0), A = 2, 3, 4.

σ2(A,X) = 0.25 + 2X2 · I (X2 > 0) +X3 · I (X3 > 0, A = 1) +X4 · I (X4 > 0, A = 2) .
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For randomized trials, each individual has an equal probability of assigning each treatment, therefore,
no propensity score estimation was made for AD-learning and SABD-learning. For the heteroscedastic
error for randomized trials, σ2(A,X) = 0.25 + 0.2 (1.5−X2)

2 was used.

I.2 Implementation details

All numerical experiments were performed on a 2022 Macbook Air with M1 chip and 16 GB of
RAM.

In the computation of the final ITR estimates, we use two different approaches: one with weighted
multivariate regression with L1-regularization for the penalized approach (named ‘penalized’ in the
main text). The other uses the proposed PGD algorithm with L1-ball (named ‘constrained’ in the
main text). To ensure a fair comparison, both the penalized method and the constrained optimization
algorithm were implemented using code developed by the author. We do not consider additional
L2-regularization in this setting. To determine the regularization constant or L1-ball size, we use
mean squared error as the criterion. The iterate number T of the PGD algorithm is 1000.

In our simulation study, we employ the default configuration of the random forest algorithm as
implemented in the randomForest package in R to estimate the residual variance function in SABD-
Learning, the treatment-free effect, and the propensity score. This default configuration includes the
construction of an ensemble of 500 decision trees, with each tree’s splitting criterion determined
using the Gini index. The number of variables considered for splitting at each node is set to the square
root of the total number of covariates. For model performance evaluation, we utilize the out-of-bag
(OOB) error estimate.

I.3 Additional simulation results

The goal of these additional simulations in the appendix is to demonstrate, under the pre-specified
linear ITR, that DCBW, variable screening, and augmentation can synergistically benefit the final
ITR. Methods using energy balancing weights are denoted as “_e” and those employing the distance
covariance test for variable screening are indicated as “_s” in the table. Note that the augmented
“SABD_e_s” corresponds to “ proposed+penalized” in the main text. In this section, we include
the performance of various methods implemented only by the penalized approach to compare the
effectiveness of the proposed statistical methods. The simulation was implemented using package
glmnet in R.

I.3.1 Treatment Decision Accuracy

Here, we show the averages and standard deviations of treatment decision accuracy from the additional
simulation studies. The first four tables present the results of experiments that mimic randomized
trials, and the remaining four tables show the results of observational studies.

The simulation results indicate that individual components alone do not significantly improve perfor-
mance. Instead, the synergistic effect of combining these components is essential for the ITR-Learning.
For example, in high-dimensional settings, using DCBW alone balances the empirical distributions
of all covariates (up to 60), including a significant portion of irrelevant ones. Additionally, estimated
decision functions may include irrelevant variables, reducing the impact of DCBW. Similarly, using
variable screening alone remains challenging due to model misspecification or highly nonlinear
outcomes. Combining other methods, such as outcome augmentation, helps mitigate model misspeci-
fication effects. This combined application ensures efficient and robust optimal ITR estimation across
diverse scenarios.

Below is a detailed investigation of each scenario.

First, we examine Case 1, where the treatment rule class is correctly specified (Tables 1, 5). With a
relatively simple treatment-free effect, AD-Learning’s performance is comparable to SABD-Learning,
particularly following outcome augmentation. When combined with EBWs as AD_e, SABD_e, these
methods exhibit improved performance over their original versions (AD, SABD). In randomized
trials, EBWs effectively reduce finite sample imbalance compared to IPW with true propensity scores.
In observational studies, energy balancing yields more effective balancing weights, resulting in higher
accuracy.
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Next, we delve into Case 2, involving a more complicated treatment-free effect function compared
to Case 1 (Tables 2, 6). Notably, since the treatment-free effect does not affect ITR learning, a
misspecified treatment-free effect function introduces heterogeneity and increases noise variance.
Then we can see the synergistic effectiveness of outcome augmentation and inverse variance weighting
in SABD-Learning, effectively handling additional heterogeneity in ITR estimation (See “augmented”
panel in Tables 2, 6). However, it’s important to note that all variants of AD-Learning show subpar
performance, even with augmented outcomes. AD-Learning results in an intercept-only model
frequently as its estimated decision function, which suggests that the mean squared error criterion in
LASSO regularization may not be effective for selecting models. In such instances, different penalty
types or performance metrics could prove beneficial.

Case 3 and Case 4 handle situations where the underlying treatment rule class is misspecified (Tables
3, 4, 7, and 8). Particularly, in Case 4, estimating ITR becomes even more challenging due to a highly
non-linear covariate-outcome relationship, which leads to suboptimal results of the variants of AD-
Learning as in Case 2. Our results demonstrate that the more robust EBWs outperform standard IPW,
particularly in observational studies. Additionally, variable screening enhances ITR learning in a high-
dimensional setting. Employing variable screening (SABD_s) enhances the performance of SABD,
especially with limited sample sizes, as it aids in selecting effect modifiers and precision variables,
thereby facilitating decision function estimation. However, even with perfect screening, estimating the
decision function remains challenging due to model misspecification or highly nonlinear outcomes.
Simultaneous use of EBWs and screening for SABD (SABD_e_s) further elevates performance,
likely influenced by dimensionality in nonparametric balancing weight methods.

The significant enhancements from integrating DCBWs, variable screening, outcome augmentation,
and inverse variance weighting underscore their collective importance. Their combined application
ensures efficient and robust optimal ITR estimation across diverse scenarios.
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Table 2: Average accuracy and their standard deviations (in parenthesis) in the randomized trial in
Case 1: Linear interaction functions with simple treatment-free effect functions.

AD ADe ADs ADe,s SABD SABDe SABDs SABDe,s

n p Original
20 0.679 0.734 0.703 0.813 0.720 0.745 0.734 0.804

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
200 40 0.637 0.673 0.658 0.755 0.691 0.700 0.702 0.761

(0.07) (0.08) (0.07) (0.08) (0.06) (0.06) (0.07) (0.07)
60 0.633 0.649 0.644 0.720 0.671 0.686 0.685 0.739

(0.07) (0.08) (0.06) (0.08) (0.06) (0.07) (0.05) (0.06)
20 0.816 0.872 0.828 0.925 0.832 0.867 0.818 0.875

(0.05) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03)
600 40 0.814 0.863 0.808 0.895 0.840 0.867 0.821 0.871

(0.04) (0.03) (0.04) (0.07) (0.04) (0.03) (0.04) (0.05)
60 0.802 0.848 0.783 0.876 0.836 0.859 0.815 0.864

(0.04) (0.03) (0.04) (0.06) (0.04) (0.03) (0.04) (0.03)
20 0.865 0.902 0.867 0.953 0.866 0.882 0.846 0.875

(0.03) (0.05) (0.03) (0.04) (0.03) (0.04) (0.04) (0.03)
1000 40 0.854 0.900 0.846 0.927 0.866 0.893 0.839 0.876

(0.03) (0.03) (0.03) (0.07) (0.04) (0.03) (0.04) (0.04)
60 0.857 0.895 0.838 0.922 0.874 0.893 0.846 0.879

(0.03) (0.02) (0.03) (0.05) (0.03) (0.02) (0.03) (0.03)
Augmented

20 0.798 0.807 0.806 0.853 0.807 0.807 0.820 0.854
(0.04) (0.04) (0.05) (0.05) (0.04) (0.04) (0.05) (0.05)

200 40 0.781 0.779 0.776 0.814 0.784 0.776 0.787 0.813
(0.04) (0.05) (0.06) (0.07) (0.05) (0.05) (0.06) (0.07)

60 0.769 0.764 0.759 0.789 0.772 0.762 0.776 0.795
(0.05) (0.05) (0.05) (0.06) (0.05) (0.05) (0.05) (0.06)

20 0.891 0.908 0.898 0.939 0.899 0.912 0.896 0.934
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

600 40 0.891 0.898 0.892 0.923 0.899 0.902 0.897 0.925
(0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.03)

60 0.883 0.889 0.873 0.910 0.893 0.893 0.886 0.915
(0.03) (0.02) (0.02) (0.03) (0.02) (0.03) (0.02) (0.02)

20 0.921 0.929 0.924 0.957 0.927 0.931 0.921 0.948
(0.02) (0.03) (0.02) (0.02) (0.01) (0.03) (0.02) (0.02)

1000 40 0.918 0.929 0.916 0.949 0.924 0.933 0.918 0.946
(0.02) (0.02) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02)

60 0.915 0.923 0.908 0.942 0.921 0.926 0.915 0.942
(0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02)
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Table 3: Average accuracy and their standard deviations (in parenthesis) in the randomized trial in
Case 2: Linear interaction functions with complicated treatment-free effect functions.

