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ABSTRACT

Powered by an enormous amount of paired data from the vision and language
domains, Vision-Language (V&L) Multi-Modality (MM) research has achieved
remarkable results in both text-driven generation and understanding. However,
constrained by the data, the learned MM knowledge space predominantly rep-
resents the alignments between text and appearances or shapes, lacking further
understanding of the underlying dynamics. In this paper, we aim to expand the
Multi-Modality (MM) knowledge space by bridging the gap between text, vision,
and real-world physical dynamics from a data-centric perspective, enabling MM
models to better estimate these dynamics. We propose an automatic pipeline to gen-
erate Text-to-Video/Simulation (T2V/S) data. Each generated scenario comprises
a high-resolution 3D physical simulation and a textual description of the physical
phenomena. To simulate a diverse set of real-world dynamic phenomena—such as
elastic deformations, material fractures, collisions, and turbulence—as faithfully
as possible, we take advantage of state-of-the-art physical simulation methods:
(i) Incremental Potential Contact (IPC) and (ii) Material Point Method (MPM).
Additionally, high-quality, multi-view rendering is integrated into the pipeline. We
envision our work as the first step towards fully automatic Text-to-Simulation (T2S),
potentially shifting the paradigm towards understanding world dynamics.

1 INTRODUCTION

In the past few years, we have witnessed the blooming of the Vision-Language (V&L) Multi-
Modality (MM) community in solving diverse tasks|Lu et al.| (2019)); |Li et al.| (2019); |Chen et al.
(2020); Ramesh et al.| (2021); Radford et al.| (2021); Zhang et al.| (2021); |Alayrac et al.| (2022);
Gao et al| (2022); Kamath et al.| (2021); Ramesh et al.| (2022)). Particularly, V&L models have
achieved remarkable performances on various conventional V&L tasks thanks to the availability of
an enormous amount of V&L data|Schuhmann et al.| (2022) and the rapidly developing Large-scale
Language Model (LLM) Vaswani et al.[(2017); Devlin et al.| (2018)); Radford et al.| (2019)); Brown
et al.| (2020). On the other hand, MM V&L generative tasks are unprecedentedly popular thanks to
the advances in Vision-Language (V&L) domain. Text-to-Image (T2I) generation |Ho et al.| (2020);
Ramesh et al.|(2021)); Rombach et al.| (2022); Saharia et al.|(2022); Chang et al.|(2023) can already
produce commercial quality images from free-form text, and meanwhile, Text-to-Video (T2V)|Singer
et al.|(2022); Ho et al.| (2022); [Khachatryan et al.| (2023)) and Text-to-3D (T2-3D) Jain et al.| (2022);
Poole et al.|(2022)); Jun & Nichol|(2023a) are also gaining more attentions.

There are three key factors that jointly contribute to the success of the recent Vision-Language (V&L)
research: (i) self-supervised learning techniques and self-attention/cross-attention deep learning
architectures are fully explored [Vaswani et al.| (2017); Devlin et al.|(2018); Radford et al.| (2019);
Lewis et al.| (2019); Brown et al.| (2020); (i) Vision-Language (V&L) generative models such as
Denoising Diffusion Models (DDM) and Vector-Quantized (VQ) transformer decoder, are well
studied (Goodfellow et al.|(2020); Zhu et al.|(2017); Ho et al.|(2020); Rombach et al.| (2022)); \(Chang
et al| (20225 2023); (iii) Most importantly, a large volume of paired V&L data, e.g. Lin et al.
(2014); |Ordonez et al.| (2011); [Sharma et al.| (2018)); Changpinyo et al.| (2021)); |Schuhmann et al.
(2022)), are available on the Internet, enabling (i) and (ii) to capture the alignments between visual
appearance/shape and language tokens’ representations.
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However, things are not as rosy as they seem. First, as shown in [Figure I(a), current MM V&L
paradigm only models the alignments between visual characteristics and corresponding text descrip-
tions. Visual information, such as appearances and shapes, is a projection of the world dynamics
to the perception space (see [Figure T[b)). This projection loses a lot of physical information, and
the learned V&L representation may not reflect the real world dynamics correctly. It will lead to
distortions in both generation and understanding. For instance, the generated video may not be
physically realistic. Second, from a statistical perspective, although there is a significant amount of
V&L data, it is still far away from fully covering the entire data distribution. In other words, the
learned V&L representation cannot cover wide enough real-world phenomena in the spectrum. It
will lead to the lack of generalizability and compositionality in text-driven V&L generation. Third,
video-text paired data is more domain-specific comparing to image-text paired data. In fact, T2V
training oftentimes mixes T2I data. Lastly, the quality of publicly accessible V&L data is varied. A
large portion of the data is not usable. Meanwhile, the cost of high quality labeling is too expensive.

