
Published as a conference paper at ICLR 2024

HYPOTHESIS SEARCH:
INDUCTIVE REASONING WITH LANGUAGE MODELS

Ruocheng Wang1∗, Eric Zelikman1∗, Gabriel Poesia1,
Yewen Pu2, Nick Haber1, Noah D. Goodman1

1 Stanford University, 2 Autodesk Research

ABSTRACT

Inductive reasoning is a core problem-solving capacity: humans can identify under-
lying principles from a few examples, which robustly generalize to novel scenarios.
Recent work evaluates large language models (LLMs) on inductive reasoning tasks
by directly prompting them yielding “in context learning.” This works well for
straightforward inductive tasks but performs poorly on complex tasks such as the
Abstraction and Reasoning Corpus (ARC). In this work, we propose to improve the
inductive reasoning ability of LLMs by generating explicit hypotheses at multiple
levels of abstraction: we prompt the LLM to propose multiple abstract hypotheses
about the problem, in natural language, then implement the natural language hy-
potheses as concrete Python programs. These programs can be verified by running
on observed examples and generalized to novel inputs. To reduce the hypothesis
search space, we explore steps to filter the set of hypotheses to implement: we either
ask the LLM to summarize them into a smaller set of hypotheses or ask human an-
notators to select a subset. We verify our pipeline’s effectiveness on the ARC visual
inductive reasoning benchmark, its variant 1D-ARC, string transformation dataset
SyGuS, and list transformation dataset List Functions. On a random 100-problem
subset of ARC, our automated pipeline using LLM summaries achieves 30%
accuracy, outperforming the direct prompting baseline (accuracy of 17%). With the
minimal human input of selecting from LLM-generated candidates, performance
is boosted to 33%. Our ablations show that both abstract hypothesis generation
and concrete program representations benefit LLMs on inductive reasoning tasks.

1 INTRODUCTION

Inductive reasoning – the ability to infer general principles from specific examples and apply them
to novel situations – is a core aspect of human intelligence (Peirce, 1868). Recently, large-scale
pre-trained language models have received significant interest for their performance across a diverse
range of reasoning tasks such as commonsense, arithmetic and symbolic reasoning (Rajani et al.,
2019; Shwartz et al., 2020; Nye et al., 2021; Wei et al., 2022; Marasović et al., 2021; Lampinen et al.,
2022; Zelikman et al., 2022; Zhou et al., 2022). There has been extensive discussion of language
models’ impressive “in-context learning” capabilities, a form of inductive reasoning. However, other
work suggests that in-context learning of these models has a highly limited capacity to perform
inductive reasoning tasks where precise behavior is required (Chollet, 2019; Johnson et al., 2021).
The Abstraction and Reasoning Corpus (ARC) is a particularly challenging inductive reasoning bench-
mark (Chollet, 2019). For each task in ARC, models are given a set of training input-output pairs with
a shared transformation rule, and the goal is to predict the corresponding output(s) given the novel test
input(s), as illustrated in Fig 2 (a). ARC is interesting because the answers are fairly natural for humans
yet require a complex and precise transformation. Evaluations of LLMs on ARC (Xu et al., 2023b;
Mirchandani et al., 2023; Gendron et al., 2023) have directly prompted LLMs to predict outputs by
in-context learning, finding poor performance relative to humans (Chollet, 2019; Johnson et al., 2021).
We instead take inspiration from Bayesian models of human inductive reasoning (Tenenbaum et al.,
2006; Goodman et al., 2008). That research frames inductive reasoning as posterior prediction:
an ideal Bayesian learner assumes a large hypothesis space of possible rules, uses Bayes’ rule to
form a posterior distribution over hypotheses from examples, then responds accordingly with a
posterior-predictive distribution. Studies of human inductive learning have found that people likely

∗These authors contributed equally to this work

1

Published as a conference paper at ICLR 2024

Generate Hypotheses

… find the highest numbered value in the input
grid and then, starting from the top-left corner,
replace zero with the next number in
counter-clockwise direction until you reach the
highest numbered value in the input grid…

… slide the non-black cells in each column down
to fill any black cells below them, as if the
colored numbers were falling to the bottom of
the grid due to gravity. Keep the positions of the
colored numbers in their initial column…

… check the element at row 1, column 4 in the
input grid, and then update the diagonal that
passes through this cell with the same color.
Start from the bottom-left corner and continue
to the top-right corner in the diagonal.

Select Implement

def transform_grid(grid):
 out_grid = np.zeros_like(grid)
 for col in range(grid.shape[1]):
 non_zeros = \
 grid[:, col][grid[:, col] != 0]
 if len(non_zeros) > 0:
 out_grid[-len(non_zeros):,col]= \
 on_zeros
 return out_grid

def transform_grid(grid):
 return ...

ValidateTrain Examples

def transform_grid(grid):
 return ...

Example 1

Example 2

Example 3
Example 1: ✔
Example 2: ✔
Example 3: ✔

Example 1: ✘
Example 2: ✔
Example 3: ✔

Example 1: ✘
Example 2: ✔
Example 3: ✘

Figure 1: An overview of our pipeline. From left to right, starting from a task in the dataset, a
language model 1) generates a set of candidate hypotheses, 2) selects a subset, 3) implements each
hypothesis in code as a function, and 4) validates the implementations against the training examples.

approximate the full posterior with just a few hypotheses (Vul et al., 2014). Furthermore, people
often represent hypotheses of the world at multiple levels of abstraction (Tenenbaum et al., 2011),
with more abstract hypotheses guiding the search for more specific ones (Goodman et al., 2011).
We thus propose an approach that improves the inductive reasoning ability of LMs by decomposing
the task via hypothesis formation at two levels of abstraction: first by generating hypotheses in
natural language and then by realizing these as specific programs that are used for making predictions.
Natural language provides abstract representations that uncover key features but are difficult to
verify and potentially ambiguous. Programmatic hypotheses are directly verifiable on examples via
execution and can naively generalize to new inputs but involve many implementation details that can
be distracting to a language model. In other words, we use particular programmatic implementations
to act as a precise, generalizable representation of a given inductive hypothesis formulated in natural
language. Our pipeline thus disentangles inductive reasoning tasks primarily into two capabilities: the
ability to propose accurate natural language hypotheses and the ability to formalize them as programs.
However, in practice LLMs are not yet able to find a good hypothesis with one try. Sampling multiple
hypotheses and multiple programs per hypothesis turns out to be sufficient, but can be extremely costly.
Thus, we also investigate approaches to reduce the number of hypotheses that must be considered.
First, we use an LLM to summarize multiple hypotheses into a smaller number of hypotheses. Second,
we experiment with querying a human oracle to go through all hypotheses and indicate which can
be ignored. The latter can be viewed as a lower bound on performance that would be achieved by
our approach without filtering, because we also find that programs which are correct on all examples
almost always generalize correctly, an interesting feature of complex inductive reasoning domains.
We conduct experiments on four inductive reasoning datasets: the Abstraction and Reasoning Corpus
(ARC), the one-dimensional variant of ARC (1D-ARC), the Syntax-Guided Synthesis (SyGuS)
dataset, and the List Functions dataset. Our results indicate that explicit hypothesis formation
substantially improves performance over the direct prompting (ICL) approach. Ablation studies
suggest both levels of abstraction – natural-language hypothesis generation and programmatic
hypothesis representations – are beneficial to performing inductive reasoning tasks.
Contributions. We summarize the contributions of our paper as follows:

• We propose a pipeline that uses language models to solve inductive reasoning tasks by
generating and testing hypotheses in natural languages and code.

• We conduct experiments to demonstrate our pipeline achieves significant improvement over
baselines on four inductive reasoning tasks across different domains.

• We explore and analyze techniques for reducing the hypothesis search space.

