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Abstract

Transformer models have gained significant attention due to their power in ma-
chine learning tasks. Their extensive deployment has raised concerns about the
potential leakage of sensitive information during inference. However, when being
applied to Transformers, existing approaches based on secure two-party computa-
tion (2PC) bring about efficiency limitations in two folds: (1) resource-intensive
matrix multiplications in linear layers, and (2) complex non-linear activation func-
tions like GELU and Softmax. This work presents a new two-party inference
framework Nimbus for Transformer models. For the linear layer, we propose a
new 2PC paradigm along with an encoding approach to securely compute matrix
multiplications based on an outer-product insight, which achieves 2.9× ∼ 12.5×
performance improvements compared to the state-of-the-art (SOTA) protocol. For
the non-linear layer, through a new observation of utilizing the input distribution,
we propose an approach of low-degree polynomial approximation for GELU and
Softmax, which improves the performance of the SOTA polynomial approxima-
tion by 2.9× ∼ 4.0×, where the average accuracy loss of our approach is 0.08%
compared to the non-2PC inference without privacy. Compared with the SOTA
two-party inference, Nimbus improves the end-to-end performance of BERTbase
inference by 2.7× ∼ 4.7× across different network settings.

1 Introduction

Transformer models [36] bring about significant advancements in various machine learning tasks,
such as language understanding [19], vision tasks [6], and chatting bot [21]. As Transformer models
handle increasingly sensitive data and tasks, privacy becomes a major concern for deployment. For
example, one hospital (client) wants to use the model from another organization (server) to enhance
its diagnostic capabilities. This raises privacy concerns for both parties: either the hospital has to
upload its private data, or the organization needs to send its proprietary model to the hospital.

Recently, several works [14, 26, 16, 29], building upon secure two-party computation (2PC), realize
secure two-party inference in a privacy-preserving way. These works proceed by having the client and
server jointly execute inference over the “encrypted” input and model, using cryptographic techniques
including homomorphic encryption (HE) [7], additive secret sharing, etc. The client learns nothing
about the model except for inference results and keeps the server unknown for the client’s input.

Privacy protection comes with substantial computation and communication costs due to expensive
cryptographic operations. While existing secure two-party inference for convolution neural networks
could be completed in a few minutes [8, 23, 18, 2, 34, 32, 17], it is more challenging to make secure
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inference on Transformer models practical, due to heavy matrix multiplications in linear layers and
complex non-linear layers. To amortize the overhead of HE in linear layers, many works [17, 14, 26]
adopt window encoding to simulate the inner product. However, such an encoding approach brings
about a sparse format of HE ciphertexts, leading to redundant communication and computation. The
efficiency bottleneck of non-linear layers is to securely compute GELU and exponential (included in
Softmax). Prior works [5, 26] use piecewise polynomials to approximate the two non-linear functions.
However, high-degree polynomials and large fixed-point precision are used to maintain the accuracy,
which causes large communication costs and rounds.

This work proposes a new secure two-party inference framework Nimbus for Transformer models to
address the above efficiency bottlenecks. Specifically, our contributions are summarized as follows:

• We propose a Client-Side Outer Product (COP) protocol to facilitate linear layers. Our COP
protocol incorporates two key innovations. First, the static nature of model weights allows
the server to send encrypted weights to the client during the setup stage, thereby eliminating
input communication during the online stage. Second, removing input communication
enables us to design a novel row-wise encoding scheme that achieves homomorphic matrix
multiplication via the outer product. Such encoding further enhances the efficiency of homo-
morphic matrix multiplication and yields compact output ciphertexts for communication.

• For non-linear layers, we present a new observation that their input distribution exhibits
regular patterns. Unlike prior approximations that assumed a uniform input distribution,
our approach reduces the approximation budget allocated to seldom-occurring input values.
This enables us to use lower-degree polynomials and fewer pieces to approximate non-linear
functions. Additionally, low-degree polynomials demonstrate lower sensitivity to fixed-point
errors, allowing us to adopt a smaller ring for greater efficiency. We also propose a new
protocol that enables free conversion between the small and large rings. Consequently, our
approach achieves improved performance for non-linear layers while incurring only an
average accuracy loss of 0.08%.

• We evaluate the performance of Nimbus using the popular Transformer model BERTbase
under both LAN and WAN settings. Compared with the SOTA work BumbleBee [26], we
improve the performance of securely computing matrix multiplication (resp., GELU and
Softmax) by 2.9× ∼ 12.5× (resp., 2.9× ∼ 4.0×). Combining all the optimizations, we im-
prove the end-to-end performance of secure two-party inference by 2.7× ∼ 5.9× and reduce
the communication cost by 60%. The code is available at: https://github.com/secretflow/spu.

2 Background

We present the necessary background, including the threat model, cryptographic building blocks, and
secure Transformer inference.

2.1 Threat Model

Our protocol works in the two-party setting where the client C holds an input and the server S holds a
model. Our protocol is secure in the presence of a semi-honest adversary who could passively corrupt
either the client or the server, where the adversary follows the protocol specification but may try to
learn more information than allowed. Semi-honest adversary is a common assumption for privacy-
preserving machine learning and has been used in most two-party protocols [18, 34, 17, 14]. As in
all prior two-party inference protocols, the client is only allowed to learn the model’s architecture and
inference result while the server gains no information about the client’s input.

2.2 Notation

We use upper-case bold letters to represent matrices like W for model weights and X for activations.
For a matrix W, we use Wi to denote the i-th row of W and Wi,j to denote the entry in the i-th
row and j-th column of W. For an integer n, we write [n] = {0, 1, · · · , n − 1}. For an additive
secret sharing ⟨·⟩ (defined in Section 2.3), we use ⟨·⟩c (resp., ⟨·⟩s) to denote a share held by a client
(resp., a server). We denote by [[M]] the homomorphic encryption (HE) ciphertexts on matrix/vector
M where it may consist of multiple ciphertexts. We use Z2ℓ = Z ∩ [0, 2ℓ) to denote a ring with all
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entries modulo 2ℓ. For a power-of-two integer N , we use AN,2ℓ = Z2ℓ [X]/
(
XN + 1

)
to denote

a set of polynomials over a ring Z2ℓ . Besides, we use lower-case letters with a “hat” symbol such
as â to represent polynomials of degree N − 1 in AN,2ℓ , where â[j] denotes the j-th coefficient of
polynomial â. Note that a polynomial â can encode at most N elements over Z2ℓ .

2.3 Building Blocks

Our framework is built upon multi-party computation (MPC) techniques, including additive secret
sharings and homomorphic encryption (HE). The building block of oblivious transfer (OT) and the
sub-protocols used in non-linear layers can be found in Appendix B.

Additive Secret Sharings. In the two-party setting, an additive secret sharing over a ring Z2ℓ is
defined as: for a value x ∈ Z2ℓ , two random shares ⟨x⟩c ∈ Z2ℓ and ⟨x⟩s ∈ Z2ℓ are sampled uniformly
such that x = ⟨x⟩c + ⟨x⟩s mod 2ℓ, where ⟨x⟩c is held by a client and ⟨x⟩s is held by a server.

Homomorphic Encryption. We adopt the lattice-based additive HE scheme [26] (building
upon [33]). HE allows one party to perform computations on the encrypted data of the other party
without the need for the decryption key. The HE scheme encodes a plaintext vector m ∈ (Z2ℓ)

N into
a plaintext polynomial m̂ ∈ AN,2ℓ , and then m̂ is encrypted to a ciphertext [[m]] = (b̂, â) ∈ A2

N,q

where q is a ciphertext modulus. Given a ciphertext [[m]] and a circuit f including only linear
operations, one can homomorphically compute another ciphertext [[f(m)]]. We refer the reader to
Appendix B.1 for details of the HE scheme and its homomorphic operations.

Conversion between Floating-point Numbers and Ring Elements. As 2PC and HE usually operate
over rings, the floating-point numbers used in Transformers need to be converted into fixed-point
numbers in a ring. Given a scale s ∈ N (i.e., the length of the fractional part) and a ring Z2ℓ , a
floating-point number x ∈ R is converted to the approximated fixed-point number by computing
x̃ := ⌊x · 2s⌋ mod 2ℓ, and x̃ can be converted back to the approximated x by setting x̃/2s.

