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Summary
Behavioral cloning (BC) methods trained with supervised learning (SL) are an effective

way to learn policies from human demonstrations in domains like robotics. Goal-conditioning
these policies enables a single generalist policy to capture diverse behaviors contained within
an offline dataset. While goal-conditioned behavior cloning (GCBC) methods can perform
well on in-distribution training tasks, they do not necessarily generalize zero-shot to tasks
that require conditioning on novel state-goal pairs, i.e. combinatorial generalization. In part,
this limitation can be attributed to a lack of temporal consistency in the state representation
learned by BC; if temporally related states are encoded to similar latent representations, then
the out-of-distribution gap for novel state-goal pairs would be reduced. Hence, encouraging this
temporal consistency in the representation space should facilitate combinatorial generalization.
Successor representations, which encode the distribution of future states visited from the current
state, nicely encapsulate this property. However, previous methods for learning successor
representations have relied on contrastive samples, temporal-difference (TD) learning, or both.
In this work, we propose a simple yet effective representation learning objective, BYOL-γ
augmented GCBC.

Contribution(s)
1. We propose BYOL-γ, a novel representation learning objective that relates to the successor

measure, which we prove in the finite MDP setting.
Context: While prior theory supports this objective (Tang et al., 2022; Khetarpal et al.,
2025), to our knowledge, we are the first to directly relate a BYOL-based objective to the
successor measure and to use it in practice for representation learning.

2. Empirically, we demonstrate that such a BYOL objective can be used as auxiliary objective
augmenting the capabilities of Behavior Cloning, and we find that BYOL-γ obtains competi-
tive results on navigation tasks in OGBench compared to existing methods. Qualitatively,
we show that the BYOL-γ objective learns similar representation structures to contrastive
learning, encoding temporal distance between states.
Context: We build on the setting of using auxiliary representation learning objectives
for BC from Myers et al. (2025b), however we further illustrate the relationship between
generalization and approximations to the succesor measure, and demonstrate that alternative
representation learning can obtain competitive or better performance for achieving combina-
torial generalization.
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Abstract

Behavioral cloning (BC) methods trained with supervised learning (SL) are an effective1
way to learn policies from human demonstrations in domains like robotics. Goal-2
conditioning these policies enables a single generalist policy to capture diverse behaviors3
contained within an offline dataset. While goal-conditioned behavior cloning (GCBC)4
methods can perform well on in-distribution training tasks, they do not necessarily5
generalize zero-shot to tasks that require conditioning on novel state-goal pairs, i.e.6
combinatorial generalization. In part, this limitation can be attributed to a lack of7
temporal consistency in the state representation learned by BC; if temporally related8
states are encoded to similar latent representations, then the out-of-distribution gap for9
novel state-goal pairs would be reduced. Hence, encouraging this temporal consistency10
in the representation space should facilitate combinatorial generalization. Successor11
representations, which encode the distribution of future states visited from the current12
state, nicely encapsulate this property. However, previous methods for learning successor13
representations have relied on contrastive samples, temporal-difference (TD) learning, or14
both. In this work, we propose a simple yet effective representation learning objective,15
BYOL-γ augmented GCBC, which is not only able to theoretically approximate the suc-16
cessor representation in the finite MDP case without contrastive samples or TD learning,17
but also, results in competitive empirical performance across a suite of challenging tasks18
requiring combinatorial generalization.19

1 Introduction20

Generalization has been a long-standing goal in machine learning and robotics. Recently, large-scale21
supervised models for language and vision have demonstrated impressive generalization when trained22
over vast amounts of data. In the robotics domain, this has motivated the development of large-scale23
supervised behavior cloning (BC) models trained on offline datasets of diverse demonstrations (Ghosh24
et al., 2024; Kim et al., 2024). However, these models still suffer from a lack of generalization. In25
particular, while BC methods can perform well on tasks directly observed in the dataset, they often fail26
to perform zero-shot transfer to tasks requiring novel combinations of in-distribution behavior, known27
as combinatorial generalization. In the robotics domain, where demonstration data is time-intensive28
and costly to produce, simply scaling the dataset is often not possible. Hence, achieving this type of29
generalization algorithmically will be critical to unlocking the potential for large-scale supervised30
policy training.31

The property of combinatorial generalization has been previously formalized as the ability to “stitch”32
(Ghugare et al., 2024). Specifically, stitching refers to the ability of a policy to reach a goal state33
from a start state when trained on a dataset of trajectories which, provides sufficient coverage of the34
path to the goal, but which does not contain a single complete trajectory of the path. The lack of35
stitching observed in goal-conditioned behavioral cloning (GCBC) and, more generally, supervised36
learning, can be understood through the inductive biases of the model. By construction, BC methods37
do not encode the inductive bias that the observed data are generated from a Markov decision process38
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Figure 1: (a) Self-predictive Representations. Example training trajectories, s0 → sh and sb → sf ,
which intersect at w. After training on these trajectories, we evaluate on a task like s0 → sf , requiring
combinatorial generalization. To learn better representations for generalization, a self-predictive
representation predicts a future state ϕ(w) from an earlier state ϕ(e) via ψ(ϕ(e)). (b) Representation
learning with BYOL-γ. We predict future state representations ϕ(st+k) via ψf (ϕ(st), a), and also
predict backwards with ψb(ϕ(st+k)). The target offset is sampled geometrically: k ∼ geom(1− γ).
Stop-gradients are denoted by //. We provide more details on the loss L in Section 4.2.

(MDP). In contrast, reinforcement learning (RL) policies that are trained via temporal difference (TD)39
learning directly utilize the structure of the MDP, and pass information through time using dynamic40
programming. Offline RL (Levine et al., 2020) has been proposed as a method for achieving stitching41
in policies trained on offline datasets. However, these methods are challenging to scale due to the42
instability of bootstrapping in TD learning when combined with fully offline training. Scaling has43
been more successful with supervised methods, such as in robotics, where training robot foundation44
models with BC (Ghosh et al., 2024; Kim et al., 2024) on large-scale datasets (O’Neill et al., 2024;45
Khazatsky et al., 2024) can lead to more general-purpose policies.46

Various methods have attempted to imbue GCBC models with the ability to stitch by augmenting47
the training data using the Markovian assumption (Yamagata et al., 2023; Ghugare et al., 2024).48
However, these methods ultimately rely on similar training procedures as offline RL or otherwise49
require a distance metric already aligned with temporal distance in the MDP. Another approach50
frames stitching as a representation learning problem (Myers et al., 2025b). In this context, the51
objective is to learn a latent representation of states that reflects temporal proximity in the underlying52
MDP to facilitate generalization to unseen state-goal pairs. In particular, Myers et al. (2025b) train a53
representation that approximates the successor measure (SM) (Blier et al., 2021) through contrastive54
learning (CL) (van den Oord et al., 2019) as an auxiliary loss in GCBC, demonstrating enhanced55
combinatorial generalization. This is a promising step towards achieving combinatorial generalization56
in GCBC methods. In this work, we expand on this connection between the successor measure and57
combinatorial generalization, proposing an alternative objective that captures similar properties with58
a simpler learning procedure and achieves as good or better generalization performance.59

In particular, in other domains, like vision, it has been found that contrastive learning can often be60
substituted with self-predictive representations (Grill et al., 2020), which have also been found to be61
useful as auxiliary losses for model-free RL (Schwarzer et al., 2020). Adapting the Bootstrap Your62
Own Latent (BYOL) framework (Grill et al., 2020) to the RL setting, representations can be trained63
by predicting the latent representation of the next state from the current latent state representation.64
These BYOL objectives have appealing properties, such as neither relying on negative examples nor65
reconstruction.66

As motivation, we foremost evaluate the BYOL objective as an auxiliary loss for GCBC; however,67
we find that there exists an empirical and theoretical gap compared to contrastive methods. This68
leads us to propose a novel objective, BYOL-γ, which removes the gap between self-predictive and69
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contrastive objectives. Concretely, BYOL-γ predicts latent representations of states sampled from a70
γ-discounted future state distribution. While the standard BYOL objective has been shown to learn71
representations capturing spectral information about the one-step transition dynamics (Khetarpal et al.,72
2025), we show that the representations learned by BYOL-γ capture spectral information related to73
the successor measure. In the finite MDP case, we show that, in fact, BYOL-γ approximates the74
successor representation. Empirically, we demonstrate on the challenging OGBench dataset (Park75
et al., 2025) that BYOL-γ augmented GCBC is competitive with contrastive methods in improving76
combinatorial generalization. Key contributions of our work are as follows:77

