

PRIOR-INFORMED FLOW MATCHING FOR GRAPH RECONSTRUCTION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce *Prior-Informed Flow Matching (PIFM)*, a conditional flow model for graph reconstruction. Reconstructing graphs from partial observations remains a key challenge; classical embedding methods often lack global consistency, while modern generative models struggle to incorporate structural priors. PIFM bridges this gap by integrating embedding-based priors with continuous-time flow matching. Grounded in a permutation equivariant version of the distortion-perception theory, our method first uses a prior, such as graphons or GraphSAGE/node2vec, to form an informed initial estimate of the adjacency matrix based on local information. It then applies rectified flow matching to refine this estimate, transporting it toward the true distribution of clean graphs and learning a global coupling. Experiments on different datasets demonstrate that PIFM consistently enhances classical embeddings, outperforming them and state-of-the-art generative baselines in reconstruction accuracy.

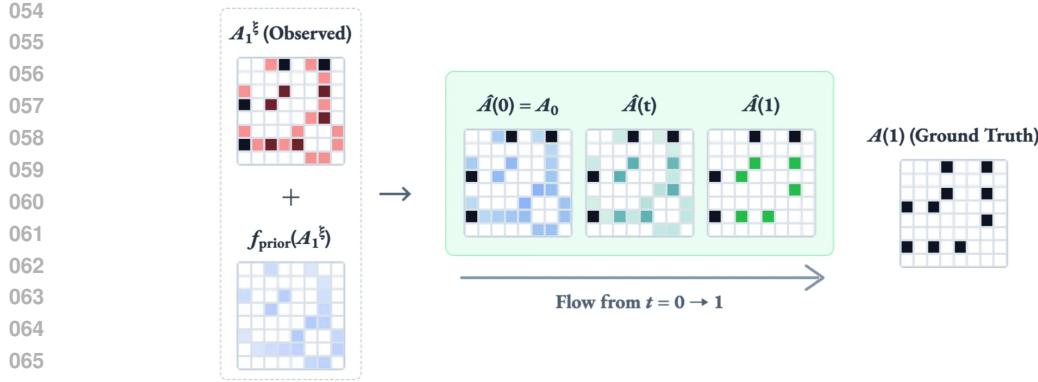
1 INTRODUCTION

Graph generative models have seen remarkable progress in recent years, enabling the synthesis of realistic graph structures in domains such as drug design (Yang et al., 2024) and social networks (Grover et al., 2019). In particular, diffusion-based (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2023) and flow-based (Qin et al., 2025; Eijkelboom et al., 2024) approaches have emerged as state-of-the-art. While these models excel at *unconditional* generation and property-controlled generation, their application to inverse problems, and in particular, the reconstruction of a graph from partial observations, remains a fundamental open problem.

Graph reconstruction is a long-standing problem, traditionally framed as a link prediction task. Early transductive methods, such as Node2Vec (Grover & Leskovec, 2016; Perozzi et al., 2014), model edges independently and fail to capture global structural information. While inductive methods (Zhang & Chen, 2018) like GraphSAGE (Hamilton et al., 2017) can capture expressive local patterns, they still lack a global perspective on the graph’s structure. Conversely, recent generative models adapted from image inpainting (Vignac et al., 2023; Trivedi et al., 2024) or guided by posterior sampling (Sharma et al., 2024; Tenorio et al., 2025) can produce plausible completions but are not optimized for the faithful recovery of the ground truth. This leaves open a critical gap: classical and heuristic-based methods are local, while modern solvers are not designed for exact reconstruction.

In this work, we bridge this gap by introducing **Prior-Informed Flow Matching (PIFM)**, a flow-based model designed for high-fidelity graph reconstruction. We reformulate the problem through the lens of the perception-distortion trade-off (Blau & Michaeli, 2018), which postulates that an optimal estimator can be constructed in two stages (Freirich et al., 2021; Ohayon et al., 2025): (*i*) predicting the Minimum Mean Squared Error (MMSE) estimator from local information, and (*ii*) learning an optimal transport map from this initial estimate to the ground-truth graph distribution.

Our method approximates this two-step solution. For (*i*), we represent the posterior mean as the expected value of a Bernoulli latent variable model with unknown probabilities, where the latent structure is estimated using inductive (dataset-informed, such as graphons (Lovász, 2012) and GraphSAGE (Hamilton et al., 2017)) or transductive estimators (instance-specific, such as node2vec (Grover & Leskovec, 2016)). Then, for (*ii*), we approximate the optimal transport step using a rectified flow model (Liu et al., 2023; Albergo et al., 2023), which maps the posterior mean to



067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097

Figure 1: Overview of the **Prior-Informed Flow Matching (PIFM)** graph reconstruction framework. Starting from a partially observed adjacency matrix $A_1^\xi = \xi \odot A$, where ξ denotes a mask, we form an initialization A_0 by combining the observed entries with prior predictions $f_{\text{prior}}(A_1^\xi)$ obtained with an element-wise predictor. In dark red we denote the true edges that are masked, while in light red those masked position that do not have an edge between nodes. A rectified flow then interpolates linearly from A_0 to the ground-truth graph $A_1 = A$, learning global structural information from a coupling of all the edges. The intermediate states A_t improve on the prior-informed initialization, enabling recovery of the missing edges.

the distribution of clean graphs (see Fig. 1). Importantly, our architectures are permutation-equivariant, ensuring a permutation-invariant parameterization of the posterior distribution.

We validate the advantages of PIFM through experiments on datasets with diverse characteristics, including dense and sparse graphs. Our results show that PIFM effectively integrates structural priors with flow-based modeling and can be interpreted as a form of graph inpainting, where missing edges are inferred through a learned interpolation process.

Our contributions are as follows:

- We introduce a novel formulation for graph reconstruction based on a permutation-equivariant distortion-perception trade-off.
- We propose PIFM, a new estimator based on flow matching that defines a prior-informed source distribution using embeddings from latent graph models. PIFM enhances these initial embeddings by learning a global structural coupling.
- We empirically validate our approach on link prediction, and two *blind* versions termed expansion (recover the missing edges) and denoising (removing the spurious edges), showing that PIFM significantly improves the reconstruction performance of predictors that rely solely on local information.

2 RELATED WORKS

Flow/Diffusion models on graphs. Diffusion and flow-based graph generative models have shown impressive performance in recent years. Early models, namely EDP-GNN (Niu et al., 2020) and GDSS (Jo et al., 2022), employ score-based *continuous* diffusion over a relaxation of the graph structure. However, given that graphs are inherently discrete, subsequent work has explored discrete diffusion processes (Austin et al., 2021). Models like DiGress (Vignac et al., 2023) demonstrated the effectiveness of this approach, which has been further advanced by discrete flow-based models like DeFoG (Qin et al., 2025) and variational approaches like CatFlow (Eijkelboom et al., 2024). A common point of these models is their reliance on a simple source distribution, such as Gaussian (continuous) or uniform (discrete) noise. While effective for unconstrained generation, recent work on image-based inverse problems demonstrates the advantages of learning a data-dependent flow, using a prior-informed source distribution (Albergo et al., 2023; Delbracio & Milanfar, 2024; Ohayon et al., 2025).

108 **Graph topology inference via flow/diffusion-based solvers.** Graph topology inference – the
 109 task of recovering hidden edges from a partially observed graph – is a long-standing inverse prob-
 110 lem (Segarra et al., 2017; Dong et al., 2016). Several methods adapt diffusion for constrained graph
 111 generation, which is related to but distinct from topology inference. DiGress (Vignac et al., 2023)
 112 introduced an inpainting mechanism, inspired by Repaint (Lugmayr et al., 2022), to generate graph
 113 structures consistent with a partial observation. Similarly, in Trivedi et al. (2024) a similar mech-
 114 anism is used for completing partially observed graphs. PRODIGY (Sharma et al., 2024) enforces
 115 hard constraints by projecting the graph estimate onto a feasible set at each sampling step. More
 116 recently, GGDiff (Tenorio et al., 2025) incorporates a guidance mechanism as a flexible alternative
 117 to inpainting. However, all these methods are designed for *constrained generation* (e.g., molecule
 118 generation with a given scaffold) rather than *recovering masked edges from a partially observed
 119 graph*. Hence, to the best of our knowledge, designing a diffusion-based model explicitly for graph
 120 topology inference remains an open problem.

121 3 BACKGROUND

122 We represent an undirected graph $\mathcal{G}_0 = \{\mathcal{V}, \mathcal{E}\}$, where \mathcal{V} denotes the nodes and \mathcal{E} the edges, by its
 123 binary symmetric adjacency matrix $\mathbf{A}_0 \in \mathbb{R}^{N \times N}$.

124 **Continuous flow matching for graph generation.** Flow matching (Albergo et al., 2023; Lipman
 125 et al., 2023) is a family of generative models that defines a continuous-time transport map from
 126 samples \mathbf{A}_0 drawn from a source distribution p_0 to samples \mathbf{A}_1 from a target distribution p_1 . It is
 127 governed by the ODE
 128

$$129 \quad d\mathbf{A}_t = v(\mathbf{A}_t, t) dt, \quad (1)$$

130 where $v(\cdot, t)$ is a velocity field and \mathbf{A}_t denotes a forward process, also known as stochastic interpolant,
 131 for $t \in [0, 1]$. Typically, p_0 is a tractable distribution (e.g., a Gaussian distribution), while p_1
 132 corresponds to the data distribution. To generate new samples, one must specify both \mathbf{A}_t and v . A
 133 common choice for the forward process is $\mathbf{A}_t = \alpha_t \mathbf{A}_0 + \beta_t \mathbf{A}_1$, where α_t and β_t are differentiable
 134 functions such that $\alpha_0 = 1$, $\beta_0 = 0$ and $\alpha_1 = 0$, $\beta_1 = 1$. Differentiating this path gives a velocity
 135 $v(\mathbf{A}_t, t) = \dot{\alpha}_t \mathbf{A}_0 + \dot{\beta}_t \mathbf{A}_1$. Despite its closed-form, this expression depends explicitly on \mathbf{A}_1 , making
 136 it impractical since the target is unknown at inference/sampling. To circumvent this, we instead
 137 consider $v(\mathbf{A}_t, t) = \mathbb{E}_{\mathbf{A}_0, \mathbf{A}_1} [\dot{\alpha}_t \mathbf{A}_1 + \dot{\beta}_t \mathbf{A}_0 \mid \mathbf{A}_t]$, the conditional expectation of the velocity given
 138 \mathbf{A}_t (Albergo et al., 2023), which is then approximated with a neural network v_θ . The network is
 139 trained using a mean squared error loss:
 140

$$141 \quad \mathbb{E}_{t, \mathbf{A}_0, \mathbf{A}_1} \left[\left\| v_\theta(\mathbf{A}_t, t) - (\dot{\alpha}_t \mathbf{A}_1 + \dot{\beta}_t \mathbf{A}_0) \right\|_2^2 \right]. \quad (2)$$

142 In particular, this formulation does not require \mathbf{A}_0 and \mathbf{A}_1 to be independent; in fact, they might be
 143 sampled from a joint distribution, allowing for richer transport plans in cases where paired data is
 144 available. This has been exploited to solve inverse problems on images (Ohayon et al., 2025; Albergo
 145 et al., 2024; Delbracio & Milanfar, 2024), and is directly related to our proposed method, as described
 146 later.

147 Throughout this work, we consider the *rectified flow* case (Liu et al., 2023), where $\alpha_t = 1 - t$ and
 148 $\beta_t = t$. As shown in Tong et al. (2024), the velocity field associated with this linear path approximates
 149 the optimal transport vector field when the joint distribution $p(\mathbf{A}_0, \mathbf{A}_1)$ closely resembles the optimal
 150 coupling between the marginals $p(\mathbf{A}_0)$ and $p(\mathbf{A}_1)$. We deferred to Appendix C.2 a more detailed
 151 background on generative models on graphs beyond continuous flow matching, including diffusion-
 152 based models, as well as related works.

153 4 METHOD

154 In Section 4.1, we introduce the distortion-perception trade-off (Blau & Michaeli, 2018) for graphs.
 155 Then, in Section 4.2, we introduce methods for approximating the posterior mean. In Section 4.3, we
 156 describe our implementation of the flow model to transport the predicted mean to the ground-truth
 157 graphs.

162 4.1 GRAPH TOPOLOGY INFERENCE AS A DISTORTION-PERCEPTION TRADE-OFF
163164 We aim to reconstruct the ground-truth adjacency matrix \mathbf{A} of graph \mathcal{G} from a partially observed
165 version, denoted by $\mathbf{A}^{\mathcal{O}}$. This task can be formalized through the following distortion-perception
166 function:

167
$$D(P) = \min_{p(\hat{\mathbf{A}}|\mathbf{A}^{\mathcal{O}})} \left\{ \mathbb{E}_{p(\mathbf{A}, \hat{\mathbf{A}})} [\|\mathbf{A} - \hat{\mathbf{A}}\|_F^2] : d(p_{\mathbf{A}}, p_{\hat{\mathbf{A}}}) \leq P \right\}, \quad (3)$$

168

169 where $\hat{\mathbf{A}}$ is an estimator of \mathbf{A} given the observation $\mathbf{A}^{\mathcal{O}}$, and $d(p_{\mathbf{A}}, p_{\hat{\mathbf{A}}})$ is a divergence between the
170 distributions $p_{\mathbf{A}}$ (the distribution of clean graphs) and $p_{\hat{\mathbf{A}}}$. Although we adopt MSE as the distortion
171 measure in (3), the formulation is general and supports other distortion metrics between the true
172 and predicted graphs (Blau & Michaeli, 2018). The function in (3) has been extensively studied
173 in the image domain (Freirich et al., 2021), where different values of P correspond to estimators
174 with varying characteristics in terms of average accuracy (distortion), and the degree to which the
175 reconstructed signal looks like the ground truth (perception). We adapt this framework to graphs by
176 estimating the matrix \mathbf{A} , and accounting for symmetry constraints due to the permutation invariance
177 of graph representations.178 Among all possible values of P , the most studied cases are $P = \infty$ and $P = 0$. The former
179 corresponds to the distortion function $D(P = \infty)$, whose solution is the posterior mean estimator
180 $\hat{\mathbf{A}}^* = \mathbb{E}[\mathbf{A} | \mathbf{A}^{\mathcal{O}}]$. This estimator minimizes distortion, but does not impose constraints on the
181 distribution of outputs, potentially leading to unrealistic graphs. In contrast, when $P = 0$, the
182 estimator achieves a perfect perceptual reconstruction, meaning that the recovered graph has the same
183 structural properties than the original graph; in this case, $p_{\mathbf{A}} = p_{\hat{\mathbf{A}}}$. As shown in Freirich et al. (2021),
184 the corresponding estimator can be obtained by solving the following optimal transport problem

