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ABSTRACT

We introduce Prior-Informed Flow Matching (PIFM), a conditional flow model for
graph reconstruction. Reconstructing graphs from partial observations remains a
key challenge; classical embedding methods often lack global consistency, while
modern generative models struggle to incorporate structural priors. PIFM bridges
this gap by integrating embedding-based priors with continuous-time flow match-
ing. Grounded in a permutation equivariant version of the distortion-perception
theory, our method first uses a prior, such as graphons or GraphSAGE/node2vec,
to form an informed initial estimate of the adjacency matrix based on local infor-
mation. It then applies rectified flow matching to refine this estimate, transporting
it toward the true distribution of clean graphs and learning a global coupling.
Experiments on different datasets demonstrate that PIFM consistently enhances
classical embeddings, outperforming them and state-of-the-art generative baselines
in reconstruction accuracy.

1 INTRODUCTION

Graph generative models have seen remarkable progress in recent years, enabling the synthesis of real-
istic graph structures in domains such as drug design (Yang et al., 2024) and social networks (Grover
et al., 2019). In particular, diffusion-based (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2023) and
flow-based (Qin et al., 2025; Eijkelboom et al., 2024) approaches have emerged as state-of-the-art.
While these models excel at unconditional generation and property-controlled generation, their appli-
cation to inverse problems, and in particular, the reconstruction of a graph from partial observations,
remains a fundamental open problem.

Graph reconstruction is a long-standing problem, traditionally framed as a link prediction task. Early
transductive methods, such as Node2Vec (Grover & Leskovec, 2016; Perozzi et al., 2014), model
edges independently and fail to capture global structural information. While inductive methods (Zhang
& Chen, 2018) like GraphSAGE (Hamilton et al., 2017) can capture expressive local patterns, they still
lack a global perspective on the graph’s structure. Conversely, recent generative models adapted from
image inpainting (Vignac et al., 2023; Trivedi et al., 2024) or guided by posterior sampling (Sharma
et al., 2024; Tenorio et al., 2025) can produce plausible completions but are not optimized for the
faithful recovery of the ground truth. This leaves open a critical gap: classical and heuristic-based
methods are local, while modern solvers are not designed for exact reconstruction.

In this work, we bridge this gap by introducing Prior-Informed Flow Matching (PIFM), a flow-
based model designed for high-fidelity graph reconstruction. We reformulate the problem through the
lens of the perception-distortion trade-off (Blau & Michaeli, 2018), which postulates that an optimal
estimator can be constructed in two stages (Freirich et al., 2021; Ohayon et al., 2025): (i) predicting
the Minimum Mean Squared Error (MMSE) estimator from local information, and (ii) learning an
optimal transport map from this initial estimate to the ground-truth graph distribution.

Our method approximates this two-step solution. For (i), we represent the posterior mean as
the expected value of a Bernoulli latent variable model with unknown probabilities, where the
latent structure is estimated using inductive (dataset-informed, such as graphons (Lovász, 2012)
and GraphSAGE (Hamilton et al., 2017)) or transductive estimators (instance-specific, such as
node2vec (Grover & Leskovec, 2016)). Then, for (ii), we approximate the optimal transport step
using a rectified flow model (Liu et al., 2023; Albergo et al., 2023), which maps the posterior mean to
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Figure 1: Overview of the Prior-Informed Flow Matching (PIFM) graph reconstruction framework. Starting
from a partially observed adjacency matrix Aξ

1 = ξ ⊙A, where ξ denotes a mask, we form an initialization A0

by combining the observed entries with prior predictions fprior(A
ξ
1) obtained with an element-wise predictor. In

dark red we denote the true edges that are masked, while in light red those masked position that do not have an
edge between nodes. A rectified flow then interpolates linearly from A0 to the ground-truth graph A1 = A,
learning global structural information from a coupling of all the edges. The intermediate states At improve on
the prior-informed initialization, enabling recovery of the missing edges.

the distribution of clean graphs (see Fig. 1). Importantly, our architectures are permutation-equivariant,
ensuring a permutation-invariant parameterization of the posterior distribution.

We validate the advantages of PIFM through experiments on datasets with diverse characteristics,
including dense and sparse graphs. Our results show that PIFM effectively integrates structural priors
with flow-based modeling and can be interpreted as a form of graph inpainting, where missing edges
are inferred through a learned interpolation process.

Our contributions are as follows:

• We introduce a novel formulation for graph reconstruction based on a permutation-
equivariant distortion-perception trade-off.

• We propose PIFM, a new estimator based on flow matching that defines a prior-informed
source distribution using embeddings from latent graph models. PIFM enhances these initial
embeddings by learning a global structural coupling.

• We empirically validate our approach on link prediction, and two blind versions termed
expansion (recover the missing edges) and denoising (removing the spurious edges), showing
that PIFM significantly improves the reconstruction performance of predictors that rely
solely on local information.

2 RELATED WORKS

Flow/Diffusion models on graphs. Diffusion and flow-based graph generative models have shown
impressive performance in recent years. Early models, namely EDP-GNN (Niu et al., 2020) and
GDSS (Jo et al., 2022), employ score-based continuous diffusion over a relaxation of the graph
structure. However, given that graphs are inherently discrete, subsequent work has explored discrete
diffusion processes (Austin et al., 2021). Models like DiGress (Vignac et al., 2023) demonstrated
the effectiveness of this approach, which has been further advanced by discrete flow-based models
like DeFoG (Qin et al., 2025) and variational approaches like CatFlow (Eijkelboom et al., 2024). A
common point of these models is their reliance on a simple source distribution, such as Gaussian
(continuous) or uniform (discrete) noise. While effective for unconstrained generation, recent work
on image-based inverse problems demonstrates the advantages of learning a data-dependent flow,
using a prior-informed source distribution (Albergo et al., 2023; Delbracio & Milanfar, 2024; Ohayon
et al., 2025).
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Graph topology inference via flow/diffusion-based solvers. Graph topology inference – the
task of recovering hidden edges from a partially observed graph – is a long-standing inverse prob-
lem (Segarra et al., 2017; Dong et al., 2016). Several methods adapt diffusion for constrained graph
generation, which is related to but distinct from topology inference. DiGress (Vignac et al., 2023)
introduced an inpainting mechanism, inspired by Repaint (Lugmayr et al., 2022), to generate graph
structures consistent with a partial observation. Similarly, in Trivedi et al. (2024) a similar mecha-
nism is used for completing partially observed graphs. PRODIGY (Sharma et al., 2024) enforces
hard constraints by projecting the graph estimate onto a feasible set at each sampling step. More
recently, GGDiff (Tenorio et al., 2025) incorporates a guidance mechanism as a flexible alternative
to inpainting. However, all these methods are designed for constrained generation (e.g., molecule
generation with a given scaffold) rather than recovering masked edges from a partially observed
graph. Hence, to the best of our knowledge, designing a diffusion-based model explicitly for graph
topology inference remains an open problem.

3 BACKGROUND

We represent an undirected graph G0 = {V, E}, where V denotes the nodes and E the edges, by its
binary symmetric adjacency matrix A0 ∈ RN×N .

Continuous flow matching for graph generation. Flow matching (Albergo et al., 2023; Lipman
et al., 2023) is a family of generative models that defines a continuous-time transport map from
samples A0 drawn from a source distribution p0 to samples A1 from a target distribution p1. It is
governed by the ODE

dAt = v(At, t) dt, (1)

where v(·, t) is a velocity field and At denotes a forward process, also known as stochastic interpolant,
for t ∈ [0, 1]. Typically, p0 is a tractable distribution (e.g., a Gaussian distribution), while p1
corresponds to the data distribution. To generate new samples, one must specify both At and v. A
common choice for the forward process is At = αtA0 + βtA1, where αt and βt are differentiable
functions such that α0 = 1, β0 = 0 and α1 = 0, β1 = 1. Differentiating this path gives a velocity
v(At, t) = α̇tA0+ β̇tA1. Despite its closed-form, this expression depends explicitly on A1, making
it impractical since the target is unknown at inference/sampling. To circumvent this, we instead
consider v(At, t) = EA0,A1

[α̇tA1 + β̇tA0 | At], the conditional expectation of the velocity given
At (Albergo et al., 2023), which is then approximated with a neural network vθ. The network is
trained using a mean squared error loss:

Et,A0,A1

[∥∥∥vθ(At, t)− (α̇tA1 + β̇tA0)
∥∥∥2
2

]
. (2)

In particular, this formulation does not require A0 and A1 to be independent; in fact, they might be
sampled from a joint distribution, allowing for richer transport plans in cases where paired data is
available. This has been exploited to solve inverse problems on images (Ohayon et al., 2025; Albergo
et al., 2024; Delbracio & Milanfar, 2024), and is directly related to our proposed method, as described
later.

