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Abstract

Robust principal component analysis (RPCA) is a critical tool in modern machine
learning, which detects outliers in the task of low-rank matrix reconstruction. In
this paper, we propose a scalable and learnable non-convex approach for high-
dimensional RPCA problems, which we call Learned Robust PCA (LRPCA).
LRPCA is highly efficient, and its free parameters can be effectively learned to
optimize via deep unfolding. Moreover, we extend deep unfolding from finite itera-
tions to infinite iterations via a novel feedforward-recurrent-mixed neural network
model. We establish the recovery guarantee of LRPCA under mild assumptions for
RPCA. Numerical experiments show that LRPCA outperforms the state-of-the-art
RPCA algorithms, such as ScaledGD and AltProj, on both synthetic datasets and
real-world applications.

1 Introduction

Over the last decade, robust principal component analysis (RPCA), one of the fundamental dimension
reduction techniques, has received intensive investigations from theoretical and empirical perspectives
[1–13]. RPCA also plays a key role in a wide range of machine learning tasks, such as video
background subtraction [14], singing-voice separation [15], face modeling [16], image alignment
[17] , feature identification [18], community detection [19], fault detection [20], and NMR spectrum
recovery [21]. While the standard principal component analysis (PCA) is known for its high sensitivity
to outliers, RPCA is designed to enhance the robustness of PCA when outliers are present. In this
paper, we consider the following RPCA setting: given an observed corrupted data matrix

Y = X? + S? ∈ Rn1×n2 , (1)

where X? is a rank-r data matrix and S? is a sparse outlier matrix, reconstruct X? and S? simultane-
ously from Y .

One of the main challenges of designing an RPCA algorithm is to avoid high computational costs.
Inspired by deep unfolded sparse coding [22], some recent works [23–25] have successfully extended
deep unfolding techniques to RPCA and achieved noticeable accelerations in certain applications.
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Specifically, by parameterizing a classic RPCA algorithm and unfolding it as a feedforward neural
network (FNN), one can improve its performance by learning the parameters of the FNN through
backpropagation. Since RPCA problems of a specific application often share similar key properties
(e.g., rank, incoherence, and amount of outliers), the parameters learned from training examples
that share the properties can lead to superior performance. Nevertheless, all existing learning-based
approaches call an expensive step of singular value thresholding (SVT) [26] at every iteration during
both training and inference. SVT involves a full or truncated singular value decomposition (SVD),
which costs from O(n3) to O(n2r) flops2 with some large hidden constant in front3. Thus, these
approaches are not scalable to high-dimensional RPCA problems. Another issue is that the existing
approaches only learn the parameters for a finite number of iterations. If a user targets at a specific
accuracy of recovery, then the prior knowledge of the unfolded algorithm is required for choosing
the number of unfolded layers. Moreover, if the user desires better accuracy later, one may have to
restart the learning process to obtain parameters of the extra iterations.

We must ask the questions: “Can one design a highly efficient and easy-to-learn method for high-
dimensional RPCA problems?” and “Do we have to restrict ourselves to finite-iteration unfolding (or a
fixed-layer neural network)?” In this paper, we aim to answer these questions by proposing a scalable
and learnable approach for high-dimensional RPCA problems, which has a flexible feedforward-
recurrent-mixed neural network model for potentially infinite-iteration unfolding. Consequently, our
approach can satisfy arbitrary accuracy without relearning the parameters.

Related work. The earlier works [1–3] for RPCA are based on the convex model:

minimize
X,S

‖X‖∗ + λ‖S‖1, subject to Y = X + S. (2)

It has been shown that (2) guarantees exact recovery, provided α . O(1/µr), a condition with an
optimal order [4, 5]. Therein, α is the sparsity parameter of S? and µ is the incoherence parameter of
L?, which will be formally defined later in Assumptions 2 and 1, respectively. Problem (2) can be
transformed into a semidefinite program and has a variety of dedicated methods, their per-iteration
complexities are at least O(n3) flops and some of them guarantee only sublinear convergence.