185
$$p_{\hat{\mathbf{A}}, \hat{\mathbf{A}}^*}^* = \underset{p \in \Pi(p_{\mathbf{A}}, p_{\hat{\mathbf{A}}^*})}{\operatorname{argmin}} \mathbb{E}[\|\hat{\mathbf{A}} - \hat{\mathbf{A}}^*\|_F^2], \quad (4)$$

186

187 where $\Pi(p_{\mathbf{A}}, p_{\hat{\mathbf{A}}^*})$ is the set of all joint distributions (couplings) with fixed marginals $p_{\mathbf{A}}$ and $p_{\hat{\mathbf{A}}^*}$.
188 Thus, finding the estimator $\hat{\mathbf{A}}$ associated with $D(0)$ boils down to solving the optimal transport
189 problem between the distribution of clean graphs $p_{\mathbf{A}}$ and of the MMSE estimator $p_{\hat{\mathbf{A}}^*}$. We can
190 approximate this by (i) computing $\hat{\mathbf{A}}^* = \mathbb{E}[\mathbf{A} | \mathbf{A}^{\mathcal{O}}]$ given an observation $\mathbf{A}^{\mathcal{O}}$ and (ii) sampling
191 from the conditional distribution $p(\mathbf{A} | \hat{\mathbf{A}}^*)$. Intuitively, this approach builds the final prediction by
192 refining the initial guess $\hat{\mathbf{A}}^*$.193 While the solution for $P = \infty$ achieves lower MSE, it may produce outputs that deviate from the
194 structural properties of the original data. This mismatch is problematic in settings like conditional
195 molecular generation, where the generated molecule must satisfy strict chemical validity constraints.
196 For such applications, the solution with $P = 0$ is more appropriate, as it guarantees that the generated
197 samples are structurally consistent with the data distribution. Therefore, this work focuses on the
198 case $P = 0$.200 **Permutation invariance on graphs: An additional constraint.** Unlike images, graphs lack canonical
201 node ordering, which imposes symmetry constraints on the data distribution and the reconstruction
202 function. First, the ground-truth distribution $p(\mathbf{A})$ is *permutation invariant*, meaning that for any per-
203 mutation matrix \mathbf{P}_{π} associated with a node relabeling π , it holds that $p(\mathbf{A}) = p(\mathbf{P}_{\pi}^T \mathbf{A} \mathbf{P}_{\pi})$. Second,
204 the estimator $\hat{\mathbf{A}} = f(\mathbf{A}^{\mathcal{O}})$ must be *permutation equivariant*, i.e., $f(\mathbf{P}_{\pi}^T \mathbf{A}^{\mathcal{O}} \mathbf{P}_{\pi}) = \mathbf{P}_{\pi}^T f(\mathbf{A}^{\mathcal{O}}) \mathbf{P}_{\pi}$,
205 ensuring that relabeling the input results in a consistently relabeled output. These conditions are
206 necessary for solutions to (3) and (4) to be invariant to the node labeling. We now describe how to
207 implement the solution to (4).208 4.2 APPROXIMATING THE POSTERIOR MEAN
209210 As discussed in Section 4.1, our goal is to approximate the conditional mean $\mathbb{E}[\mathbf{A} | \mathbf{A}^{\mathcal{O}}]$ with a
211 *permutation equivariant* estimator. Before moving to particular parameterizations of the conditional
212 mean, we introduce two assumptions.213 **AS 1.** We assume each edge in $\mathbf{A} \in \{0, 1\}^{n \times n}$ follows a Bernoulli distribution whose probabilities
214 depend on latent node variables $\mathbf{z}_1, \dots, \mathbf{z}_n \in \mathcal{Z}$ such that:

215
$$A_{ij} \sim \text{Bernoulli}(f(\mathbf{z}_i, \mathbf{z}_j)), \quad 1 \leq i < j \leq n. \quad (5)$$

216 The function f maps pairs of latent variables to edge probabilities, i.e., $f(\mathbf{z}_i, \mathbf{z}_j) = P(A_{ij} | \mathbf{z}_i, \mathbf{z}_j) =$
 217 p_{ij} .

218 **AS 2.** We assume that the edges are conditionally independent given the latent structure, i.e., given
 219 the latent structure $Z = \{\mathbf{z}_1, \dots, \mathbf{z}_n\}$, we have:

$$221 \quad P(\mathbf{A} | Z) = \prod_{1 \leq i < j \leq n} P(A_{ij} | \mathbf{z}_i, \mathbf{z}_j). \quad (6)$$

224 Under these two assumptions, and assuming access to the mapping $\mathbf{z}^{-1} : \mathbf{A} \rightarrow \mathcal{Z}$, the posterior
 225 mean can be computed element-wise as $\mathbb{E}[\mathbf{A} | \mathbf{A}^{\mathcal{O}}] = P(\mathbf{A} | \mathbf{z}^{-1}(\mathbf{A}^{\mathcal{O}}))$. We adopt two different
 226 type of priors : (i) inductive methods, represented by *graphons* (Lovász, 2012; Avella-Medina
 227 et al., 2018), which are bounded, symmetric and measurable functions $\mathcal{W} : [0, 1]^2 \rightarrow [0, 1]$, and
 228 *GraphSAGE* (Hamilton et al., 2017), a GNN-based estimator and (ii) transductive ones, obtained
 229 from *node2vec* (Grover & Leskovec, 2016), which provides an instance-level learned probabilistic
 230 model.

231 **Posterior mean using inductive methods (dataset-informed).** We approximate the posterior mean
 232 using two distinct dataset-informed, inductive approaches: graphons and GraphSAGE.

234 A *graphon*, defined as a symmetric function $\mathcal{W} : [0, 1]^2 \rightarrow [0, 1]$, serves as a generative model for a
 235 family of graphs:

$$236 \quad z_i \sim \text{Uniform}[0, 1], \quad i = 1, \dots, n, \quad (7)$$

$$237 \quad A_{ij} \sim \text{Bernoulli}(\mathcal{W}(z_i, z_j)), \quad 1 \leq i < j \leq n.$$

239 Graphons provide a functional representation of exchangeable random graphs where the conditional
 240 edge probability is $[\mathbb{E}[\mathbf{A} | \mathbf{z}]]_{ij} = \mathcal{W}(z_i, z_j)$. This offers a natural, permutation-equivariant
 241 framework for estimating the posterior mean, though it requires access to the inverse mapping
 242 $z_i = [\mathbf{z}^{-1}(\mathbf{A}^{\mathcal{O}})]_i$. Since \mathcal{W} is unknown, we estimate it using Scalable Implicit Graphon Learning
 243 (SIGL) (Azizpour et al., 2025), which combines a graph neural network (GNN) encoder with an
 244 implicit neural representation (INR). SIGL operates in three steps: (1) a GNN-based sorting step to
 245 estimate latent node positions \mathbf{z} ; (2) a histogram approximation of the sorted adjacency matrices; and
 246 (3) learning a graphon parameterization f_{ϕ} by minimizing its error against the histograms. A key
 247 feature of SIGL is its ability to recover the inverse mapping \mathbf{z}^{-1} , making it uniquely suitable for our
 248 model (Xia et al., 2023).

248 As an alternative inductive method, we use *GraphSAGE* (Hamilton et al., 2017). We train the model
 249 on the partially observed graphs in the dataset to produce node embeddings $\{\mathbf{z}_i\}_{i=1}^N$. From these
 250 embeddings, we train a single logistic predictor on Hadamard edge features $(\mathbf{z}_i \odot \mathbf{z}_j)$ to estimate edge
 251 probabilities. The resulting conditional mean is parameterized as $[\mathbb{E}[\mathbf{A} | \mathbf{A}^{\mathcal{O}}]]_{ij} = f_{\phi}(\mathbf{z}_i \odot \mathbf{z}_j)$.

253 **Posterior mean using transductive methods (instance-specific).** For a transductive approach,
 254 we use *node2vec* to learn an instance-specific embedding and predictor for each graph. Similar
 255 to the GraphSAGE method, we first train node2vec on a partially observed graph to obtain node
 256 embeddings $\{\mathbf{z}_i\}_{i=1}^N$. However, in contrast to the single predictor used for GraphSAGE, we fit a
 257 distinct, *per-graph* logistic link predictor on Hadamard edge features with balanced negative sampling.
 258 This yields the same conditional mean parameterization, $[\mathbb{E}[\mathbf{A} | \mathbf{A}^{\mathcal{O}}]]_{ij} = f_{\phi}(\mathbf{z}_i \odot \mathbf{z}_j)$, but with a
 259 predictor $f_{\phi}(\cdot)$ that is unique to each graph instance. At inference time, this instance-specific model
 260 is used to evaluate all masked pairs to compute the posterior mean.

262 4.3 LEARNING THE FLOW MODEL

264 We now approximate the posterior density $p(\mathbf{A}, \hat{\mathbf{A}}^*)$ by learning a flow model. As explained
 265 in Section 3, we need to specify the forward path \mathbf{A}_t and the velocity field v . For the former,
 266 inspired by Ohayon et al. (2025), we incorporate prior information as the initialization of the
 267 forward path; with slight abuse of notation, we denote f_{prior} as the prediction of the full graph (i.e.,
 268 $f_{\text{prior}}(\mathbf{A}^{\mathcal{O}}) \triangleq \mathbb{E}[\mathbf{A} | \mathbf{A}^{\mathcal{O}}]$). Specifically, we compute the sample \mathbf{A}_0 from the source distribution as
 269 follows:

$$270 \quad \mathbf{A}_0 = \xi \odot \mathbf{A} + (1 - \xi) \odot (f_{\text{prior}}(\xi \odot \mathbf{A}) + \epsilon_s), \quad (8)$$

270 where \mathbf{A} is the ground-truth graph, ξ is the corresponding mask (taking value 1 for the observed pairs
 271 of nodes and 0 otherwise), and $f_{\text{prior}}(\xi \odot \mathbf{A})$ is our approximate MMSE estimator for the masked
 272 edges. We also add a small amount of noise $\epsilon_s \sim \mathcal{N}(0, \sigma_s^2)$ following Albergo et al. (2024). We
 273 define $\mathbf{A}_1 = \mathbf{A}$ for the target distribution.

274 Regarding the velocity field v , we use the architecture from Jo et al. (2022), a GNN-based network
 275 that yields a permutation-equivariant parameterization (see Appendix E for details). Combined with
 276 the assumptions for the posterior mean parameterization in Section 4.2, this gives a permutation-
 277 invariant parameterization of the target density $p(\mathbf{A}_1)$. Since graphs are exchangeable, the target
 278 density should not depend on node ordering, making permutation invariance a desirable property.
 279 This is formalized in Theorem 1.

280 **Theorem 1.** *Let the prior estimator $f_{\text{prior}} : \mathbb{R}^{N \times N} \rightarrow \mathbb{R}^{N \times N}$ and the velocity field $v_\theta : \mathbb{R}^{N \times N} \times$
 281 $[0, 1] \rightarrow \mathbb{R}^{N \times N}$ both be **permutation-equivariant**. For any ground-truth graph \mathbf{A}_1 and mask ξ ,
 282 define the flow path from $t = 0$ to $t = 1$ as:*

$$283 \quad \mathbf{A}_t = (1 - t)\mathbf{A}_0 + t\mathbf{A}_1, \quad \text{where} \quad \mathbf{A}_0 = \xi \odot \mathbf{A}_1 + (1 - \xi) \odot f_{\text{prior}}(\xi \odot \mathbf{A}_1).$$

284 Then the estimated density for \mathbf{A}_1 , computed as

$$285 \quad \log p(\mathbf{A}_1) = \log p(\mathbf{A}_0) - \int_0^1 \text{tr} \left(\frac{\partial v_\theta(\mathbf{A}_t, t)}{\partial \mathbf{A}_t} \right) dt, \quad (9)$$

286 is guaranteed to be **permutation-invariant**.

287 The proof can be found in Appendix D.1. Since we know that the target probability density should
 288 be permutation invariant, Theorem 1 guarantees that we are introducing the right inductive bias by
 289 learning a distribution within the family of permutation invariant distributions.

290 **Final algorithm.** In Alg. 1, we describe our training and sampling algorithms. In essence, PIFM is
 291 a general framework that learns a global graph structure to enhance simple, conditionally independent
 292 edge-wise priors.

293 To illustrate what we mean by *learning a global and dependent predictor*, we now describe a toy
 294 experiment. Consider a four-node graph \mathcal{G} (see Fig. 2 (a)) where the goal is to predict the diagonal
 295 edges under a specific constraint: the only valid outcomes are that both edges are present or both are
 296 absent, i.e., $\mathcal{E} = \{[e_{02} = 1, e_{13} = 1], [e_{02} = 0, e_{13} = 0]\}$. Moreover, we assume that the probability
 297 of observing the first case is 0.6, while the second one is 0.4.

298 We first train an edge-wise prior using node2vec, which yields a probability of 0.6 for each diagonal
 299 edge. Crucially, because node2vec models each edge prediction independently, this prior is misspecified.
 300 A standard predictor based on this prior would always predict $[1, 1]$ if used as conditional mean
 301 or, if sampling were to be performed, could generate invalid predictions such as $[1, 0]$.

302 We then train a flow model using this node2vec prior to construct the initial state \mathbf{A}_0 as in (8).
 303 After training (see Appendix E for details), we generate 200 samples, illustrated in Fig. 2(b); the
 304 proportion of each mode is shown in Fig. 2(c). The results clearly demonstrate that the flow model
 305 (i) successfully leverages global information, learning a *probabilistic coupling* between the edges, to
 306 generate samples only from the two valid states, and (ii) learns the probability of each mode.

311 5 EXPERIMENTS

312 5.1 SETUP

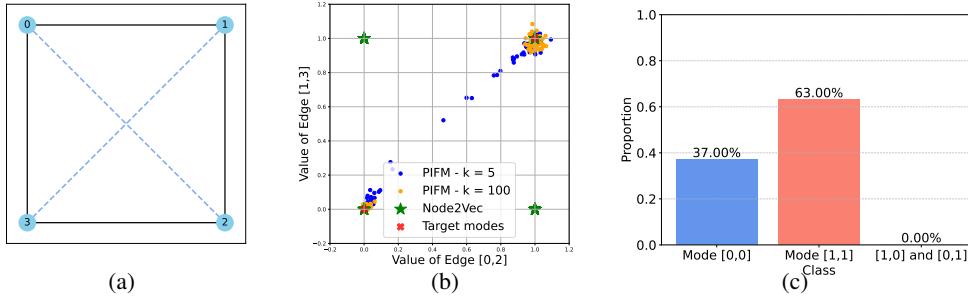
313 We evaluate our method on three graph datasets: IMDB-B, PROTEINS, and ENZYMES. Thus, we
 314 focus on families of graphs that are diverse to show that our model learns a general predictor. Future
 315 work will focus on scaling to larger graphs, such as Cora. Each dataset is split into 85% train, 10%
 316 validation, and 5% test graphs, and we evaluate reconstruction quality under two masking levels (10%
 317 and 50% of edges, masks generated uniformly at random). The implementation details are provided
 318 in Appendix E.