AD ADe ADs ADe,s SABD SABDe SABDs SABDe,s

n p Original
20 0.348 0.324 0.366 0.373 0.440 0.412 0.488 0.525

(0.12) (0.14) (0.14) (0.18) (0.13) (0.16) (0.14) (0.21)
200 40 0.316 0.295 0.346 0.329 0.379 0.337 0.454 0.457

(0.10) (0.10) (0.13) (0.14) (0.12) (0.12) (0.15) (0.19)
60 0.309 0.286 0.336 0.310 0.345 0.320 0.454 0.444

(0.08) (0.08) (0.11) (0.12) (0.10) (0.10) (0.13) (0.18)
20 0.440 0.472 0.470 0.523 0.693 0.773 0.695 0.785

(0.15) (0.19) (0.17) (0.22) (0.08) (0.12) (0.09) (0.12)
600 40 0.391 0.415 0.409 0.448 0.660 0.736 0.692 0.784

(0.16) (0.20) (0.17) (0.21) (0.11) (0.13) (0.10) (0.12)
60 0.367 0.367 0.387 0.408 0.599 0.688 0.669 0.757

(0.14) (0.16) (0.15) (0.18) (0.13) (0.15) (0.11) (0.12)
20 0.458 0.473 0.477 0.528 0.769 0.818 0.746 0.816

(0.16) (0.18) (0.17) (0.21) (0.07) (0.10) (0.08) (0.08)
1000 40 0.408 0.410 0.436 0.480 0.741 0.826 0.744 0.827

(0.17) (0.19) (0.18) (0.21) (0.09) (0.09) (0.09) (0.09)
60 0.436 0.467 0.465 0.492 0.746 0.833 0.766 0.816

(0.17) (0.20) (0.18) (0.21) (0.09) (0.10) (0.06) (0.12)
Augmented

20 0.417 0.418 0.436 0.474 0.650 0.647 0.716 0.740
(0.18) (0.18) (0.19) (0.20) (0.10) (0.11) (0.10) (0.10)

200 40 0.367 0.362 0.384 0.413 0.556 0.541 0.679 0.689
(0.15) (0.15) (0.17) (0.19) (0.14) (0.15) (0.11) (0.12)

60 0.353 0.348 0.374 0.393 0.517 0.506 0.648 0.665
(0.14) (0.13) (0.15) (0.16) (0.15) (0.14) (0.11) (0.12)

20 0.492 0.520 0.514 0.583 0.857 0.862 0.873 0.894
(0.19) (0.20) (0.20) (0.21) (0.04) (0.04) (0.03) (0.06)

600 40 0.437 0.444 0.457 0.481 0.833 0.835 0.864 0.878
(0.20) (0.20) (0.20) (0.22) (0.05) (0.04) (0.04) (0.04)

60 0.396 0.399 0.409 0.444 0.803 0.798 0.843 0.861
(0.17) (0.18) (0.17) (0.19) (0.06) (0.08) (0.04) (0.04)

20 0.485 0.492 0.501 0.541 0.897 0.896 0.905 0.918
(0.18) (0.19) (0.19) (0.21) (0.03) (0.04) (0.02) (0.04)

1000 40 0.433 0.436 0.453 0.504 0.888 0.890 0.903 0.921
(0.19) (0.20) (0.20) (0.21) (0.03) (0.03) (0.02) (0.03)

60 0.469 0.485 0.490 0.513 0.884 0.883 0.899 0.908
(0.19) (0.20) (0.20) (0.21) (0.03) (0.03) (0.02) (0.03)
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Table 4: Average accuracy and their standard deviations (in parenthesis) in the randomized trial in
Case 3: Non-linear interaction functions with simple treatment-free effect functions.

AD ADe ADs ADe,s SABD SABDe SABDs SABDe,s

n p Original
20 0.385 0.353 0.411 0.404 0.476 0.438 0.521 0.550

(0.12) (0.13) (0.12) (0.17) (0.12) (0.14) (0.12) (0.16)
200 40 0.339 0.316 0.375 0.358 0.408 0.366 0.473 0.486

(0.12) (0.11) (0.11) (0.14) (0.12) (0.12) (0.10) (0.14)
60 0.319 0.300 0.357 0.342 0.370 0.343 0.454 0.438

(0.11) (0.10) (0.11) (0.12) (0.12) (0.11) (0.10) (0.13)
20 0.534 0.561 0.558 0.630 0.678 0.705 0.659 0.746

(0.11) (0.11) (0.10) (0.10) (0.07) (0.07) (0.08) (0.07)
600 40 0.490 0.486 0.529 0.576 0.651 0.653 0.651 0.723

(0.11) (0.13) (0.08) (0.11) (0.07) (0.09) (0.07) (0.08)
60 0.472 0.460 0.501 0.536 0.637 0.648 0.639 0.687

(0.10) (0.12) (0.08) (0.10) (0.07) (0.07) (0.07) (0.07)
20 0.577 0.598 0.599 0.690 0.740 0.755 0.689 0.768

(0.09) (0.09) (0.08) (0.06) (0.06) (0.05) (0.08) (0.07)
1000 40 0.584 0.583 0.599 0.663 0.724 0.728 0.702 0.779

(0.10) (0.09) (0.09) (0.07) (0.06) (0.08) (0.06) (0.06)
60 0.574 0.579 0.584 0.636 0.723 0.731 0.707 0.760

(0.09) (0.09) (0.06) (0.08) (0.05) (0.05) (0.05) (0.07)
Augmented

20 0.524 0.524 0.555 0.603 0.608 0.604 0.642 0.687
(0.11) (0.12) (0.10) (0.11) (0.08) (0.09) (0.07) (0.08)

200 40 0.476 0.463 0.513 0.548 0.565 0.545 0.607 0.630
(0.12) (0.13) (0.10) (0.11) (0.10) (0.09) (0.07) (0.08)

60 0.443 0.431 0.484 0.508 0.525 0.505 0.601 0.601
(0.12) (0.13) (0.12) (0.13) (0.11) (0.12) (0.08) (0.09)

20 0.674 0.680 0.685 0.719 0.776 0.784 0.776 0.805
(0.06) (0.07) (0.05) (0.06) (0.04) (0.04) (0.04) (0.04)

600 40 0.654 0.659 0.664 0.697 0.761 0.763 0.768 0.796
(0.07) (0.06) (0.06) (0.06) (0.04) (0.04) (0.04) (0.04)

60 0.643 0.645 0.652 0.676 0.750 0.749 0.756 0.780
(0.06) (0.07) (0.05) (0.06) (0.05) (0.05) (0.04) (0.04)

20 0.706 0.708 0.715 0.746 0.805 0.805 0.787 0.817
(0.05) (0.06) (0.04) (0.04) (0.03) (0.05) (0.04) (0.04)

1000 40 0.704 0.704 0.711 0.738 0.805 0.809 0.807 0.831
(0.06) (0.05) (0.05) (0.04) (0.03) (0.03) (0.04) (0.03)

60 0.705 0.707 0.710 0.731 0.800 0.798 0.803 0.820
(0.05) (0.04) (0.04) (0.04) (0.03) (0.03) (0.04) (0.04)
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Table 5: Average accuracy and their standard deviations (in parenthesis) in the randomized trial in
Case 4: Non-linear interaction functions with a complicated treatment-free effect function.