2 METHOD

2.1 PROBLEM STATEMENT

We consider inductive reasoning tasks that require discovering an underlying transformation rule given
input-output examples that follow this unknown rule. More formally, we are given a set of training
examples (x1, y1), (x2, y2), . . . , (xn, yn) where each yi = f(xi) for some unknown function f . Our
goal is for the model to infer the outputs y′1, y

′
2, . . . , y

′
n for a list of novel inputs x′

1, x
′
2, . . . , x

′
n

2

Published as a conference paper at ICLR 2024

Algorithm 1: Implementing a Python Program from a Natural Language Hypothesis
Input: Training examples {(x1, y1), . . . , (xn, yn)}, natural language hypothesis L, maximum

number of feedback iterations Nfeedback, initial LLM prompt template m, number of
programs per hypothesis K

Output: A Python program p that is expected to be consistent with the training examples and
hypothesis L

P ← LLM(m.format(L, {(x1, y1), . . . , (xn, yn)}), n = K) // Generate K programs
foreach program p ∈ P do

if ∀(xi, yi) ∈ {(x1, y1), . . . , (xn, yn)} : p(xi) = yi then
return p // If a program succeeds on all examples, return it.

for i = 1 to Nfeedback do
foreach program p ∈ P do

for (xi, yi) ∈ {(x1, y1), . . . , (xn, yn)} do
e← CatchException(p(xi))
if e ̸= null then

m.append(p, e) // Add a caught exception to the prompt
break

else if p(xi) ̸= yi then
m.append(p, xi, yi, p(xi)) // Add failed example to prompt
break

p′ ← LLM(m) // Generate one revised program
if ∀(xi, yi) ∈ {(x1, y1), . . . , (xn, yn)} : p′(xi) = yi then

return p′

p← p′

return argmaxp∈P |{(xi, yi) : p(xi) = yi and CatchException(p(xi)) = null}|

that captures the transformation f . This formulation applies to all four datasets we consider in
the experiment settings, as shown in Figure 2. This task is widely studied in program synthesis
literature (Acquaviva et al., 2022; Odena et al., 2020; Ellis et al., 2023; Xu et al., 2023a), where a
program written in a manually-designed Domain-Specific Language (DSL) is used to represent the
transformation, which is applied to the test inputs to obtain the predicted outputs. Recently, there are
also multiple works (Webb et al., 2022; Xu et al., 2023b; Mirchandani et al., 2023; Gendron et al.,
2023) that do not predict the rule explicitly. Instead, large language models are used to predict the
output for novel input examples directly given the training input-output pairs.

2.2 OVERVIEW

As illustrated in Figure 1, in our pipeline, we first prompt an LLM to generate hypotheses about
the transformation rule shared across the input-output pairs in natural language. We then filter out
a smaller set of hypotheses, using either an LLM or human annotator – the goal of this step is simply
to reduce the computational cost of later steps. The filtered hypotheses are used to prompt an LLM to
generate programs that take in an input example and output the transformed result. These programs
are then tested against the initial training examples. Note that, in these domains, we observed that
programs that successfully generated outputs for training pairs almost always generalized to test items.

2.3 GENERATING HYPOTHESES

The first step in our pipeline is to prompt a language model to generate natural language hypotheses
for inductive reasoning problems. For each problem, we provide GPT-4 with a description of the task
setup and the problem-specific input-output examples and prompt it to generate hypotheses about
possible underlying rules or patterns that could explain the transformation in the given examples.
We also provide two problems with human-annotated hypotheses as few-shot demonstrations in the
prompt. More precisely, when doing an ARC task, we provide GPT-4 with the input-output examples
in the form of a grid of numbers and specify the corresponding colors for each number as part of
the prompt, with the exact prompt included in the Appendix A. We sample multiple responses from
GPT-4, with a temperature of 1.0, as the hypothesis candidates.

2.4 REDUCING NUMBER OF CANDIDATE HYPOTHESES

Ideally, we would like to directly test all of the generated hypotheses by implementing them as
Python programs. However, given a potentially large number of hypotheses, testing all of them can
be expensive. Thus, we investigate several methods to identify the most promising hypotheses from
a set of proposals. For an end-to-end approach, we investigate using LLMs to summarize the full set

3

Published as a conference paper at ICLR 2024

?

['c=/users/dave/shotcut.xls']

?

'shotcut.xls'

['c=/users/dave/pivot table.xls']

'pivot table.xls'

['c=/users/dave/formulas.xls']

'formulas.xls'

(a) ARC (b) 1D-ARC (c) SyGuS

[6, 9, 2, 1, 5, 8, 7, 2]

[6, 9, 1, 5, 8, 7, 2]

[7, 8, 0, 2, 6]

[7, 8, 2, 6]

[4, 2, 8, 0, 1, 2]

?
(d) List Functions

Figure 2: Example problems in each of our four evaluation datasets.

of hypotheses into a smaller number of hypotheses. Specifically, we directly present GPT-4 with all
candidate hypotheses and ask it to produce a smaller number of hypotheses summarizing the given can-
didate hypotheses. In addition, to help estimate a lower bound on performance if we were to test all hy-
potheses, we ask a human annotator to go through candidate hypotheses and select correct ones, if any.

2.5 IMPLEMENTING PYTHON PROGRAMS FROM HYPOTHESES

The pseudocode for this stage is presented in Algorithm 1. After obtaining a set of candidate hypothe-
ses for each problem, we individually use each hypothesis as the input for GPT-4 and prompt it to
generate multiple Python programs that implement the described transformation. Then, we run these
programs against the problem’s original input-output examples (while still holding out the test exam-
ples), determining whether they yield correct outputs for each case. If a code implementation correctly
generates the outputs for each of the training examples, it is selected for generating the prediction on
the test input example. If no implementation passes all of the training examples, we repeatedly ask
GPT-4 to revise the implementations according to the execution results on the training set, including er-
ror messages and desired outputs, similar to Chen et al. (2023). This leverages research on code repair
spanning multiple decades (Schulte et al., 2010; Pang, 2018; Vasic et al., 2019; Rahman et al., 2021, in-
ter alia). If we cannot achieve a program that passes all the training examples after a preset number of
feedback rounds, we select the program that passes the most examples for generating the prediction.

3 EXPERIMENTS AND RESULTS

3.1 DATASETS

We evaluate our approach on four distinct datasets: the Abstraction and Reasoning Corpus (ARC), the
one-dimensional variant of ARC (1D-ARC), BUSTLE’s Syntax-Guided Synthesis (SyGuS) dataset
and List Functions dataset. These datasets offer diverse and challenging reasoning tasks in the
domains of 2D grids, number sequences and strings, enabling us to thoroughly assess the inductive
reasoning capabilities of our method. We provide examples of tasks in these datasets in Figure 2.
ARC. The Abstraction and Reasoning Corpus (ARC), proposed by Chollet (2019), is a dataset
designed to assess models’ generalizable reasoning capabilities. It is a dataset of 400 training and 400
evaluation problems. Each problem consists of a set of input-output 2D grids that capture a specific
underlying rule or pattern such as geometric transformation and object counting. Each example is a
grid with 1× 1 to 30× 30 pixels of any of ten colors – note that the input and output grid need not
have the same shape. To effectively analyze this task despite the high cost of GPT-4, in our paper, we
randomly select a subset of 100 problems from the 400 training problems as the evaluation dataset.
1D-ARC. 1D-ARC is a one-dimensional adaptation of the original ARC dataset proposed in (Xu
et al., 2023b). Although simpler than the two-dimensional ARC problems, 1D-ARC offers a more
controlled setting to investigate the inductive reasoning abilities of language models as they are
trained to handle sequential data. We once again select a random subset for evaluation, this time
randomly choosing 6 tasks from each of 1D-ARC’s 18 categories for a total of 108 problems.
SyGuS. The SyGuS dataset in the BUSTLE paper contains 89 tasks that require representing a
mapping between pairs of strings as a program (Odena et al., 2020). This task represents the kinds of
problems solved by FlashFill (Gulwani, 2011), a feature in Excel that has been widely cited as an
influential real-world example of program synthesis (Le et al., 2017).