319 **Evaluation metrics.** Performance is measured exclusively on masked edges. We report both
 320 threshold-dependent classification metrics (FPR, FNR) and threshold-independent metrics (ROC-
 321 AUC, AP). Threshold-dependent metrics are computed by binarizing predictions at a fixed cutoff of

324 Algorithm 1 Training and Sampling

325 Training

- 326 1: Sample $\mathbf{A}_1 \sim p(\mathbf{A})$, a mask ξ , and time $t \sim U[0, 1]$.
- 327 2: Train MMSE estimator: $f_{\text{prior}}(\mathbf{A}^{\mathcal{O}})$
- 328 3: Compute $\mathbf{A}_0 \triangleq \xi \odot \mathbf{A}_1 + (1 - \xi) \odot (f_{\text{prior}}(\mathbf{A}_1^{\mathcal{O}}) + \epsilon_s)$, $\epsilon_s \sim \mathcal{N}(0, \sigma_s^2)$
- 329 4: Compute $\mathbf{A}_t \triangleq (1 - t)\mathbf{A}_0 + t\mathbf{A}_1$.
- 330 5: Train flow model: $\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{\mathbf{A}_1, \mathbf{A}_0, \xi, t} \|v_{\theta}(\mathbf{A}_t, t) - (\mathbf{A}_1 - \mathbf{A}_0)\|_F^2$
- 331 **Sampling (Reconstruction)**
- 332 6: Initialize $\hat{\mathbf{A}} \leftarrow \xi \odot \mathbf{A}_1^{\mathcal{O}} + (1 - \xi) \odot f_{\text{prior}}(\mathbf{A}_1^{\mathcal{O}}) + (1 - \xi) \odot \epsilon_s$, $\epsilon_s \sim \mathcal{N}(0, \sigma_{\text{samp}}^2)$.
- 333 7: **for** $i \leftarrow 0, \dots, K - 1$ **do**
- 334 8: $\hat{\mathbf{A}} \leftarrow \hat{\mathbf{A}} + \frac{1}{K} v_{\theta^*} \left(\hat{\mathbf{A}}, \frac{i}{K} \right)$
- 335 9: **end for**
- 336 10: Return $\hat{\mathbf{A}}$



349 Figure 2: Toy experiment showcasing the advantage of PIFM (in this case, for link prediction). a) Graph \mathcal{G} with
 350 four nodes, where the hidden edges are e_{02} and e_{13} . b) Generated samples by using node2vec and PIFM (our
 351 proposed method): clearly, our method learns a probabilistic coupling, rendering a model that generates only the
 352 two valid modes. c) Proportions of samples generated with PIFM from each mode; remarkably, the method also
 353 learns a good approximation of the probability of each mode.

354 0.5, so entries with predicted probability ≥ 0.5 are treated as edges and those < 0.5 as non-edges. In
 355 addition, we use maximum mean discrepancy (MMD) (O’Bray et al., 2022) to compute the distance
 356 between the generated graphs and the ground truth, serving as a proxy for computing the perception
 357 quality. More details on these metrics are deferred to Appendix E.4.

358 **Baselines.** We compare PIFM against several baselines, including diffusion-based. Recall that
 359 PIFM is composed of a one-shot prediction used as prior followed by a flow model. Naturally, we
 360 compare PIFM to the accuracy of the one-shot prediction (without the flow) and with a flow with a
 361 random starting point:

- 363 • **SIGL Prior (Azizpour et al., 2025)/Node2Vec Prior (Grover & Leskovec, 2016)/GraphSAGE**
 364 **Prior (Hamilton et al., 2017):** one-shot predictions using the structural prior directly.
- 365 • **Flow with Gaussian prior:** flow model initialized from uniform Gaussian $\mathcal{N}(0.5, 1)$ noise on
 366 masked entries.
- 367 • **DiGress + RePaint (Vignac et al., 2023):** unconditional DiGress combined with RePaint-style
 368 resampling (Lugmayr et al., 2022).
- 369 • **GDSS + RePaint (Jo et al., 2022):** unconditional GDSS combined with RePaint-style resam-
 370 pling (Lugmayr et al., 2022).

371 Algorithmic details of the baselines are provided in Appendix A. **Lastly, we consider an additional**
 372 **experiment on a transductive case (CORA Yang et al. (2016)), where we compared with traditional**
 373 **baselines Li et al. (2023).**

374 **5.2 LINK PREDICTION**

375 Tables 1 and 2 report results for 10% and 50% masking, respectively. Overall, PIFM improves the
 376 AUC-ROC of all base priors (SIGL, node2vec, and GraphSAGE). E.g., compare node2vec with PIFM

378 Table 1: Graph reconstruction performance with **10% of edges masked (0.1 Drop)**. We report AUC, Average
 379 Precision (AP↑), False Positive Rate (FPR↓), and False Negative Rate (FNR↓), all in percent (%). The best
 380 result for each metric is in **blue** and the second best is **green**.

Method	Mask Rate: 10% (0.1 Drop)											
	ENZYMEs				PROTEINS				IMDB-B			
	AP ↑	AUC ↑	FNR ↓	FPR ↓	AP ↑	AUC ↑	FNR ↓	FPR ↓	AP ↑	AUC ↑	FNR ↓	FPR ↓
<i>Baselines</i>												
Node2Vec	24.62	59.60	51.39	37.96	33.24	64.40	48.56	35.37	65.00	56.36	50.27	41.68
SIGL	18.17	48.04	69.33	25.43	26.77	48.91	100.00	0.00	58.91	50.61	88.44	16.33
GraphSAGE	41.28	73.70	13.49	60.59	46.36	74.58	11.00	63.50	83.55	83.26	16.42	36.89
DiGress + RePaint	33.39	67.86	58.92	5.19	40.34	72.39	47.82	6.00	59.25	58.63	76.44	7.68
GDSS + RePaint	18.35	47.04	74.31	32.19	26.96	51.39	63.07	32.09	57.89	46.11	69.75	36.17
Flow w/ Gaussian prior	40.09	72.44	71.03	5.87	57.86	80.83	65.09	3.07	98.89	98.37	2.26	2.54
<i>Ours</i>												
PIFM (Node2Vec)	41.67	76.86	72.09	5.11	58.25	81.74	59.37	6.34	97.60	97.28	1.37	3.77
PIFM (GraphSAGE)	47.21	80.25	72.85	2.40	54.79	81.02	55.73	5.40	99.37	98.79	1.81	3.37
PIFM (SIGL)	26.93	59.48	71.33	11.33	42.21	60.76	60.75	7.48	85.60	83.21	16.37	18.41

392 Table 2: Graph reconstruction performance with **50% of edges masked (0.5 Drop)** (see Table 1 for definitions).

Method	Mask Rate: 50% (0.5 Drop)											
	ENZYMEs				PROTEINS				IMDB-B			
	AP ↑	AUC ↑	FNR ↓	FPR ↓	AP ↑	AUC ↑	FNR ↓	FPR ↓	AP ↑	AUC ↑	FNR ↓	FPR ↓
<i>Baselines</i>												
Node2Vec	19.14	55.22	46.37	44.29	23.51	53.83	51.37	44.36	54.20	52.22	48.41	47.51
SIGL	16.88	49.30	72.01	27.85	22.90	52.55	100.00	0.00	50.05	45.41	87.68	18.80
GraphSAGE	22.79	57.77	40.02	52.16	27.71	53.99	32.16	66.86	75.74	75.54	18.18	44.86
DiGress + RePaint	17.34	55.22	77.95	11.62	23.65	55.45	71.46	17.65	56.47	58.89	73.00	10.27
GDSS + RePaint	16.43	49.65	69.45	30.46	22.33	51.42	66.44	32.23	53.39	51.20	69.35	29.22
Flow w/ Gaussian prior	17.43	51.84	98.49	1.07	26.40	55.55	93.21	5.25	78.72	79.76	41.56	14.62
<i>Ours</i>												
PIFM (Node2Vec)	22.95	59.14	90.71	3.53	27.57	59.68	87.05	8.98	84.46	85.71	32.95	15.03
PIFM (GraphSAGE)	25.44	61.36	95.62	1.86	35.50	60.61	85.05	10.23	93.13	93.84	17.52	7.61
PIFM (SIGL)	17.08	49.15	86.06	12.28	28.38	59.58	61.20	20.38	59.83	58.11	38.90	36.76

406 initialized with node2vec. The marked consistent gain can be attributed to the value added by the
 407 flow model in capturing the distribution of the true graphs of interest. Moreover, the fact that PIFM
 408 with some of the informative priors tends to outperform the flow with a Gaussian prior highlights the
 409 value of the two-step procedure advocated here. Among the different priors used, PIFM(GraphSAGE)
 410 tends to perform better, especially at a 50% drop rate and in the dense IMDB-B graphs.

411 For the experiments in this section, the reported PIFM results use $K = 1$, which yields the lowest
 412 MSE and, accordingly, the highest AUC-ROC (consistent with the distortion–perception trade-off
 413 discussed in Section 4.1). Notably, PIFM with $K = 1$ outperforms the priors (see Appendix F.2 for
 414 an ablation of parameters), even though the latter approximate the MMSE estimator, which should
 415 be optimal in terms of MSE. While this configuration is optimal for distortion, perceptual quality
 416 improves with more steps, as explained below in Section 5.3. Finally, the assumptions in Section 4.2
 417 are quite strong and lead to an approximate MMSE that is not truly optimal, allowing PIFM with
 418 $K = 1$ to outperform by capturing global information that the different priors miss.

419 5.3 BLIND GRAPH RECONSTRUCTION

420 We focus on two blind versions of link prediction, namely expansion and denoising. In the expansion
 421 case, we only get to observe a subset of the edges (but no non-edges), and we need to determine which
 422 other entries correspond to existing edges. Conversely, for denoising, we get to observe a subset
 423 of the non-edges (but no actual edge), and we need to determine which other entries correspond
 424 to non-edges. These cases are more challenging than link prediction since transductive priors like
 425 node2vec cannot be trained on the masked graphs (since we do not have positive and negative edges).
 426 We present here the results for expansion. The results for denoising can be found in Appendix F.1.

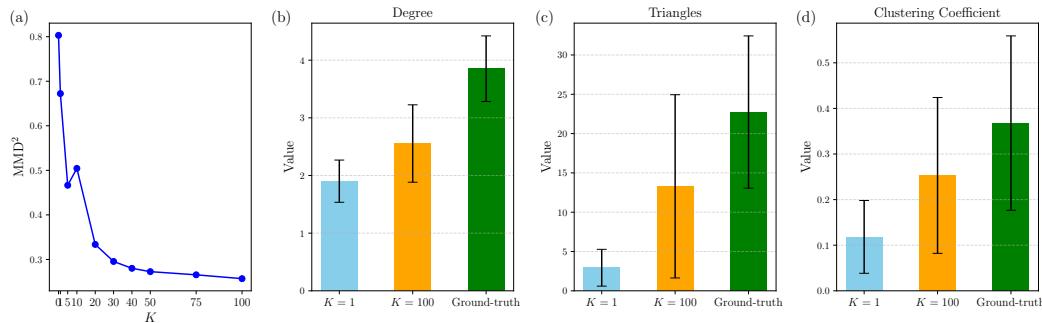
427 **Expansion.** The goal in expansion is to predict a set of hidden edges \mathcal{E}_M given $\mathbf{A}^{\mathcal{O}}$, such that the
 428 edge set of the ground truth is $\mathcal{E} = \mathcal{E}_M \cup \mathcal{E}_O$. Therefore, defining $\mathbf{A}_1 = \mathbf{A}$, the initialization becomes
 429 $\mathbf{A}_0 = \mathbf{A}_1^{\mathcal{O}} + (1 - \mathbf{A}_1^{\mathcal{O}}) \odot (f_{prior}(\mathbf{A}_1^{\mathcal{O}}) + \mathbf{e}_s)$. The results for a drop rate of 50% are shown in Table 3.
 430 Among all baselines, PIFM (GraphSAGE) attains the top AUC/AP on most of the metrics, surpassing
 431 both the GraphSAGE prior and other diffusion baselines. Compared to a Gaussian start, the informed

432 Table 3: Performance for the **expansion** task with **50% of edges masked (0.5 Drop)** (see Table 1 for definitions).
433

434 435 436 437 438 439 440 441	Mask Rate: 50% (0.5 Drop)											
	442 443 444 445 446 447 448 449 450 451 452 453 454				442 443 444 445 446 447 448 449 450 451 452 453 454				442 443 444 445 446 447 448 449 450 451 452 453 454			
	Method	AP ↑	AUC ↑	FNR ↓	FPR ↓	AP ↑	AUC ↑	FNR ↓	FPR ↓	AP ↑	AUC ↑	FNR ↓
<i>Baselines</i>												
GraphSAGE	13.95	57.54	40.29	52.74	18.91	53.91	31.62	67.18	67.18	74.92	19.04	45.20
DiGress + RePaint	2.41	54.25	84.03	7.54	4.52	56.87	81.10	13.00	22.93	56.37	81.05	6.69
GDSS + RePaint	9.21	49.63	69.45	30.80	14.66	51.03	66.44	32.06	39.43	50.68	69.35	30.00
Flow w/ Gaussian prior	9.45	50.40	90.64	9.35	14.71	50.31	82.32	17.28	49.46	62.28	71.41	13.64
<i>Ours</i>												
PIFM (GraphSAGE)	13.17	60.09	100.00	0.00	21.70	62.34	94.75	4.54	83.49	87.28	29.74	11.27

443 prior is crucial to improve AUC and AP, indicating effective global coupling beyond local scores.
444 Overall, PIFM serves as a better reconstructor in this challenging case, with K providing a tunable
445 perception–distortion trade-off (cf. Appendix F.3).

447 **Distortion-perception trade-off.** While a single-step reconstruction ($K = 1$) yields the lowest
448 distortion (AUC-ROC), we assess if more steps improve perceptual quality. We measure the MMD^2
449 score between the generated and ground-truth graph distributions on the ENZYMES dataset as a
450 function of the number of steps, K . As shown in Fig. 3(a), the MMD^2 score decreases as K increases,
451 signifying a closer match to the true data distribution and thus higher realism. We further validate
452 this by comparing graph statistics (degree, triangles, clustering coefficients), which also show that a
453 larger K more closely matches the ground-truth. Additional results and details are in Appendices F.3
454 and F.4.



466 Figure 3: Increasing the number of reconstruction steps (K) improves perceptual quality. (a) The MMD^2 ,
467 measuring the distance to the true data distribution, decreases as K increases.
468 (b-d) This result is corroborated by key graph statistics, where the average degree, number of triangles,
469 and clustering coefficient for graphs generated with $K = 100$ more closely match the ground-truth distribution
470 compared to those generated with $K = 1$. Error bars indicate the standard deviation over 300 samples (10 samples for each of the 30 test graphs).