2.4 Secure Two-Party Transformer Inference

The details of the Transformer architecture are described in Appendix A. To securely evaluate the
model, the input and output of all layers are in the form of additive secret sharing, enabling the
arbitrary linkage of different layers despite specific protocols. This work optimizes the protocol
of the linear layers, including Linearqkv, Linearo, Linearh1 , and Linearh2 . We also optimize the
protocols for non-linear layers Softmax and GELU. The activation multiplication in the attention
and layer normalization are relatively fast following SOTA studies [28, 26]. We do not give special
optimizations and leave them as future works.

3 Secure Computation of Linear Layers

We first analyze the efficiency problems of the prior solution in Section 3.1. Then, Section 3.2
presents our client-side outer product (COP) protocol with row-wise encoding. In Section 3.3, we
optimize the memory occupation of our COP protocol.

3.1 Prior Solution: Server-side Inner Product Protocol

The starting point of this work is the protocol so-called server-side inner product (SIP) [17, 14, 26], as
shown in Figure 2(a). The inputs of the linear layer are additive secret sharings ⟨X⟩C , ⟨X⟩S ∈ Zk×m

2ℓ

held by the client and server. The server also holds the weights W ∈ Zm×n
2ℓ

.

x̂ = πL(X) : x̂[imn+ (m− 1)− j] = Xi,j , for i ∈ [k], j ∈ [m]

ŵ = πR(W) : ŵ[jm+ i] = Wi,j , for i ∈ [m], j ∈ [n]
(1)

The values of two activation shares and server weights are encoded into polynomials over AN,2ℓ

using encoding functions πL : Zk×m
2ℓ

→ AN,2ℓ and πR : Zm×n
2ℓ

→ AN,2ℓ , as shown in
Equation (1). The coefficients of the polynomials x̂ and ŵ that are not defined are set to 0.
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(a) Server-side inner product (SIP) protocol.
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(b) Client-side outer product (COP) protocol.

Figure 2: Two rows represent the client and server operations, respectively. The inefficient parts that
are accelerated are marked by dashed boundaries. The input communication is shifted as a one-time
setup, and the output ciphertexts are compact. The expensive NTT/INTT operations at the online
stage are also reduced.

𝐗 =
1 2
3 4

𝐖 =
5 7 9
6 8 10

ො𝑥 ∙ ෝ𝑤 mod (𝑥16 + 1, 25)

Matrix Multiplication over ℤ𝟐𝟓 Evaluation through window encoding

𝐙 =
17 23 29
7 21 3

ො𝑥 = 2𝑥0 + 1𝑥1 + 4𝑥6 + 3𝑥7 ∈ 𝔸16,25

ෝ𝑤 = 5𝑥0 + 6𝑥1 + 7𝑥2 + 8𝑥3 + 9𝑥4 + 10𝑥5 ∈ 𝔸16,25

Ƹ𝑧 = 10𝑥0 + 17𝑥1 + 20𝑥2 + 23𝑥3 + 26𝑥4 + 29𝑥5 + 30𝑥6 +
7𝑥7 + 14𝑥8 + 21𝑥9 + 28𝑥10 + 3𝑥11 + 30𝑥12 ∈ 𝔸16,25

X ∙ W mod 25

Figure 1: An example of the window encoding of
the matrix multiplication using N = 16 and ℓ = 5.

Some of coefficients of polynomial ẑ = x̂ · ŵ ∈
AN,2ℓ gives the result of matrix multiplication
Z = X ·W ∈ Zk×n

2ℓ
, as illustrated in Figure

1. If kmn > N , the encoding function would
use coefficients with degrees exceeding N . The
input matrices X and W need to be partitioned
into smaller windows with respective dimen-
sions kw ×mw and mw × nw, which results in
multiple windows of the output matrix Z with
dimension kw × nw. Therefore, we refer to this encoding approach as window encoding.

Then, the client encrypts her plaintext polynomials as HE ciphertexts [[⟨X⟩c]], and sends them to the
server. After receiving [[⟨X⟩c]], the server computes the HE ciphertexts [[X]] by homomorphically
adding [[⟨X⟩c]] + ⟨X⟩s. Next, the server homomorphically computes W · [[X]] −R to obtain HE
ciphertexts [[WX − R]], where R is randomly generated to mask Y = WX and keeps as the
server’s output shares ⟨Y⟩s. Finally, the server sends [[WX−R]] to the client who decrypts the HE
ciphertexts into WX−R that is used as the client’s shares ⟨Y⟩c. Note that number theoretic transform
(NTT) [30] is employed to weight plaintext polynomial and activation ciphertext polynomial so that
their multiplication complexity is reduced from O(N2) to O(N logN).

Analysis of Communication and Computation Costs. To simulate the inner product, the window
encoding produces a sparse output (e.g. the even-degree terms of ẑ in Figure 1). The sparse polyno-
mials are treated as dense after encryption, leading to inefficient communication and computation
marked by the dashed boundary in Figure 2(a). First, the computation includes unnecessary zero
terms. Second, Iron shows at least 2

√
kmn√
N

ciphertexts are transmitted [14]. Then, BumbleBee [26]
proposes a packing approach that trades computation for less communication, but the overall latency
is similar.

3.2 Client-side Outer Product Protocol

To solve the efficiency problems as described above, we propose an alternative client-side outer
product (COP) protocol. The COP protocol includes two key insights. First, the static nature of model
weights allows the server to send encrypted weights to the client at the setup stage, which can eliminate
input communication at the online stage. Second, this elimination of input communication enables us
to design a new row-wise encoding that realizes homomorphic matrix multiplication through the outer
product. Our encoding further results in compact output ciphertext for communication and enhances
the efficiency of HE matrix multiplication. The formal protocol is described in Appendix C.1.

COP Protocol. In Figure 2(b), we describe the COP protocol for secure matrix multiplication, where
the dashed boundary shows the optimizations of computation and communication over prior works.
In the setup stage, the server encodes the model weights W in a row-wise fashion and sends the HE
ciphertexts [[W]] on these weights to the client. The client stores the HE ciphertexts [[W]] in the disk,
which enables these ciphertexts to be reused for multiple queries by loading them into memory. In
the execution stage, for additive secret sharings ⟨X⟩c, ⟨X⟩s held by the client and server respectively,
the client homomorphically computes ⟨X⟩c · [[W]] to obtain HE ciphertexts [[W⟨X⟩c]], and the server
locally computes W · ⟨X⟩s in plaintext. Then, the client samples a random matrix R (used as its
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Figure 3: Illustration of our matrix multiplication. Left: Functionality of the matrix multiplication
using row-wise encoding. Middle: Computing the first row of the output through the scalar-poly
product. Right: Packing two ciphertexts using aright shift for less number of output ciphertext.

output shares ⟨Y⟩c = R where Y = WX), and homomorphically computes [[W⟨X⟩c]] − R to
obtain HE ciphertexts [[W⟨X⟩c −R]] which is sent to the server. Finally, the server decrypts these
ciphertexts to obtain W⟨X⟩c−R, and then sets its output shares as ⟨Y⟩s = W⟨X⟩c−R+W⟨X⟩s.
As a result, two parties hold additive secret sharings (⟨Y⟩c, ⟨Y⟩s). Below, we explain the key process
for computing ⟨X⟩c · [[W]] using the row-wise encoding approach.

Row-wise Encoding. Assigning the client to perform the plaintext-ciphertext multiplication has a
direct benefit in terms of saving the communication of inputs. More importantly, such saving enables
us to design a new encoding approach for the weights and activations. First, we use the following
function to encode each row of the weight matrix, i.e., Wi for i ∈ [m],

ŵi = πR(Wi) s.t. ŵi[j] = Wi,j , for j ∈ [n]. (2)

The output dimensions n of Transformers are generally less than N , so the last N − n coefficients
are set as zero, indicated by the blank squares in Figure 3. Row-wise encoding corresponds to an
extreme case of prior window encoding (i.e., setting nw = n), which may cause a large number of
ciphertexts on inputs. This problem is solved by eliminating the input communication in our COP
protocol. Second, for the activations, the client no longer encodes his share into polynomials but
directly performs multiplication between the plaintext activation shares and ciphertext on weights.