4

Published as a conference paper at ICLR 2024

List Functions. The List Functions dataset proposed in Rule et al. (2020) is a cognitive-science-
inspired inductive reasoning benchmark that involves mapping a list of numbers to another list of
numbers. The transformation covers basic list operations like duplication, and removal, as well
as more complex combinations of recursive, conditional, and numerical reasoning (e.g., sorting,
computing difference). The dataset has 250 tasks, each with 8 train and 8 test examples.

3.2 ARC
Settings. We measure the performance of different methods by computing the accuracy of models’
prediction on the test input cases1. Although the input-output examples are typically visually
presented in 2D pixel grids, we convert them to a text format in the style of NumPy arrays. We
include the prompt templates in Appendix A.

3.2.1 MAIN RESULTS

We compare the direct prompting baseline to different
variants and ablations of our pipeline.

Method Accuracy (%)

Direct 17
Program Only 23

Summarized Hypo. 30
Human-Selected Hypo. 33

Human-Written Hypo. 45

Table 1: Results of the baseline and variants
of our method on the randomly selected 100
ARC tasks. Our method outperforms base-
lines with or without human supervision.

Direct Prompting. As done in previous work (Xu et al.,
2023b; Mirchandani et al., 2023; Gendron et al., 2023),
we provide training examples in a prompt and ask GPT-
4 to directly infer novel test inputs’ output grids.
Program Only. In this ablation, we directly prompt
GPT-4 to output Python programs for training examples.
We generate 64 programs per task, selecting one pass-
ing the most training examples to generate test outputs.
Summarized Hypotheses. For each problem, we first use GPT-4 to generate 64 candidate hypotheses
and then ask GPT-4 to summarize 8 hypotheses from the 64 candidates. We then generate 8 programs
for each hypothesis, resulting in 64 candidate programs per problem. This is followed by 3 rounds
of execution feedback. Note that during our experiments, we found that GPT-4 only generates correct
hypotheses for 49 tasks, according to human annotators. Of the 30 tasks solved with summarized
hypotheses, 28 had a correct hypothesis before summarization.
Human-Selected Hypotheses. We first prompt GPT-4 to generate 64 hypotheses and then ask a hu-
man to manually select a correct one of them for each task, if any exist. Then we generate 8 programs
for each hypothesis, followed by up to 3 rounds of execution feedback. As we observe a low false-
positive rate, this is approximately a lower-bound to evaluating all hypotheses. Here, we only generate
programs for the 49 tasks with selected hypotheses. Of these, 33 (67%) led to correct programs.
Human-Written Hypotheses. For this version, we leverage the human language annotations from the
LARC dataset (Acquaviva et al., 2022) as golden hypotheses. We then generate 8 programs for each
hypothesis, followed by 3 rounds of execution feedback. We treat these human-written hypotheses as
oracle solutions in order for us to better understand the extent to which this pipeline is separately bot-
tlenecked by hypothesis generation as opposed to program generation. The main results are shown in
Table 1. Using a programmatic representation already boosts the performance over the direct prompt-
ing baseline by a large margin, from 17% to 23%. Leveraging the summarized hypotheses is also
helpful, improving the performance from 23% to 30%. We obtain the best accuracy 33% when gen-
erating programs using human-selected hypotheses. This is on par with the version where we directly
leverage the golden human-generated hypotheses. For reference, we also evaluated the method from
Icecuber (2020), which is the current DSL-based state-of-the-art approach (Mirchandani et al., 2023).
Although it does not use a language model, it provides useful context. We found that it answered
43% of our 100 sampled items correctly, slightly underperforming the human-written results.

3.2.2 QUALITATIVE RESULTS

We show an example of generated hypotheses and the corresponding programs generated from the
considered methods in Fig. 3. We observe that many of the correct hypotheses generated by GPT-4
are similar to the human-written hypotheses in terms of their specificity, although often less concise.
Summarized hypotheses can often become vague and ambiguous, which is potentially the reason for
degraded performance. Sometimes the correct hypothesis is omitted from the summarized hypotheses.
Note, because we prompt GPT-4 to treat the grids as NumPy (Harris et al., 2020) arrays, we observe
that GPT-4 tends to leverage various NumPy functions to perform the desired transformation.

1The ARC challenge officially uses top-3 accuracy, checking if any of three model outputs are correct, but we
consider top-1 accuracy, like most related works (Xu et al., 2023b; Gendron et al., 2023; Mirchandani et al., 2023).

5

Published as a conference paper at ICLR 2024

?
Summarized Hypothesis and its Corresponding Generated Program

To make the output, extract the colored shape(s) from the input grid, expand or duplicate them according to
the specified pattern, and place the resulting shape(s) into the output grid.

1 def transform_grid(input_grid: np.ndarray) -> np.ndarray:
2 unique_numbers = np.unique(input_grid)
3 output_grid = np.zeros((3, 6), dtype=int)
4 for number in unique_numbers:
5 if number == 0:
6 continue
7 num_rows, num_cols = np.where(input_grid == number)
8 min_row, max_row = min(num_rows), max(num_rows)
9 min_col, max_col = min(num_cols), max(num_cols)

10 shape = input_grid[min_row:max_row + 1, min_col:max_col + 1]
11 output_grid[0:shape.shape[0], 0:shape.shape[1]] = shape
12 output_grid[0:shape.shape[0], 3:3 + shape.shape[1]] = shape
13 if shape.shape[0] < 3:
14 output_grid[shape.shape[0]:2 * shape.shape[0], :shape.shape[1]] = shape
15 output_grid[shape.shape[0]:2 * shape.shape[0], 3:3 + shape.shape[1]] = shape
16 return output_grid

Human-Selected Hypothesis and its Corresponding Generated Program

In the input, you should see a black grid with an 8x8 size. The grid contains one colored shape (either teal,
red, or blue), which is a 2x2 square with a corner missing. The output grid size should be 3x6. To make the
output, you have to extract the colored shape, and then expand it horizontally by duplicating the entire
shape. The result will be a colored shape that is twice as wide as the original one.

1 def transform_grid(input_grid: np.ndarray) -> np.ndarray:
2 import numpy as np
3 # Find the non-zero elements and their indices
4 non_zero_indices = np.argwhere(input_grid != 0)
5 min_row, min_col = np.min(non_zero_indices, axis=0)
6 max_row, max_col = np.max(non_zero_indices, axis=0)
7 # Extract the colored shape
8 shape = input_grid[min_row:max_row+1, min_col:max_col+1]
9 # Expand the shape horizontally

10 expanded_shape = np.hstack((shape, shape))
11 return expanded_shape

Figure 3: An ARC example of generated hypotheses using different methods and their corresponding
generated programs. The summarized and human-selected hypotheses from LLM-generated candi-
dates both yield correct programs. Note, these are gpt-4-0314-generated and we omit empty lines.

3.2.3 MORE ABLATION STUDIES

Chain of Thought (Wei et al., 2022). For this ablation, we wanted to understand the effect of the
intermediate language without programs. We found GPT-4’s performance dropped to 19%, regardless
of whether it generated the intermediate hypothesis or whether human-written hypotheses were used.

feedback iterations
Method 0 1 2 3

Summarized Hypo. 24 28 28 30
Human-Selected Hypo. 26 31 33 33
Human-Written Hypo. 38 44 45 45

Table 2: Accuracy (%) of GPT-4 on ARC using
different numbers of feedback iterations.

Execution Feedback. The results of models
using different numbers of execution feedback
iterations are summarized in Table 2. Execu-
tion feedback plays an important role regard-
less of how hypotheses are generated. However,
the performance gain plateaus as the number of
feedback iterations increases.