AD ADe ADs ADe,s SABD SABDe SABDs SABDe,s

n p Original
20 0.298 0.300 0.319 0.299 0.351 0.345 0.384 0.379

(0.09) (0.09) (0.10) (0.10) (0.12) (0.12) (0.13) (0.16)
200 40 0.273 0.269 0.283 0.279 0.303 0.293 0.350 0.343

(0.06) (0.05) (0.07) (0.07) (0.09) (0.09) (0.11) (0.13)
60 0.279 0.275 0.299 0.289 0.298 0.287 0.359 0.340

(0.07) (0.06) (0.08) (0.09) (0.09) (0.09) (0.12) (0.13)
20 0.320 0.331 0.339 0.353 0.570 0.570 0.572 0.622

(0.11) (0.12) (0.12) (0.13) (0.12) (0.13) (0.13) (0.13)
600 40 0.308 0.306 0.329 0.332 0.501 0.511 0.552 0.600

(0.10) (0.09) (0.11) (0.13) (0.13) (0.13) (0.10) (0.11)
60 0.297 0.293 0.308 0.307 0.463 0.473 0.529 0.578

(0.08) (0.08) (0.09) (0.10) (0.13) (0.14) (0.11) (0.14)
20 0.325 0.331 0.337 0.356 0.638 0.656 0.614 0.658

(0.11) (0.12) (0.12) (0.14) (0.09) (0.09) (0.10) (0.10)
1000 40 0.312 0.316 0.322 0.335 0.631 0.635 0.625 0.674

(0.10) (0.11) (0.11) (0.13) (0.09) (0.12) (0.09) (0.09)
60 0.308 0.328 0.323 0.341 0.629 0.637 0.628 0.675

(0.09) (0.12) (0.10) (0.13) (0.08) (0.10) (0.08) (0.10)
Augmented

20 0.347 0.355 0.355 0.380 0.500 0.481 0.558 0.595
(0.12) (0.13) (0.14) (0.14) (0.13) (0.14) (0.12) (0.13)

200 40 0.288 0.287 0.299 0.314 0.376 0.377 0.506 0.499
(0.08) (0.08) (0.10) (0.11) (0.13) (0.12) (0.11) (0.14)

60 0.307 0.302 0.319 0.327 0.379 0.362 0.492 0.481
(0.10) (0.09) (0.11) (0.12) (0.13) (0.12) (0.13) (0.14)

20 0.348 0.369 0.361 0.401 0.725 0.724 0.749 0.764
(0.13) (0.14) (0.14) (0.16) (0.08) (0.08) (0.06) (0.09)

600 40 0.349 0.353 0.360 0.382 0.667 0.653 0.729 0.747
(0.13) (0.14) (0.14) (0.15) (0.09) (0.10) (0.06) (0.06)

60 0.318 0.318 0.336 0.343 0.651 0.644 0.720 0.734
(0.12) (0.11) (0.13) (0.13) (0.10) (0.11) (0.07) (0.07)

20 0.339 0.352 0.350 0.390 0.775 0.779 0.781 0.800
(0.14) (0.15) (0.14) (0.16) (0.05) (0.06) (0.06) (0.05)

1000 40 0.332 0.339 0.346 0.361 0.764 0.756 0.793 0.803
(0.12) (0.14) (0.13) (0.14) (0.06) (0.07) (0.05) (0.05)

60 0.331 0.347 0.342 0.358 0.766 0.753 0.788 0.803
(0.13) (0.13) (0.14) (0.14) (0.05) (0.05) (0.04) (0.04)
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Table 6: Average accuracy and their standard deviations (in parenthesis) in the observational study in
Case 1: Linear interaction functions with simple treatment-free effect functions.

AD ADe ADs ADe,s SABD SABDe SABDs SABDe,s

n p Original
20 0.560 0.604 0.580 0.660 0.555 0.634 0.563 0.694

(0.11) (0.12) (0.10) (0.11) (0.10) (0.10) (0.10) (0.10)
200 40 0.494 0.499 0.532 0.589 0.517 0.550 0.542 0.624

(0.12) (0.14) (0.11) (0.13) (0.09) (0.12) (0.10) (0.11)
60 0.498 0.494 0.520 0.546 0.487 0.533 0.512 0.583

(0.11) (0.13) (0.09) (0.13) (0.11) (0.12) (0.10) (0.12)
20 0.728 0.785 0.738 0.849 0.675 0.824 0.664 0.867

(0.07) (0.07) (0.07) (0.06) (0.06) (0.04) (0.05) (0.05)
600 40 0.716 0.754 0.721 0.824 0.674 0.802 0.670 0.856

(0.08) (0.07) (0.07) (0.07) (0.07) (0.06) (0.07) (0.05)
60 0.704 0.756 0.693 0.795 0.661 0.778 0.653 0.829

(0.08) (0.07) (0.07) (0.08) (0.08) (0.06) (0.07) (0.05)
20 0.782 0.845 0.788 0.894 0.708 0.873 0.689 0.905

(0.06) (0.05) (0.06) (0.05) (0.06) (0.03) (0.05) (0.04)
1000 40 0.774 0.831 0.767 0.886 0.700 0.859 0.684 0.901

(0.06) (0.04) (0.06) (0.05) (0.06) (0.04) (0.05) (0.04)
60 0.764 0.825 0.755 0.868 0.702 0.845 0.684 0.885

(0.06) (0.05) (0.06) (0.06) (0.07) (0.04) (0.05) (0.04)
Augmented

20 0.692 0.699 0.690 0.727 0.712 0.722 0.702 0.741
(0.07) (0.07) (0.07) (0.08) (0.07) (0.07) (0.08) (0.08)

200 40 0.660 0.662 0.661 0.687 0.676 0.678 0.677 0.707
(0.09) (0.08) (0.08) (0.09) (0.07) (0.08) (0.08) (0.08)

60 0.648 0.632 0.631 0.650 0.660 0.657 0.649 0.672
(0.08) (0.09) (0.08) (0.08) (0.08) (0.08) (0.10) (0.10)

20 0.840 0.861 0.841 0.889 0.841 0.881 0.836 0.904
(0.04) (0.03) (0.04) (0.04) (0.04) (0.03) (0.04) (0.04)

600 40 0.829 0.841 0.828 0.872 0.831 0.870 0.832 0.898
(0.05) (0.04) (0.05) (0.04) (0.05) (0.03) (0.04) (0.03)

60 0.817 0.829 0.811 0.849 0.827 0.856 0.819 0.874
(0.05) (0.05) (0.04) (0.05) (0.05) (0.04) (0.04) (0.04)

20 0.879 0.900 0.879 0.926 0.867 0.919 0.861 0.932
(0.03) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03) (0.02)

1000 40 0.878 0.892 0.874 0.917 0.867 0.909 0.860 0.927
(0.04) (0.03) (0.04) (0.03) (0.03) (0.03) (0.03) (0.02)

60 0.868 0.883 0.862 0.905 0.859 0.904 0.852 0.919
(0.03) (0.03) (0.03) (0.04) (0.04) (0.02) (0.04) (0.03)
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Table 7: Average accuracy and their standard deviations (in parenthesis) in the observational study in
Case 2: Linear interaction functions with complicated treatment-free effect functions.

AD ADe ADs ADe,s SABD SABDe SABDs SABDe,s

n p Original
20 0.321 0.327 0.328 0.356 0.292 0.361 0.319 0.394

(0.15) (0.14) (0.15) (0.16) (0.12) (0.17) (0.14) (0.20)
200 40 0.301 0.300 0.315 0.325 0.284 0.318 0.309 0.345

(0.11) (0.12) (0.12) (0.12) (0.11) (0.10) (0.13) (0.14)
60 0.303 0.320 0.315 0.323 0.271 0.341 0.314 0.381

(0.11) (0.12) (0.11) (0.12) (0.12) (0.13) (0.12) (0.15)
20 0.364 0.383 0.373 0.413 0.403 0.659 0.414 0.689

(0.15) (0.17) (0.15) (0.18) (0.09) (0.15) (0.09) (0.16)
600 40 0.355 0.379 0.368 0.388 0.360 0.571 0.404 0.662

(0.13) (0.15) (0.14) (0.15) (0.10) (0.19) (0.09) (0.16)
60 0.327 0.335 0.329 0.350 0.366 0.515 0.401 0.645

(0.11) (0.14) (0.12) (0.14) (0.10) (0.19) (0.09) (0.17)
20 0.348 0.390 0.352 0.393 0.427 0.751 0.417 0.726

(0.14) (0.16) (0.14) (0.17) (0.06) (0.14) (0.07) (0.14)
1000 40 0.364 0.382 0.374 0.420 0.426 0.712 0.430 0.767

(0.15) (0.16) (0.15) (0.17) (0.07) (0.13) (0.07) (0.11)
60 0.372 0.415 0.386 0.449 0.413 0.741 0.436 0.771