Throughout this work, we consider the rectified flow case (Liu et al., 2023), where αt = 1− t and
βt = t. As shown in Tong et al. (2024), the velocity field associated with this linear path approximates
the optimal transport vector field when the joint distribution p(A0,A1) closely resembles the optimal
coupling between the marginals p(A0) and p(A1). We deferred to Appendix B.4 a more detailed
background on generative models on graphs beyond continuous flow matching, including diffusion-
based models, as well as related works.

4 METHOD

In Section 4.1, we introduce the distortion-perception trade-off (Blau & Michaeli, 2018) for graphs.
Then, in Section 4.2, we introduce methods for approximating the posterior mean. In Section 4.3, we
describe our implementation of the flow model to transport the predicted mean to the ground-truth
graphs.
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4.1 GRAPH TOPOLOGY INFERENCE AS A DISTORTION-PERCEPTION TRADE-OFF

We aim to reconstruct the ground-truth adjacency matrix A of graph G from a partially observed
version, denoted by AO. This task can be formalized through the following distortion-perception
function:

D(P ) = min
p(Â|AO)

{
Ep(A,Â)[∥A− Â∥2F ] : d(pA, pÂ) ≤ P

}
, (3)

where Â is an estimator of A given the observation AO, and d(pA, pÂ) is a divergence between the
distributions pA (the distribution of clean graphs) and pÂ. Although we adopt MSE as the distortion
measure in (3), the formulation is general and supports other distortion metrics between the true
and predicted graphs (Blau & Michaeli, 2018). The function in (3) has been extensively studied
in the image domain (Freirich et al., 2021), where different values of P correspond to estimators
with varying characteristics in terms of average accuracy (distortion), and the degree to which the
reconstructed signal looks like the ground truth (perception). We adapt this framework to graphs by
estimating the matrix A, and accounting for symmetry constraints due to the permutation invariance
of graph representations.

Among all possible values of P , the most studied cases are P = ∞ and P = 0. The former
corresponds to the distortion function D(P =∞), whose solution is the posterior mean estimator
Â∗ = E[A | AO]. This estimator minimizes distortion, but does not impose constraints on the
distribution of outputs, potentially leading to unrealistic graphs. In contrast, when P = 0, the
estimator achieves a perfect perceptual reconstruction, meaning that the recovered graph has the same
structural properties than the original graph; in this case, pA = pÂ. As shown in Freirich et al. (2021),
the corresponding estimator can be obtained by solving the following optimal transport problem

p∗
Â,Â∗ = argmin

p∈Π(pA,pÂ∗ )

E[∥Â− Â∗∥2F ], (4)

where Π(pA, pÂ∗) is the set of all joint distributions (couplings) with fixed marginals pA and pÂ∗ .
Thus, finding the estimator Â associated with D(0) boils down to solving the optimal transport
problem between the distribution of clean graphs pA and of the MMSE estimator pÂ∗ . We can
approximate this by (i) computing Â∗ = E[A | AO] given an observation AO and (ii) sampling
from the conditional distribution p(A | Â∗). Intuitively, this approach builds the final prediction by
refining the initial guess Â∗.

While the solution for P = ∞ achieves lower MSE, it may produce outputs that deviate from the
structural properties of the original data. This mismatch is problematic in settings like conditional
molecular generation, where the generated molecule must satisfy strict chemical validity constraints.
For such applications, the solution with P = 0 is more appropriate, as it guarantees that the generated
samples are structurally consistent with the data distribution. Therefore, this work focuses on the
case P = 0.

Permutation invariance on graphs: An additional constraint. Unlike images, graphs lack canoni-
cal node ordering, which imposes symmetry constraints on the data distribution and the reconstruction
function. First, the ground-truth distribution p(A) is permutation invariant, meaning that for any per-
mutation matrix Pπ associated with a node relabeling π, it holds that p(A) = p(P⊤

πAPπ). Second,
the estimator Â = f(AO) must be permutation equivariant, i.e., f(P⊤

πA
OPπ) = P⊤

π f(A
O)Pπ,

ensuring that relabeling the input results in a consistently relabeled output. These conditions are
necessary for solutions to (3) and (4) to be invariant to the node labeling. We now describe how to
implement the solution to (4).

4.2 APPROXIMATING THE POSTERIOR MEAN

As discussed in Section 4.1, our goal is to approximate the conditional mean E[A | AO] with a
permutation equivariant estimator. Before moving to particular parameterizations of the conditional
mean, we introduce two assumptions.
AS 1. We assume each edge in A ∈ {0, 1}n×n follows a Bernoulli distribution whose probabilities
depend on latent node variables z1, . . . , zn ∈ Z such that:

Aij ∼ Bernoulli(f(zi, zj)), 1 ≤ i < j ≤ n. (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The function f maps pairs of latent variables to edge probabilities, i.e., f(zi, zj) = P (Aij |zi, zj) =
pij .
AS 2. We assume that the edges are conditionally independent given the latent structure, i.e., given
the latent structure Z = {z1, . . . , zn}, we have:

P (A | Z) =
∏

1≤i<j≤n

P (Aij | zi, zj). (6)

Under these two assumptions, and assuming access to the mapping z−1 : A → Z , the posterior
mean can be computed element-wise as E[A | AO] = P (A | z−1(AO)). We adopt two different
type of priors : (i) inductive methods, represented by graphons (Lovász, 2012; Avella-Medina
et al., 2018), which are bounded, symmetric and measurable functions W : [0, 1]2 → [0, 1], and
GraphSAGE (Hamilton et al., 2017), a GNN-based estimator and (ii) transductive ones, obtained
from node2vec (Grover & Leskovec, 2016), which provides an instance-level learned probabilistic
model.

Posterior mean using inductive methods (dataset-informed). We approximate the posterior mean
using two distinct dataset-informed, inductive approaches: graphons and GraphSAGE.

A graphon, defined as a symmetric functionW : [0, 1]2 → [0, 1], serves as a generative model for a
family of graphs:

zi ∼ Uniform[0, 1], i = 1, . . . , n, (7)
Aij ∼ Bernoulli(W(zi, zj)) , 1 ≤ i < j ≤ n.

Graphons provide a functional representation of exchangeable random graphs where the condi-
tional edge probability is [E[A | z]]ij = W(zi, zj). This offers a natural, permutation-equivariant
framework for estimating the posterior mean, though it requires access to the inverse mapping
zi = [z−1(AO)]i. SinceW is unknown, we estimate it using Scalable Implicit Graphon Learning
(SIGL) (Azizpour et al., 2025), which combines a graph neural network (GNN) encoder with an
implicit neural representation (INR). SIGL operates in three steps: (1) a GNN-based sorting step to
estimate latent node positions z; (2) a histogram approximation of the sorted adjacency matrices; and
(3) learning a graphon parameterization fϕ by minimizing its error against the histograms. A key
feature of SIGL is its ability to recover the inverse mapping z−1, making it uniquely suitable for our
model (Xia et al., 2023).

As an alternative inductive method, we use GraphSAGE (Hamilton et al., 2017). We train the model
on the partially observed graphs in the dataset to produce node embeddings {zi}Ni=1. From these
embeddings, we train a single logistic predictor on Hadamard edge features (zi⊙zj) to estimate edge
probabilities. The resulting conditional mean is parameterized as

[
E[A | AO]

]
ij
= fϕ(zi ⊙ zj).

Posterior mean using transductive methods (instance-specific). For a transductive approach,
we use node2vec to learn an instance-specific embedding and predictor for each graph. Similar
to the GraphSAGE method, we first train node2vec on a partially observed graph to obtain node
embeddings {zi}Ni=1. However, in contrast to the single predictor used for GraphSAGE, we fit a
distinct, per-graph logistic link predictor on Hadamard edge features with balanced negative sampling.
This yields the same conditional mean parameterization,

[
E[A | AO]

]
ij
= fϕ(zi ⊙ zj), but with a

predictor fϕ(·) that is unique to each graph instance. At inference time, this instance-specific model
is used to evaluate all masked pairs to compute the posterior mean.

4.3 LEARNING THE FLOW MODEL

We now approximate the posterior density p(A, Â∗) by learning a flow model. As explained
in Section 3, we need to specify the forward path At and the velocity field v. For the former,
inspired by Ohayon et al. (2025), we incorporate prior information as the initialization of the
forward path; with slight abuse of notation, we denote fprior as the prediction of the full graph (i.e.,
fprior(A

O) ≜ E[A | AO]). Specifically, we compute the sample A0 from the source distribution as
follows:

A0 = ξ ⊙A+ (1− ξ)⊙ (fprior(ξ ⊙A) + ϵs) , (8)
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where A is the ground-truth graph, ξ is the corresponding mask (taking value 1 for the observed pairs
of nodes and 0 otherwise), and fprior(ξ ⊙A) is our approximate MMSE estimator for the masked
edges. We also add a small amount of noise ϵs ∼ N (0, σ2

s) following Albergo et al. (2024). We
define A1 = A for the target distribution.