• We propose BYOL-γ, a novel representation learning objective that relates to the successor measure,78
which we prove in the finite MDP setting.79

• Empirically, we demonstrate that such a BYOL objective can be used as auxiliary objective80
augmenting the capabilities of Behavior Cloning, and we find that BYOL-γ obtains competitive81
results on navigation tasks in OGBench compared to existing methods.82

• Qualitatively, we show that the BYOL-γ objective learns similar representation structures to CL,83
encoding temporal distance between states.84

2 Related Work85

Stitching in Supervised Methods. Outcome (goals or return)-conditioned behavioral cloning86
(OCBC) methods (Schmidhuber, 2020; Chen et al., 2021; Emmons et al., 2022) provide a simple and87
scalable alternative to traditional offline RL (Levine et al., 2020) methods. However, these methods88
do not properly “stitch” and generalize to unseen outcomes Brandfonbrener et al. (2022); Ghugare89
et al. (2024). To reduce this problem, various works have proposed augmenting training data used90
by BC methods. Some work incorporates methodlogy from offline RL to label returns or goals for91
downstream SL (Char et al., 2022; Yamagata et al., 2023). Other work has considered relabeling92
goals through clustering states (Ghugare et al., 2024), which relies on a good distance metric in93
state-space and is limited to short trajectory stitches. Other work has utilized planing Zhou et al.94
(2024) for goal relabeling, or generative models to synthesize new trajectories (Lu et al., 2023; Lee95
et al., 2024). Rather than using models to generate data for BC, other work directly evaluates the96
combinatorial generalization achieved by planning with generative models (Luo et al., 2025). In97
this work, we neither require combining SL with explicit Q-learning, utilize generative models, or98
perform explicit planning.99

Visual Representation Learning. Instead of auxiliary representation learning, prior work has100
considered using pretrained visual representations for BC. Utilizing pretrained BC has been a reliable101
method to efficiently learn policies and improve generalization (Radosavovic et al., 2022; Majumdar102
et al., 2023; Nair et al., 2022). Instead of pretraining representations out-of-domain, such as on103
large image datasets, DynaMo (Cui et al., 2024) evaluates pretraining representations in-domain on104
specific robotics datasets, and then performs a separate BC finetuning stage. However, we focus on105
representation learning as an auxiliary objective. For enhancing combinatorial generalization, this106
can be advantageous, as training as an auxiliary task maintains the structure of the representation107
space, and prevents overfitting the BC objective.108

Representation learning in RL. Our objective is most closely related to approaches using auxiliary109
BYOL objectives in online RL (Gelada et al., 2019; Schwarzer et al., 2020; Ni et al., 2024; Voelcker110
et al., 2024). These objectives can help with sample-efficiency, such as in challenging, partially111
observed environments with sparse rewards, or with noisy states. Additionally, self-predictive112
dynamics models are used in planning and model-based RL (François-Lavet et al., 2019; Ye et al.,113
2021; Hansen et al., 2022). Various works have also characterized the dynamics of BYOL objectives114
in the RL setting, showing that BYOL objectives capture spectral information about the policy’s115
transitions (Tang et al., 2022; Khetarpal et al., 2025). In the offline setting, how well Joint Embedding116
Predictive Architecture (JEPA) world models generalize when used for explicit planning has been117
studied Sobal et al. (2025), however not for combinatorial generalization. Additionally, certain118
representation structures for value functions, namely quasimetrics (Liu et al., 2023; Wang et al.,119
2023; Wang and Isola, 2022; Myers et al., 2024) can also lead to policies that better generalize to120
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longer horizons (Myers et al., 2025a). Quantities related to the Successor Representation (SR)121
(Dayan, 1993) , such as successor features (SF) (Barreto et al., 2017), and the successor measure (SM)122
(Blier et al., 2021) have been widely used for generalization and transfer in reinforcement learning123
(Carvalho et al., 2024). Similarly to BYOL, these objectives have been used for representation124
learning in RL (Lan et al., 2022; Farebrother et al., 2023). While prior BYOL methods either perform125
1-step, or relatively short fixed n-step prediction, neither of these choices directly approximate the126
successor measure. Our setup is most related to temporal representation alignment (TRA) (Myers127
et al., 2025b), which recently proposed using contrastive learning as an auxiliary objective for BC to128
improve combinatorial generalization. In this work, we further build on the relationship between the129
SM and combinatorial generalization, and propose new representation learning objectives which can130
lead to better performance.131

3 Background132

Controlled Markov Process. We consider goal-conditioned decision-making problems, with state133
space S, goals g ∈ S, action space A, initial state distribution p0(s), dynamics p(st+1 |st, a), and134
with policies π(a|s, g).135

Successor Representation (SR) and Successor Measure (SM). In a finite MDP, the successor136
representation (SR) (Dayan, 1993) of a policy is:137

Mπ(s, s′) := E

∑
t≥0

γt1(st+1=s′) | s0 = s, π

 (1)

We use the convention of counting from st+1, writing in matrix form Mπ =
∑
t≥0 γ

t(Pπ)t+1.138
The transition matrix transition for policy π is Pπ, with Pπi,j =

∑
a π(a|s = i)Pi,a,j , where139

Pi,a,j = p(st+1 = j | st = i, a) . The successor representation also satisfies the bellman equa-140
tion, Mπ = Pπ + γPπMπ = Pπ(I − γPπ)−1. For a fixed policy, the successor representation141
describes a type of temporal distance between states. The successor measure (SM) (Blier et al.,142
2021) extends SR to continuous spaces S: Mπ(s,X) :=

∑
t≥0 γ

tP (st+1 ∈ X | s) ∀X ⊂ S. We143
also define the normalized successor representation, or measure M̃π = (1− γ)Mπ . In the finite case,144
the normalized successor representation M̃π has rows that sum to one like transitions Pπ. Another145
quantity successor features (SF) (Barreto et al., 2017) are the expected discounted sum of future146

features ϕ(s) ∈ Rd: ψπ(s) = E
[∑

t≥0 γ
tϕ(st+1) | s0 = s, π

]
. We can relate SFs to the SM with147

ψπ(s) =
∫
s′
Mπ(s, s′)ϕ(s′). Each of these quantities can also be defined with conditioning on the148

first action and then following the policy, e.g. Mπ(s, a, s′).149

3.1 Representation Learning150

We begin with two representation learning methods that approximate the density of the SM.151

Forward-Backward. We consider a simplified version of the Forward-Backward loss that approxi-152
mates the successor measure for a fixed policy π, discussed by Touati et al. (2023).153

min
ϕ,ψ

E st∼p(s),s′∼p(s)
st+1 ∼pπ(st+1|st)

[
(ψ(st)

Tϕ(s′) − γψ̄(st+1)
T ϕ̄(s′))2

]
− 2E st∼p(s)

st+1∼pπ(st+1|st)

[
ψ(st)

Tϕ(st+1)
]

(2)

FB learns an approximation of the successor measure with factorization Mπ(s, s+) ≈154
ψ(st)ϕ(s+)p(s+) using TD learning. Given transitions (st, st+1) sampled by a policy π, the second155
term relates to fittingMπ(st, st+1). Given an independently sampled state s′, the first term bootstraps156
an estimate of Mπ(st, s

′) from M̄π(st+1, s
′), where ϕ̄, ψ̄ denote stop-gradient operations.157

Contrastive Learning. Temporal contrastive learning used in MDPs (Eysenbach et al., 2022) is158
related to a Monte Carlo (MC) approximation of the (discounted) successor measure. This can be159
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implemented with a InfoNCE (van den Oord et al., 2019) loss that maximizes the similarity of a160
positive pair between a state st and a future state from the same trajectory s+, and minimizing the161
similarity of st and random states s−:162

max
ϕ,ψ

E st∼p(s)
k∼geom(1−γ)

s+=st+k,s
2:N
− ∼p(s)

[
log

ef(ψ(st),ϕ(s+))∑N
i=2 e

f(ψ(st),ϕ(si−)

]
(3)

A common choice for the energy function f is the inner product f(ψ(s)ϕ(s+)) = ψ(s)Tϕ(s+). A163
key aspect to note is that the positive sample s+ comes from an MC sample from s+ ∼Mπ(st, s+).164
The optimal solution to (3) gives M̃π(s, s+) ≈ C exp(ψ(st)

Tϕ(s+)) · p(s). However in-practice,165
we only have dataset of MC samples from π, i.e. fixed-length trajectories, which means we do not166
actually estimate the SM of π. In Appendix C, we further elaborate on the relationship between the167
FB loss, and CL. Particularly, in the limit, an n-step version of FB is related to CL.168