Efficient Computation and Compact Output Ciphertexts. Our encoding realizes secure matrix
multiplication through outer product, which achieves more efficient homomorphic computation and
compact HE ciphertexts on the output. We illustrate the computation of the first row of the output
matrix Z1 in Figure 3. Following the spirit of the outer product, each scalar-polynomial multiplication
produces a partial sum of Z1 and their accumulation produces the final output. The scalar-polynomial
multiplication has same complexity as the prior poly-poly multiplication in the NTT space. But
we reduce the online NTT/INTT operation, and thus reduce the computation cost. For the output
communication, if n is smaller than the polynomial degree N , the output ciphertext still leaves blank
when communicating. The row-wise encoding makes valid coefficients and zeros separate in the
output ciphertext instead of in an interleaved fashion. This enables packing the output ciphertexts
through a free operation, right shift. Right shift coefficients for s steps in a ciphertext can be done by
multiplying the ciphertext with a plaintext polynomial with only a s-order term. The right figure of
Figure 3 shows the right shift packing. The second ciphertext is shifted to the right four slots and
added with the first ciphertext. Then, all slots of the output are utilized for output communication.

Complexity Analysis. Through analysis in Appendix D, Table 1 compares the computation complex-
ity and numbers of communicated ciphertexts. Communication: Our COP protocol eliminates the
input communication, and output communication is the minimal case of prior kn

kwnw
when kwnw = N

since values are densely arranged in the output ciphertext. Computation: The SIP protocol requires
polynomial-polynomial multiplication. It applies NTT with O(N logN) complexity to the plaintext
polynomial of weights, and ciphertext polynomials of inputs and outputs. Then, the complexity of all
poly-poly multiplications in the NTT space is O(kmn). In our protocol, the NTT is only applied
when the server decrypts the output ciphertext. The client’s scalar-polynomial multiplication saves
time spent on the NTT by directly performing the multiplication with a complexity O(kmN), which
is comparable to the previous multiplication in the NTT space, especially when n is close to N .

3.3 Memory Impact of the COP Protocol

In our COP protocol, the client stores the encrypted model weights in the disk so that the ciphertexts
can be reused. At the online stage, the encrypted weights are loaded into memory for secure
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Table 1: Comparison of the computation and communication for multiplication of two matrices with
dimension k ×m and m× n. kw,mw, nw are the window size corresponding to matrix dimensions.

SIP COP

Communicated Ciphertexts Count km
kwmw

+ kn
kwnw

k/⌊N/n⌋

Server HE Computation Complexity O( mn
mwnw

N logN + kmn) O ((k/⌊N/n⌋)N logN)

Client HE Computation Complexity O
(
( km
kwmw

+ kn
kwnw

)N logN
)

O(kmN)

matrix multiplication. In this way, the client executes an efficient outer product rather than the
original encryption and decryption. The feasibility of such workload reallocation is due to the
difference between the "client" in MPC and the traditional client. Due to the symmetric-computation
characteristic of MPC as well as the expensive NTT cost brought about by homomorphic encryption
and decryption, existing secure-inference frameworks, e.g., [17, 14, 5, 26, 29, 42], require the client
to be equipped with similar resources as the server, including a powerful CPU (e.g., 64 vCPUs) and a
large memory (e.g., 128 GB) [42, 26, 29]. For clients in MPC, disk usage does not pose a significant
issue as storage resources are inexpensive. The CPU usage is also not an issue as the analysis and
experiments in Appendix F.2 indicate that the client’s computational overhead remains similar as the
prior SIP protocol. However, we notice that keeping encrypted weights instead of plaintext weights
may introduce additional overhead to memory usage, which we address in the next paragraph.

Asynchronous Weight Loading. Our COP protocol allows the weights to be encrypted at the setup
stage and stored in the client disk. Different from prior SIP protocol that keeps the model weight
shares in memory, loading all encrypted model weights in memory may become a burden since the
size of ciphertext is at least four times larger than the secret shares[26]. To reduce the additional usage
of memory, we let the client only keep the encrypted weights w.r.t. the current layer in memory (e.g.,
either 180 MB or 720 MB for Transformer model BERTbase). The encrypted weight of the subsequent
layer is loaded asynchronously with the communication of output ciphertexts of the linear layer and
the secure computation of the following non-linear layer, which involves large-size communication
and multiple rounds of interaction. Moreover, the network bandwidth is hundreds of times smaller
than the disk bandwidth. For example, as shown in Appendix F.2, loading the encrypted weights of
one layer in BERTbase from the disk to memory can be accomplished in tens of milliseconds, while
the communication between the client and server requires several seconds. Therefore, the loading
time of the encrypted weights can overlap with the communication process.

4 Secure Computation of Non-Linear Functions

4.1 Prior Solution: Piecewise Polynomial Approximation of Non-Linear Functions

For Transformers, the main efficiency bottleneck in non-linear layers is to securely compute functions
exponential and GELU [5, 28, 26]. These works approximate the non-linear functions through
piecewise polynomial approximation, which can be securely computed by executing two-party
addition, multiplication, and comparison operations. To maintain the accuracy, these works adopt
four-piece polynomials with degree 6 for GELU and two-piece Taylor series with Taylor expansion
degree 6 for exponential. The approximation of high-degree polynomials inherently imposes a large
overhead for securely computing the powers of values. Additionally, such an approximation requires
computations to be conducted over a large ring Z64 and with a large scale s = 18 [14, 5, 26]. This
is brought about by the fact that computing the powers of values with high degrees leads to the
accumulation of fixed-point errors and the potential overflow problem.

4.2 Simpler Piecewise Polynomial and Smaller Rings by Distribution-aware Approximation

We aim to use simpler piecewise polynomials to fit non-linear functions and reduce the size of rings
without sacrificing accuracy. Inspired by the finding that activation distribution exhibits a regular
pattern across training and test data [24, 40], our insight for enabling simpler polynomials is to
assign the approximation budget according to the input distribution instead of treating all input values
with equal importance. Figure 4 illustrates patterns of the input distribution using the BERTbase’s
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Figure 4: The input distribution of non-linear functions. The y-axis indicates the occurrence counts.

nonlinear functions at the 4th encoder. As an example, consider the input distribution of the GELU
function. The probability peak centers around −3 and values greater than zero occur with less than
10% probability. A wise strategy should leave more budget to the high-probability ranges. Compared
with prior research directly minimizing the approximation error of the original function, assuming
a uniform input distribution, our strategy is supposed to generate more effective approximations.
Additionally, we want to note that the fitted polynomial does not leak the input distribution of the
data as the client remains oblivious to the fitted polynomial during secure inference.

Distribution-aware Splitting and Fitting. Prior works typically split the input range and fit each
interval based on the non-linearity of the curve. We further include the consideration of the input
distribution for these two processes. For intervals with low non-linearity or input probability, we
split them out and assign constant or linear polynomials to fit. The other intervals with both high
non-linearity and input probability are fitted by quadratic or cubic polynomials. When fitting each
piece of the non-linear function f(x) by the polynomial f ′(x), we minimize the expected loss that
integrates the inputs’ probability density p(x)

min
f ′(x)

∫ h

l

p(x) [f(x)− f ′(x)]
2
dx, (3)

where l and h are the lower bound and upper bound. p(x) is the probability density function obtained
by summarizing a batch of training data. Unlike prior works using fixed breakpoints l and h, we
initialize each breakpoint with a starting value and search around it to better fit non-linear functions
at different depths. This is because although the activation distributions are broadly similar, they may
shift slightly across varying model depths and the breakpoints should be adjusted accordingly. We
refer to the Appendix C.2 for the splitting and fitting algorithm. The detailed protocols for securely
evaluating nonlinear functions are provided in Appendix C.1. Next, we elaborate on the specific
design for fitting exponential and GELU functions.