(0.14) (0.18) (0.15) (0.19) (0.08) (0.13) (0.08) (0.12)
Augmented

20 0.368 0.393 0.382 0.440 0.576 0.590 0.636 0.662
(0.17) (0.18) (0.18) (0.20) (0.15) (0.15) (0.14) (0.14)

200 40 0.340 0.358 0.353 0.395 0.472 0.493 0.586 0.625
(0.15) (0.15) (0.16) (0.18) (0.17) (0.16) (0.14) (0.15)

60 0.330 0.355 0.339 0.378 0.453 0.447 0.567 0.579
(0.12) (0.14) (0.12) (0.14) (0.13) (0.14) (0.14) (0.14)

20 0.403 0.446 0.414 0.497 0.809 0.827 0.828 0.861
(0.17) (0.18) (0.19) (0.22) (0.06) (0.05) (0.05) (0.05)

600 40 0.381 0.422 0.397 0.458 0.761 0.766 0.818 0.843
(0.16) (0.18) (0.17) (0.18) (0.09) (0.08) (0.05) (0.06)

60 0.341 0.366 0.351 0.395 0.740 0.739 0.794 0.815
(0.12) (0.14) (0.13) (0.16) (0.10) (0.10) (0.06) (0.06)

20 0.374 0.420 0.381 0.449 0.853 0.862 0.864 0.892
(0.17) (0.18) (0.18) (0.20) (0.07) (0.05) (0.04) (0.03)

1000 40 0.392 0.429 0.403 0.443 0.836 0.848 0.867 0.885
(0.17) (0.18) (0.18) (0.18) (0.07) (0.04) (0.03) (0.03)

60 0.405 0.446 0.420 0.484 0.839 0.844 0.864 0.885
(0.17) (0.19) (0.18) (0.20) (0.04) (0.05) (0.03) (0.03)
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Table 8: Average accuracy and their standard deviations (in parenthesis) in the observational study in
Case 3: Non-linear interaction functions with simple treatment-free effect functions.

AD ADe ADs ADe,s SABD SABDe SABDs SABDe,s

n p Original
20 0.293 0.301 0.326 0.336 0.382 0.393 0.423 0.474

(0.08) (0.09) (0.10) (0.14) (0.10) (0.12) (0.10) (0.17)
200 40 0.304 0.314 0.358 0.346 0.368 0.376 0.428 0.465

(0.09) (0.09) (0.10) (0.13) (0.11) (0.12) (0.10) (0.15)
60 0.277 0.284 0.330 0.345 0.337 0.331 0.401 0.416

(0.08) (0.08) (0.10) (0.11) (0.10) (0.10) (0.09) (0.12)
20 0.405 0.491 0.458 0.587 0.547 0.685 0.529 0.747

(0.11) (0.12) (0.11) (0.13) (0.07) (0.07) (0.06) (0.08)
600 40 0.382 0.462 0.447 0.549 0.523 0.639 0.531 0.729

(0.10) (0.12) (0.10) (0.13) (0.08) (0.08) (0.07) (0.08)
60 0.386 0.438 0.465 0.545 0.519 0.628 0.534 0.696

(0.10) (0.11) (0.08) (0.11) (0.08) (0.09) (0.06) (0.08)
20 0.471 0.572 0.518 0.671 0.587 0.739 0.548 0.779

(0.09) (0.10) (0.08) (0.08) (0.06) (0.05) (0.06) (0.06)
1000 40 0.440 0.542 0.502 0.633 0.575 0.725 0.554 0.775

(0.08) (0.09) (0.07) (0.08) (0.06) (0.05) (0.05) (0.07)
60 0.419 0.531 0.495 0.610 0.570 0.719 0.559 0.759

(0.09) (0.09) (0.07) (0.10) (0.06) (0.05) (0.05) (0.06)
Augmented

20 0.448 0.465 0.492 0.554 0.535 0.568 0.571 0.663
(0.12) (0.13) (0.11) (0.12) (0.10) (0.11) (0.08) (0.09)

200 40 0.456 0.461 0.505 0.544 0.511 0.534 0.562 0.629
(0.11) (0.12) (0.10) (0.11) (0.11) (0.11) (0.09) (0.09)

60 0.394 0.394 0.445 0.476 0.449 0.458 0.532 0.576
(0.11) (0.12) (0.11) (0.11) (0.11) (0.12) (0.09) (0.09)

20 0.617 0.661 0.639 0.707 0.700 0.773 0.675 0.798
(0.07) (0.07) (0.07) (0.06) (0.06) (0.04) (0.06) (0.05)

600 40 0.606 0.643 0.631 0.688 0.691 0.753 0.685 0.792
(0.07) (0.07) (0.06) (0.06) (0.07) (0.05) (0.06) (0.05)

60 0.612 0.639 0.634 0.678 0.692 0.748 0.693 0.776
(0.07) (0.07) (0.07) (0.08) (0.06) (0.04) (0.06) (0.05)

20 0.672 0.707 0.686 0.743 0.743 0.811 0.708 0.820
(0.05) (0.05) (0.05) (0.05) (0.06) (0.03) (0.05) (0.04)

1000 40 0.657 0.693 0.674 0.719 0.744 0.797 0.726 0.826
(0.05) (0.05) (0.05) (0.07) (0.06) (0.03) (0.05) (0.04)

60 0.648 0.687 0.662 0.714 0.724 0.794 0.710 0.815
(0.05) (0.05) (0.05) (0.05) (0.06) (0.04) (0.05) (0.04)
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Table 9: Average accuracy and their standard deviations (in parenthesis) in the observational study in
Case 4: Non-linear interaction functions with a complicated treatment-free effect function.

AD ADe ADs ADe,s SABD SABDe SABDs SABDe,s

n p Original
20 0.274 0.279 0.281 0.283 0.302 0.322 0.325 0.368

(0.07) (0.08) (0.08) (0.09) (0.08) (0.11) (0.09) (0.13)
200 40 0.270 0.270 0.285 0.276 0.285 0.305 0.322 0.353

(0.07) (0.07) (0.07) (0.07) (0.07) (0.09) (0.09) (0.13)
60 0.266 0.270 0.281 0.272 0.274 0.281 0.313 0.323

(0.06) (0.06) (0.07) (0.06) (0.07) (0.08) (0.08) (0.10)
20 0.294 0.309 0.304 0.338 0.409 0.555 0.422 0.619

(0.09) (0.11) (0.10) (0.15) (0.06) (0.12) (0.06) (0.12)
600 40 0.283 0.286 0.300 0.314 0.369 0.489 0.412 0.580

(0.08) (0.09) (0.09) (0.12) (0.07) (0.13) (0.07) (0.14)
60 0.278 0.291 0.292 0.308 0.371 0.457 0.408 0.583

(0.07) (0.08) (0.08) (0.11) (0.07) (0.15) (0.06) (0.12)
20 0.288 0.314 0.296 0.324 0.441 0.643 0.445 0.663

(0.09) (0.12) (0.09) (0.12) (0.04) (0.10) (0.05) (0.10)
1000 40 0.307 0.314 0.327 0.347 0.431 0.619 0.441 0.693

(0.09) (0.11) (0.11) (0.13) (0.04) (0.09) (0.04) (0.10)
60 0.289 0.312 0.306 0.344 0.421 0.603 0.445 0.668

(0.07) (0.10) (0.09) (0.13) (0.05) (0.09) (0.04) (0.09)
Augmented

20 0.317 0.336 0.335 0.384 0.439 0.456 0.505 0.571
(0.11) (0.13) (0.12) (0.15) (0.14) (0.14) (0.12) (0.13)

200 40 0.291 0.307 0.305 0.329 0.370 0.379 0.481 0.512
(0.09) (0.10) (0.10) (0.11) (0.13) (0.12) (0.12) (0.14)

60 0.287 0.289 0.302 0.328 0.333 0.329 0.446 0.461
(0.07) (0.07) (0.09) (0.11) (0.10) (0.10) (0.13) (0.13)

20 0.337 0.361 0.346 0.390 0.660 0.702 0.676 0.761
(0.12) (0.13) (0.13) (0.15) (0.08) (0.07) (0.07) (0.07)

600 40 0.329 0.347 0.350 0.373 0.613 0.630 0.684 0.741
(0.12) (0.13) (0.13) (0.15) (0.10) (0.12) (0.07) (0.06)

60 0.307 0.322 0.326 0.347 0.612 0.635 0.679 0.726
(0.10) (0.11) (0.11) (0.14) (0.10) (0.11) (0.07) (0.06)

20 0.318 0.342 0.325 0.369 0.734 0.769 0.730 0.801
(0.11) (0.14) (0.12) (0.15) (0.08) (0.08) (0.06) (0.06)

1000 40 0.332 0.346 0.348 0.379 0.714 0.741 0.741 0.796
(0.12) (0.14) (0.13) (0.15) (0.09) (0.07) (0.06) (0.05)

60 0.322 0.346 0.334 0.384 0.711 0.748 0.734 0.793
(0.11) (0.13) (0.12) (0.15) (0.07) (0.06) (0.06) (0.04)
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I.3.2 Empirical values

In this subsection, we show the averages and standard deviations of empirical values from the
additional simulation studies. The empirical values of the estimated rule E[Y (d̂(X))] are computed
by utilizing the generated potential outcomes on the test dataset.