BYOL. We now look at an objective that captures information about single-step transition instead of169
the successor measure. In the context of RL, self-predictive models jointly learn a latent space and170
a dynamics model through predicting future latent representations. Self-predictive models rely on171
latent bootstrapped targets (BYOL) (Grill et al., 2020), avoiding reconstruction (generative models),172
or negative samples (contrastive learning). Self-predictive models are also a type of joint-embedding173
predictive architectures (JEPAs) (LeCun, 2022; Garrido et al., 2024).174

Given an encoder which produces a representation zt = ϕ(st), and dynamics ψ(zt+1|zt) for a fixed175
policy π, we minimize the difference between our prediction and target representation in latent-space:176

min
ϕ,ψ

Est∼ p(s),st+1∼pπ(st+1|st),
[
f(ψ(ϕ(st)), ϕ̄(st+1))

]
(4)

Where f is a convex function such as the squared l2 norm, and ϕ̄ refers to an EMA target, or stop-177
gradient. Variants of this BYOL objective have been widely used to learn state abstractions, and178
work as an auxiliary loss when approximating the value function in deep RL (Gelada et al., 2019;179
Schwarzer et al., 2020; Ni et al., 2024). In the finite MDP, this objective captures spectral information180
about the policy’s transition matrix Pπ (Tang et al., 2022; Khetarpal et al., 2025) which we discuss in181
Appendix D.1.182

3.2 Combinatorial Generalization from Offline Data183

We now shift focus on how we can learn policies from offline data using behavioral cloning, and then184
introduce a combinatorial generalization gap that arises in this setting.185

We consider a dataset D = {(si0, ai0, · · · , siT , aiT )}Ni=1, composed of trajectories generated by a set186
of unknown policies {βj(a|s)}. Goal Conditioned Behavioral Cloning (GCBC) trains a policy187
with maximum likelihood to reproduce the behaviors from the dataset. After sampling a current state,188
a goal is sampled as a future state from the same trajectory:189

max
π

LBC(π) = max
π

E βj∼p(βj), s∼p(s|βj)

a∼βj(a | s), s+∼Mβj (s,s+)

[log π(a|s, g = s+)] (5)

Generalization gap. While this policy can perform well in-distribution, the behavior cloning policy190
struggles to generalize to reach goals from states that are not in matching training trajectories. We191
now review a more formal definition of this type of generalization gap.192

We consider Lemma 3.1 from Ghugare et al. (2024), which says there exists a single Markovian193
policy β(a|s) that has the same occupancy as the mixture of j policies:194

Mβ(s) = Ep(βj)

[
Mβj (s)

]
(6)

This policy also has construction: β(a | s) :=
∑
j βj(a | s)p(βj | s), where p(βj | s) is the distribution195

over policies in s as reflected by the dataset.196
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Using the successor measure of the individual policies, and the mixture policy, we can quantify a gap197
between accomplishing out-of-distribution tasks versus in-distribution training tasks (Ghugare et al.,198
2024):199

E s0∼Mβ(s0)

sg∼Mβ(s0,sg)

[
uπ(s0, sg)

]
︸ ︷︷ ︸

tasks requiring combinatorial generalization

− Eβj∼p(βj), s0∼Mβj (s0)

sg∼Mβj (s0,sg)

[
uπ(s0, sg)

]
︸ ︷︷ ︸

in-distribution training tasks

(7)

Here, u is a performance metric of the policy π such as the success rate to reach sg from s0. As we200
perform well on in-distribution tasks due to a correspondence to Equation (5), the BC policy has no201
guarantees for the first term. This is because after sampling a state, the goal is sampled from the202
successor measure of the mixture policy.203

4 Closing the Generalization Gap with Representations204

In this section, we aim to close the aforementioned generalization gap. We consider a policy trained205
with the BC objective π to be made more robust to the tasks requiring combinatorial generalization206
through representation learning. We begin with a setup similar to Equation (7), but with a shared207
initial state s0 for both the in-distribution and out-of-distribution task. For the in-distribution task, we208
sample a goal as before, labeled as sw. However, for the out-of-distribution task, we sample a goal209
sf to be a state that can be reached by the mixture policy β after sw. (8):210

Eβj∼p(βj),s0∼Mβj (s)

sw∼Mβj (s0,sw)

Esf∼Mβ(sw,sf )

[
uπ(s0, sf ))

]︸ ︷︷ ︸
extended task requiring generalization

− uπ(s0, sw)︸ ︷︷ ︸
in-distribution task

 (8)

= Eβj∼p(βj),s0∼Mβj (s)

sw∼Mβj (s0,sw)

 Esf∼Mβ(sw,sf )

[
uπ(s0, ϕ(sf ))

]︸ ︷︷ ︸
want invariance with respect to future goals through ϕ

− uπ(s0, ϕ(sw))

 (9)

Then, in Equation (9) we add a goal representation ϕ that processes the goal before going to policy211
π. Intuitively, a policy could achieve the out-of-distribution task by first going from s0 to sw (in-212
distribution), and then completing the remaining task sw to sf . In essence, we want that when213
conditioning on ϕ(sf ), the policy should first go to sw, which can be achieved by learning ϕ, where214
ϕ(sw) is similar to ϕ(sf ) (Myers et al., 2025b). More formally, for sf ∼ Mβ(sw, sf ) we want an215
invariance ϕ(sf ) ≈ ϕ(sw).216

From this observation, we can understand that approximating the successor measure of the mixture217
policy β, when parameterized by ϕ, will build the desired representation. One choice for the218
representation learning objective can be the FB algorithm, which obtains a factorizationMβ(s, s+) ≈219
ψ(st)ϕ(s+)p(s+) (Touati et al., 2023). FB utilizes TD-learning to learn the same representations220
given transitions (st, st+1), regardless of how these transitions are divided between trajectories.221
However, FB may not scale as well to large datasets and high-dimensional state spaces. This may222
lead us to prefer an MC approximation of the SM, using CL. A key point here is that we do not223
have MC samples from β, only the individual policies βj , so CL does not directly approximate Mβ .224
However, in practice, CL can still build a representation space with a compositional structure (Myers225
et al., 2025b), and may be a more scalable option than FB.226

4.1 BYOL-γ: Connecting self-predictive objectives to the successor representation227

To build representations that lead to generalization, we propose a predictive objective, relying on228
neither TD learning nor negative samples. Specifically, we propose BYOL-γ which allows us229
to use the BYOL framework to capture information related to successor representations and its230
generalizations. Given a state st, a BYOL objective would normally sample a prediction target from231
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a one-step transition st+1 as in Equation (4). However, we make a modification to predict empirical232
samples from the normalized successor measure:233

LBYOL-γ(ϕ, ψ) = Est∼ p(s),k∼geom(1−γ)
st+k∼pπ(st+k|st)

[
f(ψ(ϕ(st)), ϕ̄(st+k))

]
(10)

Where f refers to an energy function, ϕ refers to the encoder, and ψ the predictor. With γ = 0, we234
have st+k = st+1 corresponding to an approximation of the one-step transitions, recovering the235
base BYOL objective. Figure 1b depicts our overall representation learning objective. We can view236
this objective as iteratively minimizing an upper-bound on the error between ψ(ϕ((s)) and the true237
successor features of the policy ψπ with changing basis features ϕ̄. With convex f , by Jensen’s238
inequality we have:239

LBYOL-γ(ϕ, ψ) = Est∼p(s),s+∼M̃π(st,s+)

[
f(ψ(ϕ(st)), ϕ̄(s+))

]
(11)

≥ Est∼ p(s),
[
f(ψ(ϕ(st))Es+∼M̃π(st,s+)ϕ̄(s+))

]
(12)

= Est∼ p(s)

[
f(ψ(ϕ(st)), (1− γ)ψπϕ̄(st)

]
(13)

Specifically, in the finite MDP, we can precisely describe the relationship of our objective to the SR240
with the following result:241

Theorem 4.1. Given a finite MDP with linear representations Φ ∈ R|S|×d, and predictor Ψ ∈242
Rd×d, under assumptions of orthogonal initialization for Φ (Ass. D.1), a uniform initial state243
distribution p0(s) (Ass. D.2), and symmetric transition dynamics (Ass. D.3), minimizing the self-244
predictive learning objective LBYOL-γ(ϕ, ψ) approximates a matrix decomposition of the successor245
representation M̃π ≈ ΦΨΦT , corresponding to successor features (1− γ)Ψπ ≈ ΨΦ.246

Proof is in Appendix D.2, where we show that existing theory (Khetarpal et al., 2025) also translates247
to the proposed BYOL-γ objective. Finally, we can see the relation between this objective and CL (3),248
with the most striking difference being the removal of the denominator involving negative samples.249
Surprisingly, we reveal that this simplified system still captures similar information and also can lead250
to empirical generalization in Section 5.1.251