3.3 1D-ARC
In contrast to the ARC experiments, GPT-4’s
performance on 1D-ARC was notably higher. We observed reasonably correct hypotheses by simply
generating 16 hypothesis candidates. Thus, we do not need to obtain a subset of hypotheses to reduce
the cost of implementing programs, but instead evaluate on all the hypotheses generated. We compare
the direct prompting baseline with our method, with and without natural language hypotheses.

6

Published as a conference paper at ICLR 2024

Method Accuracy (%)

Direct (Xu et al.) 39.6
Program Only (Ours) 61.1

Full (Ours) 73.1

Table 3: Experimental results on 1D-ARC.
Program and hypothesis generation both con-
tribute to performance improvements.

Direct Prompting For this experiment, we report the
accuracy of direct prompting results from Xu et al.
(2023b) on the selected 108 tasks.
Program Only. We directly prompt GPT-4 to output
Python programs given the training examples. We gen-
erate 80 programs for each task and select the program
that passed most training examples.
Full. We first generate 16 different language hypothe-
ses, then generate 4 programs for each, resulting in 64 programs per problem.
We summarize our results in Table 3. Generating hypotheses and implementing programs significantly
improves the performance on 1D-ARC compared with the direct prompting method.

3.4 SYGUS
Method Accuracy (%)

CrossBeam (Shi et al.) 74.8
Program Only (Ours) 94.3

Full (Ours) 94.3

Table 4: Experiment results on SyGuS. Our
directly generated programmatic hypotheses
and natural-language-conditioned program-
matic hypotheses perform similarly.

Settings. We evaluate all 89 tasks from the SyGuS
dataset. Unlike ARC and 1D-ARC datasets, we follow
the convention in the program synthesis literature and
treat all examples as training. Accuracy is computed
by whether a program passes all training examples.
Results. We find that GPT-4 can generate correct pro-
grams for 94.3% of the SyGuS tasks using 8 programs
with two rounds of feedback without hypothesis
generation, demonstrating strong performance in a
direct program generation approach. Of the five remaining tasks, we find that three of the tasks
have mistakes in their examples. As a result, when using natural language hypotheses to guide the
code generation process, GPT-4’s performance does not meaningfully change, achieving the same
performance 94.3% by generating 4 hypotheses and implementing 2 program for each hypothesis. As
a comparison, the state-of-the-art program induction approach CrossBeam (Shi et al., 2022) can solve
74.8% of the dataset using a domain-specific language with 50K program candidates. For reference,
the state-of-the-art DSL-based baseline CrossBeam only achieves an accuracy of 74.8 on this dataset.

3.5 LIST FUNCTIONS
Method Accuracy (%)

Direct 31
Program Only (Ours) 59

Full (Ours) 69

Table 5: Experiment results on List Func-
tions. Code and language generation both
contribute to performance improvements.

For this dataset, we sample 100 tasks from it for eval-
uation. Empirically we found that on this dataset, a
correct language hypothesis almost always leads to
a correct Python implementation, therefore our Full
pipeline will generate 64 hypotheses and implement
one Python program for each hypothesis. And the
program only ablation will generate 64 programs for
each task. The results are summarized in Table 5. Our
method consistently outperforms baselines.

4 DISCUSSION

4.1 FAILURE CASES

Task 444801d8 Task 363442ee

Figure 4: Two examples
where GPT-4 has difficulty
implementing programs even
with correct hypotheses.

Currently, there are two types of failures in our pipeline. First, the
model may be unable to generate a correct and sufficiently precise
natural language hypothesis. Second, the model can still generate
incorrect programs given a correct hypothesis.
Hypothesis Generation. Hypothesis generation is especially chal-
lenging for the ARC dataset as it involves recognizing visual patterns
in 2D grids. While we observe that GPT-4 has a primitive ability to
recognize points, lines, and rectangles, and to identify repetition and
symmetry relationships, it has trouble understanding more complex
shapes and visual relationships like translation, scaling, and contain-
ment. This is unsurprising as GPT-4 is trained primarily on text corpora, and the visual grid is input
as text in our experiments. Furthermore, we observe that GPT-4 has difficulty proposing reasonable
hypotheses for very large grids, possibly due to the limited context length. In contrast, GPT-4 was

7

Published as a conference paper at ICLR 2024

quite good at hypothesis generation on 1D-ARC. While the concepts may be easier for this dataset
it is certainly the case that the visual encoding is easier. We thus tentatively suggest that current
LMs are non-trivially capable of hypothesis generation for inductive learning and anticipate that
vision-language models (Driess et al., 2023) may close the remaining gap for visual tasks like ARC.
Program Generation. Even with correct hypotheses, difficulties may arise when the task is hard to
implement in Python. For example, task 444801d8 shown in Figure 4 was one where the language
model failed when given a correct hypothesis. The task is difficult to solve programmatically, even
for humans, as it requires identifying an irregular shape and then filling it according to an irregular
pattern. This suggests a limitation of using generic Python programs for solving visual inductive
reasoning tasks. Natural language hypotheses may also contain ambiguous concepts that mismatch
the biases of the program generator. The human-written hypothesis for task 363442ee in Figure 4
is: “In the input, you should see a color pattern on the left side and blue squares on the right. The
output grid size same size as the input. To make the output, you have to use the blue square as the
middle square and recreate the same pattern replacing the blue square with the same color in the
middle as the pattern.” GPT-4 is unable to understand what “color pattern” refers to and generates
an incorrect program by treating the first three columns as the pattern. On the other hand, GPT-4’s
generated hypothesis mentions that "In the input, you should see a 3x3 colored square on the left
side...", which yields the correct Python implementation. Thus a good match is needed between
hypothesis generator and program synthesis, suggesting dircetions for future work.

4.2 CONSIDERING EVERY CANDIDATE HYPOTHESIS.

Currently, our pipeline does not consider many candidate hypotheses; we note that this is not a
theoretical limitation of our method. In our experiments, we found that when the generated program
passes all training cases, it almost always passed the test case (we only observe a single task that is
an exception). Therefore, the performance of human-selected hypotheses can reasonably be treated
as a lower bound for the performance if we consider every candidate hypothesis. However, we need
to sample a large number of (64) hypotheses to have a reasonable hit rate of correct ones, and testing
a single candidate hypothesis can take up to 1.5$ (8 programs with two rounds of feedback) – leading
us to evaluate summarizing and human filtering. This suggests that the effectiveness of our method
will improve automatically as the inference cost of language models decreases.

4.3 COMBINATORIAL SEARCH WITH PARSEL

We also explore the application of Parsel, an efficient compositional program generation method
(Zelikman et al., 2023), in combination with GPT-4 to enhance the model’s ability to generate and
evaluate code implementations. This approach aims to capitalize on the benefits of compositional
reasoning in problem-solving, by first decomposing a solution, generating multiple implementations
of each part of the solution, and then searching over combinations of the implementations. This
allows for many more programs to be tested with fewer LLM calls. For human-written hypotheses,
this improved performance to 47.5%, but for language-model-generated hypotheses it had the reverse
effect. Details can be found in Appendix B.