Regarding the velocity field v, we use the architecture from Jo et al. (2022), a GNN-based network
that yields a permutation-equivariant parameterization (see Appendix E for details). Combined with
the assumptions for the posterior mean parameterization in Section 4.2, this gives a permutation-
invariant parameterization of the target density p(A1). Since graphs are exchangeable, the target
density should not depend on node ordering, making permutation invariance a desirable property.
This is formalized in Theorem 1.
Theorem 1. Let the prior estimator fprior : RN×N → RN×N and the velocity field vθ : RN×N ×
[0, 1] → RN×N both be permutation-equivariant. For any ground-truth graph A1 and mask ξ,
define the flow path from t = 0 to t = 1 as:

At = (1− t)A0 + tA1, where A0 = ξ ⊙A1 + (1− ξ)⊙ fprior(ξ ⊙A1).

Then the estimated density for A1, computed as

log p(A1) = log p(A0)−
∫ 1

0

tr

(
∂vθ(At, t)

∂At

)
dt, (9)

is guaranteed to be permutation-invariant.

The proof can be found in Appendix D.1. Since we know that the target probability density should
be permutation invariant, Theorem 1 guarantees that we are introducing the right inductive bias by
learning a distribution within the family of permutation invariant distributions.

Final algorithm. In Alg. 1, we describe our training and sampling algorithms. In essence, PIFM is
a general framework that learns a global graph structure to enhance simple, conditionally independent
edge-wise priors.

To illustrate what we mean by learning a global and dependent predictor, we now describe a toy
experiment. Consider a four-node graph G (see Fig. 2 (a)) where the goal is to predict the diagonal
edges under a specific constraint: the only valid outcomes are that both edges are present or both are
absent, i.e., E = {[e02 = 1, e13 = 1], [e02 = 0, e13 = 0]}. Moreover, we assume that the probability
of observing the first case is 0.6, while the second one is 0.4.

We first train an edge-wise prior using node2vec, which yields a probability of 0.6 for each diagonal
edge. Crucially, because node2vec models each edge prediction independently, this prior is misspeci-
fied. A standard predictor based on this prior would always predict [1, 1] if used as conditional mean
or, if sampling were to be performed, could generate invalid predictions such as [1, 0].

We then train a flow model using this node2vec prior to construct the initial state A0 as in (8).
After training (see Appendix E for details), we generate 200 samples, illustrated in Fig. 2(b); the
proportion of each mode is shown in Fig. 2(c). The results clearly demonstrate that the flow model
(i) successfully leverages global information, learning a probabilistic coupling between the edges, to
generate samples only from the two valid states, and (ii) learns the probability of each mode.

5 EXPERIMENTS

5.1 SETUP

We evaluate our method on three graph datasets: IMDB-B, PROTEINS, and ENZYMES. Thus, we
focus on families of graphs that are diverse to show that our model learns a general predictor. Future
work will focus on scaling to larger graphs, such as Cora. Each dataset is split into 85% train, 10%
validation, and 5% test graphs, and we evaluate reconstruction quality under two masking levels (10%
and 50% of edges, masks generated uniformly at random). The implementation details are provided
in Appendix E.

Evaluation metrics. Performance is measured exclusively on masked edges. We report both
threshold-dependent classification metrics (FPR, FNR) and threshold-independent metrics (ROC-
AUC, AP). Threshold-dependent metrics are computed by binarizing predictions at a fixed cutoff of
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Algorithm 1 Training and Sampling
Training

1: Sample A1 ∼ p(A), a mask ξ, and time t ∼ U [0, 1].
2: Compute A0 ≜ ξ ⊙A1 + (1− ξ)⊙

(
fprior(A

O
1 ) + ϵs

)
, ϵs ∼ N (0, σ2

s)

3: Compute At ≜ (1− t)A0 + tA1.
4: Train MMSE estimator: fprior(AO)

5: Train flow model: θ∗ = argminθ EA1,A0,ξ,t∥ vθ(At, t)− (A1 −A0) ∥2F
Sampling (Reconstruction)

6: Initialize Â← ξ ⊙AO
1 + (1− ξ)⊙ fprior(A

O
1 ) + (1− ξ)⊙ ϵs, ϵs ∼ N (0, σ2

samp).
7: for i← 0, . . . ,K − 1 do

8: Â← Â+ 1
K

vθ∗

(
Â,

i

K

)
9: end for

10: Return Â

0 1
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Figure 2: Toy experiment showcasing the advantage of PIFM (in this case, for link prediction). a) Graph G with
four nodes, where the hidden edges are e02 and e13. b) Generated samples by using node2vec and PIFM (our
proposed method): clearly, our method learns a probabilistic coupling, rendering a model that generates only the
two valid modes. c) Proportions of samples generated with PIFM from each mode; remarkably, the method also
learns a good approximation of the probability of each mode.

0.5, so entries with predicted probability ≥ 0.5 are treated as edges and those < 0.5 as non-edges. In
addition, we use maximum mean discrepancy (MMD) (O’Bray et al., 2022) to compute the distance
between the generated graphs and the ground truth, serving as a proxy for computing the perception
quality. More details on these metrics are deferred to Appendix E.3.

Baselines. We compare PIFM against several baselines. Recall that PIFM is composed of a one-shot
prediction used as prior followed by a flow model. Naturally, we compare PIFM to the accuracy of
the one-shot prediction (without the flow) and with a flow with a random starting point:

• SIGL Prior (Azizpour et al., 2025)/Node2Vec Prior (Grover & Leskovec, 2016)/GraphSAGE
Prior (Hamilton et al., 2017): one-shot predictions using the structural prior directly.

• Flow with Gaussian prior: flow model initialized from uniform Gaussian N (0.5, 1) noise on
masked entries.

We also consider two additional diffusion-based baselines:

• DiGress + RePaint (Vignac et al., 2023): unconditional DiGress combined with RePaint-style
resampling (Lugmayr et al., 2022).

• GDSS + RePaint (Jo et al., 2022): unconditional GDSS combined with RePaint-style resam-
pling (Lugmayr et al., 2022).

Algorithmic details of the baselines are provided in Appendix A.

5.2 LINK PREDICTION

Tables 1 and 2 report results for 10% and 50% masking, respectively. Overall, PIFM improves the
AUC-ROC of all base priors (SIGL, node2vec, and GraphSAGE). E.g., compare node2vec with PIFM

7
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Table 1: Graph reconstruction performance with 10% of edges masked (0.1 Drop). We report AUC, Average
Precision (AP↑), False Positive Rate (FPR↓), and False Negative Rate (FNR↓), all in percent (%). The best
result for each metric is in blue and the second best is green.

Mask Rate: 10% (0.1 Drop)
ENZYMES PROTEINS IMDB-B

Method AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓
Baselines
Node2Vec 24.62 59.60 51.39 37.96 33.24 64.40 48.56 35.37 65.00 56.36 50.27 41.68
SIGL 18.17 48.04 69.33 25.43 26.77 48.91 100.00 0.00 58.91 50.61 88.44 16.33
GraphSAGE 41.28 73.70 13.49 60.59 46.36 74.58 11.00 63.50 83.55 83.26 16.42 36.89
DiGress + RePaint 33.39 67.86 58.92 5.19 40.34 72.39 47.82 6.00 59.25 58.63 76.44 7.68
GDSS + RePaint 18.35 47.04 74.31 32.19 26.96 51.39 63.07 32.09 57.89 46.11 69.75 36.17
Flow w/ Gaussian prior 40.09 72.44 71.03 5.87 57.86 80.83 65.09 3.07 98.89 98.37 2.26 2.54
Ours
PIFM (Node2Vec) 41.67 76.86 72.09 5.11 58.25 81.74 59.37 6.34 97.60 97.28 1.37 3.77
PIFM (GraphSAGE) 47.21 80.25 72.85 2.40 54.79 81.02 55.73 5.40 99.37 98.79 1.81 3.37
PIFM (SIGL) 26.93 59.48 71.33 11.33 42.21 60.76 60.75 7.48 85.60 83.21 16.37 18.41

Table 2: Graph reconstruction performance with 50% of edges masked (0.5 Drop) (see Table 1 for definitions).