BYOL-γ Variants. We discuss a few variants on our base objective, namely, we find it beneficial252
to consider bidirectional prediction (Guo et al., 2020; Tang et al., 2022) where we add an additional253
backwards predictor ψb which predicts a past representation from the future:254

LBYOL-γ(ϕ, ψ) = Est∼ p(s),s+∼M̃π(st,s+)

[
f(ψf (ϕ(st)), ϕ̄(s+)) + f(ϕ̄(st), ψb(ϕ(s+))

]
(14)

We utilize an action-conditioned variant of the forward predictor ψf (ϕ(st), at), which can be inter-255
preted as a temporally extended latent dynamics model, or capturing information about M̃π(s, a, s+).256

4.2 Training a policy with auxiliary BYOL-γ257

We consider BYOL-γ as an auxiliary loss for a BC policy πΘ(a|s, g), Θ = (θ, ϕ, ψ), to better address258
generalization of a policy. The parameters of the encoder and predictor correspond to ϕ, ψ, and θ259
includes additional parameters such as a policy head which transforms representations to actions.260
With this policy, we train with the objective:261

LBC(Θ) + αLBYOL-γ(ϕ, ψ) (15)
= E(st,at,s+)∼D [− log πΘ(a|ϕ(s), g = ϕ(s+))]

+ αE(st,at,s+)∼D
[
f(ψf (ϕ(st), at), ϕ̄(s+)) + f(ϕ̄(st), ψb(ϕ(s+))

]
For f , we choose a cross-entropy loss between the (softmax) normalized representations of the pre-262
diction and the target, similar to DINO (Caron et al., 2021): fCE(a, b) = softmax(b) · log softmax(a).263
We also find a normalized l2 loss, fl2 = ∥ a

∥a∥ − b
∥b∥∥

2
2, commonly used in BYOL setups (Grill et al.,264

2020; Schwarzer et al., 2020) also works, which we ablate in Section 5.4. We describe additional265
training details in Appendix A.1.266
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5 Experiments267

We have shown the theoretical basis for BYOL-γ as an appropriate choice of representation learn-268
ing objective for combinatorial generalization. Next, we demonstrate its performance empirically.269
Namely, we compare our proposed method BYOL-γ to alternative representation learning methods.270
We compare representation learning algorithms across three axes: (1) First, we compare qualitatively271
whether the representations appear to capture temporal relationships (2) Second, we assess represen-272
tations quantitatively by measuring zero-shot generalization performance on unseen tasks that require273
combinatorial generalization (3) Third, we assess generalization performance over an increasing274
generalization horizon. Finally, we perform ablations on the various components of our proposed275
method to demonstrate the relative importance of each algorithmic choice.276

Environments We empirically evaluate how well our approach can help with combinatorial general-277
ization on offline goal-reaching tasks on OGBench (Park et al., 2025), which contains both navigation278
and manipulation tasks, across both low-dimensional and visual observations. We focus on navigation279
environments, where OGBench provides stitch datasets, that assess combinatorial generalization280
by training on trajectories that span at most 4 maze cells, while evaluating on tasks that are longer,281
requiring combining information from multiple smaller trajectories.282

Baselines We benchmark against non-hierarchical methods, that perform end-to-end control from283
state to low-level actions (e.g. joint-control). In addition to BYOL-γ used as an auxiliary loss for BC,284
we evaluate several baselines: GCBC is the standard behavioral cloning baseline, which we aim to285
improve upon with representation learning objectives. Offline RL from OGBench, including implicit286
{V,Q}-learning (IVL, IQL) (Kostrikov et al., 2022), Quasimetric RL (QRL)(Wang et al., 2023),287
and Contrastive RL (CRL) (Eysenbach et al., 2022). BYOL is a minimal version of our BYOL-γ288
setup with 1-step prediction (γ = 0), only forwards prediction (ψf ) without action-conditioning289
(ψf (ϕ(st))), and loss fl2 . TRA (Myers et al., 2025b) is an auxiliary representation objective using290
contrastive learning related to an MC approximation of the successor measure FB, an on-policy291
version of forward-backward representation described in Equation (2) used as an auxiliary objective,292
and is related to TD approximation of the successor measure.293

Experimental Setup We match the training details of OGBench, and consider a similar represen-294
tation learning setup to TRA. For TRA and FB, we utilize a similar setup described in Section 4.2.295
We found it was beneficial to add action conditioning to FB, but did not see an overall improvement296
for TRA, so we use the original setup without action-conditioning. We provide a full comparison297
for action-conditioning in Appendix B.1. We note that when we perform action-conditioning, we298
change the representation of the policy from π(ϕ(s), ψ(g)) to π(ϕ(s), ϕ(g)). In Table 1, we utilize299
superscript a to denote methods with action-conditioning. Notably, we find that the weight of the300
auxiliary representation learning objectives (α) can be sensitive to both the embodiment, and size of301
environment (medium vs large). For each method, we perform a hyperparameter sweep over 4 α302
values, and report the best result for each environment in Table 1. We hold other hyperparameters303
constant across experiments, except with variation between non-visual and visual environments noted304
in Appendix A.305

5.1 Qualitative analysis of representations306

In Figure 2, we display a qualitative analysis of the representations. We visualize the similarity307
between the future prediction ψ for each state to ϕ(g) for a fixed goal g. We can see that BYOL-γ308
seems to learn a representation that encodes reachability between states, and has a similar structure309
to FB, which is known to approximate the successor measure. TRA and base BYOL seem to both310
capture similar structure and learn a less well-defined latent space. However, BYOL-γ and FB have311
more distinct similarity, and have visible “paths” of similar states. BYOL-γ also appears to capture312
the most similarity among more distant pairs of states. Compared to TRA, our hypothesis here is that313
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we have more optimistic similarity between distant states due to the lack of a negative term in the314
loss, which pushes representations apart.

BYOL-γ (ours) FB BYOL TRA

Figure 2: Visualization of the Learned Representation: depicts the similarity between the
prediction of the current state representation to the goal representation. For BYOL-γ and
FB, we visualize the cosine similarity between ψ(ϕ(s, a)), ϕ(g) ∀s ∈ D for a fixed goal g which is
indicated by the star marked in red. For TRA, we compare ψ(s), ϕ(g). BYOL-γ captures similar
temporal relationships as the baseline methods.315

5.2 Zero-shot performance on combinatorial generalization tasks316

In Table 1, we provide the performance results across all methods. Overall, our proposed method317
BYOL-γ, shows improved performance vs. GCBC across most environments, and is either com-318
petitive with or outperforms FB and TRA. Importantly, we find that a minimal BYOL setup does319
not confer significant benefit over the base GCBC except in non-visual antmaze environments.320
Generally, auxiliary representation learning with GCBC outperforms existing offline RL methods.321

Within the auxillary loss methods, we find that FB and BYOL-γ tend to outperform TRA on322
most environments. While we find that FB outperforms BYOL-γ on environments with smaller323
state spaces (antmaze-{medium,large}), we find that BYOL-γ’s simpler training proce-324
dure is beneficial in environments with larger state spaces (humanoidmaze-{medium,large},325
visual-antmaze-medium and visual-scene-play).326

Dataset BYOL-γa BYOL TRA FBa GCBC GCIVL GCIQL QRL CRL

antmaze-medium-stitch 58± 5 59± 4 54± 6 64± 6 45± 11 44± 6 29± 6 59± 7 53± 6
antmaze-large-stitch 19± 7 17± 6 11± 8 23± 4 3± 3 18± 2 7± 2 18± 2 11± 2
humanoidmaze-medium-stitch 51± 6 23± 3 45± 8 42± 4 29± 5 12± 2 12± 3 18± 2 36± 2
humanoidmaze-large-stitch 13± 3 3± 1 5± 4 11± 3 6± 3 1± 1 0± 0 3± 1 4± 1
antsoccer-arena-stitch 25± 5 12± 7 14± 4 22± 10 24± 8 21± 3 2± 0 1± 1 1± 0

visual-antmaze-medium-stitch 68± 4 57± 8 52± 3 49± 2 67± 4 6± 2 2± 0 0± 0 69± 2
visual-antmaze-large-stitch 26± 5 26± 5 17± 1 29± 2 24± 3 1± 1 0± 0 1± 1 11± 3
visual-scene-play 17± 1 13± 3 16± 3 14± 1 12± 2 25± 3 12± 2 10± 1 11± 2

average 35 26 27 32 26 16 8 14 25

Table 1: OGBench: We find that BYOL-γ performs better overall compared to prior methods.
We report mean and standard deviation over 10 training seeds in non-visual environments, and 4
seeds in visual environments. We match the OGBench evaluation setup of 5 evaluation (state,goal)
tasks, and 50 episodes per task. The success rate is then averaged over the last 3 checkpoints. We
color the best non-RL method, and bold values within 95% of its value in the same row. We use
superscript a to denote methods utilizing action-conditioning.