471 6 CONCLUSIONS

473 In this paper, we introduced Prior-Informed Flow Matching (PIFM), a method for graph reconstruction
474 that learns global structural information by integrating local edge predictors within a flow-based
475 generative model. PIFM formulates graph topology inference as a distortion-perception problem,
476 learning an optimal transport map from a local estimator to the ground-truth graph distribution.
477 We evaluate PIFM using two types of local estimators, inductive (graphons and graphSAGE) and
478 transductive (node2vec), which induce different reconstruction behaviors. Experiments on multiple
479 benchmark datasets show that PIFM consistently outperforms both classical embedding methods and
480 recent flow-based baselines, demonstrating the significant value of learning global edge correlations.

481 Our method has limitations, primarily inheriting the scalability challenges of diffusion models in
482 graphs. Future work could explore sub-graph-based alternatives to improve efficiency (Trivedi et al.,
483 2024). Additionally, our current formulation is limited to homogeneous graphs; extending PIFM to
484 heterogeneous graphs by defining the process in the probability simplex (Eijkelenboom et al., 2024) or
485 using discrete flow models Qin et al. (2025) is another promising direction for future research.

486 REPRODUCIBILITY STATEMENT
487

488 The experimental setups and results are detailed in Section 5 of the main paper. Further specifics,
489 including comprehensive dataset descriptions, additional experimental details, and ablation studies,
490 are provided in Appendix E. Furthermore, and to facilitate full reproducibility, we include a complete
491 codebase as supplementary material. This supplementary package contains clearly organized configu-
492 ration files (e.g., YAML files) that detail all hyperparameters used across our experiments, enabling
493 straightforward replication of our reported findings.

494
495 REFERENCES
496

497 Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. *Soc. Networks*, 25(3):211–230,
498 2003. doi: 10.1016/S0378-8733(03)00009-1.

499 Edo M Airoldi, Thiago B Costa, and Stanley H Chan. Stochastic blockmodel approximation of a
500 graphon: Theory and consistent estimation. *Advances in Neural Inf. Process. Syst. (NIPS)*, 26,
501 2013.

502 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
503 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

504 Michael Samuel Albergo, Mark Goldstein, Nicholas Matthew Boffi, Rajesh Ranganath, and Eric
505 Vanden-Eijnden. Stochastic interpolants with data-dependent couplings. In *Intl. Conf. on Machine
506 Learning (ICML)*, pp. 921–937. PMLR, 2024.

507 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
508 denoising diffusion models in discrete state-spaces. *Advances in Neural Inf. Process. Syst. (NIPS)*,
509 34:17981–17993, 2021.

510 Marco Avella-Medina, Francesca Parise, Michael T Schaub, and Santiago Segarra. Centrality
511 measures for graphons: Accounting for uncertainty in networks. *IEEE Transactions on Network
512 Science and Engineering*, 7(1):520–537, 2018.

513 Ali Azizpour, Nicolas Zilberstein, and Santiago Segarra. Scalable implicit graphon learning. In *Int.
514 Conf. on Artif. Intell. and Stat.*, 2025.

515 Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In *Proceedings of the IEEE/CVF
516 Int. Conf. Comput. Vis. Pattern Recogn. (CVPR)*, pp. 6228–6237, 2018.

517 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
518 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
519 In *Intl. Conf. on Machine Learning (ICML)*, pp. 5453–5512. PMLR, 2024.

520 Stanley Chan and Edoardo Airoldi. A consistent histogram estimator for exchangeable graph models.
521 In *Intl. Conf. on Machine Learning (ICML)*, pp. 208–216. PMLR, 2014.

522 Katherine Crowson, Stefan Andreas Baumann, Alex Birch, Tanishq Mathew Abraham, Daniel Z
523 Kaplan, and Enrico Shippole. Scalable high-resolution pixel-space image synthesis with hourglass
524 diffusion transformers. In *Intl. Conf. on Machine Learning (ICML)*, 2024.

525 Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising
526 diffusion for image restoration. *Trans. Mach. Learn. Res.*, 2024.

527 Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning laplacian
528 matrix in smooth graph signal representations. *IEEE Trans. Signal Process.*, 64(23):6160–6173,
529 2016.

530 Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
531 van de Meent. Variational flow matching for graph generation. *Advances in Neural Inf. Process.
532 Syst. (NIPS)*, 37:11735–11764, 2024.

533 Dror Freirich, Tomer Michaeli, and Ron Meir. A theory of the distortion-perception tradeoff in
534 wasserstein space. In *Advances in Neural Inf. Process. Syst. (NIPS)*, 2021.

540 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *ACM*
 541 *SIGKDD Int. Conf. on Knowledge Discovery and Data Mining.*, pp. 855–864, 2016.
 542

543 Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs.
 544 In *Intl. Conf. on Machine Learning (ICML)*, pp. 2434–2444. PMLR, 2019.

545 William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 546 In *Advances in Neural Inf. Process. Syst. (NIPS)*, NIPS’17, pp. 1025–1035, 2017.
 547

548 Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via
 549 the system of stochastic differential equations. In *Intl. Conf. on Machine Learning (ICML)*, pp.
 550 10362–10383. PMLR, 2022.

551 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 552 based generative models. *Advances in Neural Inf. Process. Syst. (NIPS)*, 35:26565–26577, 2022.
 553

554 Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and Dawei
 555 Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new benchmarking,
 556 2023. URL <https://arxiv.org/abs/2306.10453>.

557 Stratis Limnios, Praveen Selvaraj, Mihai Cucuringu, Carsten Maple, Gesine Reinert, and Andrew
 558 Elliott. Sagess: Sampling graph denoising diffusion model for scalable graph generation. *arXiv*
 559 *preprint*, arXiv:2306.16827, 2023. doi: 10.48550/arXiv.2306.16827. URL <https://arxiv.org/abs/2306.16827>.
 560

561 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
 562 for generative modeling. In *Intl. Conf. Learn. Repr. (ICLR)*, 2023.

563 Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
 564 with rectified flow. In *Intl. Conf. Learn. Repr. (ICLR)*, 2023.

565 László Lovász. *Large networks and graph limits*, volume 60. American Mathematical Soc., 2012.
 566

567 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van
 568 Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the*
 569 *IEEE/CVF Int. Conf. Comput. Vis. Pattern Recogn. (CVPR)*, 2022.

570 Mark E. J. Newman. Clustering and preferential attachment in growing networks. *Phys. Rev. E*, 64
 571 (2):025102, 2001. doi: 10.1103/PhysRevE.64.025102.

572 Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
 573 tation invariant graph generation via score-based generative modeling. In *Int. Conf. on Artif. Intell.*
 574 *and Stat.*, pp. 4474–4484. PMLR, 2020.

575 Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph
 576 generative models: Problems, pitfalls, and practical solutions. *Intl. Conf. Learn. Repr. (ICLR)*,
 577 2022.

578 Guy Ohayon, Tomer Michaeli, and Michael Elad. Posterior-mean rectified flow: Towards minimum
 579 MSE photo-realistic image restoration. In *Intl. Conf. Learn. Repr. (ICLR)*, 2025.

580 Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representations.
 581 In *ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining.*, pp. 701–710, 2014.

582 Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
 583 for graph generation. *Intl. Conf. on Machine Learning (ICML)*, 2025.

584 Santiago Segarra, Antonio G. Marques, Gonzalo Mateos, and Alejandro Ribeiro. Network topology
 585 inference from spectral templates. *IEEE Transactions on Signal and Information Processing over*
 586 *Networks*, 3(3):467–483, 2017.

587 Kartik Sharma, Srijan Kumar, and Rakshit Trivedi. Diffuse, sample, project: plug-and-play control-
 588 able graph generation. In *Intl. Conf. on Machine Learning (ICML)*, 2024.

589

594 Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit
 595 neural representations with periodic activation functions. *Advances in Neural Inf. Process. Syst.*
 596 (*NIPS*), 33:7462–7473, 2020.

597

598 Victor M Tenorio, Nicolas Zilberstein, Santiago Segarra, and Antonio G Marques. Graph guided
 599 diffusion: Unified guidance for conditional graph generation. *arXiv preprint arXiv:2505.19685*,
 600 2025.

601 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 602 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 603 with minibatch optimal transport. *Trans. Mach. Learn. Res.*, 2024.

604

605 Puja Trivedi, Ryan A Rossi, David Arbour, Tong Yu, Franck Dernoncourt, Sungchul Kim, Nedim
 606 Lipka, Namyong Park, Nesreen K Ahmed, and Danai Koutra. Editing partially observable networks
 607 via graph diffusion models. In *Intl. Conf. on Machine Learning (ICML)*, 2024.

608 Clément Vignac, Igor Krawczuk, Antoine Sraordin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
 609 Digress: Discrete denoising diffusion for graph generation. In *Intl. Conf. Learn. Repr. (ICLR)*,
 610 2023.

611 Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for link
 612 prediction. In *Intl. Conf. Learn. Repr. (ICLR)*, 2024.

613

614 Xinyue Xia, Gal Mishne, and Yusu Wang. Implicit graphon neural representation. *Int. Conf. on Artif.*
 615 *Intell. and Stat.*, pp. 10619–10634, 2023.

616 Hongteng Xu, Dixin Luo, Lawrence Carin, and Hongyuan Zha. Learning graphons via structured
 617 gromov-wasserstein barycenters. In *Proc. AAAI Conf. Artif. Intell.*, pp. 10505–10513, 2021.

618

619 Nianzu Yang, Huaijin Wu, Kaipeng Zeng, Yang Li, Siyuan Bao, and Junchi Yan. Molecule generation
 620 for drug design: a graph learning perspective. *Fundam. Res.*, 2024.

621

622 Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
 623 graph embeddings. In *Intl. Conf. on Machine Learning (ICML)*, pp. 40–48. PMLR, 2016.

624

625 Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. *Advances in Neural*
626 Inf. Process. Syst. (NIPS), 31, 2018.

627

628 Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information, 2009.
 URL <https://arxiv.org/abs/0901.0553>. Journal version: *Eur. Phys. J. B* 71:623–630
 (2009), doi:10.1140/epjb/e2009-00335-8.

629

630 Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
 631 networks: a general graph neural network framework for link prediction. In *Advances in Neural Inf.*
632 Process. Syst. (NIPS), Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

A ALGORITHM

650

651 In this section, we describe the algorithms that we use as baselines. Each method serves distinct
 652 purposes: SIGL/node2vec/GraphSAGE A_0 tests whether the flow model provides meaningful im-
 653 provement beyond the one-shot estimates given by the priors, uniform + flow evaluates whether the
 654 SIGL/node2vec/GraphSAGE predicted graphons are good structural priors for effective denoising,
 655 and DiGress + RePaint compares our model to standard modified unconditionally generation models.

656

657
658

A.1 UNIFORM + FLOW BASELINE

659
660
661

This baseline ablates the structural prior by initializing the flow from a state where unknown entries
 are filled with uniform noise. The model then learns to denoise from this less-informed starting point.

662

663 **Algorithm 2** Uniform + flow Training and Sampling

664

Training

665
666

- 1: Sample \mathbf{A}_1 , a mask ξ , and time $t \sim U[0, 1]$.
- 2: Define initial state with Gaussian noise added to the masked region:

667
668

$$\mathbf{A}_0 \triangleq \xi \odot \mathbf{A}_1 + (1 - \xi) \odot \mathcal{U}(0, 1)^{N \times N} + (1 - \xi) \odot \boldsymbol{\epsilon}_{\text{train}}, \quad \boldsymbol{\epsilon}_{\text{train}} \sim \mathcal{N}(0, \sigma_{\text{train}}^2).$$

669
670

- 3: Define interpolant $\mathbf{A}_t \triangleq (1 - t)\mathbf{A}_0 + t\mathbf{A}_1$.
- 4: Solve $\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{\mathbf{A}_1, \xi, t} \|v_{\theta}(\mathbf{A}_t, t) - (\mathbf{A}_1 - \mathbf{A}_0)\|_F^2$.

671
672

Sampling (Reconstruction)
 5: Given observed graph $\mathbf{A}_1^{\mathcal{O}}$, define the initial state with masked noise:

673
674

$$\hat{\mathbf{A}} \leftarrow \xi \odot \mathbf{A}_1^{\mathcal{O}} + (1 - \xi) \odot \mathcal{U}(0, 1)^{N \times N} + (1 - \xi) \odot \boldsymbol{\epsilon}_{\text{samp}}, \quad \boldsymbol{\epsilon}_{\text{samp}} \sim \mathcal{N}(0, \sigma_{\text{samp}}^2).$$

675
676
677
678

- 6: for $i \leftarrow 0, \dots, K - 1$ do
- 7: $\hat{\mathbf{A}} \leftarrow \hat{\mathbf{A}} + \frac{1}{K} v_{\theta^*} \left(\hat{\mathbf{A}}, \frac{i}{K} \right)$
- 8: Return $\hat{\mathbf{A}}$

679
680

A.2 DiGRESS + REPAINT BASELINE

681
682

Training (Unconditional) The model p_{θ} is trained unconditionally on complete graphs $\mathbf{A}_1 \sim p_{\text{data}}$ to reverse a discrete forward noising process q . The forward process is a fixed Markov chain $q(\mathbf{A}_t | \mathbf{A}_{t-1})$ that corrupts the graph over T steps. The training objective is to learn the denoising distribution $p_{\theta}(\mathbf{A}_1 | \mathbf{A}_t)$, modeled as a categorical prediction task for each node and edge.

683

684
685686 **Algorithm 3** DiGress Unconditional Training687
688
689

Forward Process: Sample a noised graph at any timestep t directly via $\mathbf{A}_t \sim q(\mathbf{A}_t | \mathbf{A}_1)$.

Denoising Objective:

690
691
692
693

- 1: Train a denoising network $p_{\theta}(\cdot, t)$ to predict the original graph \mathbf{A}_1 from \mathbf{A}_t .
- 2: Minimize the expected cross-entropy loss w.r.t. the ground truth:

694
695
696
697

$$\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{\mathbf{A}_1 \sim p_{\text{data}}, t \sim \mathcal{U}\{1..T\}} [\mathcal{L}_{\text{CE}}(\mathbf{A}_1, p_{\theta}(\mathbf{A}_t, t))]$$

698
699
700

Sampling (Conditional Reconstruction via RePaint) At inference, given an observed graph $\mathbf{A}_1^{\mathcal{O}} \triangleq \xi \odot \mathbf{A}_1$, the unconditionally trained model p_{θ^*} generates the missing entries. This is achieved by iteratively re-imposing the known (unmasked) information during the reverse diffusion process (Lugmayr et al., 2022).