Mask Rate: 50% (0.5 Drop)
ENZYMES PROTEINS IMDB-B

Method AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓
Baselines

Node2Vec 19.14 55.22 46.37 44.29 23.51 53.83 51.37 44.36 54.20 52.22 48.41 47.51
SIGL 16.88 49.30 72.01 27.85 22.90 52.55 100.00 0.00 50.05 45.41 87.68 18.80
GraphSAGE 22.79 57.77 40.02 52.16 27.71 53.99 32.16 66.86 75.74 75.54 18.18 44.86
DiGress + RePaint 17.34 55.22 77.95 11.62 23.65 55.45 71.46 17.65 56.47 58.89 73.00 10.27
GDSS + RePaint 16.43 49.65 69.45 30.46 22.33 51.42 66.44 32.23 53.39 51.20 69.35 29.22
Flow w/ Gaussian prior 17.43 51.84 98.49 1.07 26.40 55.55 93.21 5.25 78.72 79.76 41.56 14.62

Ours
PIFM (Node2Vec) 22.95 59.14 90.71 3.53 27.57 59.68 87.05 8.98 84.46 85.71 32.95 15.03
PIFM (GraphSAGE) 25.44 61.36 95.62 1.86 35.50 60.61 85.05 10.23 93.13 93.84 17.52 7.61
PIFM (SIGL) 17.08 49.15 86.06 12.28 28.38 59.58 61.20 20.38 59.83 58.11 38.90 36.76

initialized with node2vec. The marked consistent gain can be attributed to the value added by the
flow model in capturing the distribution of the true graphs of interest. Moreover, the fact that PIFM
with some of the informative priors tends to outperform the flow with a Gaussian prior highlights the
value of the two-step procedure advocated here. Among the different priors used, PIFM(GraphSAGE)
tends to perform better, especially at a 50% drop rate and in the dense IMDB-B graphs.

For the experiments in this section, the reported PIFM results use K = 1, which yields the lowest
MSE and, accordingly, the highest AUC-ROC (consistent with the distortion–perception trade-off
discussed in Section 4.1). Notably, PIFM with K = 1 outperforms the priors (see Appendix F.2 for
an ablation of parameters), even though the latter approximate the MMSE estimator, which should
be optimal in terms of MSE. While this configuration is optimal for distortion, perceptual quality
improves with more steps, as explained below in Section 5.3. Finally, the assumptions in Section 4.2
are quite strong and lead to an approximate MMSE that is not truly optimal, allowing PIFM with
K = 1 to outperform by capturing global information that the different priors miss.

5.3 BLIND GRAPH RECONSTRUCTION

We focus on two blind versions of link prediction, namely expansion and denoising. In the expansion
case, we only get to observe a subset of the edges (but no non-edges), and we need to determine which
other entries correspond to existing edges. Conversely, for denoising, we get to observe a subset
of the non-edges (but no actual edge), and we need to determine which other entries correspond
to non-edges. These cases are more challenging than link prediction since transductive priors like
node2vec cannot be trained on the masked graphs (since we do not have positive and negative edges).
We present here the results for expansion. The results for denoising can be found in Appendix F.1.
Expansion. The goal in expansion is to predict a set of hidden edges EM given AO, such that the
edge set of the ground truth is E = EM ∪EO. Therefore, defining A1 = A, the initialization becomes
A0 = AO

1 +(1−AO
1 )⊙ (fprior(A

O
1 )+ϵs). The results for a drop rate of 50% are shown in Table 3.

Among all baselines, PIFM (GraphSAGE) attains the top AUC/AP on most of the metrics, surpassing
both the GraphSAGE prior and other diffusion baselines. Compared to a Gaussian start, the informed
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Table 3: Performance for the expansion task with 50% of edges masked (0.5 Drop) (see Table 1 for definitions).

Mask Rate: 50% (0.5 Drop)
ENZYMES PROTEINS IMDB-B

Method AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓
Baselines

GraphSAGE 13.95 57.54 40.29 52.74 18.91 53.91 31.62 67.18 67.18 74.92 19.04 45.20
DiGress + RePaint 2.41 54.25 84.03 7.54 4.52 56.87 81.10 13.00 22.93 56.37 81.05 6.69
GDSS + RePaint 9.21 49.63 69.45 30.80 14.66 51.03 66.44 32.06 39.43 50.68 69.35 30.00
Flow w/ Gaussian prior 9.45 50.40 90.64 9.35 14.71 50.31 82.32 17.28 49.46 62.28 71.41 13.64

Ours
PIFM (GraphSAGE) 13.17 60.09 100.00 0.00 21.70 62.34 94.75 4.54 83.49 87.28 29.74 11.27

prior is crucial to improve AUC and AP, indicating effective global coupling beyond local scores.
Overall, PIFM serves as a better reconstructor in this challenging case, with K providing a tunable
perception–distortion trade-off (cf. Appendix F.3).

Distortion-perception trade-off. While a single-step reconstruction (K = 1) yields the lowest
distortion (AUC-ROC), we assess if more steps improve perceptual quality. We measure the MMD2

score between the generated and ground-truth graph distributions on the ENZYMES dataset as a
function of the number of steps, K. As shown in Fig. 3(a), the MMD2 score decreases as K increases,
signifying a closer match to the true data distribution and thus higher realism. We further validate
this by comparing graph statistics (degree, triangles, clustering coefficients), which also show that a
larger K more closely matches the ground-truth. Additional results and details are in Appendices F.3
and F.4.
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Figure 3: Increasing the number of reconstruction steps (K) improves perceptual quality. (a) The MMD score,
measuring the distance to the true data distribution, decreases as K increases. (b-d) This result is corroborated
by key graph statistics, where the average degree, number of triangles, and clustering coefficient for graphs
generated with K = 100 more closely match the ground-truth distribution compared to those generated with
K = 1. Error bars indicate the standard deviation over 300 samples (10 samples for each of the 30 test graphs).

6 CONCLUSIONS

In this paper, we introduced Prior-Informed Flow Matching (PIFM), a method for graph reconstruction
that learns global structural information by integrating local edge predictors within a flow-based
generative model. PIFM formulates graph topology inference as a distortion-perception problem,
learning an optimal transport map from a local estimator to the ground-truth graph distribution.
We evaluate PIFM using two types of local estimators, inductive (graphons and graphSAGE) and
transductive (node2vec), which induce different reconstruction behaviors. Experiments on multiple
benchmark datasets show that PIFM consistently outperforms both classical embedding methods and
recent flow-based baselines, demonstrating the significant value of learning global edge correlations.

Our method has limitations, primarily inheriting the scalability challenges of diffusion models in
graphs. Future work could explore sub-graph-based alternatives to improve efficiency (Trivedi et al.,
2024). Additionally, our current formulation is limited to homogeneous graphs; extending PIFM to
heterogeneous graphs by defining the process in the probability simplex (Eijkelboom et al., 2024) or
using discrete flow models Qin et al. (2025) is another promising direction for future research.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The experimental setups and results are detailed in Section 5 of the main paper. Further specifics,
including comprehensive dataset descriptions, additional experimental details, and ablation studies,
are provided in Appendix E. Furthermore, and to facilitate full reproducibility, we include a complete
codebase as supplementary material. This supplementary package contains clearly organized configu-
ration files (e.g., YAML files) that detail all hyperparameters used across our experiments, enabling
straightforward replication of our reported findings.
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A ALGORITHM

In this section, we describe the algorithms that we use as baselines. Each method serves distinct
purposes: SIGL/node2vec/GraphSAGE A0 tests whether the flow model provides meaningful im-
provement beyond the one-shot estimates given by the priors, uniform + flow evaluates whether the
SIGL/node2vec/GraphSAGE predicted graphons are good structural priors for effective denoising,
and DiGress + RePaint compares our model to standard modified unconditionally generation models.

A.1 UNIFORM + FLOW BASELINE

This baseline ablates the structural prior by initializing the flow from a state where unknown entries
are filled with uniform noise. The model then learns to denoise from this less-informed starting point.

Algorithm 2 Uniform + flow Training and Sampling
Training

1: Sample A1, a mask ξ, and time t ∼ U [0, 1].
2: Define initial state with Gaussian noise added to the masked region:

A0 ≜ ξ ⊙A1 + (1− ξ)⊙ U(0, 1)N×N + (1− ξ)⊙ ϵtrain, ϵtrain ∼ N (0, σ2
train).

3: Define interpolant At ≜ (1− t)A0 + tA1.
4: Solve θ∗ = argminθ EA1,ξ,t∥ vθ(At, t)− (A1 −A0) ∥2F .

Sampling (Reconstruction)
5: Given observed graph AO

1 , define the initial state with masked noise:

Â← ξ ⊙AO
1 + (1− ξ)⊙ U(0, 1)N×N + (1− ξ)⊙ ϵsamp, ϵsamp ∼ N (0, σ2

samp).