As illustrated in our solution is to expand the current V&L MM knowledge space to
physics-based MM space where models can directly learn the alignments across text, perception,
and physics. In this knowledge space, a Multi-Modality (MM) model can better estimate the world
dynamics. In this paper, we propose an automatic data generation pipeline to be the first towards this
goal. In each run, our proposed pipeline generates a high-resolution, physically realistic animation
with descriptive texts. To cover a wide enough range of physical phenomena, we take the advantages
of (i) Incremental Potential Contact (IPC)Li et al.|(2020), a robust solid simulation framework that
can accurately resolve the intricate contact dynamics for both rigid and deformable objects with
guaranteed intersection-free results; (ii) Material Point Method (MPM)Stomakhin et al.| (2013));[Sulsky
(1995), a multi-physics simulation framework that is capable of simulating versatile solids,
fluids, granular materials, and multi-physics phenomena. Our pipeline covers various real-world
dynamics, such as deformations, fractures, collisions, turbulence, efc. With commercial-level
rendering tools, we also produce high-resolution multi-view videos. To summarize, our automatic
data generation pipeline has two major contributions:

* It generates high-quality physically-realistic 3D animations along with sentences describing
the physical phenomena, including a wide spectrum of commonly seen real-world dynamics.

» With the generated data, we can expand the current vision-language multi-modal knowledge
space to physics-based multi-modal knowledge space. It could help us to better estimate the
real-world dynamics behind the scene.

2 RELATED WORK

Text-to-Image and Text-to-Video Generation [Reed et al|(2016) is recognized as the pioneer
in Text-to-Image (T2I) which extends Generative Adversarial Network (GAN) |Goodfellow et al.|

(2020) to multi-modal generation. Similarly, Zhang et al.| (2017); [ Xu et al.[| (2018)) apply GAN

variants and further enhance the quality of the generated images with improved image-text alignments.
Other works, such as DALL-E [Ramesh et al.| (2021)), formulate the T2I problem as a sequence-to-
sequence transfer, and incorporate both Transformer and VQVAE for solutions. Some follow-up




studies show that the results could be further improved by replacing DALL-E components with
other vision language modules, such as the CLIP latent space in DALLE2 Ramesh et al.| (2022).
Moreover, the recent success of Denoising Diffusion Models (DDM) Ho et al.| (2020); Rombach
et al.| (2022) also improves the generation quality with cascading up-sampling diffusion decoder.
In Text-to-Video (T2V), most previous works [Pan et al.| (2017); [Li et al.| (2018)) produce relatively
low-resolution videos in simplified domains. Latest research|Wu et al.[(2021); [Hong et al.| (2022b);
Singer et al.[(2022); Ho et al.|(2022)); Khachatryan et al.|(2023) extends the T2I framework to T2V
by improving modules in diffusion-based T2I framework, adding additional attention modules, and
making use of both image-text and video-text data.

Text-to-3D, Text-to-Animation Generation and 3D-Text Retrieval As extensions of T2I, Dream-
Fusion [Poole et al.| (2022) and Michel et al.|(2022)) synthesize 3D meshes from texts. Moreover,
DreamField Jain et al.|(2022) generates radiance field with NeRF. Latest work such as Shap-E Jun
& Nichol| (2023b) predicts latent parameters for 3D texture and radiance field. |(Chen et al.| (2022)
uses texts to control lighting conditions in rendering. Besides, several works use CLIP to enable
text-to-3D representations. For example, Khalid et al.| (2022) generates mesh and texture in CLIP
space; Wang et al.| (2022) incorporates CLIP with NeRF, enabling simple text-editable 3D object
manipulation; [Tevet et al.| (2022) generates human motion from text. [Hong et al.| (2022a) further
applies text-to-3D generation to Avatar.