Interestingly, in visual-antmaze TRA and FB actually seem to hurt performance in comparison327
to base GCBC. On the other hand, with BYOL-γ we see no performance degradation over GCBC328
on the visual environments, a considerable improvement over other methods.329

5.3 Evaluating generalization with increasing horizon330

We conduct experiments to understand how success rate changes as an agent has to reach more331
challenging goals further away from its starting position. For each maze environment, we consider332
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Dataset BYOL-γa −a fl2 −ψb γ = 0

antmaze-medium-stitch 61± 6 63± 9 56± 4 67± 2 59± 5
antmaze-large-stitch 21± 5 27± 7 24± 6 19± 7 8± 4
humanoidmaze-medium-stitch 54± 5 48± 5 49± 6 52± 5 18± 2
humanoidmaze-large-stitch 14± 2 12± 6 15± 7 13± 2 3± 1
antsoccer-arena-stitch 21± 4 20± 5 11± 5 27± 7 25± 7

visual-antmaze-medium-stitch 68± 4 65± 3 63± 5 61± 4 54± 9
visual-antmaze-large-stitch 26± 5 25± 8 27± 7 28± 2 28± 1

average 33 33 31 33 24

Table 2: BYOL-γ ablations. We ablate components of our representation learning objective. For
each ablation, we perform a hyperparameter sweep over α, and report the best result per-environment.
For all environments, we report results over 4 seeds (for BYOL-γ, we use the first 4 of the 10 reported
in Table 1). We color the best method, and bold values within 95% of its value in the same row.

the same base 5 evaluation tasks used in Table 1, but construct intermediate waypoints along the333
shortest path to the final goal determined by Breadth First Search. We also include an additional334
maze environment, giant on which all methods have zero success rates to reach distant goals. This335
gives a more holistic view on an agent’s performance.336

antmaze-giant

1-2 3-4 5-6 7-8 9-1
0

11
-12

13
-14

15
-16

17
-18

19
-20

Distance to Goal (Maze Cells)

0.0

0.2

0.4

0.6

0.8

1.0
BYOL-  (ours) TRA GCBC

29
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Figure 3: Evaluating Generalization
with Increasing Horizons: shows that
BYOL-γ not only performs well on
goals in the near horizon, but also, gener-
alizes well to goals that requiring stitch-
ing occurring after the red bar (> 4).

We display results in Figure 3 and Appendix E, where we337
can see how performance drops off for all methods after a338
generalization threshold denoted by the red bar. While all339
methods cannot fully reach distant goals on giant, we340
see that BYOL-γ has the slowest drop-off in performance.341
We note that this is a challenging task, that requires stitch-342
ing up to approximately 8 different trajectories.343

5.4 Components344
affecting generalization for representation learning345

We ablate key components of the BYOL-γ objective in346
Table 2. This includes removing action conditioning for347
forward predictor ψf (−a), swapping the loss from cross-348
entropy to normalized squared l2 norm (fl2), removing349
backwards predictor ψb, and predicting the representation350
of the adjacent state (γ = 0). Both removing action-351
conditioning, and backwards prediction overall lead to similar results, but variability per-environment.352
For fl2, we obtain slightly worse average performance, and for γ = 0, we see the largest drop-off,353
especially on humanoidmaze environments.354

6 Discussion355

Limitations. While we demonstrate that BYOL-γ and other representation learning objectives356
offer a promising recipe for obtaining combinatorial generalization, we find that there still exists357
a generalization gap, especially on challenging navigation environments e.g. giant. We find358
a less significant improvement over BC on visual environments, which may motivate additional359
investigation. Additionally, we may anticipate more benefit from representation learning when360
applied to larger visual datasets, which has been fruitful in other domains.361

Conclusion. In this work, we provide a stronger understanding of the relationship between quantities362
related to successor representations and the generalization of policies trained with behavioral cloning.363
We propose a new self-predictive representation learning objective, BYOL-γ, and show that it364
captures information related to the successor measure, resulting in a competitive choice of an365
auxiliary loss for better generalization. We demonstrate that augmenting behavior cloning with366
meaningful representations results in new capabilities such as improved combinatorial generalization,367
especially in larger and more complex environments.368

10



Self-Predictive Representations for Combinatorial Generalization in Behavioral Cloning

References369

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,370
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural371
information processing systems, 30, 2017. URL https://arxiv.org/abs/1606.05312.372

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent373
values: A mathematical viewpoint, 2021. URL https://arxiv.org/abs/2101.07123.374

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When does375
return-conditioned supervised learning work for offline reinforcement learning? In Alice H. Oh,376
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information377
Processing Systems, 2022. URL https://openreview.net/forum?id=XByg4kotW5.378

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jegou, Julien Mairal, Piotr Bojanowski, and379
Armand Joulin. Emerging properties in self-supervised vision transformers. In 2021 IEEE/CVF380
International Conference on Computer Vision (ICCV), pages 9630–9640, 2021. doi: 10.1109/381
ICCV48922.2021.00951.382

Wilka Carvalho, Momchil S. Tomov, William de Cothi, Caswell Barry, and Samuel J. Gershman.383
Predictive representations: Building blocks of intelligence. Neural Computation, 36(11):2225–384
2298, 10 2024. ISSN 0899-7667. doi: 10.1162/neco_a_01705. URL https://doi.org/10.385
1162/neco_a_01705.386

Yash Chandak, Shantanu Thakoor, Zhaohan Daniel Guo, Yunhao Tang, Remi Munos, Will Dabney,387
and Diana L Borsa. Representations and exploration for deep reinforcement learning using singular388
value decomposition. In International Conference on Machine Learning, pages 4009–4034. PMLR,389
2023. URL https://arxiv.org/abs/2305.00654.390

Ian Char, Viraj Mehta, Adam Villaflor, John M. Dolan, and Jeff Schneider. Bats: Best action trajectory391
stitching, 2022. URL https://arxiv.org/abs/2204.12026.392

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,393
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence394
modeling. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in395
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?396
id=a7APmM4B9d.397

Zichen Jeff Cui, Hengkai Pan, Aadhithya Iyer, Siddhant Haldar, and Lerrel Pinto. Dynamo: In-domain398
dynamics pretraining for visuo-motor control. In The Thirty-eighth Annual Conference on Neural399
Information Processing Systems, 2024. URL https://arxiv.org/abs/2409.12192.400

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.401
Neural Computation, 5(4):613–624, 1993. doi: 10.1162/neco.1993.5.4.613.402

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for403
offline RL via supervised learning? In International Conference on Learning Representations,404
2022. URL https://openreview.net/forum?id=S874XAIpkR-.405

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning406
as goal-conditioned reinforcement learning. Advances in Neural Information Processing Systems,407
35:35603–35620, 2022.408

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel409
Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learning with410
auxiliary tasks. In The Eleventh International Conference on Learning Representations, 2023.411
URL https://openreview.net/forum?id=oGDKSt9JrZi.412

11

https://arxiv.org/abs/1606.05312
https://arxiv.org/abs/2101.07123
https://openreview.net/forum?id=XByg4kotW5
https://doi.org/10.1162/neco_a_01705
https://doi.org/10.1162/neco_a_01705
https://doi.org/10.1162/neco_a_01705
https://arxiv.org/abs/2305.00654
https://arxiv.org/abs/2204.12026
https://openreview.net/forum?id=a7APmM4B9d
https://openreview.net/forum?id=a7APmM4B9d
https://openreview.net/forum?id=a7APmM4B9d
https://arxiv.org/abs/2409.12192
https://openreview.net/forum?id=S874XAIpkR-
https://openreview.net/forum?id=oGDKSt9JrZi


Under review for RLC 2025, to be published in RLJ 2025

Vincent François-Lavet, Yoshua Bengio, Doina Precup, and Joelle Pineau. Combined reinforcement413
learning via abstract representations. In Proceedings of the AAAI Conference on Artificial Intelli-414
gence, volume 33, pages 3582–3589, 2019. URL https://arxiv.org/abs/1809.04506.415

Quentin Garrido, Mahmoud Assran, Nicolas Ballas, Adrien Bardes, Laurent Najman, and Yann416
LeCun. Learning and leveraging world models in visual representation learning, 2024. URL417
https://arxiv.org/abs/2403.00504.418