702 **Algorithm 4** DiGress + RePaint Sampling

703
 704 **Input:** Observed graph $\mathbf{A}_1^{\mathcal{O}}$, mask ξ , trained model p_{θ^*} , steps T .
 705 **Output:** Reconstructed graph $\hat{\mathbf{A}}_1$.
 706 1: Initialize $\hat{\mathbf{A}}_T \sim p_{\text{prior}}(\cdot)$, where p_{prior} is a random graph distribution.
 707 2: **for** $t = T, T-1, \dots, 1$ **do**
 708 3: *// Predict clean graph from current state*
 709 4: $\hat{\mathbf{A}}_1 = p_{\theta^*}(\hat{\mathbf{A}}_t, t)$.
 710 5:
 711 6: *// Impose known data by noising it to the current step*
 712 7: $\mathbf{A}_t^{\text{known}} \sim q(\mathbf{A}_t | \mathbf{A}_1^{\mathcal{O}})$.
 713 8:
 714 9: *// Sample the unknown region by noising the prediction to the next step*
 715 10: $\mathbf{A}_{t-1}^{\text{unknown}} \sim q(\mathbf{A}_{t-1} | \hat{\mathbf{A}}_1)$.
 716 11:
 717 12: *// Combine known and unknown parts for the next state*
 718 13: $\hat{\mathbf{A}}_{t-1} = \xi \odot \mathbf{A}_t^{\text{known}} + (1 - \xi) \odot \mathbf{A}_{t-1}^{\text{unknown}}$.
 719 14: **end for**
 720 15: **return** $p_{\theta^*}(\hat{\mathbf{A}}_1, 1)$

721
 722 **A.3 NODE2VEC PRIOR (PER-GRAPH CLASSIFIER)**
 723

724 This baseline learns a *per-graph* edge-probability model from the observed subgraph. We (i) fit
 725 node2vec embeddings on the observed topology and (ii) train a logistic classifier on Hadamard edge
 726 features to produce probabilities on the masked pairs.
 727

728 **Algorithm 5** Node2Vec Prior: Training and Inference

729 **Inputs:** Full adjacency \mathbf{A}_1 , mask ξ ($\xi_{ij} = 1$ if observed), Node2Vec hyperparams (dim d , walk length L ,
 730 walks/node R , window w , p , q), negatives/positive ratio k .
 731 **Outputs:** Probabilities \hat{P} on masked entries, i.e., $f_{\text{prior}}(\mathbf{A}_1^{\mathcal{O}})$.
 732 **Training (per graph)**
 733 1: Construct observed graph $\mathbf{A}_1^{\mathcal{O}} \leftarrow \xi \odot \mathbf{A}_1$.
 734 2: Train Node2Vec on $\mathbf{A}_1^{\mathcal{O}}$ to obtain node embeddings $\{\mathbf{z}_i\}_{i=1}^N \in \mathbb{R}^d$.
 735 3: Build labeled edge set on *observed* pairs (upper triangle $i < j$):
 736 $\mathcal{P}^+ = \{(i, j) : \xi_{ij} = 1, A_{ij} = 1\}, \quad \mathcal{P}^- \sim k\text{-to-1 balanced samples from } \{(i, j) : \xi_{ij} = 1, A_{ij} = 0\}$.
 737 4: Features: $\mathbf{x}_{ij} \leftarrow \mathbf{z}_i \odot \mathbf{z}_j$ (Hadamard product); Labels: $y_{ij} \in \{0, 1\}$.
 738 5: Fit a logistic classifier $g_{\phi}(\mathbf{x}) = \sigma(\mathbf{w}^{\top} \mathbf{x} + b)$ (L2-regularized; class-balanced).
 739 **Inference (per graph)**
 740 6: For each *masked* pair (i, j) with $\xi_{ij} = 0$, compute $\mathbf{x}_{ij} \leftarrow \mathbf{z}_i \odot \mathbf{z}_j$.
 741 7: Predict $\hat{P}_{ij} \leftarrow g_{\phi}(\mathbf{x}_{ij})$ and set $\hat{P}_{ji} \leftarrow \hat{P}_{ij}$.
 742 8: Return \hat{P} as $f_{\text{prior}}(\mathbf{A}_1^{\mathcal{O}})$ (used in Eq. (8)).

743
 744 *Notes.* (i) We train embeddings *only* on $\mathbf{A}_1^{\mathcal{O}}$ to avoid leakage. (ii) The Hadamard feature works well
 745 and is symmetric; concatenation can be used but breaks symmetry unless sorted. (iii) Thresholding at
 746 0.5 yields hard reconstructions; we use scores \hat{P} directly in PIFM.
 747

748
 749 **B BACKGROUND**
 750751 **B.1 GRAPHONS AND GRAPHON ESTIMATION**
 752

753 As described in Section 4.2, a graphon is defined as a bounded, symmetric, and measurable function
 754 $\mathcal{W} : [0, 1]^2 \rightarrow [0, 1]$ (Lovász, 2012). By construction, a graphon acts as a *generative model for*
 755 *random graphs*, allowing the sampling of graphs that exhibit similar structural properties. To generate
 an undirected graph \mathcal{G} with N nodes from a given graphon \mathcal{W} , the process consists of two main steps:

(1) assigning each node a latent variable drawn uniformly at random from the interval $[0, 1]$, and (2) connecting each pair of nodes with a probability given by evaluating \mathcal{W} at their respective latent variable values.

The generative process in (7) can also be viewed in reverse: given a collection of graphs (represented by their adjacency matrix) $\mathcal{D} = \{\mathbf{A}_t\}_{t=1}^M$ that are sampled from an *unknown* graphon \mathcal{W} , estimate \mathcal{W} . Several methods have been proposed for this task (Chan & Airoldi, 2014; Airoldi et al., 2013; Xu et al., 2021; Xia et al., 2023; Azizpour et al., 2025). We focus on SIGL (Azizpour et al., 2025), a resolution-free method that, in addition to estimating the graphon, also *infers the latent variables* η , making it particularly useful for model-driven augmentation in GCL. This method parameterizes the graphon using an implicit neural representation (INR) (Sitzmann et al., 2020), a neural architecture defined as $f_\phi(x, y) : [0, 1]^2 \rightarrow [0, 1]$ where the inputs are coordinates from $[0, 1]^2$ and the output approximates the graphon value \mathcal{W} at a particular position. In a nutshell, SIGL works in three steps: (1) a sorting step using a GNN $g_{\phi'}(\mathbf{A})$ that estimates the latent node positions or representations η ; (2) a histogram approximation of the sorted adjacency matrices; and (3) learning the parameters ϕ by minimizing the mean squared error between $f_\phi(x, y)$ and the histograms (obtained in step 2). More details of SIGL are provided in Appendix B.1.

B.2 NODE2VEC

node2vec (Grover & Leskovec, 2016) is a scalable model for learning continuous node representations in graphs. This methods is *transductive*, meaning that it generates an embedding per graph. It extends the Skip-gram model from natural language processing to networks by sampling sequences of nodes through biased random walks. Node2vec introduces two hyperparameters (p, q) that interpolate between breadth-first and depth-first exploration. This flexibility allows embeddings to capture both *homophily* (nodes in the same community) and *structural equivalence* (nodes with similar roles, e.g., hubs), which frequently coexist in real-world graphs.

The embeddings are learned via stochastic gradient descent with negative sampling to maximize the likelihood of preserving sampled neighborhoods. Once learned, node embeddings can be combined through simple binary operators (e.g., Hadamard product) to form edge features, enabling applications such as link prediction. Empirically, node2vec has been shown to outperform prior unsupervised embedding methods across tasks like classification and link recovery, while remaining computationally efficient and scalable to large graphs (Grover & Leskovec, 2016).

B.3 GRAPHSAGE

GraphSAGE (Hamilton et al., 2017) is an *inductive* technique for link prediction based on graph neural networks (GNN) framework designed to generate embeddings for nodes in large, evolving graphs. It consists of two-steps: for a target node, it first samples a fixed-size neighborhood of adjacent nodes, and then it aggregates feature information from these sampled neighbors. By learning aggregation functions (such as a mean, pool, or LSTM aggregator) rather than embeddings for every single node, GraphSAGE can efficiently generate predictions for nodes that were not part of the training set, making it highly scalable and effective for real-world applications like social networks and recommendation systems.

B.4 GRAPH DIFFUSION MODELS

Diffusion models are generative frameworks composed by two processes: a **forward process** that systematically adds noise to data until it becomes pure noise, and a **reverse process** that learns to reverse this, generating new data by starting from noise and progressively denoising it. While these models exist for both discrete (Vignac et al., 2023) and continuous domains (Jo et al., 2022), we describe the continuous case which is the most related to our method. Here, a graph \mathbf{G}_0 is defined by its node features $\mathbf{X}_0 \in \mathbb{R}^{N \times F}$ and its weighted adjacency matrix $\mathbf{A}_0 \in \mathbb{R}^{N \times N}$. Following the GDSS framework, the forward process is described by a stochastic differential equation (SDE) that gradually perturbs the graph data over a time interval $t \in [0, T]$:

$$d\mathbf{G}_t = -\frac{1}{2}\beta(t)\mathbf{G}_t dt + \sqrt{\beta(t)} d\mathbf{W}_t$$

In this equation, \mathbf{W}_t represents standard Brownian motion (i.e., noise), and $\beta(t)$ is a noise schedule that typically increases over time. This process is designed so that by the final time T , the original data distribution \mathbf{G}_T is indistinguishable from a standard Gaussian.

The generative reverse process is defined by another SDE that traces the path from noise back to data. This process relies on the **score function**, $\nabla_{\mathbf{G}_t} \log p(\mathbf{G}_t)$, which is the gradient of the log-density of the noisy data at time t . Since the true score function is unknown, it must be approximated. This is done using a neural network, or **score network**, which is trained to predict the score. For graphs, separate networks are often used for the adjacency matrix and node features: $\epsilon_{\theta_A}(\mathbf{A}_t, t)$ and $\epsilon_{\theta_X}(\mathbf{X}_t, t)$. These networks are trained by minimizing the denoising score-matching loss.

Once trained, these score networks can be plugged into the reverse SDE. New graphs are then generated by solving this SDE numerically using standard samplers like DDPM or DDIM.

C RELATED WORKS

C.1 LINK PREDICTION

Link prediction aims to determine if an unobserved edge should exist between two nodes within a partially observed graph (Newman, 2001; Adamic & Adar, 2003; Zhou et al., 2009). Classical approaches rely on topology-only heuristics.

More recently, unsupervised node embedding methods have become an effective strategy for link prediction. These methods learn a low-dimensional vector for each node that represents neighborhood similarity and community structure, often using random walks and an objective similar to Skip-gram. Consequently, nodes that are close in the embedding space are more likely to be linked. DeepWalk was a pioneering method that modeled short random walks to learn generalizable representations for tasks like predicting missing links (Perozzi et al., 2014). Node2vec builds on DeepWalk by employing biased, second-order random walks to balance breadth-first and depth-first searches and by converting node embeddings into edge features. In node2vec, embeddings for nodes $f(u)$ and $f(v)$ are combined with binary operators to create an edge representation $g(u, v)$, which a classifier then uses to determine if the edge (u, v) exists (Grover & Leskovec, 2016).

Graph neural networks (GNNs) are also widely used for edge reconstruction. A typical encoder-decoder framework uses message passing to learn node embeddings and a simple decoder to generate link scores. Inductive frameworks like GraphSAGE learn functions to sample and aggregate features from a node’s neighborhood, allowing the model to generalize to new nodes or graphs (Hamilton et al., 2017). A different approach focuses on modeling the pair representation directly. For example, Neural Bellman-Ford Networks (NBFNet) frame link prediction as a path-aggregation problem. The score for a pair of nodes is calculated as the sum of all path representations between them, with each path being a product of its edge representations. This formulation is solved using a generalized Bellman-Ford iteration, where NBFNet parameterizes the operators with neural functions, creating an interpretable and inductive framework (Zhu et al., 2021).

C.2 DIFFUSION-BASED INVERSE PROBLEMS SOLVER FOR GRAPHS

We now expand on diffusion-based solvers for graph inverse problems. Given a condition \mathcal{C} and a reward function $r(\mathbf{G}_0)$ that quantifies how close the sample \mathbf{G}_0 is to meeting \mathcal{C} , the objective is to generate graphs \mathbf{G}_0 that maximize the reward function. From a Bayesian perspective, this problem boils down to sampling from the posterior $p(\mathbf{G}_0|\mathcal{C}) \propto p(\mathcal{C}|\mathbf{G}_0)p(\mathbf{G}_0)$ where $p(\mathcal{C}|\mathbf{G}_0) \propto \exp(r(\mathbf{G}_0))$ is a likelihood term and $p(\mathbf{G}_0)$ is a prior given by the pre-trained diffusion model. We now describe previous works for both differentiable and non-differentiable reward functions.

Guidance with Differentiable Reward Functions. Several approaches have been developed to guide generative models when the objective can be expressed as a **differentiable reward function**, particularly for inverse problems in imaging. These methods typically leverage the differentiability of the reward – often a likelihood tied to a noisy measurement – to calculate a *conditional score* using Bayes’ rule:

$$\nabla_{\mathbf{G}_t} \log p(\mathbf{G}_t|\mathcal{C}) = \nabla_{\mathbf{G}_t} \log p(\mathcal{C}|\mathbf{G}_t) + \nabla_{\mathbf{G}_t} \log p(\mathbf{G}_t)$$

In this formulation, the diffusion model naturally serves as the prior ($p(\mathbf{G}_t)$), while the likelihood term ($p(\mathcal{C}|\mathbf{G}_t)$) provides the guidance. However, directly computing the score of the likelihood term is intractable because it requires integrating over all possible clean data: $p(\mathcal{C}|\mathbf{G}_t) = \int p(\mathcal{C}|\mathbf{G}_0)p(\mathbf{G}_0|\mathbf{G}_t)d\mathbf{G}_0$.

To overcome this, a common technique is to approximate the posterior distribution $p(\mathbf{G}_0|\mathbf{G}_t)$ with a Gaussian centered at the MMSE denoiser. This denoised estimate can be calculated efficiently using **Tweedie's formula**:

$$\mathbb{E}[\mathbf{G}_0|\mathbf{G}_t] = \frac{1}{\alpha_t} (\mathbf{G}_t + \sigma_t^2 \nabla_{\mathbf{G}_t} \log p(\mathbf{G}_t, t))$$

While this framework is established for images, its application to graph-based inverse problems is less explored. This is primarily because most interesting properties and constraints in graphs are **not differentiable**. Some graph-specific methods, like DiGress (Vignac et al., 2023), implement guidance by training an auxiliary model, similar to classifier-free guidance, which introduces additional complexity.

Guidance with Non-Differentiable Reward Functions. For the more common scenario of non-differentiable constraints in graph generation, alternative strategies have emerged. The **PRODIGY** method, for instance, operates by repeatedly applying a two-step process at each denoising step: generation followed by projection.