6: for i← 0, . . . ,K − 1 do

7: Â← Â+ 1
K

vθ∗

(
Â,

i

K

)
8: Return Â

A.2 DIGRESS + REPAINT BASELINE

Training (Unconditional) The model pθ is trained unconditionally on complete graphs A1 ∼ pdata
to reverse a discrete forward noising process q. The forward process is a fixed Markov chain
q(At|At−1) that corrupts the graph over T steps. The training objective is to learn the denoising
distribution pθ(A1|At), modeled as a categorical prediction task for each node and edge.

Algorithm 3 DiGress Unconditional Training

Forward Process: Sample a noised graph at any timestep t directly via At ∼ q(At|A1).
Denoising Objective:

1: Train a denoising network pθ(·, t) to predict the original graph A1 from At.
2: Minimize the expected cross-entropy loss w.r.t. the ground truth:

θ∗ = argmin
θ

EA1∼pdata,t∼U{1..T} [LCE (A1, pθ(At, t))]

Sampling (Conditional Reconstruction via RePaint) At inference, given an observed graph
AO

1 ≜ ξ ⊙ A1, the unconditionally trained model pθ∗ generates the missing entries. This is
achieved by iteratively re-imposing the known (unmasked) information during the reverse diffusion
process (Lugmayr et al., 2022).
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Algorithm 4 DiGress + RePaint Sampling

Input: Observed graph AO
1 , mask ξ, trained model pθ∗ , steps T .

Output: Reconstructed graph Â1.
1: Initialize ÂT ∼ pprior(·), where pprior is a random graph distribution.
2: for t = T, T − 1, . . . , 1 do
3: // Predict clean graph from current state
4: Ã1 = pθ∗(Ât, t).
5:
6: // Impose known data by noising it to the current step
7: Aknown

t ∼ q(At|AO
1 ).

8:
9: // Sample the unknown region by noising the prediction to the next step

10: Aunknown
t−1 ∼ q(At−1|Ã1).

11:
12: // Combine known and unknown parts for the next state
13: Ât−1 = ξ ⊙Aknown

t + (1− ξ)⊙Aunknown
t−1 .

14: end for
15: return pθ∗(Â1, 1)

A.3 NODE2VEC PRIOR (PER-GRAPH CLASSIFIER)

This baseline learns a per-graph edge-probability model from the observed subgraph. We (i) fit
node2vec embeddings on the observed topology and (ii) train a logistic classifier on Hadamard edge
features to produce probabilities on the masked pairs.

Algorithm 5 Node2Vec Prior: Training and Inference
Inputs: Full adjacency A1, mask ξ (ξij = 1 if observed), Node2Vec hyperparams (dim d, walk length L,
walks/node R, window w, p, q), negatives/positive ratio k.
Outputs: Probabilities P̂ on masked entries, i.e., fprior(A

O
1 ).

Training (per graph)
1: Construct observed graph AO

1 ← ξ ⊙A1.
2: Train Node2Vec on AO

1 to obtain node embeddings {zi}Ni=1 ∈ Rd.
3: Build labeled edge set on observed pairs (upper triangle i < j):

P+ = {(i, j) : ξij = 1, Aij = 1}, P− ∼ k-to-1 balanced samples from {(i, j) : ξij = 1, Aij = 0}.

4: Features: xij ← zi ⊙ zj (Hadamard product); Labels: yij ∈ {0, 1}.
5: Fit a logistic classifier gϕ(x) = σ(w⊤x+ b) (L2-regularized; class-balanced).

Inference (per graph)
6: For each masked pair (i, j) with ξij = 0, compute xij ← zi ⊙ zj .
7: Predict P̂ij ← gϕ(xij) and set P̂ji ← P̂ij .
8: Return P̂ as fprior(A

O
1 ) (used in Eq. (8)).

Notes. (i) We train embeddings only on AO
1 to avoid leakage. (ii) The Hadamard feature works well

and is symmetric; concatenation can be used but breaks symmetry unless sorted. (iii) Thresholding at
0.5 yields hard reconstructions; we use scores P̂ directly in PIFM.

B BACKGROUND

B.1 GRAPHONS AND GRAPHON ESTIMATION

As described in Section 4.2, a graphon is defined as a bounded, symmetric, and measurable function
W : [0, 1]2 → [0, 1] (Lovász, 2012). By construction, a graphon acts as a generative model for
random graphs, allowing the sampling of graphs that exhibit similar structural properties. To generate
an undirected graph G with N nodes from a given graphonW , the process consists of two main steps:
(1) assigning each node a latent variable drawn uniformly at random from the interval [0, 1], and (2)
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connecting each pair of nodes with a probability given by evaluatingW at their respective latent
variable values.

The generative process in (7) can also be viewed in reverse: given a collection of graphs (represented
by their adjacency matrix) D = {At}Mt=1 that are sampled from an unknown graphonW , estimate
W . Several methods have been proposed for this task (Chan & Airoldi, 2014; Airoldi et al., 2013; Xu
et al., 2021; Xia et al., 2023; Azizpour et al., 2025). We focus on SIGL (Azizpour et al., 2025), a
resolution-free method that, in addition to estimating the graphon, also infers the latent variables η,
making it particularly useful for model-driven augmentation in GCL. This method parameterizes the
graphon using an implicit neural representation (INR) (Sitzmann et al., 2020), a neural architecture
defined as fϕ(x, y) : [0, 1]2 → [0, 1] where the inputs are coordinates from [0, 1]2 and the output
approximates the graphon valueW at a particular position. In a nutshell, SIGL works in three steps:
(1) a sorting step using a GNN gϕ′(A) that estimates the latent node positions or representations η;
(2) a histogram approximation of the sorted adjacency matrices; and (3) learning the parameters ϕ by
minimizing the mean squared error between fϕ(x, y) and the histograms (obtained in step 2). More
details of SIGL are provided in Appendix B.1.

B.2 NODE2VEC

node2vec (Grover & Leskovec, 2016) is a scalable model for learning continuous node representations
in graphs. This methods is transductive, meaning that it generates an embedding per graph. It extends
the Skip-gram model from natural language processing to networks by sampling sequences of nodes
through biased random walks. Node2vec introduces two hyperparameters (p, q) that interpolate
between breadth-first and depth-first exploration. This flexibility allows embeddings to capture both
homophily (nodes in the same community) and structural equivalence (nodes with similar roles, e.g.,
hubs), which frequently coexist in real-world graphs.

The embeddings are learned via stochastic gradient descent with negative sampling to maximize
the likelihood of preserving sampled neighborhoods. Once learned, node embeddings can be
combined through simple binary operators (e.g., Hadamard product) to form edge features, enabling
applications such as link prediction. Empirically, node2vec has been shown to outperform prior
unsupervised embedding methods across tasks like classification and link recovery, while remaining
computationally efficient and scalable to large graphs (Grover & Leskovec, 2016).

B.3 GRAPHSAGE

GraphSAGE (Hamilton et al., 2017) is an inductive technique for link prediction based on graph
neural networks (GNN) framework designed to generate embeddings for nodes in large, evolving
graphs. It consists of two-steps: for a target node, it first samples a fixed-size neighborhood of
adjacent nodes, and then it aggregates feature information from these sampled neighbors. By learning
aggregation functions (such as a mean, pool, or LSTM aggregator) rather than embeddings for every
single node, GraphSAGE can efficiently generate predictions for nodes that were not part of the
training set, making it highly scalable and effective for real-world applications like social networks
and recommendation systems.

B.4 GRAPH DIFFUSION MODELS

Diffusion models are generative frameworks composed by two processes: a forward process that
systematically adds noise to data until it becomes pure noise, and a reverse process that learns to
reverse this, generating new data by starting from noise and progressively denoising it. While these
models exist for both discrete (Vignac et al., 2023) and continuous domains (Jo et al., 2022), we
describe the continuous case which is the most related to our method. Here, a graph G0 is defined
by its node features X0 ∈ RN×F and its weighted adjacency matrix A0 ∈ RN×N . Following the
GDSS framework, the forward process is described by a stochastic differential equation (SDE) that
gradually perturbs the graph data over a time interval t ∈ [0, T ]:

dGt = −
1

2
β(t)Gt dt+

√
β(t) dWt
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In this equation, Wt represents standard Brownian motion (i.e., noise), and β(t) is a noise schedule
that typically increases over time. This process is designed so that by the final time T , the original
data distribution GT is indistinguishable from a standard Gaussian.