We include the empirical value of the optimal rule E[Y (dopt(X))] as well as the values obtained
by assigning everyone to each of the four classes E[Y (K)] for K = 1, . . . , 4 as benchmarks,
assuming the higher value of empirical value is better. Again, the first four tables present the results
of experiments that mimic randomized trials, and the remaining four tables show the results of
observational studies.

Here, we can observe the benefits of the three components that we found from the treatment decision
accuracy results. In addition, the benchmarks of the empirical values reveal some intriguing insights.
Firstly, the optimal empirical value provides information on how challenging the current scenario
is. For instance, in the randomized trial of Case 1 (Table 9), the optimal empirical value is not
significantly different from the mean empirical value evaluated by current methods. Especially with
augmented outcomes using a sample size of 1000, it yields a value quite similar to the optimal. On
the other hand, in the observational study of Case 4 (Table 16), the obtained empirical values show
significant differences from the optimal value. Furthermore, the mean empirical value evaluated from
AD-Learning with a sample size of 200 is not markedly different from the empirical value obtained
by assigning all individuals to treatment 1. This implies that the estimated ITR provides results akin
to a “one-size-fits-all” outcome in small sample sizes, and this finding is not irrelevant to the fact that
a majority of AD-Learning results in an intercept-only model as the final decision function under
conditions of highly non-linear covariate-outcome relationships. In such instances, we can explore
alternative methods to further advance our current results such as other penalty types or performance
metrics.
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Table 10: Average empirical values and their standard deviations (in parenthesis) in the randomized
trial in Case 1: Linear interaction functions with simple treatment-free effect functions. The optimal
empirical value is 5.160 and the average empirical values when assigning one treatment are 1.751,
1.752, 1.751, and 1.752, respectively.

AD AD_e AD_s AD_e, s SABD SABD_e SABD_s SABD_e, s
n p Original

20 4.554 4.725 4.637 4.934 4.701 4.769 4.739 4.925
(0.25) (0.21) (0.23) (0.17) (0.21) (0.19) (0.21) (0.16)

200 40 4.381 4.505 4.465 4.778 4.591 4.616 4.626 4.798
(0.31) (0.34) (0.30) (0.28) (0.24) (0.24) (0.27) (0.26)

60 4.364 4.409 4.412 4.670 4.528 4.566 4.578 4.746
(0.29) (0.36) (0.25) (0.27) (0.21) (0.26) (0.20) (0.21)

20 4.963 5.053 4.985 5.117 4.992 5.050 4.956 5.063
(0.10) (0.10) (0.09) (0.07) (0.09) (0.10) (0.11) (0.06)

600 40 4.964 5.049 4.950 5.071 5.013 5.059 4.972 5.056
(0.10) (0.06) (0.09) (0.19) (0.08) (0.06) (0.09) (0.12)

60 4.935 5.025 4.891 5.059 5.006 5.045 4.962 5.054
(0.11) (0.07) (0.10) (0.11) (0.09) (0.07) (0.09) (0.07)

20 5.054 5.092 5.057 5.140 5.053 5.073 5.012 5.060
(0.07) (0.11) (0.07) (0.07) (0.07) (0.08) (0.09) (0.07)

1000 40 5.034 5.098 5.020 5.101 5.051 5.090 5.000 5.060
(0.07) (0.05) (0.07) (0.16) (0.07) (0.05) (0.09) (0.09)

60 5.046 5.096 5.013 5.112 5.070 5.095 5.021 5.072
(0.06) (0.04) (0.06) (0.09) (0.06) (0.04) (0.08) (0.07)

Augmented
20 4.928 4.940 4.936 5.022 4.951 4.942 4.964 5.024

(0.10) (0.10) (0.15) (0.14) (0.09) (0.11) (0.15) (0.14)
200 40 4.887 4.873 4.857 4.940 4.888 4.863 4.884 4.936

(0.12) (0.13) (0.22) (0.20) (0.12) (0.13) (0.21) (0.22)
60 4.851 4.833 4.817 4.888 4.860 4.826 4.865 4.905

(0.12) (0.14) (0.17) (0.16) (0.13) (0.15) (0.16) (0.16)
20 5.092 5.109 5.100 5.136 5.101 5.114 5.097 5.133

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
600 40 5.095 5.101 5.096 5.124 5.105 5.105 5.102 5.127

(0.05) (0.04) (0.04) (0.06) (0.04) (0.04) (0.04) (0.05)
60 5.086 5.091 5.073 5.114 5.097 5.096 5.089 5.120

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.04)
20 5.125 5.127 5.127 5.148 5.130 5.131 5.125 5.143

(0.04) (0.05) (0.04) (0.04) (0.04) (0.05) (0.04) (0.04)
1000 40 5.121 5.129 5.118 5.140 5.126 5.132 5.120 5.139

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
60 5.121 5.128 5.115 5.140 5.127 5.131 5.120 5.141

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
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Table 11: Average empirical values and their standard deviations (in parenthesis) in the randomized
trial in Case 2: Linear interaction functions with complicated treatment-free effect functions. The
optimal empirical value is 10.333 and the average empirical values when assigning one treatment are
6.923, 6.924, 6.923, and 6.924, respectively.

AD AD_e AD_s AD_e, s SABD SABD_e SABD_s SABD_e, s
n p Original

20 7.704 7.474 7.820 7.764 8.360 8.073 8.677 8.736
(0.90) (1.00) (0.98) (1.14) (0.96) (1.16) (0.94) (1.26)

200 40 7.430 7.262 7.641 7.482 7.907 7.529 8.415 8.339
(0.80) (0.77) (0.94) (0.98) (0.93) (0.92) (1.08) (1.19)

60 7.413 7.205 7.605 7.359 7.690 7.470 8.475 8.275
(0.79) (0.74) (0.93) (0.94) (0.91) (0.83) (0.94) (1.23)

20 8.334 8.437 8.488 8.719 9.791 9.966 9.803 10.023
(1.11) (1.27) (1.18) (1.29) (0.56) (0.76) (0.56) (0.63)

600 40 7.983 8.051 8.079 8.250 9.610 9.821 9.757 9.991
(1.11) (1.25) (1.16) (1.33) (0.69) (0.73) (0.64) (0.69)

60 7.834 7.788 7.956 8.025 9.311 9.648 9.657 9.930
(1.06) (1.12) (1.14) (1.26) (0.85) (0.80) (0.66) (0.59)

20 8.395 8.458 8.486 8.706 9.997 10.087 9.929 10.101
(1.15) (1.20) (1.19) (1.27) (0.47) (0.54) (0.50) (0.50)

1000 40 8.033 7.993 8.199 8.400 9.874 10.077 9.893 10.101
(1.20) (1.24) (1.25) (1.32) (0.59) (0.51) (0.58) (0.47)

60 8.275 8.403 8.439 8.506 9.933 10.122 10.021 10.053
(1.17) (1.24) (1.21) (1.32) (0.54) (0.59) (0.44) (0.65)

Augmented
20 8.111 8.117 8.201 8.429 9.552 9.526 9.801 9.877

(1.19) (1.16) (1.24) (1.28) (0.64) (0.65) (0.53) (0.49)
200 40 7.758 7.712 7.859 8.038 9.017 8.912 9.646 9.678