Later, various non-convex methods with linear convergence were proposed for RPCA: [7] uses
alternating minimization, and it can tolerate outliers up to a fraction of only α . O(1/µ2/3r2/3n).
[6] develops an alternating projections method (AltProj) that alternatively projects Y − S onto the
space of low-rank matrices and Y −X onto the space of sparse matrices. AltProj costs O(n2r2)
flops and tolerates outliers up to α . O(1/µr). An accelerated version of AltProj (AccAltProj) was
proposed in [10], which improves the computational complexity to O(n2r) with sacrifices on the
tolerance to outliers, which are allowed up to α . O(1/max{µr2κ3, µ3/2r2κ, µ2r2}), where κ is
the condition number of X?. Note that the key technique used for outlier detection in AltProj and
AccAltProj is employing adaptive hard-thresholding parameters.

Another line of non-convex RPCA algorithms reformulate the low-rank component as X = LR>,
where L ∈ Rn1×r and R ∈ Rn2×r, and then performs gradient descend on L and R separately.
Since the low-rank constraint of X is automatically satisfied under this reformulation, the costly
step of SVD is avoided (except for one SVD during initialization). Specifically speaking, [8] uses
a complicated objective function, which includes a practically unimportant balance regularization
‖L>L−R>R‖F. While GD costs onlyO(n2r) flops per iteration, its convergence rate relies highly
on κ. Recently, ScaledGD [12] introduces a scaling term in gradient descend steps to remove the
dependence on κ in the convergence rate of GD. ScaledGD also drops the balance regularization and
targets on a more elegant objective:

minimize
L∈Rn1×r,R∈Rn2×r,S∈Rn1×n2

1

2
‖LR> + S − Y ‖2F, subject to S is α-sparse, (3)

where α-sparsity means no more than a fraction α of non-zeros on every row and every column of S.
To enforce the sparsity constraint of S, ScaledGD (and also GD) employs a sparsification operator:

[Tα̃(M)]i,j =

{
[M ]i,j , if |[M ]i,j | ≥ |[M ]

(α̃n2)
i,: | and |[M ]i,j | ≥ |[M ]

(α̃n1)
:,j |

0, otherwise
, (4)

2For ease of presentation, we take n := n1 = n2 when discuss computational complexities.
3The hidden constant is often hundreds and sometimes thousands.
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where [ · ](k)
i,: and [ · ](k)

:,j denote the k-th largest element in magnitude on the i-th row and in the j-th
column, respectively. In other words, Tα̃ keeps only the largest α̃ fraction of the entries on every row
and in every column. The per-iteration computational complexity of ScaledGD remains O(n2r) and
it converges faster on ill-conditioned problems. The tolerance to outliers of GD and ScaledGD are
α . O(1/max{µr3/2κ3/2, µrκ2}) and α . O(1/µr3/2κ), respectively.

It is worth mentioning there exist some other RPCA settings that high-dimensional problems can be
efficiently solved. For example, if the columns of X? are independently sampled over a zero-mean
multivariate Gaussian distribution, an efficient approach is using Grassmann averages [27, 28].

Deep unfolding is a technique that dates back to 2010 from a fast approximate method for LASSO:
LISTA [22] parameterizes the classic Iterative Shrinkage-Thresholding Algorithm (ISTA) as a fully-
connected feedforward neural network and demonstrates that the trained neural network generalizes
well to unseen samples from the distribution used for training. It achieves the same accuracy
within one or two order-of-magnitude fewer iterations than the original ISTA. Later works [29–36]
extend this approach to different problems and network architectures and have good performance.
Another recently developed technique “learning to learn” [37–39] parameterizes iterative algorithms
as recurrent neural networks and shows great potential on machine learning tasks.

Applying deep unfolding on RPCA appeared recently. CORONA [23, 24] uses convolutional layers
in deep unfolding and focuses on the application of ultrasound imaging. It uses SVT for low-rank
approximation and mixed `1,2 thresholding for outlier detection since the outliers in ultrasound
imaging problems are usually structured. refRPCA [25] focuses on video foreground-background
separation and also uses SVT for low-rank approximation. However, refRPCA employs a sequence
of constructed reference frames to reflex correlation between consecutive frames in the video,
which leads to a complicated yet learnable proximal operator for outlier detection. Given the high
computational cost of SVT, both CORONA and refRPCA are not scalable. In addition, Denise [40]
studies a deep unfolding RPCA method for the special case of positive semidefinite low-rank matrices.
Denise achieves a remarkable speedup from baselines; however, such RPCA applications are limited.