Exponential. The exponential is used in the Softmax. Given an input vector x, the i-th element of
Softmax is computed as exp(xi−max{x})∑

j exp(xj−max{x}) . Input values subtracted from maximal values result in
maximal zero. The exponential curve exhibits two distinct patterns: a long smooth tail on the left and
a sharp increase on the right. Prior works adopt a two-piece approximation by breakpoint -13. Instead,
we initial breakpoints around -4 for varying depths. As the right interval spans a smaller range,
it adopts a cubic polynomial P 3(x) instead of the Taylor series with expansion degree six [5, 26].
Values less than -4 are less occurred and the curve is smooth, and a linear function is enough to fit.

exp(x) ≈
{
0 x < Texp

P 3(x) Texp ≤ x ≤ 0
(4)

GELU. The GELU curve nearing the zero exhibits pronounced non-linearity. Prior works [5, 26]
assign two polynomials for intervals [−5,−1.97] and [−1.97, 3] with degree three and six. We merge
these two intervals by one and shrink the range to [T1, T2] = [−2.1, 0.2]. This is because the values
beyond this interval present either less non-linearity or fewer occurrence probabilities, and using
constant or linear polynomials is enough. As the middle interval becomes narrow, we find a square
polynomial P 2(x) is enough. The specific breakpoints T1 and T2 change for different depths.

GELU(x) ≈


0 x ≤ T1

P 2(x) T1 < x ≤ T2

x x > T2

(5)
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Table 2: Accuracy comparison of floating-point (FP) baseline, BumbleBee, Nimbus (without finetun-
ing), and Nimbus† (with finetuning).

Method
CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

Matthews corr. Acc. F1 Pearson Acc. Acc. Acc. Acc.

FP baseline 58.63 92.88 90.12 88.24 91.22 84.74 91.28 67.87 83.12
Bumblebee 58.40 92.88 90.12 88.28 91.21 84.74 91.39 67.87 83.11
Nimbus 58.28 92.66 89.82 87.93 90.64 84.09 90.05 66.79 82.53
Nimbus† 58.40 92.78 90.42 88.12 90.98 84.37 91.37 67.87 83.04

4.3 Free Ring Conversion by Fusion with Truncation

Our low-degree polynomials reduce the errors of operation on fixed-point numbers and potential
overflow problems. This enables smaller ring Z32 and precision s = 12 for computing Softmax and
GELU functions, instead of the original standard ring Z64 and precision of s = 18. However, since
other operations still require the larger ring to preserve the accuracy, another challenge is to convert
secret shares between differently sized rings. The process of downcasting from a larger to a smaller
ring can be performed locally, incurring negligible cost [31, 39]. Upcasting from a smaller to a larger
ring necessitates addressing the wrap-around of shares, requiring communication among parties.
Interestingly, we notice the situations demanding to upcast are always after a truncation operation
that inherently computes the wrapping, which can be repurposed for the upcast to avoid additional
costs. We propose a novel protocol that fuses the upcast with the truncation. We defer the protocol
and the correctness proof to the Appendix E.

5 Performance Evaluation

Experimental Setup. We follow similar configurations used in prior works [26]. Except optimized
non-linear functions using ring Z232 and precision s = 12, other operations follow standard Z264

and s = 18 for the secret sharing. We use N = 8192 for the HE encryption. The performances are
evaluated on two nodes with 64 vCPUs and 128 GB memory. We use Linux Traffic Control (tc) to
simulate LAN and WAN network settings, where the bandwidth and the ping latency are (3Gbps,
1ms) and (400Mbps, 10ms), respectively.

Baselines. The baselines include Iron [14] and BumbleBee [26]. Our implementation follows the
open-sourced code of BumbleBee on SecretFlow [28]. As Iron is not open-sourced, we implement
Iron following their protocol using the SecretFlow library for a fair comparison. For the linear layer,
Iron uses window encoding described in Section 3.1, and BumbleBee further compresses the output
ciphertext. For non-linear functions, Iron evaluates them via integrating underlying protocols. Later
works [5] use piecewise polynomial approximation. BumbleBee further integrates cryptographic
optimizations to make a stronger baseline. In the Appendix F.4, we also compare our work with those
that use rough approximations to trade off accuracy for efficiency [22, 29].

Model and Datasets. Our method is evaluated on widely used Transformer model BERTbase [19]
from HuggingFace [38]. When evaluating the performance, we use 128 as a mild average number of
the input sequence length. To evaluate the accuracy of our non-linear approximation, we test it on
eight datasets from widely used GLUE benchmark [37]. To obtain the input distribution of non-linear
functions, we randomly sample sentences from the training dataset until the total token count reaches
512. This number is chosen because further increasing the number of sampled tokens yields no
significant changes in the input distribution.

5.1 Accuracy Comparison

Table 2 reports the accuracy of floating-point plaintext, BumbleBee, and our approximation across 8
tasks in the GLUE benchmark[37]. The precise approximation of BumbleBee causes small errors due
to the truncation error of the fixed-point value computation. Without fine-tuning, Nimbus decreases
accuracy in a small range and the average loss is around 0.6%. Such loss can be easily reduced
to 0.08% through a lightweight fine-tuning Nimbus†. This demonstrates the effectiveness of our
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Figure 6: The end-to-end latency of a Transformer block of BERTbase and its breakdown.

approximation. We also compare accuracy and efficiency with works that compromise accuracy in
Appendix F.4, including MPCFormer [22] and BOLT [29].

Figure 5 presents the output error of exponential and GELU functions to further explain the effective-
ness of our approximation. The error is summarized using a batch of test data on a certain layer. On
the standard ring Z264 and precision s = 18, our L2-norm errors are around 0.005 and are close to
the loss-free approximation of BumbleBee. When reducing to ring Z232 and s = 12, BumbleBee en-
counters higher errors. This increase is attributed to the more pronounced fixed-point errors that arise
when evaluating high-degree polynomials. Moreover, the destructive overflow occurs for precision
greater than 10 bits, as the sharp divergence of green and red curves of GELU function. Nimbus has
a steady fixed-point error and is not prone to overflow thanks to the low-degree polynomial. This
enables moving to the smaller ring with a minor impact on the accuracy.

5.2 Efficiency Comparison

As the main body of the Transformer model are identical Transformer blocks, we present the end-to-
end latency of one Transformer block under LAN and WAN network settings in Figure 6. Besides the
optimized parts of this paper, we unify the unoptimized activation matrix multiplication (QKT&PV )
and LayerNorm (LN) using the BumbleBee’s latency. The latencies of Iron are shorter than those
reported in their paper due to SecretFlow integrating many SOTA optimizations for the building
blocks, such as OT [41] and inverse square root [25]. Combining all our optimizations, the overall
runtime is 4.8× ∼ 5.9× faster than Iron and 2.7× ∼ 4.7× faster than BumbleBee. Comprehensive
results on varying Transformer size and input sequence length are listed in Appendix F.1. In the
following, we provide a detailed analysis of linear and non-linear layers.

For linear layers, our method is efficient in both computation and communication. Therefore, we
achieve obvious speedup in both LAN and WAN settings. Compared with stronger BumbleBee, we
have 7.2× ∼ 12.5× in the LAN setting and 2.9× ∼ 4.0× in the WAN setting. More speedup for the
LAN setting indicates we accelerate the computation more than the communication. For non-linear
functions, our method reduces both the communication size and rounds, so that we obtain similar
speedup for both the LAN and WAN settings. Compared with stronger baseline BumbleBee, the
GELU is 3.4× faster in the LAN setting and 3.3× faster than the WAN setting. The Softmax is 4.0×
faster in the LAN setting and 2.9× faster than the WAN setting.

5.3 Communication Analysis

Then, we compare the communication cost and the number of rounds of linear layers, Softmax,
and GELU in Table 3. The data is summarized using BERTbase and sequence length 128. For
different types of linear layers, our protocol only requires half the number of communication rounds.
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Table 3: Communication cost (megabytes) and rounds com-
parison on one Transformer block.

Layer
Iron BumbleBee Nimbus

Comm. Rd Comm. Rd Comm. Rd

Linearqkv 74.64 2 14.47 2 10.35 1
Linearo 40.2 2 6.71 2 3.05 1
Linearh1 84.46 2 18.35 2 15.52 1
Linearh2 78.37 2 15.71 2 3.05 1

Softmax 689.45 110 354.26 70 115.35 60
GELU 283.89 65 185.13 46 53.22 24

Our total communication size of lin-
ear layers is reduced to only 11.51%
of that of Iron. Although BumbleBee
takes extra "automorphism" operation
to compress the output ciphertext, our
communication is still only 65% com-
pared with BumbleBee since we also
eliminate the communication of the
input ciphertext. As for the non-
linear layers, compared with stronger
baseline BumbleBee, we have fewer
rounds and 3× less communication
due to simpler piecewise polynomial
approximations and the smaller ring size.