5 RELATED WORKS

Inductive Reasoning. Techniques to allow automatic inductive reasoning have been widely studied
by the artificial intelligence community as well as the program synthesis community. Given a set of
observations, these efforts aim to computationally infer the underlying rules for a set of observations
that can be generalized to novel scenarios. Traditional methods usually rely on programs written in
manually designed domain-specific languages to represent the rule space and perform searching on the
space to obtain the desired program. A number of heuristics have been proposed to speed up the search
process. BUSTLE (Odena et al., 2020) proposes a neural search algorithm that takes the intermediate
results of partial programs into account during the search process. DreamCoder (Ellis et al., 2023)
introduces a wake-sleep algorithm that will dynamically build library functions on top of the primitive
operations for solving more complex tasks with less running time. These methods typically require
training on a corpora of related tasks, and cannot generalize across different domains due to the
limited DSL. Earlier work in this area showed that introducing linguistic knowledge and selecting
relevant language descriptions allows for better classifiers (Andreas et al., 2018). Recently, multiple
works (Mirchandani et al., 2023; Gendron et al., 2023) tried to evaluate large language models on
inductive reasoning tasks. These works directly prompt models to predict the output given the novel
input as well as training examples, which leads to poor performance. Our work draws inspiration

8

Published as a conference paper at ICLR 2024

from previous program synthesis literature to use programs as representations of the underlying
rules. But we instead leverage a general programming language Python, which makes our method
applicable to a wide range of different domains such as grid transformation and string transformation.
Reasoning with Programs. There has been a consistent effort to introduce program representations
into different types of reasoning tasks such as visual reasoning (Andreas et al., 2016; Mao et al., 2019)
and question answering (Dong & Lapata, 2016; Zhong et al., 2017). Naturally, these programmatic
reasoning works build on prior work on generating programs with language models (Jacob & Tairas,
2010; Schulam et al., 2013; Kushman, 2015; Desai et al., 2016; Chen et al., 2021; Austin et al.,
2021; Jain et al., 2022). Programs provide various advantages over end-to-end methods, such as
interpretability, generalizability, and efficiency. Mainstream approaches have focused on learning to
parse natural language questions into programs of domain-specific languages that can be executed to
obtain the answer; a program executor is often jointly learned to execute primitive functions (Andreas
et al., 2016; Mao et al., 2019).
Recently, LLMs have been shown to be capable of generating programs written in general-purpose
programming languages. This inspired multiple works to leverage LLMs to reason with programmatic
representations. Gao et al. (2022) introduced Program-Aided Language models (PAL), and Chen et al.
(2022) proposed the "Program of Thoughts" (PoT) prompting, both of which prompt large language
models to solve step-by-step math and symbolic reasoning tasks by proposing programs and offload
the computation to a Python interpreter. Visprog (Gupta & Kembhavi, 2023) and ViperGPT (Surís
et al., 2023) generated programs that can be executed using pretrained perception modules to tackle
visual reasoning tasks. These approaches are superior in performance and require minimal data for
in-context learning without the need for any training. Notably, the code generated by the models in
these papers has primarily served as a computational aid, not a general task representation. In our
case, programs serve as testable hypotheses for solving inductive reasoning tasks.
Lastly, Clement et al. (1986) investigated the correlation between analogical reasoning ability and the
programming skills of high school students, indicating a significant relationship between the ability to
perform analogical reasoning and write compositional programs. Given previously observed parallels
between language model behavior and cognitive psychology experiments (e.g., Dasgupta et al. 2022;
Aher et al. 2022), language models may exhibit a similar trend.

6 LIMITATIONS AND FUTURE WORK

Currently, our method requires multiple LLM queries, which may be costly depending on the
complexity of tasks. But, with the rapid improvement and decreasing costs, this allows for increasingly
complex tasks to be solved at a given cost. There are also several promising directions for future work
building on these results. First, some tasks and objectives are inherently stochastic or challenging to
express explicitly as a program – for these, supporting objectives besides exact match is essential
(e.g., ROUGE (Lin, 2004)) and may benefit from leveraging from code that leverages other machine
learning models (e.g., VisProg (Gupta & Kembhavi, 2023) for visual tasks). However, Python is
already notably more expressive than the DSLs that were standard in prior work on program synthesis
(Devlin et al., 2017; Ellis et al., 2019; Sharma et al., 2017; Guu et al., 2017).
Lastly, although we observed a low false-positive rate on our datasets (i.e., if a working program
was found, it almost always generalized), other inductive reasoning tasks may require further work
to avoid false-positives. Under the assumption of a low false-positive rate, which we empirically
observed, our method is approximately the same as importance sampling in a hierarchical Bayesian
model, where the importance distribution is that of the language model conditioned on the examples.
This could potentially guide future work toward more efficient algorithms.

7 CONCLUSIONS

In this work, we propose a pipeline that facilitates better inductive reasoning in large language
models. The core idea is to first prompt LLMs to generate hypotheses of the underlying rule in natural
language, to then implement the hypotheses as Python programs, and to search for programs which
can be verified on the training examples and executed on novel inputs for inference. We evaluate the
effectiveness of our pipeline on four challenging datasets Abstraction and Reasoning Corpus (ARC),
its variant 1D-ARC, a string transformation dataset SyGuS, and List Functions dataset. Our pipeline
outperforms the baseline methods by a large margin on all four datasets.

9

Published as a conference paper at ICLR 2024

8 ACKNOWLEDGEMENTS

This work was supported in part by the Microsoft Accelerate Foundation Models Research program,
National Science Foundation Grant No. 2302701, and NSF Expeditions Grant No. 1918771. Gabriel
Poesia is supported by a Stanford Interdisciplinary Graduate Fellowship.

REFERENCES

Sam Acquaviva, Yewen Pu, Marta Kryven, Theodoros Sechopoulos, Catherine Wong, Gabrielle
Ecanow, Maxwell Nye, Michael Tessler, and Josh Tenenbaum. Communicating natural programs
to humans and machines. Advances in Neural Information Processing Systems, 35:3731–3743,
2022.

Gati Aher, Rosa I Arriaga, and Adam Tauman Kalai. Using large language models to simulate
multiple humans. arXiv preprint arXiv:2208.10264, 2022.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to compose neural
networks for question answering. In NAACL, 2016.

Jacob Andreas, Dan Klein, and Sergey Levine. Learning with latent language. In ACL, 2018.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Catherine A Clement, D Midian Kurland, Ronald Mawby, and Roy D Pea. Analogical reasoning and
computer programming. Journal of Educational Computing Research, 2(4):473–486, 1986.

Ishita Dasgupta, Andrew K Lampinen, Stephanie CY Chan, Antonia Creswell, Dharshan Kumaran,
James L McClelland, and Felix Hill. Language models show human-like content effects on
reasoning. arXiv preprint arXiv:2207.07051, 2022.

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark Marron, and
Subhajit Roy. Program synthesis using natural language. In Proceedings of the 38th International
Conference on Software Engineering, pp. 345–356, 2016.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In International conference
on machine learning, pp. 990–998. PMLR, 2017.

Li Dong and Mirella Lapata. Language to logical form with neural attention. In ACL, 2016.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
language model. In ICML, 2023.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a repl. Advances in Neural Information Processing
Systems, 32, 2019.

10

Published as a conference paper at ICLR 2024

Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke
Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: growing generalizable,
interpretable knowledge with wake–sleep bayesian program learning. Philosophical Transactions
of the Royal Society A, 381(2251):20220050, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.

Gaël Gendron, Qiming Bao, Michael Witbrock, and Gillian Dobbie. Large language models are not
abstract reasoners. arXiv preprint arXiv:2305.19555, 2023.

Noah D Goodman, Joshua B Tenenbaum, Jacob Feldman, and Thomas L Griffiths. A rational analysis
of rule-based concept learning. Cognitive science, 32(1):108–154, 2008.

Noah D Goodman, Tomer D Ullman, and Joshua B Tenenbaum. Learning a theory of causality.
Psychological review, 118(1):110, 2011.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. ACM
Sigplan Notices, 46(1):317–330, 2011.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In CVPR, 2023.

Kelvin Guu, Panupong Pasupat, Evan Liu, and Percy Liang. From language to programs: Bridging
reinforcement learning and maximum marginal likelihood. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1051–1062,
2017.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.
URL https://doi.org/10.1038/s41586-020-2649-2.