Contribution. In this work, we propose a novel learning-based method, which we call Learned
Robust PCA (LRPCA), for solving high-dimensional RPCA problems. Our main contributions are:

1. The proposed algorithm, LRPCA, is scalable and learnable. It uses a simple formula
and differentiable operators to avoid the costly SVD and partial sorting (see Algorithm 1).
LRPCA costs O(n2r) flops with a small constant4 while all its parameters can be optimized
by training.

2. An exact recovery guarantee is established for LRPCA under some mild conditions (see
Theorem 1). In particular, LRPCA can tolerate outliers up to a fraction of α . O(1/µr3/2κ).
Moreover, the theorem confirms that there exist a set of parameters for LRPCA to outperform
the baseline algorithm ScaledGD.

3. We proposed a novel feedforward-recurrent-mixed neural network (FRMNN) model to solve
RPCA. The new model first unfolds finite iterations of LRPCA and individually learns the
parameters at the significant iteration; then, it learns the rules of parameter updating for
subsequent iterations. Therefore, FRMNN learns the parameters for infinite iterations of
LRPCA while we ensure no performance reduction from classic deep unfolding.

4. The numerical experiments confirm the advantages of LRPCA on both synthetic and real-
world datasets. In particular, we successfully apply LRPCA to large video background
subtraction tasks where the problem dimensions exceed the capacities of the existing
learning-based RPCA approaches.

Notation. For any matrix M , [M ]i,j denotes the (i, j)-th entry, σi(M) denotes the i-th singular
value, ‖M‖1 :=

∑
i,j |[M ]i,j | denotes the entrywise `1 norm, ‖M‖F := (

∑
i,j [M ]2i,j)

1/2 denotes
the Frobenius norm, ‖M‖∗ :=

∑
i σi(M) denotes the nuclear norm, ‖M‖∞ := maxi,j |[M ]i,j |

denotes the largest magnitude, ‖M‖2,∞ := maxi(
∑
j [M ]2i,j)

1/2 denotes the largest row-wise `2
norm, and M> denotes the transpose. We use κ := σ1(X?)

σr(X?) to denote the condition number of X?.

4More precisely, LRPCA costs as low as 3n2r + 3n2 +O(nr2) flops per iteration, which is much smaller
than the hidden constant of truncated SVD.
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2 Proposed method

In this section, we first describe the proposed learnable algorithm and then present the recovery
guarantee.

We consider the non-convex minimization problem:

minimize
L∈Rn1×r,R∈Rn2×r,S∈Rn1×n2

1

2
‖LR> + S − Y ‖2F, subject to supp(S) ⊆ supp(S?). (5)

One may find (5) similar to the objective (3) of ScaledGD but with a different sparsity constraint
for S. The user may not know the true support of S?. Also, the two constraints in (3) and (5) may
seem somewhat equivalent when S? is assumed α-sparse. However, we emphasize that our algorithm
design does not rely on an accurate estimation of α, and our method eliminates false-positives at
every outlier-detection step.

Our algorithm proceeds in two phases: initialization and iterative updates. The first phase is done
by a modified spectral initialization. In the second phase, we iteratively update outlier estimates
via soft-thresholding and the factorized low-rank component estimates via scaled gradient descends.
All the parameters of our algorithm are learnable during deep unfolding. The proposed algorithm,
LRPCA, is summarized in Algorithm 1. We now discuss the key details of LRPCA and begin with
the second phase.

Algorithm 1 Learned Robust PCA (LRPCA)

1: Input: Y = X? + S?: sparsely corrupted matrix; r: the rank of underlying low-rank matrix;
{ζk}: a set of learned thresholding values; {ηk}: a set of learned step sizes.

2: // Initialization:
3: S0 = Sζ0(Y )
4: [U0,Σ0,V0] = SVDr(Y − S0)

5: L0 = U0Σ
1/2
0 , R0 = V0Σ

1/2
0

6: // Iterative updates:
7: while Not(Stopping Condition) do
8: Sk+1 = Sζk+1

(Y −LkR
>
k )

9: Lk+1 = Lk − ηk+1(LkR
>
k + Sk+1 − Y )Rk(R>kRk)−1

10: Rk+1 = Rk − ηk+1(LkR
>
k + Sk+1 − Y )>Lk(L>k Lk)−1

11: end while
12: Output: XK = LKR>K : the recovered low-rank matrix.