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:419
Learning continuous latent space models for representation learning. In International conference420
on machine learning, pages 2170–2179. PMLR, 2019. URL https://arxiv.org/abs/421
1906.02736.422

Dibya Ghosh, Homer Rich Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey423
Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Lawrence Yunliang Chen,424
Quan Vuong, Ted Xiao, Pannag R. Sanketi, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.425
Octo: An open-source generalist robot policy. In Robotics: Science and Systems, 2024. URL426
https://doi.org/10.15607/RSS.2024.XX.090.427

Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the gap between TD428
learning and supervised learning - a generalisation point of view. In The Twelfth International429
Conference on Learning Representations, 2024. URL https://arxiv.org/abs/2401.430
11237.431

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena432
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,433
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural434
information processing systems, 33:21271–21284, 2020. URL https://arxiv.org/abs/435
2006.07733.436

Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Remi437
Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive representations for multitask438
reinforcement learning. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th439
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning440
Research, pages 3875–3886. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.441
press/v119/guo20g.html.442

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive443
control. In International Conference on Machine Learning (ICML), 2022. URL https://444
arxiv.org/abs/2203.04955.445

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth446
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,447
Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree448
Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Youngwoon449
Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin Black,450
Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pannag R451
Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe, Ted452
Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Rohan Baijal,453
Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake, Ethan Paul454
Foster, Jensen Gao, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng Hu, Donovon Jackson,455
Charlotte Le, Yunshuang Li, Xinyu Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani,456
Daniel Morton, Tony Khuong Nguyen, Abigail O’Neill, Rosario Scalise, Derick Seale, Victor457
Son, Stephen Tian, Emi Tran, Andrew E. Wang, Yilin Wu, Annie Xie, Jingyun Yang, Patrick458
Yin, Yunchu Zhang, Osbert Bastani, Glen Berseth, Jeannette Bohg, Ken Goldberg, Abhinav459
Gupta, Abhishek Gupta, Dinesh Jayaraman, Joseph J Lim, Jitendra Malik, Roberto Martín-460
Martín, Subramanian Ramamoorthy, Dorsa Sadigh, Shuran Song, Jiajun Wu, Michael C. Yip,461

12

https://arxiv.org/abs/1809.04506
https://arxiv.org/abs/2403.00504
https://arxiv.org/abs/1906.02736
https://arxiv.org/abs/1906.02736
https://arxiv.org/abs/1906.02736
https://doi.org/10.15607/RSS.2024.XX.090
https://arxiv.org/abs/2401.11237
https://arxiv.org/abs/2401.11237
https://arxiv.org/abs/2401.11237
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2006.07733
https://proceedings.mlr.press/v119/guo20g.html
https://proceedings.mlr.press/v119/guo20g.html
https://proceedings.mlr.press/v119/guo20g.html
https://arxiv.org/abs/2203.04955
https://arxiv.org/abs/2203.04955
https://arxiv.org/abs/2203.04955


Self-Predictive Representations for Combinatorial Generalization in Behavioral Cloning

Yuke Zhu, Thomas Kollar, Sergey Levine, and Chelsea Finn. DROID: A large-scale in-the-wild462
robot manipulation dataset. In RSS 2024 Workshop: Data Generation for Robotics, 2024. URL463
https://openreview.net/forum?id=Ml2pTYLNLi.464

Khimya Khetarpal, Zhaohan Daniel Guo, Bernardo Avila Pires, Yunhao Tang, Clare Lyle, Mark465
Rowland, Nicolas Heess, Diana L Borsa, Arthur Guez, and Will Dabney. A unifying framework for466
action-conditional self-predictive reinforcement learning. In The 28th International Conference on467
Artificial Intelligence and Statistics, 2025. URL https://arxiv.org/abs/2406.02035.468

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael469
Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, Thomas Kollar, Benjamin Burchfiel,470
Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. OpenVLA: An471
open-source vision-language-action model. In 8th Annual Conference on Robot Learning, 2024.472
URL https://arxiv.org/abs/2406.09246.473

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit474
q-learning. In International Conference on Learning Representations, 2022. URL https:475
//arxiv.org/abs/2110.06169.476

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G. Bellemare. On the477
generalization of representations in reinforcement learning, 2022. URL https://arxiv.org/478
abs/2203.00543.479

Yann LeCun. A path towards autonomous machine intelligence version, 2022. URL https:480
//openreview.net/forum?id=BZ5a1r-kVsf.481

Jaewoo Lee, Sujin Yun, Taeyoung Yun, and Jinkyoo Park. GTA: Generative trajectory augmentation482
with guidance for offline reinforcement learning. In The Thirty-eighth Annual Conference on483
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?484
id=kZpNDbZrzy.485

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,486
review, and perspectives on open problems, 2020. URL https://arxiv.org/abs/2005.487
01643.488

Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric residual network for sample efficient489
goal-conditioned reinforcement learning. In Proceedings of the AAAI Conference on Artificial490
Intelligence, volume 37, pages 8799–8806, 2023. URL https://arxiv.org/abs/2208.491
08133.492

Cong Lu, Philip J. Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay.493
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:494
//openreview.net/forum?id=6jNQ1AY1Uf.495

Yunhao Luo, Utkarsh A. Mishra, Yilun Du, and Danfei Xu. Generative trajectory stitching through496
diffusion composition, 2025. URL https://arxiv.org/abs/2503.05153.497

Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Yecheng Jason Ma, Claire Chen, Sneha Silwal,498
Aryan Jain, Vincent-Pierre Berges, Tingfan Wu, Jay Vakil, Pieter Abbeel, Jitendra Malik, Dhruv499
Batra, Yixin Lin, Oleksandr Maksymets, Aravind Rajeswaran, and Franziska Meier. Where are we500
in the search for an artificial visual cortex for embodied intelligence? In Thirty-seventh Conference501
on Neural Information Processing Systems, 2023. URL https://arxiv.org/abs/2303.502
18240.503

Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learning504
temporal distances: Contrastive successor features can provide a metric structure for decision-505
making. In Forty-first International Conference on Machine Learning, 2024. URL https:506
//openreview.net/forum?id=xQiYCmDrjp.507

13

https://openreview.net/forum?id=Ml2pTYLNLi
https://arxiv.org/abs/2406.02035
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2203.00543
https://arxiv.org/abs/2203.00543
https://arxiv.org/abs/2203.00543
https://openreview.net/forum?id=BZ5a1r-kVsf
https://openreview.net/forum?id=BZ5a1r-kVsf
https://openreview.net/forum?id=BZ5a1r-kVsf
https://openreview.net/forum?id=kZpNDbZrzy
https://openreview.net/forum?id=kZpNDbZrzy
https://openreview.net/forum?id=kZpNDbZrzy
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2208.08133
https://arxiv.org/abs/2208.08133
https://arxiv.org/abs/2208.08133
https://openreview.net/forum?id=6jNQ1AY1Uf
https://openreview.net/forum?id=6jNQ1AY1Uf
https://openreview.net/forum?id=6jNQ1AY1Uf
https://arxiv.org/abs/2503.05153
https://arxiv.org/abs/2303.18240
https://arxiv.org/abs/2303.18240
https://arxiv.org/abs/2303.18240
https://openreview.net/forum?id=xQiYCmDrjp
https://openreview.net/forum?id=xQiYCmDrjp
https://openreview.net/forum?id=xQiYCmDrjp


Under review for RLC 2025, to be published in RLJ 2025

Vivek Myers, Catherine Ji, and Benjamin Eysenbach. Horizon Generalization in Reinforcement508
Learning. In International Conference on Learning Representations, January 2025a. URL509
https://arxiv.org/pdf/2501.02709.510

Vivek Myers, Bill Chunyuan Zheng, Anca Dragan, Kuan Fang, and Sergey Levine. Temporal511
representation alignment: Successor features enable emergent compositionality in robot instruction512
following, 2025b. URL https://arxiv.org/abs/2502.05454.513

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhi Gupta. R3m: A universal514
visual representation for robot manipulation. In Conference on Robot Learning, 2022. URL515
https://arxiv.org/abs/2203.12601.516

Tianwei Ni, Benjamin Eysenbach, Erfan Seyedsalehi, Michel Ma, Clement Gehring, Aditya Mahajan,517
and Pierre-Luc Bacon. Bridging state and history representations: Understanding self-predictive518
rl. In The Twelfth International Conference on Learning Representations, 2024. URL https:519
//arxiv.org/abs/2401.08898.520