First, it uses the unconditional diffusion model to produce a candidate sample $\hat{\mathbf{G}}_{t-1}$. Second, it projects this candidate onto the set of valid solutions using a projection operator: $\Pi_{\mathcal{C}}(\hat{\mathbf{G}}_{t-1}) = \arg \min_{\mathbf{Z} \in \mathcal{C}} \|\mathbf{Z} - \hat{\mathbf{G}}_{t-1}\|_2^2$. Since applying the full projection at every step can destabilize the generation process, PRODIGY uses a partial update to balance constraint satisfaction with the learned diffusion trajectory:

$$\mathbf{G}_{t-1} \leftarrow (1 - \gamma_t) \hat{\mathbf{G}}_{t-1} + \gamma_t \Pi_{\mathcal{C}}(\hat{\mathbf{G}}_{t-1})$$

This approach has two main limitations. First, it is only practical for simple constraints where the projection operator $\Pi_{\mathcal{C}}(\cdot)$ has an efficient, closed-form solution. Second, it applies the projection directly to the noisy intermediate sample \mathbf{G}_t , whereas the constraint \mathcal{C} is defined on the clean data \mathbf{G}_0 , creating a domain mismatch. Recently, in Tenorio et al. (2025), the authors leverage zeroth-order optimizaton to build a guidance term, improving over PRODIGY in challenging tasks.

C.3 FLOW-BASED INVERSE SOLVERS

More recently, two flow-based generative models for graphs have been proposed. Catflow, introduced in Eijkelboom et al. (2024), formulates flow matching as a variational inference problem, allowing to build a model for categorical data. The key difference between Catflow and traditional flow matching is that in the former, the objective is to approximate the posterior probability path, which is a distribution over possible end points of a trajectory. Compared to discrete diffusion, this formulation defines a path in the probability simplex, building a continuous path. This formulation boils down to a cross-entropy loss. Another recent work is DeFoG, introduced in Qin et al. (2025). This method is inspired by discrete flow matching (Campbell et al., 2024), where a discrete probability path is used. Similarly, the loss is a cross-entropy.

D PROOFS

D.1 PROOF FOR THEOREM 1

Proof. Our goal is to show that for any permutation matrix \mathbf{P} , our estimated density satisfies $\log p(\mathbf{P}^\top \mathbf{A}_1 \mathbf{P}) = \log p(\mathbf{A}_1)$. First, we notice that $\text{tr} \left(\frac{\partial v_\theta(\mathbf{A}_t, t)}{\partial \mathbf{A}_t} \right) = \langle v_\theta(\mathbf{A}_t, t), d\mathbf{A}_t \rangle_F$. Let's define a permuted graph $\mathbf{A}'_1 = \mathbf{P}^\top \mathbf{A}_1 \mathbf{P}$ and a similarly permuted mask $\xi' = \mathbf{P}^\top \xi \mathbf{P}$; to simplify notation, we denote $F(\cdot) = \log p(\cdot)$.

918 First, we establish the equivariance of the initial state \mathbf{A}_0 . Let \mathbf{A}'_0 be the initial state constructed
 919 from the permuted graph \mathbf{A}'_1 and mask ξ' .

$$\begin{aligned} 920 \mathbf{A}'_0 &= \xi' \odot \mathbf{A}'_1 + (1 - \xi') \odot f_{\text{prior}}(\xi' \odot \mathbf{A}'_1) \\ 921 &= (\mathbf{P}^\top \xi \mathbf{P}) \odot (\mathbf{P}^\top \mathbf{A}_1 \mathbf{P}) + (1 - \mathbf{P}^\top \xi \mathbf{P}) \odot f_{\text{prior}}((\mathbf{P}^\top \xi \mathbf{P}) \odot (\mathbf{P}^\top \mathbf{A}_1 \mathbf{P})) \\ 922 &= \mathbf{P}^\top (\xi \odot \mathbf{A}_1) \mathbf{P} + \mathbf{P}^\top (1 - \xi) \mathbf{P} \odot f_{\text{prior}}(\mathbf{P}^\top (\xi \odot \mathbf{A}_1) \mathbf{P}) \quad (\text{since } \odot \text{ distributes over } \mathbf{P}) \\ 923 \end{aligned}$$

924 The key requirement for this proof is the permutation equivariance of the prior estimator, f_{prior} . This
 925 condition is satisfied by both prior models used in our work. Our SIGL-based prior is permutation
 926 equivariant by design, as it uses a GNN encoder to learn the graphon structure. Our node2vec-based
 927 prior enforces permutation equivariance by first mapping nodes to a canonical ordering based on
 928 the principal components of their embeddings, ensuring that any permutation of an input graph is
 929 processed identically.

930 With the permutation equivariance of f_{prior} established, such that $f_{\text{prior}}(\mathbf{P}^\top \mathbf{X} \mathbf{P}) = \mathbf{P}^\top f_{\text{prior}}(\mathbf{X}) \mathbf{P}$,
 931 we can apply this property:

$$\begin{aligned} 932 \mathbf{A}'_0 &= \mathbf{P}^\top (\xi \odot \mathbf{A}_1) \mathbf{P} + \mathbf{P}^\top (1 - \xi) \mathbf{P} \odot (\mathbf{P}^\top f_{\text{prior}}(\xi \odot \mathbf{A}_1) \mathbf{P}) \\ 933 &= \mathbf{P}^\top (\xi \odot \mathbf{A}_1) \mathbf{P} + \mathbf{P}^\top ((1 - \xi) \odot f_{\text{prior}}(\xi \odot \mathbf{A}_1)) \mathbf{P} \\ 934 &= \mathbf{P}^\top (\xi \odot \mathbf{A}_1 + (1 - \xi) \odot f_{\text{prior}}(\xi \odot \mathbf{A}_1)) \mathbf{P} \\ 935 &= \mathbf{P}^\top \mathbf{A}_0 \mathbf{P} \\ 936 \\ 937 \end{aligned}$$

938 Thus, the initial state \mathbf{A}_0 is permutation-equivariant.

939 Next, we examine the flow path \mathbf{A}'_t corresponding to the permuted graph \mathbf{A}'_1 :

$$\begin{aligned} 942 \mathbf{A}'_t &= (1 - t) \mathbf{A}'_0 + t \mathbf{A}'_1 \\ 943 &= (1 - t) (\mathbf{P}^\top \mathbf{A}_0 \mathbf{P}) + t (\mathbf{P}^\top \mathbf{A}_1 \mathbf{P}) \\ 944 &= \mathbf{P}^\top ((1 - t) \mathbf{A}_0 + t \mathbf{A}_1) \mathbf{P} \\ 945 &= \mathbf{P}^\top \mathbf{A}_t \mathbf{P}. \\ 946 \\ 947 \end{aligned}$$

948 The path itself is equivariant. The differential element also transforms equivariantly: $d\mathbf{A}'_t =$
 949 $\mathbf{P}^\top d\mathbf{A}_t \mathbf{P}$.

950 Now, we evaluate the scalar function $F(\mathbf{A}'_1)$ by integrating along the permuted path \mathbf{A}'_t :

$$952 F(\mathbf{A}'_1) = - \int_0^1 \langle v_\theta(\mathbf{A}'_t, t), d\mathbf{A}'_t \rangle_F dt + C \\ 953$$

954 Substituting the equivariant forms for the path and its differential:

$$955 F(\mathbf{A}'_1) = - \int_0^1 \langle v_\theta(\mathbf{P}^\top \mathbf{A}_t \mathbf{P}, t), \mathbf{P}^\top d\mathbf{A}_t \mathbf{P} \rangle_F dt + C \\ 956 \\ 957$$

958 By the assumed permutation equivariance of the velocity field v_θ , we have $v_\theta(\mathbf{P}^\top \mathbf{A}_t \mathbf{P}, t) =$
 959 $\mathbf{P}^\top v_\theta(\mathbf{A}_t, t) \mathbf{P}$. Substituting this in:

$$960 F(\mathbf{A}'_1) = - \int_0^1 \langle \mathbf{P}^\top v_\theta(\mathbf{A}_t, t) \mathbf{P}, \mathbf{P}^\top d\mathbf{A}_t \mathbf{P} \rangle_F dt + C \\ 961 \\ 962$$

963 The Frobenius inner product $\langle \mathbf{A}, \mathbf{B} \rangle_F = \text{tr}(\mathbf{A}^\top \mathbf{B})$ is invariant to unitary transformations. Specifically,
 964 for any orthogonal matrix \mathbf{P} (where $\mathbf{P}^\top \mathbf{P} = \mathbf{I}$):

$$\begin{aligned} 966 \langle \mathbf{P}^\top \mathbf{X} \mathbf{P}, \mathbf{P}^\top \mathbf{Y} \mathbf{P} \rangle_F &= \text{tr}((\mathbf{P}^\top \mathbf{X} \mathbf{P})^\top (\mathbf{P}^\top \mathbf{Y} \mathbf{P})) \\ 967 &= \text{tr}(\mathbf{P}^\top \mathbf{X}^\top \mathbf{P} \mathbf{P}^\top \mathbf{Y} \mathbf{P}) \\ 968 &= \text{tr}(\mathbf{P}^\top \mathbf{X}^\top \mathbf{Y} \mathbf{P}) \\ 969 &= \text{tr}(\mathbf{X}^\top \mathbf{Y}) \\ 970 &= \langle \mathbf{X}, \mathbf{Y} \rangle_F. \\ 971 \end{aligned}$$

972 Applying this property, the integrand simplifies:
 973

$$\langle \mathbf{P}^\top v_\theta(\mathbf{A}_t, t) \mathbf{P}, \mathbf{P}^\top d\mathbf{A}_t \mathbf{P} \rangle_F = \langle v_\theta(\mathbf{A}_t, t), d\mathbf{A}_t \rangle_F$$

974 The integrand is identical for both the original and permuted inputs. Therefore, the integrals are
 975 equal:
 976

$$F(\mathbf{P}^\top \mathbf{A}_1 \mathbf{P}) = - \int_0^1 \langle v_\theta(\mathbf{A}_t, t), d\mathbf{A}_t \rangle_F dt + C = F(\mathbf{A}_1)$$

981 This confirms that the scalar function F is permutation-invariant. \square
 982

983 E EXPERIMENTAL DETAILS

984 E.1 DETAILS ABOUT THE ARCHITECTURE

985 Our model adopts a modified version of the adjacency score network architecture introduced in
 986 GDSS (Jo et al., 2022). The network is a permutation-equivariant graph neural network designed
 987 to approximate the scores $\nabla_{\mathbf{A}_t} \log p_t(\mathbf{X}_t, \mathbf{A}_t)$ and $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t, \mathbf{A}_t)$ at each diffusion step; in this
 988 paper, we use only score w.r.t. \mathbf{A}_t . Concretely, the architecture consists of stacked message-passing
 989 layers followed by a multi-layer perceptron. Each layer propagates node and edge information
 990 through adjacency-based aggregation, ensuring equivariance under node relabeling. Time information
 991 t is incorporated by scaling intermediate activations with the variance of the forward diffusion process,
 992 following the practice in continuous-time score models. Residual connections and normalization
 993 layers are used to stabilize training. The final output is an $N \times N$ tensor matching the adjacency
 994 dimension. This design provides the required permutation-equivariance and expressive power while
 995 remaining computationally tractable for mid-sized benchmark graphs.
 996

997 The modification that incorporates is a module to build an embedding for the variable t and a FiLM
 998 style modulation to incorporate noise conditioning. In particular, we incorporate the following
 999 modules:
 1000

- 1001 • A positional encoding based on a sinusoidal embedding following Karras et al. (2022)
- 1002 • An MLP layer with SiLU activation per attention layer
- 1003 • A modulation at each attention layer, where we scale the hidden features by an adaptive
 1004 RMS norm operation (Crowson et al., 2024)

1005 E.2 DETAILS ABOUT THE DATASETS

1006 In Table 4 we report the statistics of the datasets used in the main text.

1007
 1008 Table 4: Statistics of the datasets used for evaluation.

1009 Dataset	1010 # Graphs	1011 Avg. Nodes	1012 Avg. Edges	1013 # Classes	1014 Domain
1015 ENZYMES	1016 600	1017 32.63	1018 62.14	1019 6	1020 Bioinformatics
1021 PROTEINS	1022 1,113	1023 39.06	1024 72.82	1025 2	1026 Bioinformatics
1027 IMDB-B	1028 1,000	1029 19.77	1030 96.53	1031 2	1032 Social Network

1033 E.3 HYPERPARAMETERS

1034 E.3.1 FLOW-BASED BASELINES

1035 We report the hyperparameters governing the model and training. All three baselines use the same
 1036 rectified-flow architecture and optimizer family; the only substantive differences are the prior settings.

1026	Node2Vec prior (per-graph link predictor)	
1027	n2v_dim	64
1028	n2v_walk_length	30
1029	n2v_walks_per_node	10
1030	n2v_context	10
1031	n2v_p, n2v_q	1.0, 1.0
1032	n2v_epochs	1000
1033	clf_epochs	1000
1034	PIFM (Node2Vec) Link Prediction, 10% masked	
1035	batch_size	64 (IMDB-B & ENZYMES), 32 (PROTEINS)
1036	optimizer	Adam
1037	learning_rate	2e-4
1038	dropout	0.2
1039	hidden_dim	32
1040	num_layers	5
1041	num_linears	2
1042	channels	{c_init: 2, c_hid: 8, c_final: 4}
1043	train/val/test_noise_std	0.01(IMDB-B), 0.1 (PROTEINS & ENZYMES)
1044	ode_steps (Euler, K)	1 to 100
1044	prior	Node2Vec (per-graph classifier)
1045	PIFM (Node2Vec) Link Prediction, 50% masked	
1046	batch_size	64 (IMDB-B & ENZYMES), 32 (PROTEINS)
1047	optimizer	Adam
1048	learning_rate	2e-4
1049	dropout	0.2
1050	hidden_dim	32
1051	num_layers	5
1052	num_linears	2
1052	channels	{c_init: 2, c_hid: 8, c_final: 4}
1053	train/val/test_noise_std	0.01(IMDB-B), 0.1 (PROTEINS & ENZYMES)
1054	ode_steps (Euler, K)	1 to 100
1055	prior	Node2Vec (per-graph classifier)
1056		
1057		
1058		
1059		
1060		
1061		
1062	Hyperparameter: PIFM(SIGL)	
1063	Value	
1064	denoiser_epochs	1000
1065	SIGL_hyperparams	same as original paper
1065	optimizer	Adam
1066	learning_rate	2e-4
1067	dropout	0.2
1068	hidden_dim	32
1069	num_layers	5
1070	num_linears	2
1071	channels	{c_init: 2, c_hid: 8, c_final: 4}
1071	train_noise_std (masked $t=0$)	0.05
1072	val_noise_std (masked $t=0$)	0.05
1073	ode_steps (Euler, K)	1000 (default)
1074	prior	SIGL (pretrained graphon; sort_ckpt, inr_ckpt)
1075		
1076		
1077		
1078		
1079		