Updating S. In ScaledGD [12], the sparse outlier matrix is updated by Sk+1 = Tα̃(Y −LkR
>
k ),

where the sparsification operator Tα̃ is defined in (4). Note that Tα̃ requires an accurate estimate of α
and its execution involves partial sorting on each row and column. Moreover, deep unfolding and
parameter learning cannot be applied to Tα̃ since it is not differentiable. Hence, we hope to find an
efficient and effectively learnable operator to replace Tα̃.

The well-known soft-thresholding, a.k.a. shrinkage operator,
[Sζ(M)]i,j = sign([M ]i,j) ·max{0, |[M ]i,j | − ζ} (6)

is our choice. Soft-thresholding has been applied as a proximal operator of `1 norm (to a matrix
entrywise) in some RPCA algorithms [2]. However, a fixed threshold, which is determined by the
regularization parameter, leads to only sublinear convergence of the algorithm. Inspired by AltProj,
LISTA, and their followup works [6, 10, 22, 29–34, 36], we seek for a set of thresholding parameters
{ζk} that let our algorithm outperform the baseline ScaledGD.

In fact, we find that the simple soft-thresholding:
Sk+1 = Sζk+1

(Y −LkR
>
k ) (7)

can also give a linear convergence guarantee if we carefully choose the thresholds, and the selected
{ζk} also guarantees supp(Sk) ⊆ supp(S?) at every iteration, i.e., no false-positive outliers. More-
over, the proposed algorithm with selected thresholds can converge even faster than ScaledGD
under the very same assumptions (see Theorem 1 below for a formal statement.) Nevertheless, the
theoretical selection of {ζk} relies on the knowledge of X?, which is usually unknown to the user.
Fortunately, these thresholds can be reliably learned using the deep unfolding techniques.
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Updating X . To avoid the low-rank constraint on X , we write a rank-r matrix as product of a tall
and a fat matrices, that is, X = LR> ∈ Rn1×n2 with L ∈ Rn1×r and R ∈ Rn2×r. Denote the loss
function fk := f(Lk,Rk) := 1

2‖LkR
>
k + S − Y ‖2F. The gradients can be easily computed:

∇Lfk = (LkR
>
k + S − Y )Rk and ∇Rfk = (LkR

>
k + S − Y )>Lk. (8)

We could apply a step of gradient descent on L and R. However, [12] finds the vanilla gradient
descent approach suffers from ill-conditioning and thus introduces the scaled terms (R>kRk)−1 and
(L>k Lk)−1 to overcome this weakness. In particular, we follow ScaledGD and update the low-rank
component:

Lk+1 = Lk − ηk+1∇Lfk · (R>kRk)−1,

Rk+1 = Rk − ηk+1∇Rfk · (L>k Lk)−1,
(9)

where ηk+1 is the step size at the (k + 1)-th iteration.

Initialization. We use a modified spectral initialization with soft-thresholding in the proposed
algorithm. That is, we first initialize the sparse matrix by S0 = Sζ0(Y ), which should remove the
obvious outliers. Next, for the low-rank component, we take L0 = U0Σ

1/2
0 and R0 = V0Σ

1/2
0 ,

where U0Σ0V
>

0 is the best rank-r approximation (denoted by SVDr) of Y −S0. Clearly, the initial
thresholding step is crucial for the quality of initialization and the thresholding parameter ζ0 can be
optimized through learning.

For the huge-scale problems where even a single truncated SVD is computationally prohibitive,
one may replace the SVD step in initialization by some batch-based low-rank approximations, e.g.,
CUR decomposition. While its stability lacks theoretical support when outliers appear, the empirical
evidence shows that a single CUR decomposition can provide sufficiently good initialization [11].

Computational complexity. Along with guaranteed linear convergence, LRPCA costs only 3n2r+
3n2 +O(nr2) flops per iteration provided r � n. In contrast, truncated SVD costsO(n2r) flops with
a much larger hidden constant. The breakdown of LRPCA’s complexity is provided in Appendix B.