Icecuber. Abstraction and rasoning challenge 1st place solution. 2020. URL https://
www.kaggle.com/competitions/abstraction-and-reasoning-challenge/
discussion/154597.

Ferosh Jacob and Robert Tairas. Code template inference using language models. In Proceedings of
the 48th Annual Southeast Regional Conference, pp. 1–6, 2010.

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram
Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program synthesis. In
Proceedings of the 44th International Conference on Software Engineering, pp. 1219–1231, 2022.

Aysja Johnson, Wai Keen Vong, Brenden Lake, and Todd M Gureckis. Fast and flexible: Human
program induction in abstract reasoning tasks. In Proceedings of the Annual Meeting of the
Cognitive Science Society, 2021.

Nate Kushman. Generating computer programs from natural language descriptions. PhD thesis,
Massachusetts Institute of Technology, 2015.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY Chan, Kory Matthewson, Michael Henry
Tessler, Antonia Creswell, James L McClelland, Jane X Wang, and Felix Hill. Can language
models learn from explanations in context? arXiv preprint arXiv:2204.02329, 2022.

Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Abhishek Udupa, and Sumit Gulwani.
Interactive program synthesis. arXiv preprint arXiv:1703.03539, 2017.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

11

https://doi.org/10.1038/s41586-020-2649-2
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597

Published as a conference paper at ICLR 2024

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. In
ICLR, 2019.

Ana Marasović, Iz Beltagy, Doug Downey, and Matthew E Peters. Few-shot self-rationalization with
natural language prompts. arXiv preprint arXiv:2111.08284, 2021.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines.
arXiv preprint arXiv:2307.04721, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and Hanjun Dai.
Bustle: Bottom-up program synthesis through learning-guided exploration. arXiv preprint
arXiv:2007.14381, 2020.

Nancy Pang. Deep learning for code repair. University of British Columbia, 2018.

Charles S Peirce. Questions concerning certain faculties claimed for man. The Journal of Speculative
Philosophy, 2(2):103–114, 1868.

Md Mostafizer Rahman, Yutaka Watanobe, and Keita Nakamura. A bidirectional lstm language
model for code evaluation and repair. Symmetry, 13(2):247, 2021.

Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain yourself!
leveraging language models for commonsense reasoning. ACL, 2019.

Joshua S Rule, Joshua B Tenenbaum, and Steven T Piantadosi. The child as hacker. Trends in
cognitive sciences, 24(11):900–915, 2020.

Peter Schulam, Roni Rosenfeld, and Premkumar Devanbu. Building statistical language models of
code. In 2013 1st International Workshop on Data Analysis Patterns in Software Engineering
(DAPSE), pp. 1–3. IEEE, 2013.

Eric Schulte, Stephanie Forrest, and Westley Weimer. Automated program repair through the
evolution of assembly code. In Proceedings of the 25th IEEE/ACM International Conference on
Automated Software Engineering, pp. 313–316, 2010.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet:
Neural shape parser for constructive solid geometry. 2018 ieee. In CVF Conference on Computer
Vision and Pattern Recognition, pp. 5515–5523, 2017.

Kensen Shi, Hanjun Dai, Kevin Ellis, and Charles Sutton. Crossbeam: Learning to search in
bottom-up program synthesis. In ICLR, 2022.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Unsupervised
commonsense question answering with self-talk. In EMNLP, 2020.

Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128, 2023.

Joshua B Tenenbaum, Thomas L Griffiths, and Charles Kemp. Theory-based bayesian models of
inductive learning and reasoning. Trends in cognitive sciences, 10(7):309–318, 2006.

Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow a
mind: Statistics, structure, and abstraction. science, 331(6022):1279–1285, 2011.

Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh. Neural program
repair by jointly learning to localize and repair. arXiv preprint arXiv:1904.01720, 2019.

12

Published as a conference paper at ICLR 2024

Edward Vul, Noah Goodman, Thomas L Griffiths, and Joshua B Tenenbaum. One and done? optimal
decisions from very few samples. Cognitive science, 38(4):599–637, 2014.

Taylor Webb, Keith J Holyoak, and Hongjing Lu. Emergent analogical reasoning in large language
models. arXiv preprint arXiv:2212.09196, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Yudong Xu, Elias B Khalil, and Scott Sanner. Graphs, constraints, and search for the abstraction and
reasoning corpus. In AAAI, 2023a.

Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias B Khalil. Llms and the abstrac-
tion and reasoning corpus: Successes, failures, and the importance of object-based representations.
arXiv preprint arXiv:2305.18354, 2023b.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. In NeurIPS, 2022.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D. Goodman, and Nick Haber. Parsel: Algorithmic
reasoning with language models by composing decompositions, 2023.

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike Lewis, Wen-tau Yih, Daniel Fried, and Sida Wang.
Coder reviewer reranking for code generation. In ICML, 2023.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and Hanie Sedghi.
Teaching algorithmic reasoning via in-context learning. arXiv preprint arXiv:2211.09066, 2022.

13

Published as a conference paper at ICLR 2024

A EXPERIMENT DETAILS

Prompts and Hyperparameters. For hypothesis generation, The prompts are shown in Figure A.8,
Figure A.10 and Figure A.11. We set the temperature to be 1.0 and the maximum number of
tokens in response to be 200. For program generation and execution feedback, we use a tempera-
ture of 0.7 and set the maximum number of tokens to be 1000. Throughout the experiments, we
use gpt-4-0613 and gpt-3.5-turbo-0301. Earlier results used gpt-4-0314, which we
include in Appendix C.

2 4 6 8 10 12 14 16
Number of Programs (4 per Hypothesis)

40

50

60

70

80

Ac
c

(%
)

Full
Prog Only

(a) Results on 1D-ARC

8 16 24 32 40 48 56 64
Number of Programs (1 per Hypothesis)

55

60

65

Ac
c

(%
)

Full
Prog Only

(b) Results on List Functions.

Figure A.5: Accuracy of our methods with varying numbers of hypotheses and programs.

Execution Feedback. After obtaining programs from language models, we directly execute them
on training examples. If there are no programs passing all training examples, we prompt the language
model again with the first example that the program fails to pass, and ask it to correct the program.
To save cost for experiments on ARC where we generate more than 64 programs, we do not run
execution feedback on every program. Instead, we cluster programs by their output on the training
examples. Only one program is selected from each cluster for feedback execution.

B ADDITIONAL RESULTS AND DISCUSSIONS

B.1 MORE ABLATIONS

8 16 24 32 40 48 56 64
Number of Sampled Hypotheses

0.20

0.25

0.30

0.35

0.40

0.45

0.50

%
 o

f t
as

ks
 w

ith
 c

or
re

ct
 h

yp
ot

he
sis

Figure A.6: Percentage of tasks with a
correct hypothesis when we increase the
number of hypotheses sampled for the
ARC experiment.

Ablation on the Number of Hypotheses & Programs.
First, we show the percentage of tasks that have a correct
hypothesis when we increase the number of samples in
Figure A.6. Increasing the sample size will lead to a steady
improvement, although the slope is flattening. We also
report how the accuracy changes when we vary the number
of hypotheses for each task on ARC-1D and List Func,
fixing the number of programs for each hypothesis. For
both datasets, our pipeline and the program-only ablation
will steadily gain performance improvement as the number
of samples increases, as shown in Figure A.5.
Zero-shot Hypothesis Generation. Here, we explore the
effect of examples for hypothesis generation. On 1D-ARC,
we remove all the example tasks in the prompt while still
generating 16 hypotheses and 4 programs for each hypothesis. This gives an accuracy of 71.3%,
which is a little worse than the performance with two-shot prompting 73.1%.