1080	PIFM (GraphSAGE) Link Prediction, 10% masked	
1081	batch_size	64 (IMDB-B & ENZYMEs), 32 (PROTEINS)
1082	optimizer	Adam
1083	learning_rate	2e-4
1084	dropout	0.2
1085	hidden_dim	32
1086	num_layers	5
1087	num_linears	2
1088	channels	{c_init: 2, c_hid: 8, c_final: 4}
1089	train/val/test_noise_std	0.05 (IMDB-B), 0.1 (PROTEINS & ENZYMEs)
1090	ode_steps (Euler, K)	1 to 100
1091	prior	GraphSAGE (default hyperparameters)
1092	<hr/>	
1093	<hr/>	
1094	PIFM (GraphSAGE) Link Prediction, 50% masked	
1095	batch_size	64 (IMDB-B & ENZYMEs), 32 (PROTEINS)
1096	optimizer	Adam
1097	learning_rate	2e-4
1098	dropout	0.2
1099	hidden_dim	32
1100	num_layers	5
1101	num_linears	2
1102	channels	{c_init: 2, c_hid: 8, c_final: 4}
1103	train/val/test_noise_std	0.05 (IMDB-B & PROTEINS), 0.1 (ENZYMEs)
1104	ode_steps (Euler, K)	1 to 100
1105	prior	GraphSAGE (default hyperparameters)
1106	<hr/>	
1107	<hr/>	
1108	Flow w/ Gaussian Prior	Value
1109	epochs	1000
1110	batch_size	64 (default), 32 (PROTEINS)
1111	optimizer	Adam
1112	learning_rate	2e-4
1113	dropout	0.2
1114	hidden_dim	32
1115	num_layers	5
1116	num_linears	2
1117	channels	{c_init: 2, c_hid: 8, c_final: 4}
1118	train_noise_std (masked $t=0$)	0.00
1119	val_noise_std (masked $t=0$)	0.00
1120	ode_steps (Euler, K)	1 to 100
1121	prior	None (masked entries initialized from $\mathcal{N}(0.5, 1)$)
1122	<hr/>	
1123	<hr/>	
1124	<hr/>	
1125	DiGress + RePaint	Value
1126	train.n_epochs	3000
1127	train.batch_size	12
1128	model.diffusion_steps	1000
1129	model.n_layers	8
1130	model.lambda_train	[5, 0]
1131	model.extra_features	all
1132	model.hidden_mlp_dims	{X: 128, E: 64, y: 128}
1133	model.hidden_dims	{dx: 256, de: 64, dy: 64, n_head: 8, dim_ffX: 256, dim_ffE: 64, dim_ffy: 256}
1134	<hr/>	

1134	GDSS + RePaint	Setting
1135	Sampler predictor / corrector	S4 / None
1136	n_{steps} / SNR / scale_eps	1 / 0.15 / 0.7
1137	Probability flow / noise removal / ϵ	False / True / 10^{-5}
1138	Batch size (DataLoader)	from config (e.g., 12)
1139	Mask mode (default)	dataset
1140	Observed graph A_{obs}	($A_{\text{true}} \odot \text{mask}$); symmetrized, no self-loops
1141	Binarization threshold (metrics)	0.5

1144 E.4 METRICS CALCULATION

1145 We evaluate performance only on the set of masked (unknown) edges in the upper triangle of the
 1146 adjacency matrix. For each test graph, all metrics are computed on these entries and then averaged
 1147 across graphs.

1149 **Metrics Used in Tables** We report the following four metrics in the main results:

- 1152 • **Area Under the ROC Curve (AUC).** Computed on the raw predicted scores (when available).
 1153 AUC measures the probability that a randomly chosen true edge receives a higher predicted score
 1154 than a randomly chosen non-edge. Larger AUC indicates stronger ranking performance.
- 1155 • **Average Precision (AP).** Computed from the precision–recall curve induced by ranking the
 1156 predictions. AP summarizes how well the model recovers true edges across all possible thresholds,
 1157 with higher values indicating better precision–recall trade-offs.
- 1158 • **False Positive Rate (FPR).** After thresholding predictions at 0.5, the FPR is defined as

$$1161 \quad \text{FPR} = \frac{\text{FP}}{\text{FP} + \text{TN}},$$

$$1162$$

- 1163 • **False Negative Rate (FNR).** After thresholding predictions at 0.5, the FNR is defined as

$$1166 \quad \text{FNR} = \frac{\text{FN}}{\text{FN} + \text{TP}},$$

$$1167$$

- 1168 • **MMD.** A kernel-based method that measures the difference between two probability distributions
 1169 by embedding them in a feature space and finding the maximum difference between their mean
 1170 embeddings.

1172 AUC and AP are threshold-independent metrics (computed directly on the provided scores), while
 1173 FPR and FNR are threshold-dependent error rates (obtained after binarizing at 0.5). All values
 1174 reported in the tables are averaged over test graphs and expressed in percentage.

1177 F ADDITIONAL RESULTS

1179 F.1 DENOISING.

1181 This second problem is the complement of expansion, meaning that we seek to remove a set of
 1182 spurious edges \mathcal{E}_S from $A^{\mathcal{O}}$, such that the edge set of the ground truth is $\mathcal{E} = \mathcal{E}_O \setminus \mathcal{E}_S$. Hence,
 1183 the initialization becomes $\mathbf{A}_0 = \mathbf{A}_1^{\mathcal{O}} \odot (f_{\text{prior}}(\mathbf{A}_1^{\mathcal{O}}) + \epsilon_s)$. We assume that 20% of the edges are
 1184 flipped; the results are shown in Table 5. Similarly to expansion, PIFM (GraphSAGE) attains the best
 1185 AUC/AP on all datasets, again surpassing the GraphSAGE prior and remaining baselines. It *strongly*
 1186 reduces false positives from the given prior initialization, while FNR is low on dense IMDB-B (2.67)
 1187 and higher on sparser sets. Overall, PIFM removes spurious edges more reliably while improves
 1188 other metrics as well.

1188 Table 5: Performance for the **denoising task with 20% of upper-triangle 0-entries flipped (0.2 Flip)**. We
 1189 report AUC, Average Precision (AP↑), False Positive Rate (FPR↓), and False Negative Rate (FNR↓), all in
 1190 percent (%). The best result for each metric is in **bold blue** and the second best is **green**. The metrics are
 1191 restricted on the upper-triangle 1-region of $A^{\mathcal{O}}$, and compared against \mathbf{A}_1 on that region.

Method	Flip Rate: 20% (0.2 Flip)											
	ENZYMEs				PROTEINS				IMDB-B			
	AP ↑	AUC ↑	FNR ↓	FPR ↓	AP ↑	AUC ↑	FNR ↓	FPR ↓	AP ↑	AUC ↑	FNR ↓	FPR ↓
<i>Baselines</i>												
GraphSAGE	68.19	73.89	16.14	61.72	73.79	76.70	12.68	60.47	92.54	77.29	16.77	53.37
DiGress + RePaint	41.98	49.38	87.91	13.33	49.36	51.20	78.44	18.19	80.54	51.59	73.41	23.49
GDSS + RePaint	44.59	50.86	69.18	29.70	49.72	49.43	68.39	32.64	82.36	53.23	69.05	26.00
Flow w/ Gaussian prior	49.90	54.56	52.30	38.93	57.18	58.70	62.84	24.32	96.75	94.63	3.80	12.66
<i>Ours</i>												
PIFM (GraphSAGE)	69.40	77.17	45.66	18.14	77.43	81.78	32.41	20.91	98.46	96.52	2.67	12.10

1202 F.2 ADDITIONAL EXPERIMENTS

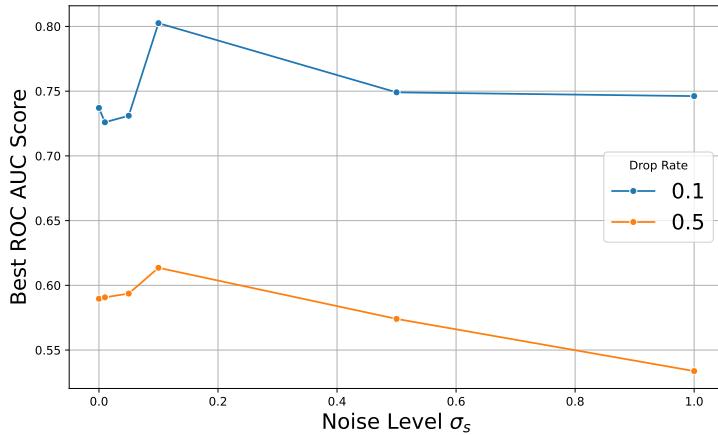
1204 Our method has two main hyperparameters:

1206 1. σ_s , which is used for computing $\epsilon_s \sim \mathcal{N}(0, \text{sigma}_s^2)$ in $\mathbf{A}_0 = \xi \odot \mathbf{A}_1 + (1 - \xi) \odot$
 1207 $(f_{\text{prior}}(\mathbf{A}_1^{\mathcal{O}}) + \epsilon_s)$
 1208 2. K , which are the total number of steps in the Euler approximation

1211 F.2.1 PERFORMANCE AS A FUNCTION OF σ_s

1213 We run an ablation of the performance of PIFM with GraphSAGE as a function of σ_s . We focus on
 1214 ENZYMEs and IMDB, and we evaluate the ROC for the best value of K for each noise level.

1215 The ablation is illustrated in Fig. 4. First, we observe that the gains of using PIFM are higher for
 1216 a smaller drop rate, as expected; in particular, we observe that PIFM with σ_s jumps from ≈ 0.73
 1217 for $\sigma_s = 0$ to ≈ 0.81 for $\sigma_s = 0.1$. Second, for both configurations, performance peaks not at zero
 1218 noise, but at a small noise level of $\sigma_s = 0.1$. This suggests that a slight injection of noise benefits
 1219 model generalization. Beyond this optimal point, increasing the noise level leads to a steady decline
 1220 in performance, meaning that the effect of the prior decreases, as expected.

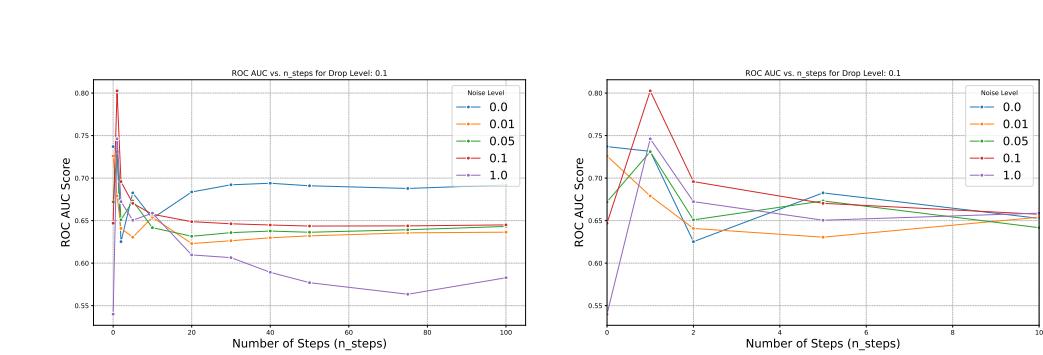


1238 Figure 4: ROC as a function of the noise σ_s in $p(\mathbf{A}_0)$. The impact of noise level σ_s on model
 1239 performance, measured by the best ROC AUC score. Results are shown for two different drop rates:
 1240 0.1 (blue) and 0.5 (orange). A small amount of noise improves performance for both configurations,
 1241 after which increasing noise leads to performance degradation.

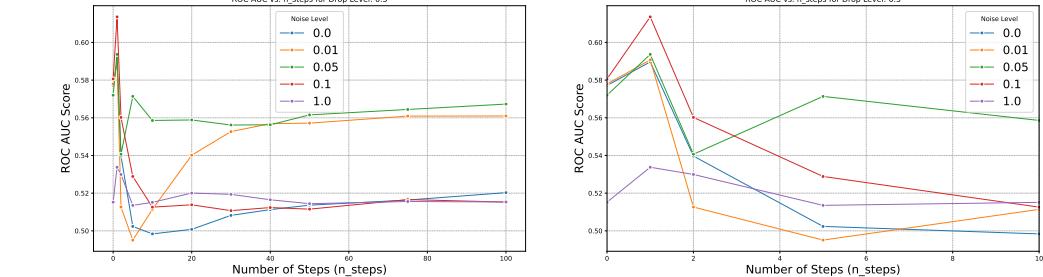
1242 F.2.2 PERFORMANCE AS A FUNCTION OF K
1243

1244 To determine the optimal number of processing steps, K , we evaluated model performance while
1245 varying this parameter from 1 to 100. Figures 5 and 6 shows the results for a fixed drop rate of 0.1
1246 and 0.5 respectively, across five different noise levels.

1247 A key observation is that peak performance, in terms of AUC-ROC, is achieved within a very small
1248 number of steps, typically for $K < 10$. In particular, the introduction of a moderate noise level allows
1249 the model to achieve its highest overall score (≈ 0.80 ROC AUC) in a single step ($K = 1$). However,
1250 this advantage diminishes as the number of steps increases. The model without noise ($\sigma_s = 0.0$)
1251 provides the most stable and consistently high performance for larger K . Conversely, a high noise
1252 level ($\sigma_s = 1$) consistently degrades performance regardless of the number of steps. This analysis
1253 suggests a trade-off: while noise can provide a significant boost for models with very few steps, a
1254 no-noise configuration is more robust for models with a larger number of steps.



1267 Figure 5: An analysis of the ROC AUC score as a function of the number of processing steps (K) for
1268 a drop rate of 10%. This experiment was conducted with a fixed drop rate of 0.1, while varying the
1269 noise level, σ_s . The results show that the optimal number of steps is small, typically under 10.



1284 Figure 6: An analysis of the ROC AUC score as a function of the number of processing steps (K) for
1285 a drop rate of 50%. This experiment was conducted with a fixed drop rate of 0.1, while varying the
1286 noise level, σ_s . The results show that the optimal number of steps is small, typically under 10.

1289 F.3 DISTORTION-PERCEPTION TRADE-OFF.
1290

1291 Here we expand on the distortion-perception trade-off by computing the MMD. The results are shown
1292 in Figures 7 and 8. Again, both figures show that the MMD² distance decreases as we increase
1293 K ; this is particular noticeable for $0 < \sigma_s \leq 0.1$. In other words, if we aim for a high-quality
1294 perceptual reconstruction, we should consider $\sigma_s = 0.01$ or 0.05 . However, if we are aiming for high
1295 reconstruction quality in terms of AUC-ROC, we should use $\sigma_s = 0.1$ (see Fig.4). In other words,
1296 the choice of the K is heavily dependent of the downstream task.

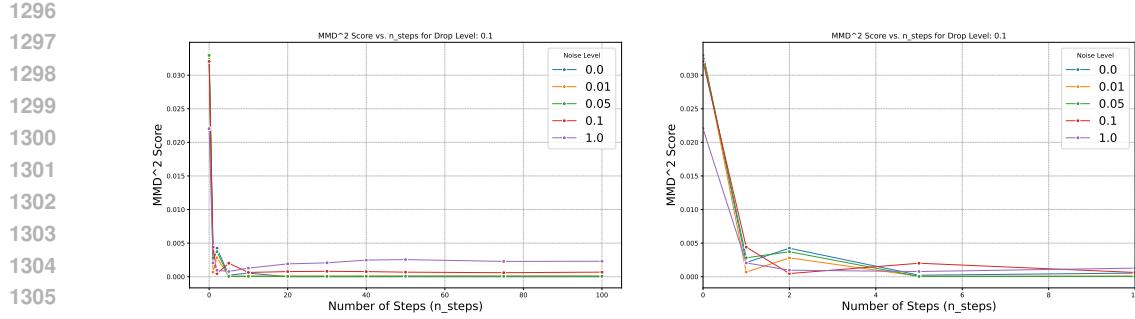


Figure 7: Analysis of the perception component of the distortion-perception trade-off. The plot shows the MMD² score (where lower is better) versus the number of steps, K, for a fixed drop rate of 0.1. Each line represents a different noise level σ_s .