Vision-Language Datasets Microsoft COCOLin et al.|(2014), Google Conceptual Captions|Sharma
et al.| (2018)); (Changpinyo et al.|(2021)), WIT |Srinivasan et al.[(2021)), and VisualGenome Krishna
et al.| (2017) etc. are most popular fine-labeled image-based V&L datasets. CLEVRJohnson et al.
(2017) is one of the iconic synthetic V&L datasets. Besides, billions of image-text pairs have been
collected from the internet, such as SBU and LAION 5B |Ordonez et al.| (2011)); Schuhmann et al.
(2022)). These image-text pair datasets significantly contribute to the success of recent T2I generative
models. On the other hand, however, there are less video-text data available, especially fine-annotated
video-text datasets. Existing work includes HowTo100M Miech et al.|(2019), which mainly focuses
on instructional descriptions, and WebViD [Bain et al.| (2021)), which contains high-quality daily
activity video clips. Additionally, MSRVTT |Xu et al.[(2016), MSVD [Chen & Dolan| (201 1), DiDeMo
Hendricks et al.|(2018)), and ActivityNet/Caba Heilbron et al.|(2015) are commonly used, especially
for video-language pre-training. Most of them only contain daily human activity without physical
world dynamics.

Vision-based Physical Reasoning Benchmark There is a stream work focuses on vision-based
physical reasoning. Although physics are involved into the visual reasoning formulation, they are
fundamentally different from our work. CLVERER |Yi et al.|(2019) and CRAFT |Ates et al.|(2020)
focus on causal relation of rigid-body interaction with simple object primitives. PHYRE Bakhtin
et al. (2019) involves more collision-rich and diverse scenes, making the physical reasoning space
closer to reality. Our work uses much more advanced physical simulators and includes a much wider
range of phenomena. And it is not limited by a simple set of primitive. In fact, we can leverage a
much wider range of 3D shapes, making it much more realistic.

3 AUTOMATIC TPA GENERATION

As demonstrated in our work employs an attributed stochastic grammar to represent the
unified knowledge scenario space that can be instantiated to concrete representations in any modality.
Specifically, this tree-structured representation uses nodes to represent the object-of-interests, and
environmental and rendering setups, with different collections of attributes attached to each node to
represent corresponding properties, as explained in The dynamic behaviors of multiple objects
are characterized using dynamic models (§3.2)) that constrain object velocity properties, as well as
multi-object motion and positional relationships. By utilizing constrained sampling, we can obtain a
parse tree that represents the initial states and motion characteristics of a concrete scenario, which
can then be translated into a physical simulation, rendered videos, and descriptive captions.

The procedure of parse tree sampling is summarized below and elaborated in First, the parse
tree structure is sampled from the stochastic grammar to decide the content of a scenario. This process
will determine the number of simulated objects and collision objects, as well as environmental and
rendering setups. Following that, node-related attributes in each hierarchical level will be determined.
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Figure 2: Attributed Scene Grammar that defines the unified knowledge scenario space and its
instantiation to 3D-physics and 2D-vision domain.

Afterward, a dynamic model is chosen at random based on the number of objects in the scene, and
relation and motion constraints are applied to the attributes of selected objects accordingly.

After settling all attributes and the sampling process finished, we dump this data instance to a JSON
file and import it to the IPC or MPM simulator based on the user’s choice. IPC can be used to
simulate elastic or rigid objects with an accurate friction handler, whereas MPM is adept at handling
a variety of materials, including elastic, plastic solids, granular materials, and fluids. The simulator
will produce 3D scene representations at multiple discretized time steps. With these data, we can
further generate photorealistic videos using an automatic rendering algorithm based on the rendering
configurations in the parse tree. More details of the process are introduced in §3.4]

In addition, a stochastic language grammar is constructed from the scenario representation, concur-
rently with the simulation process (§3.3)). A collection of sentences that characterize the animation
using randomly selected descriptors is produced as described in §3.6] These sentences are subse-
quently rewritten using ChatGPT interfaces. In the subsequent subsections, additional modeling and
sampling details are introduced.