Limitations. LRPCA assumes the knowledge of rank(X?), which is commonly assumed in many
non-convex matrix recovery algorithms. In fact, the rank of X? is fixed or can be easily obtained
from prior knowledge in many applications, e.g., Euclidean distance matrices are rank-(d+ 2) for the
system of d-dimensional points [41]. However, the true rank may be hard to get in other applications,
and LRPCA is not designed to learn the true rank from training data. Thus, LRPCA may have reduced
performance in such applications when the target rank is seriously misestimated.

2.1 Theoretical results

We present the recovery guarantee of LRPCA in this subsection. Moreover, when the parameters are
selected correctly, we show that LRPCA provably outperforms the state-of-the-arts.

We start with two common assumptions for RPCA:
Assumption 1 (µ-incoherence of low-rank component). X? ∈ Rn1×n2 is a rank-r matrix with
µ-incoherence, i.e.,

‖U?‖2,∞ ≤
√
µr

n1
and ‖V?‖2,∞ ≤

√
µr

n2
(10)

for some constant 1 ≤ µ ≤ n, where U?Σ?V
>
? is the compact SVD of X?.

Assumption 2 (α-sparsity of outlier component). S? ∈ Rn1×n2 is an α-sparse matrix, i.e., there
are at most α fraction of non-zero elements in each row and column of S?. In particular, we require
α . O( 1

µr3/2κ
) for the guaranteed recovery, which matches the requirement for ScaledGD. We future

assume the problem is well-posed, i.e., µ, r, κ� n.
Remark 1. Note that some applications may have a more specific structure for outliers, which may
lead to a more suitable operator for S updating in the particular applications. This work aims
to solve the most common RPCA model with a sparsity assumption. Nevertheless, our learning
framework can be adapted to another operator as long as it is differentiable.
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By the rank-sparsity uncertainty principle, a matrix cannot be incoherent and sparse simultaneously
[42]. The above two assumptions ensure the uniqueness of the solution in RPCA. Now, we are ready
to present our main theorem:
Theorem 1 (Guaranteed recovery). Suppose that X? is a rank-r matrix with µ-incoherence and
S? is an α-sparse matrix with α ≤ 1

104µr3/2κ
. If we set the thresholding values ζ0 = ‖X?‖∞ and

ζk = ‖Lk−1R
>
k−1 −X?‖∞ for k ≥ 1 for LRPCA, the iterates of LRPCA satisfy

‖LkR>k −X?‖F ≤ 0.03(1− 0.6η)kσr(X?) and supp(Sk) ⊆ supp(S?), (11)

with the step sizes ηk = η ∈ [ 1
4 ,

8
9 ].

Proof. The proof of Theorem 1 is deferred to Appendix A.

Essentially, Theorem 1 states that there exists a set of selected thresholding values {ζk} that allows
one to replace the sparsification operator Tα̃ in ScaledGD with the simpler soft-thresholding operator
Sζ and maintains the same linear convergence rate 1 − 0.6η under the same assumptions. Note
that the theoretical choice of parameters relies on the knowledge of X?—an unknown factor. Thus,
Theorem 1 can be read as a proof for the existence of the appropriate parameters.

Moreover, Theorem 1 shows two advantages of LRPCA:

1. Under the very same assumptions and constants, we allow the step sizes ηk to be as large
as 8

9 ; in contrast, ScaledGD has the step sizes no larger than 2
3 [12, Theorem 2]. That is,

LRPCA can provide faster convergence under the same sparsity condition, by allowing
larger step sizes.

2. With the selected thresholding values, Sζ in LRPCA is effectively a projection onto
supp(S?), which matches our sparsity constrain in objective function (5). That is, Sζ
takes out the larger outliers, leaves the smaller outliers, and preserves all good entries — no
false-positive outlier in Sk. In contrast, Tα̃ necessarily yields some false-positive outliers in
the earlier stages of ScaledGD, which drag the algorithm when outliers are relatively small.