B.2 GPT-3.5

In this ablation, we leverage GPT-3.5 instead of GPT-4 in our pipeline.
ARC. Compared with GPT-4, we find GPT-3.5 mostly generates meaningless hypotheses given the
inputs from ARC. We then test GPT-3.5’s ability to generate program implementations when given
the human-written hypotheses. Because GPT-3.5’s context length is only 4096 tokens (GPT-4, which

14

Published as a conference paper at ICLR 2024

1D-ARC SyGuS List Func

Direct 25.9 N/A 16
Program Only (Ours) 23.1 80.9 46

Full (Ours) 26.9 86.5 57

Table A.1: Accuracy of GPT-3.5 on 1D-ARC, SyGuS and List Functions datasets.

we use for most of our experiments, has a context length of 8192), only 33 tasks can fit into the
prompt. Therefore, we treat the problems that do not fit in the context window as incorrect and do not
leverage execution feedback. GPT-3.5 achieves an accuracy of 27% with 128 programs when given
human-written hypotheses. Using a 16384 context length version of GPT 3.5 boosts the performance
to 30%. This is still worse than GPT-4, but GPT-3.5 is approximately 20 times cheaper than GPT-4.
This shows a trade-off between the performance and cost when choosing base models.
Other datasets. We continue to evaluate GPT-3.5 on other three datasets, where we found that
GPT-3.5 have reasonable performance for both hypothesis generation and program generation.
Therefore we keep the same setting and rerun all experiments with gpt-3.5-0613. The results are
summarized in Table A.1. For 1D-ARC, we generate 16 hypotheses and implement 8 programs for
each hypothesis; for SyGuS, we generate 4 hypotheses and implement 2 programs for each hypothesis
with two rounds of feedback; for List Functions, we generate 64 hypotheses and 1 program for each
hypothesis. All program-only ablation generates the same number of programs in total. We can
observe that our method is also effective on GPT-3.5 on a wide range of domains.

B.3 PARSEL FOR PROGRAM GENERATION

To enhance the performance of program generation, we also adapt a recently proposed method
Parsel (Zelikman et al., 2023) to our settings. Instead of directly generating programs, we first
generate an intermediate pseudocode program written in Parsel language from a given hypothesis,
as shown in Figure A.7. The Parsel language specifies the functions needed to be implemented by
specifying the function name, arguments and its desired behavior in natural language. Then the Parsel
program is passed to a language model for implementing individual functions.
To allow functions to be implemented with knowledge of their context, unlike the original Parsel
paper, we implement all functions needed in a single API call. We then sample multiple trials and
extract multiple implementations of each function specified in the Parsel program. Then we will
recombine every implementation of each function to generate multiple programs. Using human-
written hypotheses, we achieve an accuracy of 47.5% on the 40 randomly selected questions from
ARC by generating 4 Parsel Programs for each hypothesis and 8 programs for each Parsel program
without any feedback, surpassing the 37.5% accuracy obtained by directly generating programs from
hypotheses. However, we found that this yields worse performance with LLM-generated hypotheses:
on the 13 selected tasks that GPT-4 can generate correct hypotheses, directly generating 8 programs
with 1 round of execution feedback yields an accuracy of 92% while 4 Parsel programs × 8 python
programs with 1 round of feedback only yields an accuracy 69%. We suspect that this is due to Parsel
introducing a new level of abstraction into our pipeline: given that error might accumulate during the
transformation between different levels of abstraction, Parsel increases the probability of generating
incorrect final programs. We believe leveraging better code generation techniques is a promising
direction to improve our pipeline.

B.4 PILOT EXPERIMENTS AND NON-SYSTEMATIC FINDINGS

Specifying the Python Types of Matrices for Grids in ARC. In the prompt we use for ARC, we in-
dicate the grids are represented as NumPy arrays using Python type hint (numpy.ndarray[int]).
The typing hint plays an important role in generating programs from language hypotheses, since
it encourages LLMs to leverage NumPy functions that are suited for grid transformation, such as
flipping, 2D indexing. If we change the typing hint to List[List[int]], LLMs will no longer
leverage this library function, which makes the program longer and more error-prone. Using human-
written hypotheses, 8 programs and one round of execution feedback. GPT-4 can only achieve 32.5%,
compared with the 37.5% performance the using NumPy array signature.

15

Published as a conference paper at ICLR 2024

Using LLMs to Rank Hypotheses. We also explore to use LLMs to rank language hypotheses to
throw away bad hypotheses. This is inspired by Zhang et al. (2023), which reranks code generated
from a description based on its probability of generating the description. Because GPT-4 does
not expose the log-probabilities of its generated items, and there is no clear way to extract the
log-probabilities of the hypotheses, we instead use GPT-3 to rerank the hypotheses generated by
GPT-4 by looking at their probabilities of generating the input-output examples, given the hypothesis.
We evaluate this ranking method on the 21 tasks where GPT-4 is able to generate a correct language
hypothesis from 64 candidates. After the ranking, there are only 10 tasks where the correct hypotheses
are placed in the top 16 candidates. This prevents us from reducing the hypotheses needed to
implement without sacrificing the overall performance.

High-Level Representations of ARC Grids. We observed that many for many tasks in ARC, it is
easy for LLMs to come up with reasonable hypotheses if the grids are parsed into a useful geometric
representation, such as irregular shapes, diagnoal lines. As a result, we explored the possibility
of using alternative geometric representations, similar to concurrent work (Xu et al., 2023b). In
particular, we attempted to treat each grid as the result of a sequence of shape placements, for
example:

Blue Rectangle: (0, 2) size: (4, 5)
Black Line: (2, 4)->(5, 4)
Red Points: [(7, 4), (8, 4), (9, 4)]

We implemented an algorithm to identify the shortest possible sequence of shape placements that
would result in the observed grid. While we observed that this allowed the model to propose more
reasonable hypotheses for a subset of the problems, it harmed performance on more of them. This is
due in part to the inherent difficulty of proposing a useful general representation for ARC tasks.

Potential Data Memorization. While large language models have shown remarkable performance
on numerous benchmarks, there are recurring concerns about whether these models have simply
memorized the answers due to observing the problems during training, instead of actually solving
the desired tasks. This is particularly true for closed-source models where details of the training
set are not publicly available, such as GPT-4. Since the ARC (as well as the LARC dataset with
human-written hypotheses) and SyGuS datasets are publicly available on the internet, there is a
possibility that GPT-4’s training data contains these datasets, which might affect how we interpret
these results. While differentiating between memorization and generalization for these close-sourced
models remains an open problem, there are few pieces of evidence that show the effectiveness of our
method. First, as far as we know, there are no public attempts to solve ARC or SyGuS datasets with
Python programs. Second, we tried prompting GPT-4 with some examples in a task and asked it to
output other examples in the same task, and GPT-4 failed to do so. Third, the substantial boost of our
full pipeline over the direct prediction baseline cannot be simply explained by data memorization.

16

Published as a conference paper at ICLR 2024

C RESULTS WITH GPT-4-0314

We initially ran our experiments with GPT-4-0314. Later, due partially to its deprecation, and
partially due to a change in our available compute resources, we reran our experiments with GPT
-4-0613. We include the original result tables here for reference. All the conclusions remain

consistent when we scale up the experiments.

Method Accuracy (%)

Direct 12.5
Program Only 17.5

Summarized Hypo. 27.5
Human-Selected Hypo. 37.5

Human-Written Hypo.* 37.5

Table A.2: Results of the baseline and variants
of our method on the randomly selected 40
tasks from ARC. Our method outperforms
baselines with or without human supervision.

Method Accuracy (%)

Direct (Xu et al.) 38.8
Program Only (Ours) 58.3

Full (Ours) 77.8

Table A.3: Experiment results on 1D-ARC.
Program and hypothesis generation both con-
tribute to performance improvements.

Method Accuracy (%)

CrossBeam (Shi et al.) 74.8
Program Only (Ours) 94.3

Full (Ours) 93.2

Table A.4: Experiment results on SyGuS. Our
directly generated programmatic hypotheses
and natural-language-conditioned program-
matic hypotheses perform similarly.