3.1 ATTRIBUTED SCENE GRAMMAR

As previously introduced, we use an attributed stochastic grammar to represent the scenario domain.
Specifically, the stochastic grammar is a hierarchical tree composed of the following node types:
Scene, Target Object Set,Collision Object Set, Environment, Render, and
Object. Here, a Scene node is the root node containing three nodes, Target Object Set,
Environment, and Render. Furthermore, Target Object SetandCollision Object
Set are non-terminal set nodes that can contain an arbitrary number of non-terminal set nodes of the
same type or a random number of Ob ject nodes that are leaf nodes of the grammar. Environment
nodes are also non-terminal that contain Collision Object Set nodes. Each node, according
to its categorization, has a particular set of attributes.

Object Nodes. Object nodes belonging to the same set may have special semantic relationships,
while Ob jects in a specified Collision Object Set may constrain the motion and position
of Objectsina given Target Object Set. Moreover, each Object node contains multiple
categories of attributes, including object-render, shape, motion, and physics. The
attributes are used to specify the corresponding characteristics of the object. Each of them contains
several concrete dependent or independent features that can be directly mapped to a semantic label
and a range of quantitative values. For example, physics attribute consists of three independent
features (material type, friction coefficient, and material density) and two dependent features (Young’s
Modulus and Poisson Ratio). The values of the dependent features rely on the sampling results of
both the other independent features and their own label. In the physics, Young’s Modulus, for
instance, determines the material’s resistance to elastic deformation under loads and is therefore
dependent on both material types (whether the object is fluids, granular, soft, or rigid solids) and the
sampling results of its own label (whether the object is relatively softer or harder).



Environment Nodes. Environment contains aftributes to control general scenario configu-
rations such as boundaries, external forces, and temporal discretizations. The boundary attribute
has a BC features for controlling boundary shape, type, and friction settings, a Force feature for
determining the external force, and a Time feature for specifying temporal step size and the total
number of frames.

Render Nodes. Expect the object-render attribute attached to each Ob ject to depict the
object color and reflective properties, there are additional rendering setups that can reflect the
human’s visual imagination of a given scenario. We use a terminal node, Render, to specify those
configurations, such as background light, textures, and the position of the camera. All of these setups
are, as before, supported by attributes with detailed features.

3.2 DYNAMIC MODEL

We propose dynamic models to characterize and constrain object motions and relationships in addition
to the tree-structure grammar. Each dynamic model can be mapped to a verb that semantically
describes the velocity feature and interactions between subjective and objective objects. It may
also include directional descriptors such as from and to to further guide the objects’ moving
characteristics and initial position properties.

Currently, our data generative model supports the following dynamic models: JUMP, DROP, THROW,
PUSH and STRIKE. The first three models, which are referred to by intransitive verbs, are capable
of influencing the behavior of one or two objects. If a single object is sampled, these models will
either constrain the initial position of the object to be on the ground or in the air by confining the
corresponding position feature in the mot ion attribute. In addition, they will assist the object in
choosing an appropriate velocity scale and movement direction. If two Objects are sampled in
the corresponding set nodes, however, a directional descriptor will be sampled to customize the
relationship between these two objects. One of them is selected at random to serve as the subjective
object, while the remainder severs as the objective. Their relationship will be constrained by the
selected directional descriptor. From, for instance, indicates that the initial position of the subjective
object is close to the objective object and that it is moving in the opposite direction; whereas t o means
that the subjective object starts from a relatively distant location and moves toward the objective.

The PUSH and STRIKE models are slightly distinct due to the transitive nature of these verbs. This
suggests that they inherently associate an objective object with the subject described. The semantic
meaning of the verbs also constrains the initial positions and motion directions of the involved objects.
If directional descriptors are also sampled within the transitive dynamic models, an extra object
will be introduced with additional constraints. As a case study, we can sample a model that reads
“sub PUSH obj_I to obj_2”. This can be interpreted as the sub moving toward obj_1I with velocities
pointing to obj_2 and trying to push obj_I in the direction of 0bj_2.