The generative reverse process is defined by another SDE that traces the path from noise back to data.
This process relies on the score function, ∇Gt log p(Gt), which is the gradient of the log-density
of the noisy data at time t. Since the true score function is unknown, it must be approximated.
This is done using a neural network, or score network, which is trained to predict the score. For
graphs, separate networks are often used for the adjacency matrix and node features: ϵθA

(At, t) and
ϵθX

(Xt, t). These networks are trained by minimizing the denoising score-matching loss.

Once trained, these score networks can be plugged into the reverse SDE. New graphs are then
generated by solving this SDE numerically using standard samplers like DDPM or DDIM.

C RELATED WORKS

C.1 LINK PREDICTION

Link prediction aims to determine if an unobserved edge should exist between two nodes within
a partially observed graph (Newman, 2001; Adamic & Adar, 2003; Zhou et al., 2009). Classical
approaches rely on topology-only heuristics.

More recently, unsupervised node embedding methods have become an effective strategy for link
prediction. These methods learn a low-dimensional vector for each node that represents neighborhood
similarity and community structure, often using random walks and an objective similar to Skip-gram.
Consequently, nodes that are close in the embedding space are more likely to be linked. DeepWalk
was a pioneering method that modeled short random walks to learn generalizable representations
for tasks like predicting missing links (Perozzi et al., 2014). Node2vec builds on DeepWalk by
employing biased, second-order random walks to balance breadth-first and depth-first searches and
by converting node embeddings into edge features. In node2vec, embeddings for nodes f(u) and
f(v) are combined with binary operators to create an edge representation g(u, v), which a classifier
then uses to determine if the edge (u, v) exists (Grover & Leskovec, 2016).

Graph neural networks (GNNs) are also widely used for edge reconstruction. A typical encoder-
decoder framework uses message passing to learn node embeddings and a simple decoder to generate
link scores. Inductive frameworks like GraphSAGE learn functions to sample and aggregate features
from a node’s neighborhood, allowing the model to generalize to new nodes or graphs (Hamilton
et al., 2017). A different approach focuses on modeling the pair representation directly. For example,
Neural Bellman-Ford Networks (NBFNet) frame link prediction as a path-aggregation problem. The
score for a pair of nodes is calculated as the sum of all path representations between them, with
each path being a product of its edge representations. This formulation is solved using a generalized
Bellman-Ford iteration, where NBFNet parameterizes the operators with neural functions, creating
an interpretable and inductive framework (Zhu et al., 2021).

C.2 DIFFUSION-BASED INVERSE PROBLEMS SOLVER FOR GRAPHS

We now expand on diffusion-based solvers for graph inverse problems. Given a condition C and
a reward function r(G0) that quantifies how close the sample G0 is to meeting C, the objective
is to generate graphs G0 that maximize the reward function. From a Bayesian perspective, this
problem boils down to sampling from the posterior p(G0|C) ∝ p(C|G0)p(G0) where p(C|G0) ∝
exp (r(G0)) is a likelihood term and p(G0) is a prior given by the pre-trained diffusion model. We
now describe previous works for both differentiable and non-differentiable reward functions.

Guidance with Differentiable Reward Functions. Several approaches have been developed to
guide generative models when the objective can be expressed as a differentiable reward function,
particularly for inverse problems in imaging. These methods typically leverage the differentiability of
the reward – often a likelihood tied to a noisy measurement – to calculate a conditional score using
Bayes’ rule:

∇Gt log p(Gt|C) = ∇Gt log p(C|Gt) +∇Gt log p(Gt)
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In this formulation, the diffusion model naturally serves as the prior (p(Gt)), while the likeli-
hood term (p(C|Gt)) provides the guidance. However, directly computing the score of the like-
lihood term is intractable because it requires integrating over all possible clean data: p(C|Gt) =∫
p(C|G0)p(G0|Gt)dG0.

To overcome this, a common technique is to approximate the posterior distribution p(G0|Gt) with a
Gaussian centered at the MMSE denoiser. This denoised estimate can be calculated efficiently using
Tweedie’s formula:

E[G0|Gt] =
1

αt

(
Gt + σ2

t∇Gt
log p(Gt, t)

)
While this framework is established for images, its application to graph-based inverse problems is
less explored. This is primarily because most interesting properties and constraints in graphs are not
differentiable. Some graph-specific methods, like DiGress (Vignac et al., 2023), implement guidance
by training an auxiliary model, similar to classifier-free guidance, which introduces additional
complexity.

Guidance with Non-Differentiable Reward Functions. For the more common scenario of non-
differentiable constraints in graph generation, alternative strategies have emerged. The PRODIGY
method, for instance, operates by repeatedly applying a two-step process at each denoising step:
generation followed by projection.

First, it uses the unconditional diffusion model to produce a candidate sample Ĝt−1. Second, it
projects this candidate onto the set of valid solutions using a projection operator: ΠC(Ĝt−1) =

argminZ∈C∥Z − Ĝt−1∥22. Since applying the full projection at every step can destabilize the
generation process, PRODIGY uses a partial update to balance constraint satisfaction with the learned
diffusion trajectory:

Gt−1 ← (1− γt)Ĝt−1 + γtΠC(Ĝt−1)

This approach has two main limitations. First, it is only practical for simple constraints where the
projection operator ΠC(·) has an efficient, closed-form solution. Second, it applies the projection
directly to the noisy intermediate sample Gt, whereas the constraint C is defined on the clean data
G0, creating a domain mismatch. Recently, in Tenorio et al. (2025), the authors leverage zeroth-order
optimizaton to build a guidance term, improving over PRODIGY in challenging tasks.

C.3 FLOW-BASED INVERSE SOLVERS

More recently, two flow-based generative models for graphs have been proposed. Catflow, introduced
in Eijkelboom et al. (2024), formulates flow matching as a variational inference problem, allowing
to build a model for categorical data. The key difference between Catflow and traditional flow
matching is that in the former, the objective is to approximate the posterior probability path, which is
a distribution over possible end points of a trajectory. Compared to discrete diffusion, this formulation
defines a path in the probability simplex, building a continuous path. This formulation boils down to
a cross-entropy loss. Another recent work is DeFoG, introduced in Qin et al. (2025). This method is
inspired by discrete flow matching (Campbell et al., 2024), where a discrete probability path is used.
Similarly, the loss is a cross-entropy.

D PROOFS

D.1 PROOF FOR THEOREM 1

Proof. Our goal is to show that for any permutation matrix P, our estimated density satisfies
log p(P⊤A1P) = log p(A1). First, we notice that tr

(
∂vθ(At,t)

∂At

)
= ⟨vθ(At, t), dAt⟩F Let’s define

a permuted graph A′
1 = P⊤A1P and a similarly permuted mask ξ′ = P⊤ξP; to simplify notation,

we denote F (.) = log p(.).
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First, we establish the equivariance of the initial state A0. Let A′
0 be the initial state constructed

from the permuted graph A′
1 and mask ξ′.

A′
0 = ξ′ ⊙A′

1 + (1− ξ′)⊙ fprior(ξ
′ ⊙A′

1)

= (P⊤ξP)⊙ (P⊤A1P) + (1−P⊤ξP)⊙ fprior((P
⊤ξP)⊙ (P⊤A1P))

= P⊤(ξ ⊙A1)P+P⊤(1− ξ)P⊙ fprior(P
⊤(ξ ⊙A1)P) (since ⊙ distributes over P)

The key requirement for this proof is the permutation equivariance of the prior estimator, fprior. This
condition is satisfied by both prior models used in our work. Our SIGL-based prior is permutation
equivariant by design, as it uses a GNN encoder to learn the graphon structure. Our node2vec-based
prior enforces permutation equivariance by first mapping nodes to a canonical ordering based on
the principal components of their embeddings, ensuring that any permutation of an input graph is
processed identically.

With the permutation equivariance of fprior established, such that fprior(P
⊤XP) = P⊤fprior(X)P,

we can apply this property:

A′
0 = P⊤(ξ ⊙A1)P+P⊤(1− ξ)P⊙ (P⊤fprior(ξ ⊙A1)P)

= P⊤(ξ ⊙A1)P+P⊤((1− ξ)⊙ fprior(ξ ⊙A1))P

= P⊤ (ξ ⊙A1 + (1− ξ)⊙ fprior(ξ ⊙A1))P

= P⊤A0P

Thus, the initial state A0 is permutation-equivariant.

Next, we examine the flow path A′
t corresponding to the permuted graph A′

1:

A′
t = (1− t)A′

0 + tA′
1

= (1− t)(P⊤A0P) + t(P⊤A1P)

= P⊤((1− t)A0 + tA1)P

= P⊤AtP.

The path itself is equivariant. The differential element also transforms equivariantly: dA′
t =

P⊤dAtP.