17

Published as a conference paper at ICLR 2024

Summarized Hypothesis and its Corresponding Generated Parsel Program and Python Program

To make the output, extract the colored shape(s) from the input grid, expand or duplicate
them according to the specified pattern, and place the resulting shape(s) into the output grid.

transform_grid(input_grid): Extract figure from input grid and create output grid
--extract_figure(input_grid): Identify the non-zero elements in the input grid and their position
--create_output_grid(figure): Create a 3x6 grid and copy the figure two times into it

1 def extract_figure(input_grid):
2 non_zero_positions = np.argwhere(input_grid != 0)
3 return input_grid[non_zero_positions.min(axis=0)[0]:non_zero_positions.max(axis=0)[0] + 1,
4 non_zero_positions.min(axis=0)[1]:non_zero_positions.max(axis=0)[1] + 1]
5
6 def create_output_grid(figure):
7 output_grid = np.zeros((3, 6), dtype=int)
8 output_grid[:,:figure.shape[1]] = figure
9 output_grid[:,3:3+figure.shape[1]] = figure

10 return output_grid
11 def transform_grid(input_grid):
12 extracted_figure = extract_figure(input_grid)
13 output_grid = create_output_grid(extracted_figure)
14 return output_grid

Figure A.7: An ARC example of generated hypotheses using Parsel (Zelikman et al., 2023) using the
same task as Figure 3.

18

Published as a conference paper at ICLR 2024

Prompt for Hypothesis Generation

[Role: system]
You will be given a list of input-output pairs. Each input and output is a grid of numbers representing
representing a visual grid. There is a SINGLE pattern that transforms each input grid to the corresponding
output grid.
The pattern may involve counting or sorting objects (e.g. sorting by size), comparing numbers (e.g. which
shape or symbol appears the most? Which is the largest object? Which objects are the same size?), or
repeating a pattern for a fixed number of time.
There are other concepts that may be relevant.
- Lines, rectangular shapes
- Symmetries rotations, translations.
- Shape upscaling or downscaling, elastic distortions.
- Containing / being contained / being inside or outside of a perimeter.
- Drawing lines, connecting points, orthogonal projections.
- Copying, repeating objects.
You should treat black cells as empty cells (backgrounds).
The number in the input grid can be mapped to the following colors:0:black; 1:blue; 2:red; 3:green;
4:yellow; 5:grey; 6:fuschia; 7:orange; 8:teal; 9:brown
Output the language description of the transformation.

[Role: user]
Case 0:
Input:
[[3 3 8]
[3 7 0]
[5 0 0]]
Output:
[[0 0 5]
[0 7 3]
[8 3 3]]
Case 1:
Input:
[[5 5 2]
[1 0 0]
[0 0 0]]
Output:
[[0 0 0]
[0 0 1]
[2 5 5]]

[Role: assistant]
Describing the input grid: In the input, you should see a black grid with a colored shape
Describing the size of the output grid: The output grid size is the same as the input grid
Describing how to transform the grid: To make the output, you have to rotate the whole grid two times.
Imagine that the entire grid has been flipped vertically and horizontally.

[Role: user]
Case 0:
Input:
[[0 1 0 1]
[0 0 0 1]
[1 0 1 0]
[0 0 0 1]
[4 4 4 4]
[0 2 0 2]
[0 0 0 2]
[2 0 0 2]
[2 2 2 0]]
Output:
[[0 0 0 0]
[0 0 0 0]
[0 0 3 3]
[3 3 3 3]]
...

Figure A.8: The prompt used to generate the hypotheses. Continued in Figure A.9. We use the Chat
completions API, where every prompt consists of a list of messages representing a conversation. Each
message contains a text and a role indicating the agent producing the text.

19

Published as a conference paper at ICLR 2024

...
Case 1:
Input:
[[1 1 0 0]
[1 0 1 0]
[1 1 0 1]
[0 1 1 0]
[4 4 4 4]
[0 2 2 2]
[2 0 2 0]
[2 2 2 2]
[2 2 2 2]]
Output:
[[3 0 3 3]
[0 0 0 0]
[0 0 3 0]
[3 0 0 3]]
Case 2:
Input:
[[0 1 0 0]
[1 0 1 1]
[1 1 1 0]
[1 1 1 0]
[4 4 4 4]
[0 0 0 0]
[0 2 0 2]
[2 2 0 2]
[0 2 0 0]]
Output:
[[0 3 0 0]
[3 3 3 0]
[0 0 3 3]
[3 0 3 0]]
Case 3:
Input:
[[1 0 1 1]
[0 0 0 1]
[1 1 0 0]
[0 0 1 1]
[4 4 4 4]
[0 2 2 2]
[0 2 2 2]
[2 0 2 2]
[2 2 2 2]]
Output:
[[3 3 0 0]
[0 3 3 0]
[0 3 3 3]
[3 3 0 0]]

[Role: assistant]
Describing the input grid: In the input, you should see a 4x4 square of blue and black boxes on top of a
yellow line. Below the yellow line is a 4x4 square of red and black boxes.
Describing the size of the output grid: The output grid size .should be 4x4.
Describing how to transform the grid: To make the output, you have to compare the squares in the top and
bottom 4x4 square. If they match (both black or both color) make the output square black. If they do not
match, make the output square green.

[Role: user]
Case 0:
...
<Training examples of the task to be solved>
...

Figure A.9: The prompt used to generate the hypotheses (First half in Figure A.8).

20

Published as a conference paper at ICLR 2024

Prompt for Program Implementation

[Role: User]
Example 0:
Input:
[[0 0 0 0 0 0 0 0]
[0 8 8 0 0 0 0 0]
[0 0 8 0 0 0 0 0]
[0 8 8 8 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]]
Output:
[[8 8 0 8 8 0]
[0 8 0 0 8 0]
[8 8 8 8 8 8]]
Example 1:
Input:
[[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 2 0 0 0 0]
[0 0 2 2 2 0 0 0]
[0 0 2 2 0 0 0 0]]
Output:
[[0 2 0 0 2 0]
[2 2 2 2 2 2]
[2 2 0 2 2 0]]
Example 2:
Input:
[[0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 1 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]]
Output:
[[0 1 1 0 1 1]
[1 0 0 1 0 0]
[0 1 0 0 1 0]]
Now, please write a python program transform_grid(input_grid: np.ndarray[int]) -> np.ndarray[int] that
transforms the input grid to the corresponding output grid.
Hint: You may want to use the following guidance to implement the function:
Hint: You may want to use the following guidance to implement the function:
To make the output, extract the colored shape(s) from the input grid, expand or duplicate them
according to the specified pattern, and place the resulting shape(s) into the output grid.
The number in the input grid can be mapped to the following colors:0:black; 1:blue; 2:red; 3:green;
4:yellow; 5:grey; 6:fuschia; 7:orange; 8:teal; 9:brown
Just reply with the implementation of transform_grid(input_grid: np.ndarray[int]) in Python and nothing
else, each cell in the output should only be numbers from 0 to 9.

Figure A.10: The prompt used to generate the program given the hypothesis (bold in the text) for the
same task as Figure 3.

21

Published as a conference paper at ICLR 2024

Prompt for Hypothesis Summarization

[System]
You are a genius solving language puzzles.
[User]
Given a list of rules, categorize them into eight distinct categories based on their similarities. For each
category, synthesize the rules into a single, specific rule that combines the ideas of all rules in that category,
while clearly differentiating it from the other categories.
The new rule should be as specific as possible, following the format of the given rules.
The new rule should be applicable without any information from the original rules - i.e. it should be
standalone.
Rules:
{Hypothesis 1}
{Hypothesis 2}
...

Figure A.11: The prompt used to summarize 8 hypotheses from 64 generated hypotheses.

22