(1.09) (1.09) (1.17) (1.28) (0.97) (1.02) (0.62) (0.65)
60 7.694 7.649 7.834 7.939 8.814 8.764 9.519 9.589

(1.03) (1.01) (1.11) (1.15) (0.96) (0.95) (0.70) (0.67)
20 8.551 8.713 8.663 9.028 10.236 10.244 10.265 10.278

(1.25) (1.23) (1.28) (1.21) (0.36) (0.35) (0.35) (0.39)
600 40 8.212 8.237 8.317 8.437 10.173 10.176 10.234 10.249

(1.25) (1.27) (1.27) (1.34) (0.37) (0.37) (0.36) (0.36)
60 7.972 7.998 8.048 8.249 10.100 10.080 10.201 10.230

(1.16) (1.16) (1.20) (1.27) (0.38) (0.44) (0.34) (0.33)
20 8.509 8.549 8.587 8.769 10.262 10.255 10.271 10.280

(1.22) (1.22) (1.24) (1.26) (0.41) (0.41) (0.41) (0.41)
1000 40 8.158 8.154 8.265 8.543 10.230 10.232 10.252 10.266

(1.26) (1.27) (1.31) (1.35) (0.38) (0.38) (0.38) (0.38)
60 8.414 8.510 8.532 8.648 10.262 10.260 10.281 10.287

(1.26) (1.25) (1.28) (1.31) (0.40) (0.40) (0.40) (0.40)
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Table 12: Average empirical values and their standard deviations (in parenthesis) in the randomized
trial in Case 3: Non-linear interaction functions with simple treatment-free effect functions. The
optimal empirical value is 1.422 and the average empirical values when assigning one treatment are
0.041, -0.919, -0.419, and -0.920, respectively.

AD AD_e AD_s AD_e, s SABD SABD_e SABD_s SABD_e, s
n p Original

20 0.210 0.157 0.294 0.382 0.434 0.275 0.546 0.592
(0.45) (0.48) (0.44) (0.45) (0.47) (0.55) (0.46) (0.59)

200 40 0.023 -0.018 0.131 0.185 0.196 0.044 0.436 0.462
(0.46) (0.46) (0.44) (0.45) (0.50) (0.54) (0.38) (0.50)

60 -0.051 -0.087 0.072 0.100 0.081 -0.008 0.346 0.315
(0.49) (0.45) (0.45) (0.45) (0.51) (0.48) (0.43) (0.48)

20 0.733 0.826 0.788 0.983 0.963 1.023 0.931 1.095
(0.29) (0.26) (0.27) (0.21) (0.18) (0.17) (0.23) (0.17)

600 40 0.631 0.646 0.715 0.857 0.910 0.915 0.923 1.025
(0.33) (0.32) (0.22) (0.29) (0.21) (0.24) (0.18) (0.21)

60 0.609 0.585 0.651 0.770 0.905 0.922 0.903 0.993
(0.28) (0.32) (0.22) (0.27) (0.19) (0.18) (0.17) (0.17)

20 0.879 0.930 0.920 1.111 1.089 1.104 1.009 1.123
(0.22) (0.22) (0.19) (0.12) (0.15) (0.14) (0.18) (0.14)

1000 40 0.864 0.880 0.887 1.061 1.027 1.020 0.993 1.117
(0.23) (0.21) (0.21) (0.14) (0.15) (0.25) (0.16) (0.14)

60 0.870 0.890 0.878 1.002 1.050 1.064 1.030 1.102
(0.20) (0.21) (0.16) (0.24) (0.14) (0.14) (0.14) (0.16)

Augmented
20 0.715 0.697 0.794 0.918 0.883 0.871 0.967 1.056

(0.32) (0.38) (0.24) (0.24) (0.19) (0.26) (0.17) (0.18)
200 40 0.588 0.545 0.680 0.779 0.791 0.724 0.884 0.926

(0.30) (0.36) (0.27) (0.25) (0.26) (0.30) (0.20) (0.22)
60 0.481 0.444 0.578 0.653 0.661 0.587 0.849 0.840

(0.35) (0.38) (0.32) (0.35) (0.32) (0.42) (0.19) (0.23)
20 1.082 1.093 1.100 1.151 1.184 1.194 1.216 1.245

(0.11) (0.12) (0.10) (0.10) (0.10) (0.10) (0.07) (0.08)
600 40 1.051 1.065 1.063 1.118 1.166 1.163 1.189 1.220

(0.12) (0.11) (0.11) (0.12) (0.11) (0.10) (0.10) (0.09)
60 1.039 1.042 1.051 1.092 1.161 1.156 1.173 1.204

(0.12) (0.13) (0.10) (0.12) (0.10) (0.10) (0.09) (0.09)
20 1.141 1.134 1.156 1.196 1.219 1.210 1.229 1.260

(0.08) (0.15) (0.08) (0.07) (0.08) (0.12) (0.08) (0.07)
1000 40 1.133 1.137 1.143 1.183 1.207 1.213 1.231 1.258

(0.09) (0.09) (0.09) (0.07) (0.07) (0.08) (0.07) (0.06)
60 1.141 1.146 1.148 1.177 1.212 1.207 1.235 1.250

(0.09) (0.08) (0.08) (0.08) (0.09) (0.08) (0.08) (0.08)
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Table 13: Average empirical values and their standard deviations (in parenthesis) in the randomized
trial in Case 4: Non-linear interaction functions with a complicated treatment-free effect function.
The optimal empirical value is 5.623 and the average empirical values when assigning one treatment
are 4.243, 3.282, 3.782, and 3.281 respectively.

AD AD_e AD_s AD_e, s SABD SABD_e SABD_s SABD_e, s
n p Original

20 3.979 4.033 4.058 4.052 4.192 4.132 4.381 4.366
(0.55) (0.53) (0.57) (0.58) (0.58) (0.61) (0.58) (0.65)

200 40 3.890 3.876 3.920 3.913 3.984 3.936 4.184 4.168
(0.55) (0.54) (0.57) (0.59) (0.65) (0.61) (0.63) (0.65)

60 3.939 3.931 3.991 3.970 4.018 3.938 4.241 4.137
(0.57) (0.56) (0.58) (0.59) (0.60) (0.59) (0.63) (0.70)

20 4.134 4.198 4.202 4.282 4.995 4.980 5.009 5.127
(0.60) (0.64) (0.64) (0.62) (0.49) (0.52) (0.46) (0.48)

600 40 4.032 4.066 4.111 4.183 4.761 4.774 4.951 5.056
(0.64) (0.64) (0.68) (0.66) (0.57) (0.60) (0.48) (0.49)

60 3.989 4.021 4.029 4.042 4.667 4.685 4.885 4.964
(0.64) (0.62) (0.66) (0.67) (0.61) (0.62) (0.49) (0.60)

20 4.117 4.130 4.152 4.218 5.138 5.168 5.083 5.191
(0.66) (0.67) (0.68) (0.71) (0.43) (0.44) (0.46) (0.42)

1000 40 4.047 4.061 4.093 4.188 5.075 5.078 5.070 5.188
(0.62) (0.64) (0.66) (0.71) (0.49) (0.51) (0.48) (0.43)

60 4.103 4.190 4.154 4.232 5.144 5.152 5.155 5.237
(0.64) (0.67) (0.65) (0.69) (0.45) (0.49) (0.43) (0.48)

Augmented
20 4.203 4.247 4.225 4.333 4.733 4.648 4.923 5.016

(0.58) (0.58) (0.60) (0.61) (0.58) (0.66) (0.52) (0.55)
200 40 3.962 3.962 4.010 4.029 4.332 4.288 4.745 4.700

(0.60) (0.62) (0.61) (0.65) (0.64) (0.64) (0.54) (0.59)
60 4.011 3.987 4.050 4.095 4.350 4.318 4.707 4.643

(0.64) (0.61) (0.67) (0.64) (0.61) (0.55) (0.56) (0.63)
20 4.245 4.293 4.291 4.425 5.307 5.302 5.364 5.375

(0.63) (0.68) (0.65) (0.68) (0.38) (0.39) (0.36) (0.39)
600 40 4.199 4.262 4.227 4.328 5.202 5.160 5.320 5.334

(0.69) (0.67) (0.71) (0.73) (0.42) (0.39) (0.37) (0.36)
60 4.073 4.084 4.140 4.166 5.175 5.161 5.313 5.327

(0.71) (0.71) (0.74) (0.74) (0.41) (0.39) (0.34) (0.35)
20 4.147 4.199 4.175 4.331 5.356 5.355 5.372 5.393

(0.71) (0.70) (0.72) (0.75) (0.39) (0.41) (0.42) (0.42)
1000 40 4.124 4.141 4.168 4.214 5.331 5.310 5.369 5.371

(0.69) (0.71) (0.72) (0.77) (0.38) (0.40) (0.38) (0.40)
60 4.183 4.264 4.213 4.298 5.377 5.362 5.418 5.433

(0.69) (0.69) (0.73) (0.71) (0.40) (0.41) (0.40) (0.40)
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Table 14: Average empirical values and their standard deviations (in parenthesis) in the observational
study in Case 1: Linear interaction functions with simple treatment-free effect functions. The optimal
empirical value is 4.263 and the average empirical values when assigning one treatment are 1.503,
2.003, 2.502, and 2.001, respectively.