Now, we evaluate the scalar function F (A′
1) by integrating along the permuted path A′

t:

F (A′
1) = −

∫ 1

0

⟨vθ(A′
t, t), dA

′
t⟩F dt+ C

Substituting the equivariant forms for the path and its differential:

F (A′
1) = −

∫ 1

0

⟨vθ(P⊤AtP, t),P⊤dAtP⟩F dt+ C

By the assumed permutation equivariance of the velocity field vθ, we have vθ(P
⊤AtP, t) =

P⊤vθ(At, t)P. Substituting this in:

F (A′
1) = −

∫ 1

0

⟨P⊤vθ(At, t)P,P⊤dAtP⟩F dt+ C

The Frobenius inner product ⟨A,B⟩F = tr(A⊤B) is invariant to unitary transformations. Specifi-
cally, for any orthogonal matrix P (where P⊤P = I):

⟨P⊤XP,P⊤YP⟩F = tr
(
(P⊤XP)⊤(P⊤YP)

)
= tr

(
P⊤X⊤PP⊤YP

)
= tr

(
P⊤X⊤YP

)
= tr(X⊤Y)

= ⟨X,Y⟩F .
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Applying this property, the integrand simplifies:

⟨P⊤vθ(At, t)P,P⊤dAtP⟩F = ⟨vθ(At, t), dAt⟩F
The integrand is identical for both the original and permuted inputs. Therefore, the integrals are
equal:

F (P⊤A1P) = −
∫ 1

0

⟨vθ(At, t), dAt⟩F dt+ C = F (A1)

This confirms that the scalar function F is permutation-invariant.

E EXPERIMENTAL DETAILS

E.1 DETAILS ABOUT THE ARCHITECTURE

Our model adopts a modified version of the adjacency score network architecture introduced in
GDSS (Jo et al., 2022). The network is a permutation-equivariant graph neural network designed
to approximate the scores ∇At

log pt(Xt,At) and ∇xt
log pt(xt,At) at each diffusion step; in this

paper, we use only score w.r.t. At. Concretely, the architecture consists of stacked message-passing
layers followed by a multi-layer perceptron. Each layer propagates node and edge information
through adjacency-based aggregation, ensuring equivariance under node relabeling. Time information
t is incorporated by scaling intermediate activations with the variance of the forward diffusion process,
following the practice in continuous-time score models. Residual connections and normalization
layers are used to stabilize training. The final output is an N × N tensor matching the adjacency
dimension. This design provides the required permutation-equivariance and expressive power while
remaining computationally tractable for mid-sized benchmark graphs.

The modification that incorporates is a module to build an embedding for the variable t and a FiLM
style modulation to incorporate noise conditioning. In particular, we incorporate the following
modules:

• A positional encoding based on a sinusoidal embedding following Karras et al. (2022)
• An MLP layer with SiLU activation per attention layer
• A modulation at each attention layer, where we scale the hidden features by an adaptive

RMS norm operation (Crowson et al., 2024)

E.2 HYPERPARAMETERS

E.2.1 FLOW-BASED BASELINES

We report the hyperparameters governing the model and training. All three baselines use the same
rectified-flow architecture and optimizer family; the only substantive differences are the prior settings.

Hyperparameter: PIFM(SIGL) Value

denoiser epochs 1000
SIGL hyperparams same as original paper
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train_noise_std (masked t=0) 0.05
val_noise_std (masked t=0) 0.05
ode_steps (Euler, K) 1000 (default)
prior SIGL (pretrained graphon; sort_ckpt, inr_ckpt)
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Node2Vec prior (per-graph link predictor)

n2v_dim 64
n2v_walk_length 30
n2v_walks_per_node 10
n2v_context 10
n2v_p, n2v_q 1.0, 1.0
n2v_epochs 1000
clf_epochs 1000

PIFM (Node2Vec) Link Prediction, 10% masked

batch_size 64 (IMDB-B & ENZYMES), 32 (PROTEINS)
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train/val/test_noise_std 0.01(IMDB-B), 0.1 (PROTEINS & ENZYMES)
ode_steps (Euler, K) 1 to 100
prior Node2Vec (per-graph classifier)

PIFM (Node2Vec) Link Prediction, 50% masked

batch_size 64 (IMDB-B & ENZYMES), 32 (PROTEINS)
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train/val/test_noise_std 0.01(IMDB-B), 0.1 (PROTEINS & ENZYMES)
ode_steps (Euler, K) 1 to 100
prior Node2Vec (per-graph classifier)

PIFM (GraphSAGE) Link Prediction, 10% masked

batch_size 64 (IMDB-B & ENZYMES), 32 (PROTEINS)
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train/val/test_noise_std 0.05 (IMDB-B), 0.1 (PROTEINS & ENZYMES)
ode_steps (Euler, K) 1 to 100
prior GraphSAGE (default hyperparameters)

E.3 METRICS CALCULATION

We evaluate performance only on the set of masked (unknown) edges in the upper triangle of the
adjacency matrix. For each test graph, all metrics are computed on these entries and then averaged
across graphs.

Metrics Used in Tables We report the following four metrics in the main results:

• Area Under the ROC Curve (AUC). Computed on the raw predicted scores (when available).
AUC measures the probability that a randomly chosen true edge receives a higher predicted score
than a randomly chosen non-edge. Larger AUC indicates stronger ranking performance.
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PIFM (GraphSAGE) Link Prediction, 50% masked

batch_size 64 (IMDB-B & ENZYMES), 32 (PROTEINS)
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train/val/test_noise_std 0.05 (IMDB-B & PROTEINS), 0.1 (ENZYMES)
ode_steps (Euler, K) 1 to 100
prior GraphSAGE (default hyperparameters)

Flow w/ Gaussian Prior Value

epochs 1000
batch_size 64 (default), 32 (PROTEINS)
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train_noise_std (masked t=0) 0.00
val_noise_std (masked t=0) 0.00
ode_steps (Euler, K) 1 to 100
prior None (masked entries initialized fromN (0.5, 1))

DiGress + RePaint Value

train.n_epochs 3000
train.batch_size 12
model.diffusion_steps 1000
model.n_layers 8
model.lambda_train [5, 0]
model.extra_features all
model.hidden_mlp_dims {X: 128, E: 64, y: 128}
model.hidden_dims {dx: 256, de: 64, dy: 64, n_head: 8,

dim_ffX: 256, dim_ffE: 64, dim_ffy: 256}

GDSS + RePaint Setting

Sampler predictor / corrector S4 / None
nsteps / SNR / scale_eps 1 / 0.15 / 0.7
Probability flow / noise removal / ε False / True / 10−5

Batch size (DataLoader) from config (e.g., 12)
Mask mode (default) dataset
Observed graph Aobs (Atrue ⊙mask); symmetrized, no self-loops
Binarization threshold (metrics) 0.5

• Average Precision (AP). Computed from the precision–recall curve induced by ranking the
predictions. AP summarizes how well the model recovers true edges across all possible thresholds,
with higher values indicating better precision–recall trade-offs.

• False Positive Rate (FPR). After thresholding predictions at 0.5, the FPR is defined as

FPR =
FP

FP + TN
,
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• False Negative Rate (FNR). After thresholding predictions at 0.5, the FNR is defined as

FNR =
FN

FN+ TP
,

• MMD. A kernel-based method that measures the difference between two probability distributions
by embedding them in a feature space and finding the maximum difference between their mean
embeddings.

AUC and AP are threshold-independent metrics (computed directly on the provided scores), while
FPR and FNR are threshold-dependent error rates (obtained after binarizing at 0.5). All values
reported in the tables are averaged over test graphs and expressed in percentage.

F ADDITIONAL RESULTS

F.1 DENOISING.

This second problem is the complement of expansion, meaning that we seek to remove a set of
spurious edges ES from AO, such that the edge set of the ground truth is E = EO \ ES . Hence,
the initialization becomes A0 = AO

1 ⊙ (fprior(A
O
1 ) + ϵs). We assume that 20% of the edges are

flipped; the results are shown in Table 4. Similarly to expansion, PIFM (GraphSAGE) attains the best
AUC/AP on all datasets, again surpassing the GraphSAGE prior and remaining baselines. It strongly
reduces false positives from the given prior initialization, while FNR is low on dense IMDB-B (2.67)
and higher on sparser sets. Overall, PIFM removes spurious edges more reliably while improves
other metrics as well.

Table 4: Performance for the denoising task with 20% of upper-triangle 0-entries flipped (0.2 Flip). We
report AUC, Average Precision (AP↑), False Positive Rate (FPR↓), and False Negative Rate (FNR↓), all in
percent (%). The best result for each metric is in bold blue and the second best is green. The metrics are
restricted on the upper-triangle 1-region of AO , and compared against A1 on that region.