Technical innovation. The main challenge to our analysis is to show both the distance error metric
(i.e., dist(Lk,Rk;L?,R?), later defined in Appendix A) and `∞ error metric (i.e., ‖LkR>k −X?‖∞)
are linearly decreasing. While the former takes some minor modifications from the proof of ScaledGD,
the latter is rather challenging and utilizes several new technical lemmata. Note that ScaledGD shows
‖LkR>k −X?‖∞ is always bounded but not necessary decreasing, which is insufficient for LRPCA.

3 Parameter learning

Theorem 1 shows the existence of “good" parameters {ζk}, {ηk} and, in this section, we describe
how to obtain such parameters via machine learning techniques.

Feed-forward neural network. Classic deep unfolding methods unroll an iterative algorithm and
truncates it into a fixed number, says K, iterations. Applying such idea to our model, we regard
each iteration of Algorithm 1 as a layer of a neural network and regard the variables Lk,Rk,Sk
as the units of the k-th hidden layer. The top part of Figure 1 demonstrates the structure of such
feed-forward neural network (FNN). The k-th layer is denoted as Lk. Based on (7) and (9), it takes
Y as an input and has two parameters ζk, ηk when k ≥ 1. The initial layer L0 is special, it takes Y
and r as inputs, and it has only one parameter ζ0. For simplicity, we use Θ = {{ζk}Kk=0, {ηk}Kk=1}
to represent all parameters in this neural network.

Training. Given a training data set Dtrain consisting of (Y ,X?) pairs (observation, ground truth),
one can train the neural network and obtain parameters Θ by minimizing the following loss function:

minimize
Θ

E(Y ,X?)∼Dtrain
‖LK(Y ,Θ)

(
RK(Y ,Θ)

)> −X?‖2F. (12)

Directly minimizing (12) is called end-to-end training, and it can be easily implemented on deep
learning platforms nowadays. In this paper, we adopt a more advanced training technique named as
layer-wise training or curriculum learning, which has been proven as a powerful tool on training
deep unfolding models [43, 44]. The process of layer-wise training is divided into K + 1 stages:
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L0(·; ζ0) L1(·; η1, ζ1) · · · LK(·; ηK , ζK) L(·;β, φ)

L0(·; ζ0) L1(·; η1, ζ1) · · · LK(·; ηK , ζK)

Y

Y

Y Yr

r Y Y Y

Figure 1: A high-level structure comparison between classic FNN-based deep unfolding (top) and
proposed FRMNN-based deep unfolding (bottom). In the diagrams, Lk denotes the k-th layer of
FNN and L is a layer of RNN.

• Training the 0-th layer with minimizeΘ E‖L0R
>
0 −X?‖2F.

• Training the 1-st layer with minimizeΘ E‖L1R
>
1 −X?‖2F.

• · · ·
• Training the final layer with (12): minimizeΘ E‖LKR>K −X?‖2F.

Feedforward-recurrent-mixed neural network. One disadvantage of the aforementioned FNN
model is its fixed number of layers. If one wants to go further steps and obtain higher accuracy after
training a neural network, one may have to retrain the neural network once more. Recurrent neural
network (RNN) has tied parameters over different layers and, consequently, is extendable to infinite
layers. However, we find that the starting iterations play significant roles in the convergence (validated
in Section 4 later) and their parameters should be trained individually. Thus, we propose a hybrid
model that is demonstrated in the bottom part of Figure 1, named as Feedforward-recurrent-mixed
neural network (FRMNN). We use a recurrent neural network appended after a K-layer feedforward
neural network. When k ≥ K, in the (k − K)-th loop of the RNN layer, we follow the same
calculation procedures with Algorithm 1 and determine the parameters ζk and ηk by

ηk = βηk−1 and ζk = φζk−1. (13)

Thus, all the RNN layers share the common parameters β and φ.

The training of FRMNN follows in two phases:

• Training the K-layer FNN with layer-wise training.
• Fixing the FNN and searching RNN parameters β and φ to minimize the convergence metric

at the (K −K)-th layer of RNN for some K > K:

minimize
β,φ

E(Y ,X?)∼Dtrain
‖LK(β, φ)(RK(β, φ))> −X?‖2F. (14)

Our new model provides the flexibility of training a neural network with finite K layers and testing it
with infinite layers. Consequently, the stop condition of LRPCA has to be (Run K iterations)
if the parameters are trained via FNN model; and the stop condition can be (Error < Tolerance)
if our FRMNN model is used.