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham521
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex522
Herzog, Alex Irpan, Alexander Khazatsky, Anant Rai, Anchit Gupta, Andrew Wang, Anikait Singh,523
Animesh Garg, Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma,524
Arefeh Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon525
Kim, Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea526
Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher527
Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne528
Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov, Dorsa529
Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao, Freek530
Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan, Gilbert Feng, Giulio Schiavi,531
Glen Berseth, Gregory Kahn, Guanzhi Wang, Hao Su, Hao-Shu Fang, Haochen Shi, Henghui532
Bao, Heni Ben Amor, Henrik I Christensen, Hiroki Furuta, Homer Walke, Hongjie Fang, Huy533
Ha, Igor Mordatch, Ilija Radosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung534
Kim, Jaimyn Drake, Jan Peters, Jan Schneider, Jasmine Hsu, Jeannette Bohg, Jeffrey Bingham,535
Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan536
Gu, Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik, João Silvério,537
Joey Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim,538
Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana539
Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin540
Black, Kevin Lin, Kevin Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan541
Srinivasan, Kuan Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti,542
Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi Jim Fan, Lionel Ott, Lisa Lee,543
Luca Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina,544
Mateo Guaman Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong545
Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki546
Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Norman547
Di Palo, Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani, Pannag R548
Sanketi, Patrick Tree Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David Fagan, Peter549
Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan Vuong, Rafael550
Rafailov, Ran Tian, Ria Doshi, Roberto Martín-Martín, Rohan Baijal, Rosario Scalise, Rose551
Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah, Ryan Hoque,552
Ryan Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry Moore, Shikhar553
Bahl, Shivin Dass, Shubham Sonawani, Shuran Song, Sichun Xu, Siddhant Haldar, Siddharth554
Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker,555
Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel Belkhale, Sungjae Park, Suraj556
Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya Harada, Tatsuya Matsushima, Ted557
Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao, Travis Armstrong,558
Trevor Darrell, Trinity Chung, Vidhi Jain, Vincent Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram559

14

https://arxiv.org/pdf/2501.02709
https://arxiv.org/abs/2502.05454
https://arxiv.org/abs/2203.12601
https://arxiv.org/abs/2401.08898
https://arxiv.org/abs/2401.08898
https://arxiv.org/abs/2401.08898


Self-Predictive Representations for Combinatorial Generalization in Behavioral Cloning

Burgard, Xi Chen, Xiaolong Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei,560
Xuanlin Li, Yao Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu,561
Yilin Wu, Ying Xu, Yixuan Wang, Yonatan Bisk, Yoonyoung Cho, Youngwoon Lee, Yuchen562
Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang563
Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen564
Zhang, and Zipeng Lin. Open x-embodiment: Robotic learning datasets and rt-x models : Open565
x-embodiment collaboration0. In 2024 IEEE International Conference on Robotics and Automation566
(ICRA), pages 6892–6903, 2024. doi: 10.1109/ICRA57147.2024.10611477.567

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking568
offline goal-conditioned rl. In International Conference on Learning Representations (ICLR), 2025.569
URL https://arxiv.org/abs/2007.05929.570

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,571
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.572
Learning transferable visual models from natural language supervision. In International Conference573
on Machine Learning, 2021. URL https://arxiv.org/abs/2103.00020.574

Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.575
Real-world robot learning with masked visual pre-training. In 6th Annual Conference on Robot576
Learning, 2022. URL https://arxiv.org/abs/2203.06173.577

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards – just map them578
to actions, 2020. URL https://arxiv.org/abs/1912.02875.579

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip580
Bachman. Data-efficient reinforcement learning with self-predictive representations. In Inter-581
national Conference on Learning Representations, 2020. URL https://arxiv.org/abs/582
2007.05929.583

Vlad Sobal, Wancong Zhang, Kynghyun Cho, Randall Balestriero, Tim G. J. Rudner, and Yann584
LeCun. Learning from reward-free offline data: A case for planning with latent dynamics models,585
2025. URL https://arxiv.org/abs/2502.14819.586

Yunhao Tang, Zhaohan Daniel Guo, Pierre H. Richemond, Bernardo Ávila Pires, Yash Chandak,587
Rémi Munos, Mark Rowland, Mohammad Gheshlaghi Azar, Charline Le Lan, Clare Lyle, Andr’as588
Gyorgy, Shantanu Thakoor, Will Dabney, Bilal Piot, Daniele Calandriello, and M. Vaĺko. Un-589
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A Experimental Setup616

Table 3: Hyperparameters for BYOL-γ

Hyperparameter Shared

actor head MLP (512,512,512)
representation encoder (ϕ) MLP (64,64,64)
predictor (ψ) MLP (64,64,64)
encoder ensemble 2
learning rate 3× 10−4

optimizer Adam

Non-visual Visual

Gradient steps 1000k 500k
Batch size 1024 256
τ (EMA) 1.0 0.99
γ 0.99 {0.66, 0.99}
α (alignment) {1,6,40,100} {1,6,10,20}
additional encoder n/a impala_small
encoder output dimension |s| 64

A.1 Implementation Details617

In this section we provide more training details for BYOL-γ, and representation learning baselines.618
We match the training details of OGBench, including gradient steps, batch size, learning rate.619

Network Architecture. We follow the same network architecture setup as TRA, where we utilize620
MLP-based encoders, and action head. For the output dimension of the encoder, we use the state621
dimension for non-visual experiments, and 64 for visual experiments. For the predictor ψ, we utilize622
an MLP of the same architecture as the encoder. For image-based tasks, there is an additional CNN,623
which then passes output to the MLP encoder.624

Representation Ensemble. We follow the setup of TRA which utilizes representation ensembling,625
such that two copies of the encoder ϕ1, ϕ2 are in parallel. We also have two distinct predictors ψ1, ψ2626
for each ensemble. As input to the policy head, we average the representations, z̄ = ϕ1(st)+ϕ2(s2)

2 .627
Each representation is trained independently for the BYOL loss, but the BC loss differentiates through628
both ϕs.629

Alignment. We find that the choice of weight of the auxiliary loss for the representation learning630
objective is sensitive to both the robot embodiment and the environment size. For comparison, we631
perform a hyperparameter search over four alignment values for BYOL-γ, TRA, and FB, and then632
report the best value for each environment in Table 1.633

Discount. For sampling the next-state, we utilize a discount factor of γ = 0.99 for all non-visual634
environments. For visual environments, we perform a hyperparameter search over {0.66, 0.99},635
however all representation learning methods performed better at γ = 0.66.636

A.2 BYOL-γ637

Target network. For BYOL, we find that exponential moving average (EMA) target networks for
the encoder ϕ are not necessary for non-visual environments (τ = 1), but for visual environments,

17



Under review for RLC 2025, to be published in RLJ 2025

we find that a fast target stabilizes training (τ = 0.99):

ϕtarget = τϕonline + (1− τ)ϕtarget

A.3 TRA638

In practice, TRA uses a symmetric version (Radford et al., 2021) of the InfoNCE objective discussed639
in Equation 3. We write this in batch form, B = {(si, s+,i)}|B|

i=1 rather than in expectation:640

LTRA = EB

− 1

B

|B|∑
i=1

log
ef(ψ(si),ϕ(s+,i))∑|B|
j=1 e

f(ψ(si),ϕ(s+,j)
− 1

B

|B|∑
i=1

log
ef(ψ(si),ϕ(s+,i))∑|B|
j=1 e

f(ψ(sj),ϕ(s+,i)

 (16)

Additionally, TRA minimizes the squared norm of representations minϕ,ψ λEs[∥ϕ(s)∥
2

d + ∥ψ(s)∥2

d ]641
with λ = 10−6. For TRA, we search over α = {10, 40, 60, 100}.642

A.4 FB643

Prior work which trains FB for zero-shot policy optimization (Touati et al., 2023) typically normalizes644
ϕ with an additional loss term so that E

[
ϕϕT

]
≈ Id . However, we found that adding this loss term645

was not beneficial to performance in our setting and hence do not include it.646

FB uses an EMA target network as described in A.2 with τ = 0.005. For FB, we search over647
α = {0.01, 0.05, 0.001, 0.005}.648

A.5 Code.649

We utilize the OGBench (Park et al., 2025) codebase and benchmark, and its extensions in the TRA650
codebase (Myers et al., 2025b) for equal comparison.651

A.6 Compute Requirements652

We perform all experiments utilizing single GPUs, predominately NVIDIA RTXA8000 and L40S.653
We utilize 6 CPU cores, 24G of RAM for non-visual environments, and 64G for visual experiments.654
Experiments take 2 to 4 hours for non-visual and 6 to 12 hours for visual environments.655