AD AD_e AD_s AD_e, s SABD SABD_e SABD_s SABD_e, s
n p Original

20 3.511 3.621 3.581 3.790 3.553 3.730 3.566 3.879
(0.41) (0.46) (0.36) (0.36) (0.29) (0.33) (0.32) (0.30)

200 40 3.258 3.223 3.415 3.558 3.430 3.450 3.503 3.704
(0.51) (0.62) (0.43) (0.51) (0.30) (0.50) (0.29) (0.38)

60 3.289 3.210 3.382 3.412 3.304 3.396 3.391 3.564
(0.47) (0.58) (0.38) (0.53) (0.44) (0.51) (0.38) (0.47)

20 3.992 4.079 4.009 4.165 3.881 4.143 3.851 4.188
(0.13) (0.11) (0.12) (0.09) (0.15) (0.07) (0.14) (0.08)

600 40 3.970 4.027 3.982 4.135 3.888 4.115 3.874 4.182
(0.15) (0.23) (0.14) (0.12) (0.17) (0.12) (0.15) (0.08)

60 3.942 4.037 3.918 4.094 3.848 4.079 3.826 4.147
(0.16) (0.12) (0.15) (0.13) (0.18) (0.11) (0.16) (0.08)

20 4.086 4.166 4.094 4.211 3.942 4.200 3.893 4.224
(0.09) (0.08) (0.09) (0.07) (0.12) (0.05) (0.12) (0.06)

1000 40 4.073 4.150 4.061 4.205 3.931 4.183 3.892 4.219
(0.11) (0.08) (0.11) (0.07) (0.12) (0.06) (0.12) (0.06)

60 4.069 4.150 4.050 4.190 3.941 4.177 3.900 4.212
(0.10) (0.07) (0.10) (0.11) (0.14) (0.06) (0.13) (0.07)

Augmented
20 3.913 3.922 3.894 3.970 3.964 3.969 3.923 3.993

(0.17) (0.18) (0.18) (0.17) (0.16) (0.17) (0.20) (0.18)
200 40 3.828 3.827 3.824 3.879 3.877 3.874 3.869 3.927

(0.22) (0.23) (0.21) (0.25) (0.17) (0.20) (0.21) (0.21)
60 3.806 3.739 3.737 3.789 3.847 3.817 3.793 3.831

(0.22) (0.35) (0.27) (0.24) (0.20) (0.24) (0.31) (0.31)
20 4.169 4.188 4.168 4.210 4.172 4.207 4.165 4.222

(0.06) (0.05) (0.06) (0.06) (0.06) (0.05) (0.06) (0.05)
600 40 4.158 4.169 4.156 4.200 4.162 4.201 4.162 4.224

(0.07) (0.06) (0.07) (0.06) (0.06) (0.05) (0.06) (0.06)
60 4.144 4.153 4.135 4.175 4.154 4.186 4.146 4.201

(0.08) (0.08) (0.07) (0.08) (0.07) (0.06) (0.07) (0.07)
20 4.208 4.223 4.207 4.239 4.197 4.235 4.191 4.242

(0.05) (0.05) (0.05) (0.05) (0.05) (0.04) (0.05) (0.04)
1000 40 4.205 4.215 4.201 4.232 4.196 4.228 4.188 4.238

(0.06) (0.05) (0.06) (0.05) (0.06) (0.05) (0.06) (0.05)
60 4.204 4.214 4.198 4.230 4.194 4.232 4.187 4.240

(0.05) (0.05) (0.05) (0.05) (0.05) (0.04) (0.06) (0.04)
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Table 15: Average empirical values and their standard deviations (in parenthesis) in the observational
study in Case 2: Linear interaction functions with complicated treatment-free effect functions. The
optimal empirical value is 9.433 and the average empirical values when assigning one treatment are
6.672, 7.173, 7.672, and 7.171, respectively.

AD AD_e AD_s AD_e, s SABD SABD_e SABD_s SABD_e, s
n p Original

20 7.592 7.598 7.608 7.696 7.561 7.736 7.715 7.927
(0.73) (0.74) (0.75) (0.78) (0.67) (0.80) (0.72) (0.87)

200 40 7.462 7.452 7.540 7.554 7.462 7.497 7.647 7.671
(0.60) (0.66) (0.67) (0.67) (0.64) (0.58) (0.68) (0.69)

60 7.503 7.531 7.568 7.538 7.380 7.612 7.645 7.815
(0.58) (0.61) (0.58) (0.65) (0.68) (0.66) (0.63) (0.76)

20 7.798 7.824 7.840 7.970 8.147 8.948 8.197 9.024
(0.70) (0.79) (0.72) (0.84) (0.46) (0.58) (0.45) (0.61)

600 40 7.732 7.778 7.787 7.841 7.954 8.610 8.142 8.923
(0.70) (0.79) (0.75) (0.77) (0.54) (0.74) (0.47) (0.58)

60 7.615 7.599 7.625 7.666 7.953 8.413 8.125 8.875
(0.66) (0.71) (0.68) (0.73) (0.59) (0.85) (0.50) (0.70)

20 7.712 7.833 7.731 7.823 8.191 9.122 8.166 9.084
(0.77) (0.81) (0.79) (0.87) (0.47) (0.59) (0.48) (0.60)

1000 40 7.748 7.787 7.797 7.958 8.163 9.047 8.206 9.180
(0.75) (0.81) (0.74) (0.83) (0.42) (0.51) (0.43) (0.43)

60 7.873 7.967 7.931 8.113 8.151 9.143 8.248 9.211
(0.72) (0.84) (0.74) (0.88) (0.49) (0.55) (0.47) (0.51)

Augmented
20 7.770 7.887 7.838 8.042 8.667 8.711 8.859 8.936

(0.79) (0.81) (0.82) (0.90) (0.68) (0.67) (0.58) (0.58)
200 40 7.621 7.713 7.680 7.854 8.240 8.308 8.703 8.802

(0.78) (0.77) (0.81) (0.88) (0.79) (0.78) (0.65) (0.68)
60 7.585 7.693 7.629 7.812 8.169 8.146 8.647 8.680

(0.65) (0.69) (0.65) (0.72) (0.68) (0.66) (0.65) (0.65)
20 7.920 8.102 7.956 8.263 9.315 9.340 9.343 9.380

(0.81) (0.84) (0.85) (0.91) (0.35) (0.34) (0.34) (0.33)
600 40 7.792 7.962 7.867 8.103 9.194 9.211 9.311 9.342

(0.80) (0.85) (0.80) (0.86) (0.45) (0.41) (0.34) (0.34)
60 7.630 7.743 7.676 7.845 9.153 9.159 9.277 9.308

(0.68) (0.74) (0.74) (0.84) (0.43) (0.45) (0.34) (0.34)
20 7.756 7.949 7.781 8.043 9.318 9.341 9.347 9.371

(0.87) (0.91) (0.89) (0.92) (0.46) (0.41) (0.41) (0.41)
1000 40 7.847 7.997 7.885 8.034 9.292 9.318 9.342 9.359

(0.87) (0.85) (0.89) (0.87) (0.41) (0.38) (0.39) (0.38)
60 7.948 8.076 8.006 8.246 9.343 9.346 9.373 9.393

(0.80) (0.85) (0.84) (0.85) (0.41) (0.42) (0.40) (0.41)
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Table 16: Average empirical values and their standard deviations (in parenthesis) in the observational
study in Case 3: Non-linear interaction functions with simple treatment-free effect functions. The
optimal empirical value is 1.422 and the average empirical values when assigning one treatment are
0.042, -0.920, -0.419, and -0.920, respectively.