In this paper, we use stochastic gradient descent (SGD) in the layer-wise training stage and use
grid search to obtain β and φ since there are only two parameters. Moreover, we find that picking
K + 3 ≤ K ≤ K + 5 is empirically good.

4 Numerical experiments

In this section, we compare the empirical performance of LRPCA with the state-of-the-arts: ScaledGD
[12] and AltProj [6]. We hand tune the parameters for ScaledGD and AltProj to achieve their best
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performance in the experiments. Moreover, all speed tests are executed on a Windows 10 laptop with
Intel i7-8750H CPU, 32GB RAM and Nvidia GTX-1060 GPU. The parameters learning processes
are executed on an Ubuntu workstation with Intel i9-9940X CPU, 128GB RAM and two Nvidia
RTX-3080 GPUs. All our synthetic test results are averaged over 50 random generated instances, and
details of random instance generation can be found in Appendix C. The code for LRPCA is available
online at https://github.com/caesarcai/LRPCA.

10 20 30 40 50 60

Iterations / Layers

10
-8

10
-6

10
-4

10
-2

10
0

FRMNN

RNN

FNN

Figure 2: Convergence comparison for FNN-
based, RNN-based, and FRMNN-based learning.

Unfolding models. We compare the perfor-
mance of LRPCA with the parameters learned
from different unfolding models: classic FNN,
RNN and proposed FRMNN. In particular, FNN
model unrolls 10 iterations of LRPCA and RNN
model directly starts the training on the second
phase of FRMNN, i.e., K = 0. For FRMNN
model, we take K = 10 and K = 15 for the train-
ing. The test results is summarized in Figure 2.
One can see FRMNN model extends FNN model
to infinite layers with performance reduction while
the pure RNN model drops the convergence performance. Note that the convergence curves of both
FRMNN and RNN go down till they reach O(10−8) which is the machine precision since we use
single precision in this experiment.

Computational efficiency. In this section, we present the speed advantage of LRPCA. First, we
compare the convergence behavior of LRPCA to our baseline ScaledGD in Figure 3. We find LRPCA
converges in much less iterations, especially when the outlier sparsity α is larger. Next, we compare
per-iteration runtime of LRPCA to our baseline ScaledGD in Figure 4. One can see that ScaledGD
runs slower when α becomes larger. In contrast, the per-iteration runtime of LRPCA is insensitive to
α and is significantly faster than ScaledGD. Finally, we compare the total runtime among LRPCA,
ScaledGD and AltProj in Figure 5. Therein, we find LRPCA is substantially faster than the state-of-
the-arts if the model has been trained. The training time for models with different sizes and settings
are reported in the supplement.
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(a) α = 0.1
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Figure 3: Convergence comparison for LRPCA and baseline ScaledGD with varying outlier sparsity
α. Problem dimension n = 1000 and rank r = 5.
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Recovery performance. We generate 10 problems for each of the outlier density levels (i.e., α)
and compare the recoverabilities of LRPCA and ScaledGD. The test result is presented in the Table 1,
where we can conclude that LRPCA is more robust when α is larger.

Table 1: Recovery performance under different outlier density levels.
α 0.4 0.45 0.5 0.55 0.6 0.65 0.7

LRPCA 10/10 10/10 10/10 9/10 8/10 0/10 0/10
ScaledGD 10/10 10/10 0/10 0/10 0/10 0/10 0/10

Video background subtraction. In this section, we apply LRPCA to the task of video background
subtraction. We use VIRAT video dataset5 as our benchmark, which includes numerous colorful
videos with static backgrounds. The videos have been grouped into training and testing sets. We
used 65 videos for parameter learning and 4 videos for verification6. We first convert all videos
to grayscale. Next, each frame of the videos is vectorized and become a matrix column, and all
frames of a video form a data matrix. The static backgrounds are the low-rank component of the data
matrices and moving objects can be viewed as outliers, thus we can separate the backgrounds and
foregrounds via RPCA. The video details and the experimental results are summarized in Table 2 and
selected visual results for LRPCA are presented in Figure 6. One can see LRPCA runs much faster
than both ScaledGD and AltProj in all verification tests. Furthermore, the background subtraction
results of LRPCA are also visually desirable. More details about the experimental setup can be found
in Appendix C, alone with additional visual results for ScaledGD and AltProj.