B Ablations.656

B.1 Action-conditioning657

In this section, we ablate the component of performing action-conditioning for the predictor ψ(st)658
vs ψ(st, at) for TRA and FB. We consider a similar comparison for BYOL-γ in Table 2. For659
this comparison, when we perform action-conditioning, we utilize a policy representation π(s =660
ϕ(s), g = ϕ(g)), and otherwise π(s = ψ(s), g = ϕ(g)). We find that results can be environment661
specific. On average, results are not improved for TRA, but we find an improvement for FB, hence662
in our main Table 1 we include the action-conditioned results for FB and the action-free results for663
TRA.664
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Dataset TRA TRAa FB FBa

antmaze-medium-stitch 54± 6 57± 12 64± 10 64± 6
antmaze-large-stitch 11± 8 7± 7 17± 6 23± 4
humanoidmaze-medium-stitch 45± 8 45± 5 36± 3 42± 4
humanoidmaze-large-stitch 5± 4 9± 4 6± 2 11± 3
antsoccer-arena-stitch 14± 4 25± 8 17± 5 22± 10

visual-antmaze-medium-stitch 52± 3 33± 4 47± 5 49± 2
visual-antmaze-large-stitch 17± 1 22± 5 28± 3 29± 2
visual-scene-play 16± 3 18± 2 12± 2 14± 1

average 27 27 28 32

Table 4: Action-conditioning ablations. We ablate the choice to condition on the first action for
predictor ψ for TRA and FB over 10 seeds for non-visual and 4 seeds for visual environments.

C CL to FB665

Here, illustrate that connection between CL and FB, showing that in the limit an n-step version of FB666
becomes similar to CL.667

We can rewrite Equation (3) to see the connection between FB (TD) and CL (MC). Under assumptions668
that ϕ, ψ are centered (E[ϕ] = E[ψ] = 0), and unit normalized ∥ϕ∥2, ∥ψ∥2 = 1, if we apply a second-669
order Taylor expansion to the denominator of the CL loss (Touati et al., 2023) we have:670

CLInfoNCE ≈ 1

2
Es∼p0(s),s′∼p0(s′)

[
(ψ(s)Tϕ(s′))2

]
− 2E k∼geom(1−γ)

st∼p0,st+k∼pπ(st+k|st)

[
ψ(st)

Tϕ(st+k)
]

(17)

Next, we can consider an n-step variant of the FB loss (Blier et al., 2021) which we refer to as FB(n):671

min
ϕ,ψ

Est∼p0
s′∼p0

[
(ψ(st)

Tϕ(s′) − γnψ̄(st+n)
T ϕ̄(s′))2

]
− 2

n∑
i=1

Est∼p0,st+i∼pπ
[
γiψ(st)

Tϕ(st+i)
]

(18)

We can make the full connection to CL with infinite horizon n:672

FB(n)
n→∞

= Est∼p0
s′∼p0

[
(ψ(st)

Tϕ(s′))2
]
− 2

n∑
i=1

E st∼p0
st+i∼pπ(st+is0)

[
γiψ(st)

Tϕ(st+i)
]

(19)

= Est∼p0
s′∼p0

[
(ψ(st)

Tϕ(s′))2
]
− 2γ

(1− γ)

n∑
i=1

E st∼p0
st+i∼pπ(st+is0)

[
(1− γ)γi−1ψ(st)

Tϕ(st+i)
]

(20)

= Est∼p0
s′∼p0

[
(ψ(st)

Tϕ(s′))2
]
− 2γ

(1− γ)
E k∼geom(1−γ)
st∼p0,st+k∼pπ(st+k|st)

[
ψ(st)

Tϕ(st+k)
]

(21)

Thus, we can see that in the infinite horizon form of FB(n), it is related to the form of CLInfoNCE in673
(3), but with the positive contrastive term weighted by factor γ

1−γ .674

D Finite MDP675

D.1 BYOL676

BYOL as an Ordinary Differential Equation (ODE) In finite MDPs, we can characterize the677
BYOL objective which gives intuition about what information is captured in ϕ, ψ, and conditions678
that may be useful for stability (Tang et al., 2022; Khetarpal et al., 2025). Consider a finite MDP679
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with transition Pπ , linear d-dimensional encoder Φ ∈ R|S|×d, and linear action-free latent-dynamics680
Ψ ∈ Rd×d. In a finite MDP, Equation (4) becomes:681

min
Φ,Ψ

BYOL(Φ,Ψ) := min
Φ,Ψ

Est∼ p(s),st+1∼Pπ ,
[
∥ψTΦT st − Φ̄T st+1∥22

]
(22)

A property to prevent this objective from collapsing is that Ψ is updated more quickly than Φ. In682
practice, this is commonly realized as the dynamics are generally a smaller network than the encoder.683
This system can be analyzed in an ideal setup, where we first find the optimal Ψ, each time before684
taking a gradient step for Φ, which leads to the ODE for representations Φ (Tang et al., 2022):685

Ψ∗ ∈ argmin
Ψ

BYOL(Φ,Ψ), Φ̇ = −∇ΦBYOL(Φ,Ψ)|Ψ=Ψ∗ (23)

We are able to analyze this ODE with the following assumptions (Tang et al., 2022):686

Assumption D.1 (Orthogonal initialization). Φ⊤Φ = I687

Assumption D.2 (Uniform state distribution). p0(s) = 1
|S|688

Assumption D.3 (Symmetric dynamics). Pπ = (Pπ)⊤689

Under these three assumptions, Khetarpal et al. (2025) prove that the BYOL ODE is equivalent to690
monotonically minimizing the surrogate objective:691

min
Ψ

∥Pπ − ΦΨΦT ∥F + C (24)

Where ∥ · ∥F is the Frobenius matrix norm. Thus, we can understand that the BYOL objective as692
learning a d-rank decomposition of the underlying dynamics Pπ . Additionally, the top d eigenvectors693
of Pπ match those of (I − γPπ)−1 =Mπ Chandak et al. (2023). However, we will highlight that694
there are key differences when learning a low-rank decomposition between Pπ and Mπ. This is695
described by Touati et al. (2023), where we can consider that in a real-world problem with underlying696
continuous-time dynamics, actions have little effect, and Pπ is close to the identity, e.g. close to697
full-rank. However, Mπ, which takes powers of P tπ, has a “sharpening effect” on the difference698
between eigenvalues, which gives a clearer learning signal. This is intuitive on a real-world problem699
like robotics, even with discrete-time dynamics, where st+1 ≈ st, but we have larger differences700
between st and st+k.701

D.2 BYOL-γ702

In the finite MDP, we now verify theorem 4.1 , where BYOL-γ approximates the successor repre-703
sentation with matrix decomposition M̃π ≈ ΦΨΦT .704

We consider the same objective (22), where we need to update the expectation of the sampling705
distribution:706

min
Φ,Ψ

BYOL-γ(Φ,Ψ) := min
Φ,Ψ

Est∼ p(s),s+∼M̃π ,
[
∥ψTΦT st − Φ̄T s+∥22

]
(25)

Assuming that this objective is optimized under the ODE (23). We have that our objective monotoni-707
cally minimizes:708

min
Ψ

∥M̃π − ΦΨΦT ∥F + C (26)

This directly translates as we can consider M̃π = Pπ as simply a valid transition matrix for a new,709
temporally abstract, version of the original MDP. We maintain the original assumptions D.1, D.2, and710
D.3. We do not need an additional assumption for M̃π , as assumption D.3 for symmetric Pπ implies711
a symmetric M̃π = (1− γ)

∑
t≥0 γ

tP tπ ,712
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Under this setup, we also have that ΨΦ ∈ Rn×d relates to the successor feature matrix, where each713
row (ΨΦ)i contains the vector (1− γ)ψπ(si):714

(1− γ)ψπ(si) =
∑
j

M̃π(si, sj)ϕ(sj) (27)

= (M̃πΦ)i (28)

≈ (ΦΨΦTΦ)i (29)
= (ΦΨ)i (30)

In other words, in the restricted finite MDP, where we minimize (26), we are simultaneously learning715
successor features ψπ ≈ ΨΦ and basis features Φ.716
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E Additional Results for Horizon Generalization717
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Figure 4: Evaluating Generalization with Increasing Horizons: The distances to the right of
the red dotted line require combinatorial generalization. The maze maps show examples of how
intermediate goals are selected along the optimal path.

We include additional results matching the setup in Section 5.3, for antmaze-medium, and718
{humanoidmaze}-{medium,large,giant} in Figure 4. We can observe that BYOL-γ leads719
in performance as the distance between the start and goal grows when compared to other methods.720
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