6 Related Work

Privacy-preserving Neural Network Inference. Due to the rapidly growing concerns about
data privacy in DNN-based applications, significant efforts have been made to design efficient
cryptographic protocols for DNN models [8, 18, 32, 43, 31]. Early works focus on the convolutional
neural network (CNN) models. Cryptonets [8] proposed one of the first protocols for 2PC HE-based
private neural network inference. Later works [18, 34, 17] are hybrid 2PC neural network inference
protocols combining HE for matrix multiplications and multi-party computation for non-linear
functions.

Private Transformers. Several works have investigated two-party secure inference for the Trans-
former model. For linear layers, Iron [14] builds upon Cheetah [17] by generalizing the original
encoding of matrix-vector multiplication to matrix-matrix multiplication. Both Cheetah and Iron leave
blanks in the input and output ciphertexts. BumbleBee [26] utilizes the "automorphism" operation
to compress multiple output ciphertexts, which trades computation for communication. A recent
work BOLT [29] adopts SIMD encoding to homomorphically evaluate the linear layer, which also
trades computation for the compact output ciphertext. All existing works adopt the server-side inner
product protocol. In contrast, this work proposes the client-side outer product protocol that eliminates
the input ciphertext communication. The proposed protocol also allows a novel encoding approach
that facilitates more efficient homomorphic computation and output communication. Other works
[1, 5] consider 3PC inference for Transformers, which rely on different settings and cryptographic
primitives from this work.

For the non-linear layers, some studies, such as THE-X [3] and MPCFormer [22], evaluate transformer
models using cryptographic friendly replacements for non-linear layers, such as using Softmax ≈
(x[i]+c)2∑
i(x[i]+c)2 and GELU(x) ≈ x2

8 +x
4+

1
2 . However, such aggressive approximations lead to noticeable

accuracy loss, even when employing knowledge distillation to mitigate the decline in accuracy. Other
methods, such as look-up tables for faithful approximation [31, 13, 29], are computationally expensive
to maintain model accuracy. Later works, including PUMA [5] and BumbleBee [26], utilize piecewise
polynomial approximation, which does not result in an accuracy drop but is also relatively costly
to compute. In contrast, this work is inspired by insights from the input distribution used in the
Transformer model [9, 10, 11, 12, 40, 24]. We propose fitting the non-linear functions according to
their input distribution, allowing for lower-degree polynomials and fewer polynomial pieces without
sacrificing accuracy.

7 Conclusion

We propose a privacy-preserving, accurate, and efficient two-party inference framework Nimbus
for Transformers. We present an efficient protocol of secure matrix multiplication using the COP
approach, achieving significantly better computation and communication efficiencies. We use a
distribution-aware polynomial approximation for non-linear layers, allowing a simpler approximation
with less communication and rounds. These optimizations significantly improve the performance,
advancing a step towards the practical use of secure Transformer inference.
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A Background of Transformer Models

We focus on Transformer [36] DNN models, such as popular models BERT [19], GPT-2 [4] and
LLaMA [35]. These models are stacked with Transformer blocks, each consisting of an attention
module and a feed-forward network (FFN) module.

Attention Module. The attention module starts with three independent linear layers Linearqkv that
project the input to three activation tensors: Q, K, and V. The multi-head attention mechanism splits
them into and computes the self-attention of all heads in parallel through

Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
V, (6)

where dk is the hidden dimension of the key activation. The outputs of different heads are concatenated
and fed into another linear layer Linearo, with one residue connection and one normalization layer to
generate the final output of the attention module.

FFN Module. The FFN module is composed of two linear layers and one activation layer

FFN(X) = Linearh2
(GELU(Linearh1

(X))), (7)

where GELU [15] is the activation function. Similar to the attention module, its output needs a residue
connection and a normalization layer.

Task Head. After all the transformer blocks are evaluated, the output is fed into a task-specific head
for classification, regression, or token generation.

B More Details of Cryptographic Building Blocks

We give a more detailed description of the cryptographic building blocks as a supplement to the paper.
We follow those notations used in the paper.

B.1 Lattice-based Additive Homomorphic Encryption

Homomorphic encryption (HE) enables computation on the encrypted data without knowing the
decryption key. This work uses an HE scheme based on Ring Learning-with-Error (RLWE) [27]. The
RLWE scheme is defined by a set of public parameters {N, q, t}, where N is the polynomial degree,
t is the modulus of the plaintext, and q is the modulus of the ciphertext.

• KeyGen. Generate the RLWE key pair (sk, pk) where the secret key sk ∈ AN,q and the
public key pk ∈ A2

N,q.

• Encryption. An RLWE ciphertext is given as a polynomial tuple (b̂, â) ∈ A2
N,q. Given a

vector m which is encoded as m̂ ∈ AN,t, We write [[m]] = Enc(m̂) to denote the encryption
of m̂ under a key pk.
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• Decryption. Given an RLWE ciphertext [[m]] = (b̂, â) ∈ A2
N,q. We write m̂ = Dec([[m]])

to denote the decryption under a secret key sk.

• Addition ( ⊞ ). Given two RLWE ciphertexts [[m0]] =
(
b̂0, â0

)
and [[m1]] =

(
b̂1, â1

)
that respectively encrypts m̂0, m̂1 ∈ AN,t under a same key, the operation [[m0]] ⊞ [[m1]]

computes the RLWE tuple
(
b̂0 + b̂1, â0 + â1

)
∈ A2

N,q which can be decrypted to m̂0 +

m̂1 mod AN,t.

• Plaintext-ciphertext polynomial Multiplication (⊠). Given an RLWE ciphertext [[m]] =

(b̂, â) that encrypts m̂ ∈ AN,t, and a plain polynomial ĉ ∈ AN,t, the operation ĉ ⊠ [[m]]

computes the tuple (b̂ · ĉ, â · ĉ) ∈ A2
N,q which can be decrypted to ĉ · m̂ mod AN,t.

• Plaintext-ciphertext scalar-polynomial Multiplication (⊗). Given an RLWE ciphertext
[[m]] = (b̂, â) that encrypts m̂ ∈ AN,t, and a scalar c, the operation c⊗ [[m]] computes the
tuple (c · b̂, c · â) ∈ A2

N,q which can be decrypted to c · m̂ mod AN,t.

• Right Shift. Given an RLWE ciphertext [[m]] = (b̂, â) that encrypts m̂ ∈ AN,t, and a plain
polynomial ĉ ∈ AN,t with a single s-order term, the right shift operation RShift([[m]], s)

computes the tuple (b̂ · ĉ, â · ĉ) ∈ A2
N,q which can be decrypted to negacyclicly right shift m̂

for s terms. This can be implemented through a simple rearrange of the coefficients of the
ciphertext, which is a free operation.

B.2 Oblivious Transfer

OT lets a sender input two messages m0,m1 and a receiver input a bit b, and then the receiver obtains
the message mb. For security, the sender is unknown for b and the receiver does not learn m1−b. We
adopt OT to construct secure two-party computation (2PC) protocols of some non-linear operations
such as comparison. We instantiate OT with the communication-efficient Ferret protocol [41].

B.3 Sub-Protocols for Non-linear Layers

Our protocol for non-linear layers calls the following functionalities in a black-box way to compute
element-wise multiplication, comparison, Boolean to Arithmetic share (B2A), and wrap. These
functionalities can be securely realized using the known protocols. We use ⟨·⟩ℓ to denote arithmetic
additive sharings over a ring Z2ℓ and ⟨·⟩B to denote Boolean additive sharings over a binary field F2.
Secret sharing without superscript indicates using the default ring size (e.g., Z264 for the linear layers
and Z232 for the exponetial and GELU functions).

Functionalities Protocols

⟨X ·Y⟩ = Fmul(⟨X⟩, ⟨Y⟩) Element-wise multiplication [26]
⟨1{x < y}⟩B = Fless(⟨x⟩, ⟨y⟩) Less-then [28]
⟨x⟩ℓ = Fℓ

B2A(⟨x⟩B) Boolean to Arithmetic share [28]
⟨1{⟨x⟩ℓ + ⟨y⟩ℓ ≥ 2ℓ}⟩B = Fwrap(⟨x⟩ℓ, ⟨y⟩ℓ) Wrap the ring Z2ℓ [28]

C Detailed Protocols and Algorithm

C.1 Protocols

We present our detailed protocol of matrix multiplication of Section 3 in Algorithm 1. The detailed
protocols of securely evaluating GELU and exponential in Section 4 are presented in Algorithm 2
and Algorithm 3.