Flip Rate: 20% (0.2 Flip)
ENZYMES PROTEINS IMDB-B

Method AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓
Baselines

GraphSAGE 68.19 73.89 16.14 61.72 73.79 76.70 12.68 60.47 92.54 77.29 16.77 53.37
DiGress + RePaint 41.98 49.38 87.91 13.33 49.36 51.20 78.44 18.19 80.54 51.59 73.41 23.49
GDSS + RePaint 44.59 50.86 69.18 29.70 49.72 49.43 68.39 32.64 82.36 53.23 69.05 26.00
Flow w/ Gaussian prior 49.90 54.56 52.30 38.93 57.18 58.70 62.84 24.32 96.75 94.63 3.80 12.66

Ours
PIFM (GraphSAGE) 69.40 77.17 45.66 18.14 77.43 81.78 32.41 20.91 98.46 96.52 2.67 12.10

F.2 ADDITIONAL EXPERIMENTS

Our method has two main hyperparameters:

1. σs, which is used for computing ϵs ∼ N (0, sigma2s) in A0 = ξ ⊙ A1 + (1 − ξ) ⊙(
fprior(A

O
1 ) + ϵs

)
2. K, which are the total number of steps in the Euler approximation

F.2.1 PERFORMANCE AS A FUNCTION OF σs

We run an ablation of the performance of PIFM with GraphSAGE as a function of σs. We focus on
ENZYMES and IMDB, and we evaluate the ROC for the best value of K for each noise level.

The ablation is illustrated in Fig. 4. First, we observe that the gains of using PIFM are higher for
a smaller drop rate, as expected; in particular, we observe that PIFM with σs jumps from ≈ 0.73
for σs = 0 to ≈ 0.81 for σs = 0.1. Second, for both configurations, performance peaks not at zero
noise, but at a small noise level of σs = 0.1. This suggests that a slight injection of noise benefits
model generalization. Beyond this optimal point, increasing the noise level leads to a steady decline
in performance, meaning that the effect of the prior decreases, as expected.
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Figure 4: ROC as a function of the noise σs in p(A0). The impact of noise level σs on model
performance, measured by the best ROC AUC score. Results are shown for two different drop rates:
0.1 (blue) and 0.5 (orange). A small amount of noise improves performance for both configurations,
after which increasing noise leads to performance degradation.

F.2.2 PERFORMANCE AS A FUNCTION OF K

To determine the optimal number of processing steps, K, we evaluated model performance while
varying this parameter from 1 to 100. Figures 5 and 6 shows the results for a fixed drop rate of 0.1
and 0.5 respectively, across five different noise levels.

A key observation is that peak performance, in terms of AUC-ROC, is achieved within a very small
number of steps, typically for K < 10. In particular, the introduction of a moderate noise level allows
the model to achieve its highest overall score (≈ 0.80 ROC AUC) in a single step (K = 1). However,
this advantage diminishes as the number of steps increases. The model without noise (σs = 0.0)
provides the most stable and consistently high performance for larger K. Conversely, a high noise
level (σs = 1) consistently degrades performance regardless of the number of steps. This analysis
suggests a trade-off: while noise can provide a significant boost for models with very few steps, a
no-noise configuration is more robust for models with a larger number of steps.

0 20 40 60 80 100
Number of Steps (n_steps)

0.55

0.60

0.65

0.70

0.75

0.80

RO
C 

AU
C 

Sc
or

e

ROC AUC vs. n_steps for Drop Level: 0.1

Noise Level

0.0
0.01
0.05
0.1
1.0

0 2 4 6 8 10
Number of Steps (n_steps)

0.55

0.60

0.65

0.70

0.75

0.80

RO
C 

AU
C 

Sc
or

e

ROC AUC vs. n_steps for Drop Level: 0.1

Noise Level

0.0
0.01
0.05
0.1
1.0

Figure 5: An analysis of the ROC AUC score as a function of the number of processing steps (K) for
a drop rate of 10%. This experiment was conducted with a fixed drop rate of 0.1, while varying the
noise level, σs. The results show that the optimal number of steps is small, typically under 10.
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Figure 6: An analysis of the ROC AUC score as a function of the number of processing steps (K) for
a drop rate of 50%. This experiment was conducted with a fixed drop rate of 0.1, while varying the
noise level, σs. The results show that the optimal number of steps is small, typically under 10.

F.3 DISTORTION-PERCEPTION TRADE-OFF.

Here we expand on the distortion-perception trade-off by computing the MMD. The results are shown
in Figures 7 and 8. Again, both figures show that the MMD² distance decreases as we increase
K; this is particular noticeable for 0 < σs ≤ 0.1. In other words, if we aim for a high-quality
perceptual reconstruction, we should consider σs = 0.01 or 0.05. However, if we are aiming for high
reconstruction quality in terms of AUC-ROC, we should use σs = 0.1 (see Fig.4). In other words,
the choice of the K is heavily dependent of the downstream task.
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Figure 7: Analysis of the perception component of the distortion-perception trade-off. The plot shows
the MMD² score (where lower is better) versus the number of steps, K, for a fixed drop rate of 0.1.
Each line represents a different noise level σs.
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Figure 8: Analysis of the perception component of the distortion-perception trade-off. The plot shows
the MMD² score (where lower is better) versus the number of steps, K, for a fixed drop rate of 0.5.
Each line represents a different noise level σs.
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F.4 EXAMPLES OF RECONSTRUCTED GRAPHS

We show here a few samples for the expansion case. We plot the samples from ENZYMES, using a
subset of the dataset used in Section 5.3.

Binary comparison. In this case, we first compare the thresholded versions (with 0.5) of the mean
matrices. We compute this for 3 graphs in the test set (3, 7 and 29). The plots are in Figs. 9, 10 and 11

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 9: Graph reconstruction for sample 3, thresholded with 0.5

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 10: Graph reconstruction for sample 7, thresholded with 0.5

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 11: Graph reconstruction for sample 30, thresholded with 0.5

Raw comparison - Mean. In this case, we compare the raw versions of the mean matrices. We
compute this for 3 graphs in the test set (3, 7 and 29). The plots are in Figs. 12, 13 and 14. Notice that
the mean reconstructions for K = 100 have values that are between 0 and 1; this can be explained
by looking at individual samples (see below), which are more diverse, and therefore, they have
non-overlapping set of existing edges.
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A true Mean K=1 (binary) Mean K=100 (binary)

Figure 12: Graph reconstruction for sample 3, mean raw

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 13: Graph reconstruction for sample 7, mean raw

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 14: Graph reconstruction for sample 30, mean raw

Raw comparison - Median. In this case, we compare the raw versions of the median matrices. We
compute this for 3 graphs in the test set (3, 7 and 29). The plots are in Figs. 15, 16 and 17.

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 15: Graph reconstruction for sample 3, median raw
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A true Mean K=1 (binary) Mean K=100 (binary)

Figure 16: Graph reconstruction for sample 7, median raw

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 17: Graph reconstruction for sample 30, median raw

Individual samples for each graph. Lastly, we show the raw versions of different realizations
(individual samples) for each graph. We compute this for 3 graphs in the test set (3, 7 and 29).
Interesting, the samples for K = 100 are more diverse (similar to the case of images in Ohayon et al.
(2025)); this diversity explains why the raw mean in Figs. 12, 13 and 14 have values that are not
exactly 0 or 1 (which means that there are non-overal between samples).

Figure 18: Individual samples for K = 1 and for sample 3
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Figure 19: Individual samples for K = 100 and for sample 3

Figure 20: Individual samples for K = 1 and for sample 7

Figure 21: Individual samples for K = 100 and for sample 7

Figure 22: Individual samples for K = 1 and for sample 30
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Figure 23: Individual samples for K = 100 and for sample 30

G LIMITATIONS

Despite these advantages, PIFM has apparent limitations. It’s performance heavily depends on the
quality of prior estimation, as shown by the gap between the node2vec-prior and graphon-prior
versions of PIFM. Moreover, graphons may not be the most suitable prior in practice: they are
fundamentally limit objects defined for limits of dense graphs, which restricts their applicability to
sparse real-world networks. Graphons also does not capture dependencies between edges beyond what
can be explained through the latent coordinates. Additionally, the current formulation is restricted to
undirected and unweighted graphs, and the training overhead is higher than one-shot priors.

Looking forward, promising directions include extending PIFM to incorporate node and edge at-
tributes for richer graph inference tasks, scaling the method to larger and more complex real-world
networks, and enhancing the graphon prior by learning a dictionary of graphons from which the model
can adaptively select during sampling. Such a design would provide more faithful prior initialization
for datasets containing diverse graph types.
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