In practice, our model can be expanded by integrating additional dynamic models with minimal
design and implementation effort. In human languages, all verb semantics are subjectively defined,
necessitating the manual design of object relations and feature constraints. As we offer a variety
of constraint/relation/feature-related abstract interfaces for defining, validating, and applying each
user-defined constraint, it is straightforward to convert the design of a constraint set into a dynamic
model class in our codebase.

3.3 SCENARIO SAMPLE PROCESS

In order to instantiate a concrete scenario from the stochastic grammar, we need to sample 1) a parse
tree structure that defines the content and characteristics of a scene, 2) the concrete qualitative labels
and quantitative values of features in corresponding attributes, 3) a dynamic model with a specified
verb and optional directional descriptor that constrains the dynamic behavior of several objects. This
section examines these three phases in detail.

Sample Parse Tree Structure. The structure sampling procedure begins at the root node and
progresses downward until it reaches the terminal nodes. Different nodes are sampled according
to their individual categories in order to specify which children nodes are essential and which are
optional. Set nodes, for instance, can sample any number of children nodes within a permitted
children number range. In contrast, an Environment node must contain at least one Collision
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Object Set node. Following this phase, the total number of object-of-interest and collision objects
will be determined. This information will further narrow our selection of dynamic models.

Sample Features. As specified in each node in the parse tree comprises a number of attributes.
Additionally, an attribute contains multiple features to determine particular semantic properties. In
this stage, the goal is to first sample a qualitative label for each feature, then sample the corresponding
absolute values that define certain physical or visual properties.

To attain this objective, we begin by randomly selecting feature labels in each tree hierarchy using in
a top-down sampling manner. The independent features are sampled from the candidate pool, while
the dependent fearures are sampled subsequently to ensure semantic consistency in describing the
scenario. Following the selection of all feature labels, concrete feature values are sampled from the
predefined quantitative ranges of each label.

Top-down sampling provides only an initial selection of features; the final labels and values are
further determined by the choice of dynamic models (next paragraph). With the selected model, all
concerned features will undergo a bottom-up refinement. We first evaluate whether the values of
specified features satisfy the dynamic model’s constraints. If not, the out-of-range projection of the
values will be removed in order to enforce the constraints. Once all constraints are met, we reselect
the feature labels based on the modified values.

Sample Dynamic Models. As indicated in §3.2] diverse dynamic models are capable of guiding a
variety of object counts. In this step, the choice of the dynamic model is based on the total number
of objects (including object-of-interests and collision objects). The total number of objects must be
sufficient to accommodate the motion and relationship depicted by the current model. Afterward, we
randomly select objects from the parse tree to serve as the subjective or objective(s) of the respective
motion. Note that the subject can only refer to the object-of-interest, whereas the objective can be of
any types. If additional free objects or collision items remain, they will be regarded as noise unrelated
to the current scenario data point and will not be included in the language model (§3.3).

3.4 SIMULATION AND RENDERING

After determining the scene parse tree structure with appropriate feature labels and values, the data
point is transferred into a JSON format. This output JSON file is then sent to an Incremental Potential
Contact (IPC) [Li et al.| (2020) or an Material Point Method (MPM) |Qiu et al .| (2022) simulator based
on the sampled object materials or the user’s preferences. According to the JSON, physical simulators
initially load object shapes (§4) and assign both object- and environment-related parameters from
corresponding feature values. Then, the object motion and material behaviors such as deformation
and fractures are simulated until the maximum frame number is reached.

A renderer then collects the 3D output results at various time steps to generate high-fidelity rendering
results. In addition, rendering configurations such as background texture, object colors, reflective
materials, background light, and camera position are also loaded from the sampled JSON file.



Blender Blender| (2018)), which is open-sourced and supports fully Python-scriptable rendering
operations, is used to accomplish automatic rendering.

In addition to the technologies employed by the proposed pipeline, other publicly available simu-
lators (e.g., NVIDIA’s FleX Macklin et al|(2014)) and rendering engines can also be utilized with
corresponding JSON file parser.