Security Proof of the Matrix Multiplication Protocol The proposed client-side outer product
protocol directly builds upon secure building blocks. It guarantees the same security as the traditional
server-side inner product protocol. In the presence of a semi-honest adversary, we provide a brief
proof idea below. The notations follow those in Algorithm 1.
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Specifically, the model weights are encrypted by the server and then sent to the client, where the
ciphertexts are denoted by [[W]]. According to the security property of the HE scheme, the ciphertexts
reveal no information about these model weights. For secure matrix multiplication, the input matrix X
has been shared as (⟨X⟩c, ⟨X⟩s) using additive secret sharing. The client samples a matrix of random
shares R, and then homomorphically computes a ciphertext [[⟨X⟩c∗W−R]] = ⟨X⟩c∗[[W]]−R. Due
to the circuit-privacy property of the HE scheme, in the client view, the ciphertext [[⟨X⟩c∗W−R]] does
not reveal information on W. This ciphertext is sent to the server, who decrypts it to ⟨X⟩c ∗W−R.
Because of the random mask R, the server also learns nothing about the client share ⟨X⟩c. In the
proof of security, the simulator can simulate the HE ciphertexts using "dummy" ciphertexts on zero,
and the adversary’s view between the real-world execution and ideal-world execution is proven to be
computationally indistinguishable by reducing it to the circuit-privacy security of the HE scheme.

Security Proof of Non-linear Function Protocols This work does not modify the protocol for
evaluating piecewise polynomials but improves the generation method for these polynomials, ensuring
that security remains consistent with previous work. We highlight the training data information that
are utilized for fitting non-linear functions is not leaked. This is because the secure evaluation of the
piecewise polynomial prevents the client from learning the coefficients and comparison thresholds,
as indicated in Algorithm 2 and Algorithm 3. Except for the usage of b0, which requires the
primitive Fmul, all other coefficients are used through addition, which can be performed locally on
the server side. For the comparison threshold, the server can subtract the threshold from its share
and compare the resulting shares with zero. As a result, the client learns nothing about the piecewise
polynomial. A possible improvement on the efficiency is to make b0 public, thereby saving one round
of communication. The only leakage of b0 does not necessarily lead to leakage of the meaningful
information and can provide approximately an 8% speedup.

Algorithm 1 Secure Matrix Multiplication Protocol of Nimbus

Parties: C is the client. S is the server owning the model.
Input: The client holds activation share ⟨X⟩c ∈ Zk×m

2ℓ
. The server holds activation share ⟨X⟩s ∈

Zk×m
2ℓ

, W ∈ Zm×n
2ℓ

, and secret key sk.
Output: Sharing ⟨Y⟩c ∈ Zk×n

2ℓ
and ⟨Y⟩s ∈ Zk×n

2ℓ
such that Y = WX mod 2ℓ.

{Setup phase}
1: Server S partitions the matrix W into rows Wβ ∈ Z1×n

ℓ . Then S encodes each row as a
polynomial ŵβ = πw (Wβ) for β ∈ [m]. After that S sends [[Wβ ]] = Enc(ŵβ) for β ∈ [m] to
the client C.
{Execution phase}

2: The client computes the scalar-polynomial multiplication to obtain a vector of output ciphertexts
c = [[[c0]], [[c1]] · · · [[ck−1]]], where

c[α] = ⊞β∈[m] (xα,β ⊗ [[Wβ ]]) .

for α ∈ [k]. The c[α] denotes the α-th element of the vector c.
3: To compress the the k ciphertexts vector of c into k/⌊N/n⌋ ciphertexts, The client applies right

shift on ciphertexts of c. For example

c̃[θ] = RShift(c [θ · ⌊N/n⌋] , 0) + RShift(c [θ · ⌊N/n⌋+ 1] , k) + · · ·
+RShift(c [θ · ⌊N/n⌋+ ⌊N/n⌋ − 1] , k ∗ (⌊N/n⌋ − 1))

for θ ∈ [k/⌊N/n⌋]. Pad with zeros if k cannot be exactly divided by ⌊N/n⌋.
4: The client C generates a random polynomial vector r = [r̂0, r̂0, · · · r̂k/⌊N/n⌋−1] to mask the

ciphertext. The client sends c̃[θ]⊟ r[θ] to the server for all θ, which are then decrypted by server
to obtain W⟨X⟩c −R. The client keeps r, which is R ∈ Zk×n

2ℓ
.

5: The server locally computes W⟨X⟩s and outputs ⟨Y⟩s = W⟨X⟩s +W⟨X⟩c −R. The client
outputs ⟨Y⟩c = R.
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Algorithm 2 Secure GELU Protocol of Nimbus

Parties: C is the client. S is the server owning the model. The polynomial P 2(x) with coefficients
{b0, b1, b2} from Equation 5.

Input: The client holds activation share ⟨X⟩c ∈ Zk×m
2ℓ

and the server holds activation share ⟨X⟩s ∈
Zk×m
2ℓ

.
Output: Sharing ⟨Y⟩c ∈ Zk×m

2ℓ
and ⟨Y⟩s ∈ Zk×m

2ℓ
such that Y = GELU(X).

1: Two parties locally compute ⟨A1⟩ = Fmul (⟨b0⟩, ⟨X⟩) + b1. Then two parties jointly compute
⟨A2⟩ = Fmul (⟨A1⟩, ⟨X⟩) + b2. The truncations are implicitly called.

2: Jointly compute the comparisons for interval selection

⟨b0⟩B = Fless(⟨X⟩, T1) ▷b0 = 1{X < T1}
⟨b1⟩B = Fless(T2, ⟨X⟩) ▷b1 = 1{T2 < X} .

1{P} is 1 when the condition P is true and 0 otherwise. Two parties locally set ⟨z0⟩B = ⟨b0⟩B ,
⟨z1⟩B = ⟨b0⟩B xor ⟨b1⟩B xor l, ⟨z2⟩B = ⟨b2⟩B , where l is the party index. In this way, two
parties have z0 = 1{X < T1}, z1 = 1{T1 ≤ X < T2}, and z2 = 1{T2 ≤ X}.

3: Jointly compute the multiplexing ⟨Y⟩ = ⟨z0⟩B · 0 + ⟨z1⟩B · ⟨A2⟩+ ⟨z2⟩B · ⟨X⟩ as the output
share of each party.

Algorithm 3 Secure Exponential Protocol of Nimbus

Parties: C is the client. S is the server owning the model. The polynomial P 3(x) with coefficients
{b0, b1, b2, b3} from Equation 4.

Input: The client holds activation share ⟨X⟩c ∈ Zk×m
2ℓ

and the server holds activation share ⟨X⟩s ∈
Zk×m
2ℓ

.
Output: Sharing ⟨Y⟩c ∈ Zk×m

2ℓ
and ⟨Y⟩s ∈ Zk×m

2ℓ
such that Y = exp(X).

1: Two parties locally compute ⟨A1⟩ = Fmul (⟨b0⟩, ⟨X⟩) + b1. Then two parties jointly compute
⟨A2⟩ = Fmul (⟨A1⟩, ⟨X⟩)+b2 and ⟨A3⟩ = Fmul (⟨A2⟩, ⟨X⟩)+b3. The truncations are implicitly
called.

2: Jointly compute the comparisons for interval selection

⟨z0⟩B = Fless(⟨X⟩, Texp) ▷z0 = 1{X < Texp} .

1{P} is 1 when the condition P is true and 0 otherwise.
3: Jointly compute the multiplexing ⟨Y⟩ = (1− ⟨z0⟩B) · 0 + ⟨z0⟩B · ⟨A3⟩ as the output share of

each party.

C.2 Fitting Algorithm for Non-linear Approximation.

In this section, we present the algorithm used to search the interval breakpoint of the piecewise
polynomial. We use the exponential with only one breakpoint as an example to explain. A similar
algorithm can be easily generated to the GELU with two breakpoints.