Table 2: Video details and runtime comparison for the task of background subtraction. All algorithms
halt when max(‖Xk −Xk−1‖F/‖Xk−1‖F, ‖Sk − Sk−1‖F/‖Sk−1‖F) < 10−3.

VIDEO FRAME FRAME RUNTIME (secs)
NAME SIZE NUMBER LRPCA ScaledGD AltProj

ParkingLot1 320× 180 965 16.01 260.45 63.04
ParkingLot2 320× 180 2149 33.95 639.03 144.50
ParkingLot3 480× 270 1110 38.85 662.08 166.91
StreeView 480× 270 1034 33.73 626.05 167.66

Ultrasound imaging. We compare LRPCA with CORONA [23], a state-of-the-art learning-based
RPCA method, on ultrasound imaging. The testing dataset consists of 2400 training examples and
800 validation examples, which can be downloaded online at https://www.wisdom.weizmann.
ac.il/~yonina. Each example is of size 1024× 40. The target rank of the low-rank matrix is set
to be r = 1. Recovery accuracy is measured by the loss function: loss = MSE(Xoutput, X?), where
MSE stands for the mean square error. The test results are summarized in Table 3.

Table 3: Test results for ultrasound imaging.
ALGORITHM AVERAGE INFERENCE TIME AVERAGE loss

LRPCA 0.0057 secs 9.97×10−4

CORONA 0.9225 secs 4.88×10−4

Note that LRPCA is designed for generic RPCA and CORONA is specifically designed for ultrasound
imaging. Thus, it is not a surprise that our recovery accuracy is slightly worse than CORONA.

5Available at: https://viratdata.org.
6The names of the tested videos are corresponding to these original video numbers in VIRAT dataset:

ParkingLot1: S_000204_06_001527_001560, ParkingLot2: S_010100_05_000917_001017, ParkingLot3:
S_050204_00_000000_000066, StreeView: S_050100_13_002202_002244.
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Figure 6: Video background subtraction visual results for LRPCA. Each column represents a selected
frame from the tested videos. From left to right, they are ParkingLot1, ParkingLot2, ParkingLot3,
and StreetView. The first row contains the original frames. The next two rows are the separated
foreground and background produced by LRPCA, respectively. More visual results for ScaledGD
and AltProj are available in Appendix C.

However, the average runtime of LRPCA is substantially faster than CORONA. We believe that our
speed advantage will be even more significant on larger-scale examples, which is indeed our main
contribution: scalability.

More numerical experiments. There are some other interesting empirical problems worth to
explore and we put the extra experimental results in Appendix C due to the space limitation. They
are summarized here: 1. Our model has good generalization ability. We can train our model on
small-size and low-rank training instances (say, n = 1000 and r = 5) and use the model DIRECTLY
on problems with larger size (say, n = 3000 and r = 5) or with higher rank (say, n = 1000 and
r = 15) with good performance. 2. The learned parameters are explainable. With the learned
parameters, LRPCA goes very aggressively with large step sizes in the first several steps and tends to
be conservative after that.

5 Conclusion and future work

We have presented a highly efficient learning-based approach for high-dimensional RPCA problems.
In addition, we have presented a novel feedforward-recurrent-mixed neural network model which can
learn the parameters for potentially infinite iterations without performance reduction. Theoretical
recovery guarantee has been established for the proposed algorithm. The numerical experiments
show that the proposed approach is superior to the state-of-the-arts.

One of our future directions is to study learning-based stochastic approach. While this paper focuses
on deterministic RPCA approaches, the stochastic RPCA approaches, e.g., partialGD [8], PG-RMC
[9], and IRCUR [11], have shown promising speed advantage, especially for large-scale problems.
Another future direction is to explore robust tensor decomposition incorporate with deep learning, as
some preliminary studies have shown the advantages of tensor structure in certain machine learning
tasks [45, 46].

Broader impact

RPCA has been broadly applied as one of fundamental techniques in data mining and machine
learning communities. Hence, through its applications, the proposed learning-based approach for
RPCA has potential broader impacts that data mining and machine learning have, as well as their
limitations.
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