3.5 LANGUAGE GENERATION MODEL

On the basis of the sampled scenario parse tree, a hierarchical tree-structured language model
is constructed (Figure 3). In this model, the root node, which represents a senfence structure,
is decomposable into multiple sub-sentence nodes. Each sub-sentence consists of three nodes
representing typical linguistic components: a prepositional node, a noun phrase node, and a verb
phrase node. In this case, the prepositional node collects feature labels associated with environmental
and rendering configurations in the parse tree, thereby describing the global scenario characteristics.
If the noun phrase node is placed under the root node, it is considered the subjective object in the
scene; otherwise, if belonging to a verb phrase, it is regarded as the objective object. Detail-wise,
a noun phrase contains a noun and its descriptors which are summarized from the corresponding
Object node. And verb phrase, on the other hand, has a verb with dynamic descriptors and multiple
noun phrase children nodes performing the objective roles.

When constructing the language model, we begin by examining the type of dynamic model and
mapping it to a verb in the verb phrase; the object relationships in the dynamic model determine
which Ob ject falls to the subjective phrase and which refers to the objectives. Then, if the features
in the parse tree and dynamic model merit being stated in sentences, they are assigned to language
components. Specifically, the shape feature of an Ob ject is captured by certain noun phrases, and
the tags of the corresponding object mesh are retrieved and sampled as the noun. The other physical
and rendering features are attached as adjective descriptors to the noun phrase. Certain specialized
features, such as Young’s Modulus, are too specific to be included in common language and are
therefore neglected. Additionally, the verb phrase collects the subjective Ob ject’s velocity-related
features as auxiliaries. And finally, features associated with the Environment and Render nodes
are inserted into the prepositional node.

3.6 GENERATING RANDOM SENTENCES

In addition to the aforementioned structured language model, the next stage is to create concrete
sentences that describe the scenario. The entire sentence consists of sub-sentences joined by conjunc-
tions such as “,”, “;” or “and”. Additionally, each sub-sentence is composed of a subjective phrase, a
verb phrase, and prepositional components. To obtain each finalized sub-sentence, we break down

the problem into multiple steps, which are described in the paragraphs that follow.

Sample Sentence Structure. The components of the sub-sentences can appear in a variety of
arrangements to create diverse sentence structures. The objective of this phase is to determine this
order. We offer several common sentence structures as candidates. For example, SVOP (Subject-Verb-
Object-Preposition) is the most common English sentence structure, whereas OVS is an example of
passive voice.

Sample Components. In this step, each sentence component is sampled independently into concrete
clauses and concatenated in the order specified by the predefined sentence structure. Using the
language model constructed in §3.5] the corresponding clauses can be formed. As stated previously,
each language component node contains all the accumulated feature labels from the parse tree.
However, including all potential descriptive terms in our everyday language is unnecessary and
cumbersome. Therefore, we arbitrarily select a number of descriptors that appear either before or
after the noun/verb in corresponding phrases.

Specifically, for noun-phrases, descriptors displayed before nouns are adjectives joined by conjunc-
tions, whereas descriptors presented after nouns can be formulated as subclauses introduced by
“that” or “which”. The descriptor number can also be zero, indicating that the noun contains no
description portion. As an instance, we can sample two adjectives and three clause-descriptors from
the subjective noun phrase to construct a noun phrase clause such as “a blue and matte cube that

is small, elastic, and rough”. The phrases “blue and matte”, “cube”, and “small, elastic and rough”
denote the adjective-, noun-, and clauses-portions, respectively.
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Figure 4: Examples of generated animations.

Similar strategies are used to manage descriptors in the verb-phrase case. To enhance sentence
diversity, we sample the verb tense further when generating the verb phrase clause. The objective
object of the verb is sampled as another noun phrase. As for the prepositional portion, a random
sample of conjunction-coupled labels is selected.

Sentence Diversity. To maximize the diversity of the sampled sentences, we sample them multiple
times so that various types and quantities of object and motion descriptors are chosen. Then, ChatGPT
interfaces are called to rewrite each sentence, with suitable prompts. In this sense, both sentence
structure and word synonyms are interchangeable.