The first step generates the breakpoint candidate set S given the initial breakpoint T . One can choose
the search range and step according to the needs (Line 1). Then, for each breakpoint candidate,
the input range is separated into two intervals (Lines 3-4). We fit both intervals using Equation 3.
The required input distribution p(x) can be drawn from a batch of data from the training dataset.
The corresponding loss is accumulated for all intervals (Lines 5-9). Then, we update the optimal
piecewise approximation (lines 10-13). Finally, the optimal approximation f ′(x) is returned.

D Complexity Analysis of Linear-Layer Protocol of Nimbus

This section analyzes the computation and communication complexities listed in Table 1. We first
analyze the number of HE ciphertexts to be communicated. The SIP protocol requires km

kwmw
+ kn

kwnw

for the communication of input and output, as we have explained in Section 3.1. Our COP protocol
removes the overhead of sending the input km

kwmw
. The scalar-polynomial product produces k output

ciphertext, which we pack as k/⌊N/n⌋.
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Algorithm 4 Searching piecewise polynomial approximation of the activation function
Input: Activation function f(x), initial value of the interval breakpoint T , input distribution p(x),

and function template of f ′(x).
Output: The approximated function f ′(x);

1: Generate breakpoint candidates set S around T .
2: Set best_loss←∞ and f ′(x)← None.
3: for s ∈ S do
4: Partition the input range into two intervals using s.
5: Ltotal = 0.
6: for each interval i do
7: Fit a polynomial of given degree using Equation 3 and obtain the corresponding loss Li.
8: Compute total loss Ltotal+ = Li.
9: end for

10: if Ltotal < best_loss then
11: best_loss← Ltotal

12: f ′(x)← current approximation
13: end if
14: end for
Output: f ′(x)

Algorithm 5 Secure Fused Truncation and Upcast.
Input: Client C and server S hold input ⟨x⟩ℓ.
Output: Client C and server S hold output ⟨y⟩ℓ′ that y = x/2s.

1: S&C invoke FWrap
(
⟨x⟩ℓS , ⟨x⟩ℓC

)
and learn ⟨w⟩B .

2: S&C invoke Fℓ′−ℓ+s
B2A

(
⟨w⟩B

)
and learn ⟨w⟩ℓ′−ℓ+s.

3: For b ∈ {S,C}, Pb outputs ⟨y⟩ℓ′b = (⟨x⟩ℓb >> s)− 2ℓ−s ∗ ⟨w⟩ℓ
′−ℓ+s
b mod 2ℓ

′
.

Then, we explain the computation complexity. The server in the SIP protocol needs to apply NTT to
weight O( mn

mwnw
N logN) and the dyadic product kmn

kwmwnw
∗N = kmn. In our scheme, the server

only decrypts the k/⌊N/n⌋ output ciphertexts with complexity O ((k/⌊N/n⌋)N logN). The client
of the SIP protocol needs to perform NTT when encrypting the activation and INTT when decrypting
the output, which requires O

(
( km
kwmw

+ kn
kwnw

)NlogN
)

complexity. In our protocol, the client can
directly multiply her activation share with the ciphertext on model weights. Our method has O(N)
complexity for each plaintext-ciphertext scalar-polynomial multiplication and km times product with
total complexity O(kmN).

E Correctness of Truncation-upcast Fusion

The protocol that computes truncation and upcast is in Algorithm 5. We show the correctness of
it through the following derivation. Let ⟨x⟩ℓi (i ∈ 0, 1) denote the secret share held by the client
and server on the ring Z2ℓ . The second line is drawn from the truncating secret shares on the ring
2ℓ. w is a boolean value indicates the wrap of ⟨x⟩ℓi over ring size 2ℓ and w′ is the carry bits of
the lower s bits. The carry bit w′ is either zero or one and can be safely ignored in the inference
while the w · 2ℓ−s is a significant error that needs to be carefully handled. The third line holds since∑1

i=0⟨x⟩ℓi/2s−w · 2ℓ−s + ŵ falls within the larger ring 2ℓ
′
. The fourth line is the modulo expansion

of the wrap w on a ring with k bits, where v is a boolean value that indicates the wrap of the ⟨w⟩k.
Through a proper choice of k ≥ ℓ′ − ℓ + s to promote the boolean share ⟨w⟩B , its wrap can be
eliminate by modulo 2ℓ

′
. The final line indicates the overhead of truncation and upcast is the same as

truncation alone, which only requires computing the ⟨w⟩k = ⟨w⟩ℓ′−ℓ+s.
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x̂ℓ′ = xℓ/2s

=

1∑
i=0

⟨x⟩ℓi/2s − w · 2ℓ−s + ŵ

=

(
1∑

i=0

⟨x⟩ℓi/2s − w · 2ℓ−s + ŵ

)
mod 2ℓ

′

=

1∑
i=0

⟨x⟩ℓi/2s mod 2ℓ
′
−

(
1∑

i=0

⟨w⟩ki − vB · 2k
)
· 2l−s mod 2ℓ

′
+ ŵ mod 2ℓ

′

k≥ℓ′−ℓ+s
=

1∑
i=0

⟨x⟩ℓi/2s mod 2ℓ
′
−

(
1∑

i=0

⟨w⟩ki

)
· 2l−s mod 2ℓ

′
+ ŵ mod 2ℓ

′

(8)

F More Experiments

F.1 Comprehensive Performance Comparison

We present a comprehensive end-to-end latency comparison of a transformer block in Figure 8, Figure
9 and Figure 10. We present three model sizes: 768, 1024, and 2048. The input sequence lengths
include 1, 32, and 128. Two network conditions are considered: 3000Gbps, 1ms (LAN) and 400Mbps,
10ms (WAN). The sequence lengths of 32 and 128 correspond to the classification Transformer model
or the prefill phase of the generative Transformer model. The sequence length 1 can be viewed as
the performance during the generation phase of the generative Transformer model. Overall, for the
stronger baseline BumbleBee, our method outperforms by a magnitude of 1.9× to 7.6× on sequence
lengths 32 and 128. The speedup is minor on sequence 1 with 1.2× to 2.1×. For the linear layers,
the speedup ranges from 2.47× to 12.09×, and the non-linear layers range from 2× to 3.9× In the
following, we provide a detailed analysis of the speedup in linear and non-linear layers under varying
conditions.

Linear Layers. Our method is efficient in both computation and communication. Therefore, we
achieve apparent speedup in both LAN and WAN settings. Our method obtains more speedup for
large input sequences and hidden dimensions. This is because the computation time of NTT is more
dominant for large-size matrix multiplication and input sequences. When the communication speedup
is similar, our method has more speedup when the computation time speedup is more significant.
Our method has more speedup for the LAN than WAN, where latency is mainly composed by the
computation. As our method computes much faster, our latency benefits more from the improved
network condition.

Non-Linear Layers. Our method is 4× to 10× faster than Iron and 2.0× to 3.9× faster than the
stronger baseline BumbleBee. Our speedup on LAN and WAN are similar as our method improves the
communication size and the communication rounds. The speedup is also similar for varying sequence
lengths and hidden sizes. This is because our optimization lies in a lower degree of approximated
polynomials and is not correlated with the input size.

F.2 Detailed Client Burden Analysis

This section provides evidence to support Section 3.3, including the client computation time and the
asynchronous weight loading.

Client Computation Time Comparison. The client’s computation cost for our COP protocol is
similar to the previous SIP protocol. This is based on a counter-intuitive workload distribution of the
HE multiplication. Due to the introduction of the NTT, the server in SIP protocol only computes the
dyadic product with O(N) complexity, and the more expensive NTT with complexity O(N logN)
is performed by the client when encrypting and decrypting, as listed in Table 1. Our COP protocol
makes the client perform a more efficient scalar-vector product with complexity O(kmN). Since
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(c) LAN, Sequence=1, and Hidden=1024.
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(d) WAN, Sequence=1, and Hidden=1024.
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(e) LAN, Sequence=1, and Hidden=2048.
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(f) WAN, Sequence=1, and Hidden=2048.

Figure 8: Under sequence length 1, the end-to-end speedup and breakdown of varying hidden
dimensions and network conditions.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT&PV LN Total

10 1

100

Ti
m

e 
(s

)

0.
58

0.
24

0.
72

0.
72

0.
44

0.
31

0.
30

0.
05

0.
89

0.
29

1.
15

0.
60

0.
19

0.
14

0.
30

0.
050.
12

0.
03 0.

12 0.
14 0.
08

0.
04

0.
30

0.
05

0

1

2

3

3.
35 3.