AD AD_e AD_s AD_e, s SABD SABD_e SABD_s SABD_e, s
n p Original

20 0.029 -0.014 0.113 0.142 0.312 0.178 0.405 0.411
(0.36) (0.42) (0.41) (0.46) (0.35) (0.49) (0.38) (0.58)

200 40 0.091 0.058 0.244 0.151 0.258 0.149 0.415 0.335
(0.33) (0.38) (0.28) (0.42) (0.40) (0.53) (0.36) (0.59)

60 0.014 0.010 0.110 0.129 0.168 0.031 0.349 0.224
(0.32) (0.32) (0.37) (0.38) (0.37) (0.45) (0.34) (0.56)

20 0.482 0.660 0.607 0.910 0.773 1.008 0.721 1.095
(0.29) (0.36) (0.27) (0.28) (0.16) (0.14) (0.15) (0.16)

600 40 0.420 0.592 0.567 0.802 0.717 0.927 0.720 1.076
(0.25) (0.28) (0.23) (0.29) (0.18) (0.18) (0.16) (0.17)

60 0.437 0.546 0.612 0.796 0.718 0.907 0.737 1.009
(0.27) (0.28) (0.22) (0.29) (0.20) (0.20) (0.15) (0.19)

20 0.662 0.883 0.772 1.077 0.832 1.072 0.744 1.132
(0.22) (0.25) (0.19) (0.17) (0.15) (0.13) (0.13) (0.14)

1000 40 0.577 0.805 0.721 1.008 0.822 1.070 0.764 1.104
(0.21) (0.22) (0.17) (0.17) (0.14) (0.12) (0.12) (0.20)

60 0.533 0.795 0.706 0.964 0.812 1.065 0.781 1.108
(0.21) (0.21) (0.16) (0.21) (0.13) (0.13) (0.12) (0.15)

Augmented
20 0.521 0.559 0.647 0.783 0.766 0.759 0.862 1.018

(0.35) (0.36) (0.30) (0.35) (0.26) (0.36) (0.19) (0.19)
200 40 0.559 0.544 0.684 0.763 0.715 0.713 0.830 0.922

(0.31) (0.38) (0.25) (0.32) (0.27) (0.30) (0.20) (0.24)
60 0.353 0.342 0.475 0.558 0.527 0.474 0.745 0.798

(0.37) (0.38) (0.35) (0.35) (0.35) (0.42) (0.24) (0.26)
20 0.987 1.071 1.025 1.146 1.118 1.188 1.069 1.246

(0.15) (0.12) (0.14) (0.10) (0.12) (0.09) (0.12) (0.07)
600 40 0.960 1.029 1.006 1.107 1.092 1.157 1.086 1.225

(0.14) (0.14) (0.12) (0.11) (0.13) (0.10) (0.13) (0.09)
60 0.980 1.030 1.019 1.094 1.106 1.149 1.107 1.198

(0.14) (0.14) (0.13) (0.14) (0.11) (0.09) (0.11) (0.10)
20 1.090 1.144 1.111 1.191 1.179 1.228 1.124 1.266

(0.10) (0.11) (0.09) (0.08) (0.10) (0.07) (0.11) (0.07)
1000 40 1.061 1.121 1.088 1.152 1.176 1.201 1.150 1.260

(0.10) (0.09) (0.09) (0.14) (0.10) (0.09) (0.10) (0.08)
60 1.046 1.122 1.072 1.159 1.151 1.212 1.133 1.257

(0.11) (0.09) (0.10) (0.08) (0.11) (0.08) (0.10) (0.07)
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Table 17: Average empirical values and their standard deviations (in parenthesis) in the observational
study in Case 4: Non-linear interaction functions with a complicated treatment-free effect function.
The optimal empirical value is 5.623 and the average empirical values when assigning one treatment
are 4.243, 3.282, 3.782, and 3.281, respectively.

AD AD_e AD_s AD_e, s SABD SABD_e SABD_s SABD_e, s
n p Original

20 4.034 3.954 4.062 4.006 4.309 4.048 4.381 4.316
(0.54) (0.59) (0.56) (0.57) (0.55) (0.70) (0.53) (0.71)

200 40 3.978 3.883 4.001 3.908 4.219 4.023 4.372 4.184
(0.58) (0.62) (0.59) (0.62) (0.52) (0.64) (0.51) (0.72)

60 4.019 3.926 4.038 3.879 4.198 4.007 4.287 4.056
(0.50) (0.53) (0.52) (0.53) (0.50) (0.59) (0.54) (0.65)

20 4.163 4.103 4.191 4.215 4.723 4.992 4.745 5.132
(0.53) (0.61) (0.56) (0.69) (0.35) (0.48) (0.37) (0.45)

600 40 4.096 4.060 4.131 4.132 4.606 4.785 4.703 5.020
(0.58) (0.60) (0.62) (0.69) (0.41) (0.54) (0.41) (0.48)

60 4.048 3.980 4.074 4.051 4.619 4.699 4.707 5.042
(0.58) (0.64) (0.60) (0.69) (0.39) (0.62) (0.38) (0.48)

20 4.047 4.086 4.071 4.089 4.762 5.150 4.764 5.180
(0.63) (0.68) (0.63) (0.69) (0.41) (0.48) (0.41) (0.47)

1000 40 4.130 4.103 4.186 4.158 4.727 5.091 4.743 5.236
(0.62) (0.70) (0.66) (0.77) (0.38) (0.44) (0.38) (0.44)

60 4.093 4.029 4.128 4.168 4.742 5.117 4.792 5.239
(0.62) (0.66) (0.64) (0.71) (0.42) (0.47) (0.40) (0.44)

Augmented
20 4.146 4.125 4.193 4.337 4.645 4.576 4.859 4.973

(0.59) (0.68) (0.62) (0.72) (0.60) (0.69) (0.50) (0.51)
200 40 3.975 4.014 4.003 4.099 4.441 4.344 4.795 4.765

(0.66) (0.68) (0.67) (0.69) (0.56) (0.64) (0.49) (0.56)
60 3.976 3.957 4.019 4.056 4.276 4.160 4.657 4.577

(0.57) (0.58) (0.60) (0.64) (0.58) (0.59) (0.55) (0.65)
20 4.188 4.267 4.231 4.380 5.266 5.291 5.293 5.396

(0.63) (0.64) (0.64) (0.69) (0.37) (0.36) (0.36) (0.35)
600 40 4.141 4.216 4.212 4.331 5.147 5.106 5.298 5.350

(0.70) (0.70) (0.74) (0.76) (0.47) (0.49) (0.37) (0.33)
60 4.061 4.063 4.124 4.186 5.135 5.124 5.297 5.333

(0.66) (0.71) (0.69) (0.73) (0.47) (0.48) (0.37) (0.37)
20 4.043 4.154 4.072 4.207 5.341 5.346 5.346 5.405

(0.69) (0.74) (0.72) (0.76) (0.46) (0.47) (0.41) (0.42)
1000 40 4.149 4.198 4.204 4.302 5.307 5.310 5.352 5.384

(0.71) (0.72) (0.71) (0.74) (0.40) (0.38) (0.39) (0.37)
60 4.086 4.131 4.111 4.290 5.349 5.371 5.388 5.433

(0.66) (0.71) (0.68) (0.72) (0.41) (0.41) (0.40) (0.41)

45



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our paper discusses the limitations of the work in the section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide the full set of assumptions in the main text and complete proof in
the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper fully discloses all the information needed to reproduce all simulation
results and data applications of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the code, with sufficient instructions to faithfully
reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details including data splits, hyperparame-
ters, how they were chosen, and type of optimizer for the benchmark.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the means and standard deviations with 100 (10) iterations in our
simulation studies (applications), respectively.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of our work in the section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers and include the URL for the webpage.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce our proposed with sufficient details in the paper. The documenta-
tion is provided alongside our code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We used open-source datasets and our paper does not involve crowdsourcing
nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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