4 3D SHAPE COLLECTING AND PROCESSING

Apart from the generation procedure described in the §3] additional support is required to complete
the pipeline. That is, to collect, process, and utilize 3D shapes with noun labels indicating what the
shape represents. This section describes three methods for achieving this objective, along with their
advantages and disadvantages.

3D Object From Existing Dataset. Existing 3D object datasets, such as Thingil0KZhou &
(2016), can be used as the prospective shape pool. Preprocessing is required to meet the
input format specifications of Incremental Potential Contact (IPC) and Material Point Method (MPM).
Particularly, IPC accepts a tetrahedral geometry (4 vertices per face, .ply format) whereas MPM
accepts a 3D volumetric signed distance field (.vdb format).

Thanks to the contributions of [Zhou & Jacobson| (2016), we can readily collect a large number of
3D forms. Nevertheless, noun sampling with Thingi10K is a laborious procedure. Specifically, we
use properties like titles and tags affixed to all the shapes as the object noun vocabulary. However,
the descriptiveness and quality of these terms are less reliable (containing adjectives like “funny”,
“movable” and over-broad concepts like “3D”, or “art”).

Text-based 3D Shape Generation. Another alternative is to generate 3D shapes from text labels.
We first ask ChatGPT to generate a certain number of nouns of a specific type, and then feed these
words into a text-to-3D model to generate 3D shapes. In our experiments, we use Shap-EJun &
(2023b), while other similar generators could also be viable alternatives.

This procedure mitigates the disadvantage described in the preceding paragraph. However, new
difficulties arise. First, the majority of models for generating 3D shapes require carefully adjusted
parameters for desired results, which doesn’t fit our requirement for automatic mass production.
Therefore, the generated 3D meshes are of unreliable quality. To filter out invalid meshes that are
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Figure 5: Side-by-side comparison of generated animation and zeroshot Text-to-Video (T2V).

noisy, incomplete, or contain too many holes, we designate all generated shapes with a command-line
labeling tool.

Text-based 3D Shape Retrieval Utilizing an existing 3D shape retrieval model (e.g.
(2023)) to search and extract existing shapes from a pre-sampled noun list is an alternative solution.
The quality of the retrieved meshes is trustworthy, and the noun we employed for retrieval can serve
as the noun descriptor in our sample sentences. We are eager to incorporate this work into our pipeline
once their code has been published.

5 QUALITATIVE COMPARISON OF T2V GENERATION

We list some representative rendering results with descriptive captions in[Figure 4, More demos can
be found in the supplementary materials. Due to the absences of benchmark methods, we set up an
qualitative comparison between generated animation and zero-shot text-to-video generation results.
Although it may not be a fair comparison, it still conveys our the main idea of the proposed method.
As shown in[Figure 3] the zero-shot Text-to-Video (T2V) Khachatryan et al.| (2023) generated results
shows very limited dynamic interactions between the involved objects and the world. Oftentimes
the video shows no dynamics but simply slight viewpoint shifts. However, our generated animations
show vivid physical dynamic interaction across the scene. As mentioned in T such a difference is
cause by absences of modeling physical knowledge in the Multi-Modality (MM) knowledge space.

Why no quantitative evaluation? The reasons are two folds: (i) There are no feasible methods
or formulations that can fully leverage our data. Specifically, none of the generative model or
understanding model consider physical constraints and elasto-plastic material descriptions. (ii)
Current automatic metrics are not reliable. In computer vision, metrics such as FID, FVD and average
CLIP score are often-time used to measure the similarity between image/videos. However, none of
them take physical fidelity into consideration. As shown in|Figure 5| although similar objects appears
in both results, the physical fidelity are radically different.

6 CONCLUSION

In this study, we have introduced an innovative approach for automatically generating physics-based
animations with textual descriptions. Our method has been extensively analyzed, and we have
presented both qualitative results of our data generation method and comprehensive experiments
that highlight the importance of such physically realistic datasets to the multi-modal generation
research community. We believe that the addition of these resources could substantially contribute to
the expansion of the current vision-language multi-modal knowledge space, facilitating improved
understandings and estimations of real-world dynamics.
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