62
0.

88

Iron
Bumblebee
Nimbus

(a) LAN, Sequence=32, and Hidden=768.
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(b) WAN, Sequence=32, and Hidden=768.
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(c) LAN, Sequence=32, and Hidden=1024.
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(d) WAN, Sequence=32, and Hidden=1024.
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(f) WAN, Sequence=32, and Hidden=2048.

Figure 9: Under sequence length 32, the end-to-end speedup and breakdown of varying hidden
dimensions and network conditions.
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(a) LAN, Sequence=128, and Hidden=768.
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(b) WAN, Sequence=128, and Hidden=768.
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(c) LAN, Sequence=128, and Hidden=1024.
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(d) WAN, Sequence=128, and Hidden=1024.
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(e) LAN, Sequence=128, and Hidden=2048.
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(f) WAN, Sequence=128, and Hidden=2048.

Figure 10: Under sequence length 128, the end-to-end speedup and breakdown of varying hidden
dimensions and network conditions.
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Figure 11: Under different sequence lengths and hidden sizes, we present comprehensive experiments
of client computation time of different methods.

directly comparing computation complexity is hard to draw a conclusion due to the choice of the
window size, we profile the client’s computation time to compare the computation workload.

Under different sequence lengths and hidden sizes, Figure 11 presents comprehensive experiments
of client computation time of different methods. Across varying model sizes and input sequence
lengths, Nimbus only takes around 20% to 30% compared with Iron and 0.7× to 2.7× compared
with BumbleBee. The BumbleBee has less client computation because the compression used in
BumbleBee allows the client to encrypt her activation shares to less number of ciphertexts and receive
fewer output ciphertexts, thereby requiring fewer NTT operations. In the worst case of the Linearh2,
the client computation is around 5.0× longer than the BumbleBee. But still, on the total Transformer
block, the extra overhead is only 2.7×. This extra computation ratio can be further shrunk given the
base that the client needs to perform a large amount of computation of non-linear layers. Therefore,
we believe this is acceptable for a powerful client in MPC.

Asynchronous Weights Loading. For varying hidden dimensions, Table 4 lists the encrypted
weight size and corresponding loading time from disk to memory, which usually takes less than 1
second. For the hidden size 768, which is the size of BERTbase mainly considered in this paper. The
loading time is only 90 ms and 370 ms, which can be easily overlapped by later communication.
Therefore, we can only keep a limited number of encrypted weights in the memory, such as weights
of four linear layers of a Transformer block. Then, we swap the later weights during the execution.
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Table 4: The size of the encrypted weights measured by megabytes (MB) and the corresponding
loading time measured by seconds (s).

Hidden
Linearqkv Linearo Linearh1 Linearh2

Size Time Size Time Size Time Size Time

768 180 0.09 180 0.09 180 0.09 720 0.37
1024 240 0.13 240 0.13 240 0.13 960 0.50
2048 480 0.25 480 0.25 480 0.25 1920 0.91
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Figure 12: The execution+setup speedup over BumbleBee under different queries.

F.3 Amortized Overhead of the encrypted weights.

Our linear protocol replaces the input communication with a one-time setup communication of
sending encrypted weights. Although our method focuses on the overhead of the execution phase,
we are also interested in how many queries can make the amortized setup overhead negligible. For
BERTbase, using our row-wise encoding, the encrypted weight size of four types of layer within a
Transformer block is 180MB, 180MB, 180MB, and 720MB. We incorporate the one-time overhead
of transmitting these weights into our analysis and amortize it across the number of queries. Figure
12 shows the speedup of amortized Nimbus over BumbleBee. The dot lines indicate the speedup
without considering the setup overhead. There are two critical points that we are interested in. At
around three queries, the amortized overhead begins to surpass the BumbleBee, leading to a speedup
greater than 1. At around 40 queries, the maximal speedup is achieved.

F.4 More Accuracy and Efficiency Comparisons of Non-linear Approximations

Besides BumbleBee [26], this section compares non-linear approximation with other state-of-the-art
(SOTA) works, including MPCFormer [22] and BOLT [29].

Accuracy Comparison The details of the accuracy are listed in Table 5. The accuracy of MPCFormer
is reproduced using the open-sourced code of them. MPCFormer’s idea is to adopt aggressive
approximation to tailor the efficiency of the MPC but sacrifice the inference accuracy. For example,
they let GELU(x) = 0.125x2+0.25x+0.5. MPCFormer can efficiently compute the Softmax and
GELU. However, even using knowledge distillation to recover the accuracy, they still incur 2.26%
accuracy on average. BOLT optimizes exponential and GELU using integer-only approximation and

Table 5: Accuracy comparison of floating-point (FP) baseline, BumbleBee, MPCFormer (reproduced
using Quad+2ReLU), BOLT∗ (accuracy relative change from the original paper), Nimbus (with
finetuning). We report the relative change in accuracy.

Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

Matthews corr. Acc. F1 Pearson Acc. Acc. Acc. Acc.

FP baseline 58.63 92.66 90.12 88.24 91.22 84.74 91.28 67.87 83.10
Bumblebee -0.23 0.00 0.00 0.04 -0.01 0.00 0.11 0.00 -0.01
MPCFormer -5.88 -1.04 -0.73 -3.03 -1.91 -1.42 -0.51 -3.57 -2.26

BOLT - -0.62 0.53 -1.65 - - - -0.02 -0.44
Nimbus -0.23 -0.11 0.30 -0.12 -0.24 -0.37 0.09 0.00 -0.08
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Table 6: Efficiency comparison of BumbleBee, MPCFormer (Quad+2ReLU), BOLT, Nimbus

Method LAN (3Gbps, 0.8ms) WAN (200Mbps, 40ms)

GLUE Softmax GLUE Softmax

Bumblebee 0.96 2.13 9.16 19.87
MPCFormer 0.08 0.71 1.16 7.05

BOLT 3.18 3.66 22.20 23.16
Nimbus 0.28 0.56 2.60 5.86

piecewise polynomial approximation, respectively. Similar to the BumbleBee, their approximation
regards all input values as equal importance. Therefore, they require a relatively high-degree
polynomial to approximate the original function. Since BOLT does not opensource the codes used
to fine-tune the model, we use accuracy numbers reported in their paper. Their approximations are
relatively accurate and incur 0.44% average accuracy loss after fine-tuning.

Efficiency Comparison The efficiency comparisons for LAN and WAN settings are listed in
Table 6. We utilize the open-sourced code of BOLT to reproduce their latency. MPCFormer is
originally implemented on the Crypten framework [20], which uses secret sharing as its underlying
cryptographic primitive instead of homomorphic encryption. To facilitate a fair comparison of the
effectiveness of non-linear approximation, we re-implement their polynomial approximation using
SecretFlow as the backend.

MPCFormer’s GELU does not require comparison and is extremely fast. They use ReLU to replace the
exponential in the Softmax, which is also fast. The same as the ReLU substitution of MPCFormer,
Nimbus’s approximation of the exponential also has one comparison, and the additional three
multiplications are relatively quick to compute. Furthermore, our approach allows for computation
on a smaller ring, which makes us faster than MPCFormer’s Softmax. Our method is approximately
10× faster than BOLT in all cases. In addition to the advantages of our simpler approximation,
other factors also contribute to the slowness of BOLT. First, BOLT’s linear layer is evaluated in the
field, necessitating extra operations to convert field elements to ring elements. Second, our simpler
approximation reduces the fixed-point error during computation, enabling computation on a smaller
ring. Since other layers still require computations on a larger ring, we also propose a truncation-upcast
fusion protocol to eliminate the overhead of upcasting ring elements from a smaller ring to a larger
one. In contrast, BOLT requires additional communication for this upcasting process.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstraction and introduction reflect necessary contributions and experi-
ments
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The potential trade-off is discussed within the paper in a separate Section 3.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The necessary assumption and proof are include in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have listed detail configuration of experiments in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code to reproduce the experimental results are provided on Github.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This is not the core contribution of this work. But still, we follow the standard
method of prior work as we have mentioned in the Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiments are conducted many times and report average results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The specific configurations are included in the Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive societal impacts of using privacy-preserving
inference in the Introduction section.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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Answer: [NA]
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that users adhere to usage guidelines or restrictions to access the model or implementing
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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