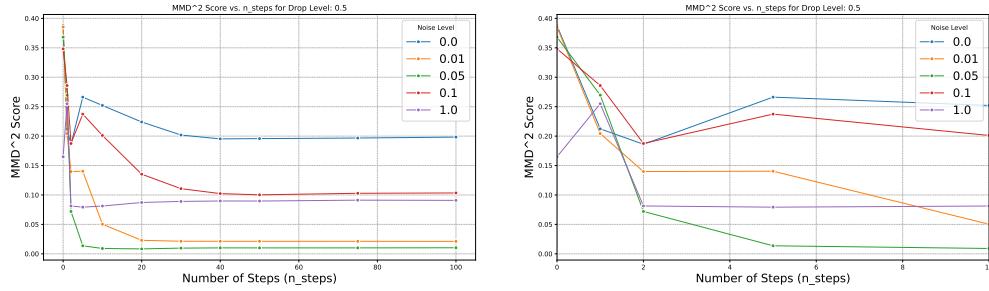
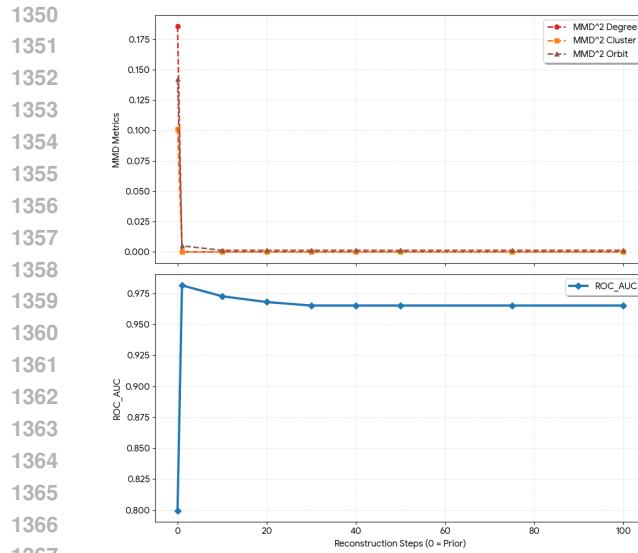


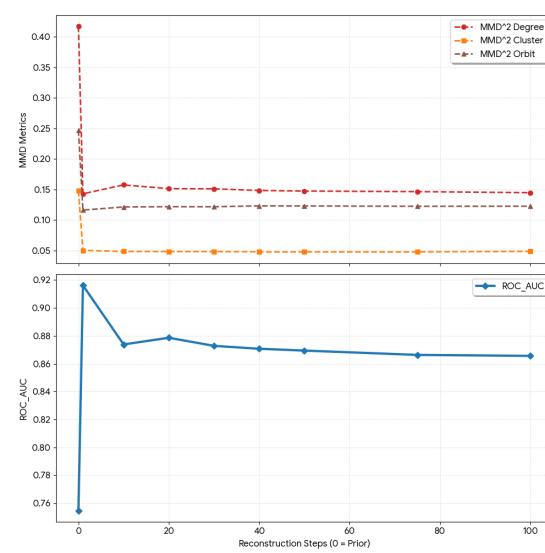
Figure 8: Analysis of the perception component of the distortion-perception trade-off. The plot shows the MMD² score (where lower is better) versus the number of steps, K, for a fixed drop rate of 0.5. Each line represents a different noise level σ_s .

F.3.1 ADDITIONAL METRICS

This section incorporates additional metrics to showcase the observed performance trade-off. The results for IMDB are in Figs. 9 and 10, for PROTEINS in Figs. 11 and 12, and for ENZYMES in Figs. 13 and 14. While an increased number of steps yields an improvement in generating an estimated graph with statistics that more closely align with the ground-truth distribution, the reconstruction performance (measured in terms of AUC) declines relative to the initial step. Critically, the trend is found to be highly contingent on the underlying dataset's sparsity. For the dense case (IMDB), the AUC exhibits a consistent monotonic decrease after the optimal initial guess, independent of drop rates. In contrast, the sparser PROTEINS and ENZYMES datasets demonstrate an intermediate improvement as the number of steps increases, though their overall AUC still trails that achieved at the initial step ($t = 1$).



1368 Figure 9: IMDB dataset, expansion task,
1369 10% drop rate



1368 Figure 10: IMDB dataset, expansion task,
1369 50% drop rate

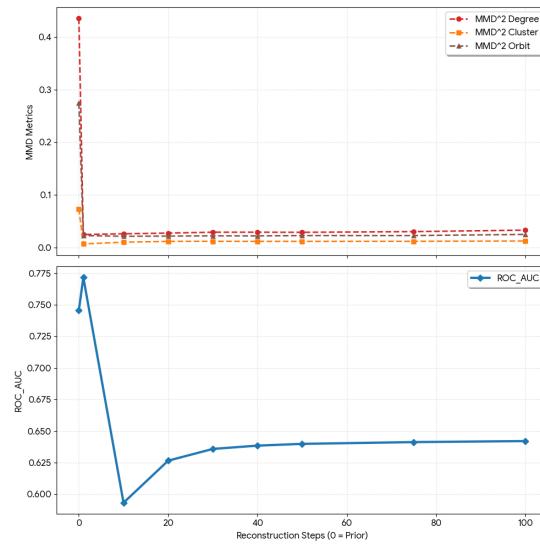


Figure 11: PROTEINS dataset, expansion, 50% drop rate

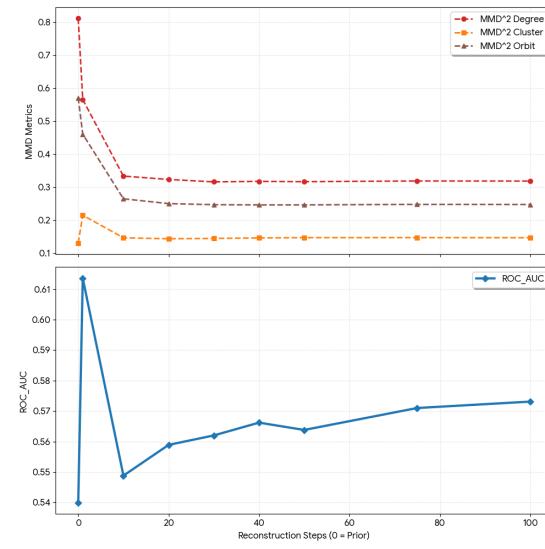


Figure 12: PROTEINS dataset, expansion, 50% drop rate

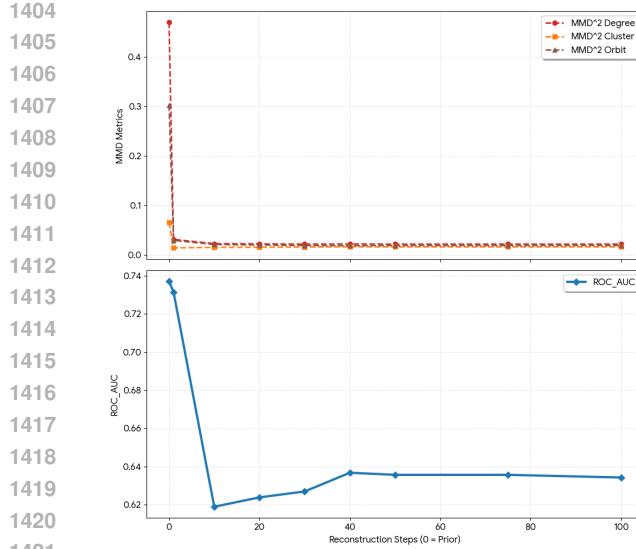


Figure 13: ENZYMES dataset, expansion, 10% drop rate

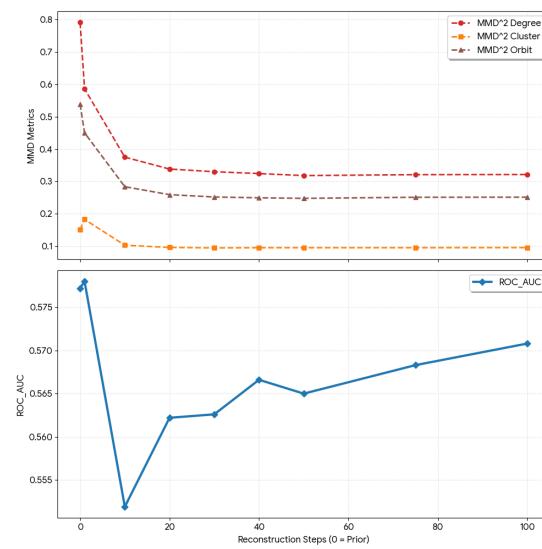


Figure 14: ENZYMES dataset, expansion, 50% drop rate

F.4 EXAMPLES OF RECONSTRUCTED GRAPHS

We show here a few samples for the expansion case. We plot the samples from ENZYMES, using a subset of the dataset used in Section 5.3.

Binary comparison. In this case, we first compare the thresholded versions (with 0.5) of the mean matrices. We compute this for 3 graphs in the test set (3, 7 and 29). The plots are in Figs. 15, 16 and 17

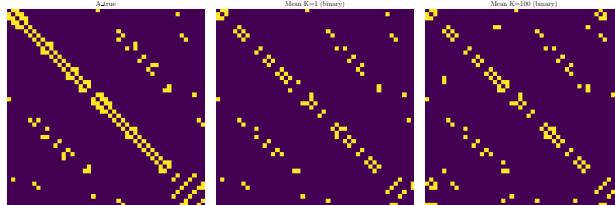


Figure 15: Graph reconstruction for sample 3, thresholded with 0.5

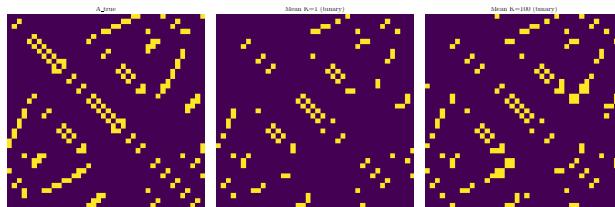


Figure 16: Graph reconstruction for sample 7, thresholded with 0.5

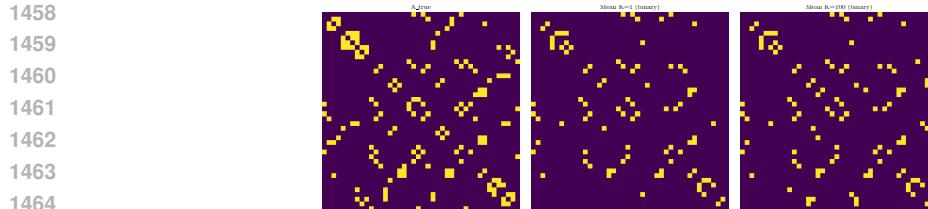


Figure 17: Graph reconstruction for sample 30, thresholded with 0.5

1469
1470
1471
1472
1473

Raw comparison - Mean. In this case, we compare the raw versions of the mean matrices. We compute this for 3 graphs in the test set (3, 7 and 29). The plots are in Figs. 18, 19 and 20. Notice that the mean reconstructions for $K = 100$ have values that are between 0 and 1; this can be explained by looking at individual samples (see below), which are more diverse, and therefore, they have non-overlapping set of existing edges.

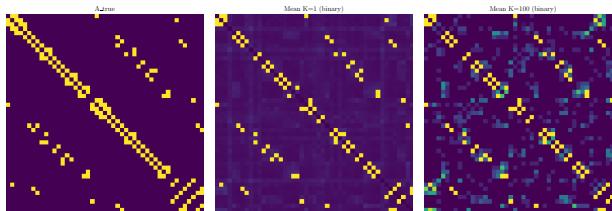


Figure 18: Graph reconstruction for sample 3, mean raw

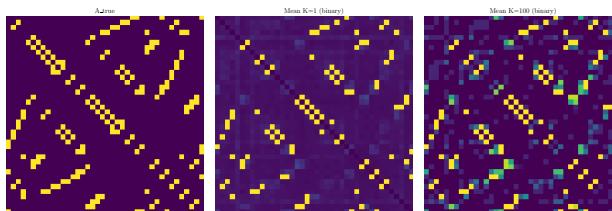


Figure 19: Graph reconstruction for sample 7, mean raw

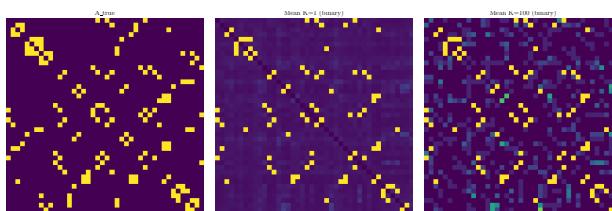


Figure 20: Graph reconstruction for sample 30, mean raw

Raw comparison - Median. In this case, we compare the raw versions of the median matrices. We compute this for 3 graphs in the test set (3, 7 and 29). The plots are in Figs. 21, 22 and 23.

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

Individual samples for each graph. Lastly, we show the raw versions of different realizations (individual samples) for each graph. We compute this for 3 graphs in the test set (3, 7 and 29). Interesting, the samples for $K = 100$ are more diverse (similar to the case of images in Ohayon et al. (2025)); this diversity explains why the raw mean in Figs. 18, 19 and 20 have values that are not exactly 0 or 1 (which means that there are non-overal between samples).

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

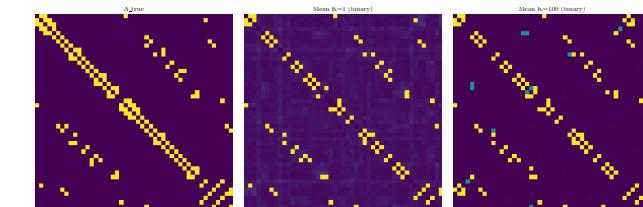


Figure 21: Graph reconstruction for sample 3, median raw

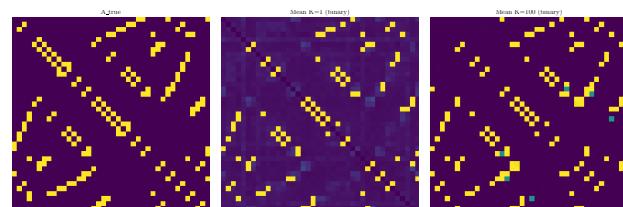


Figure 22: Graph reconstruction for sample 7, median raw

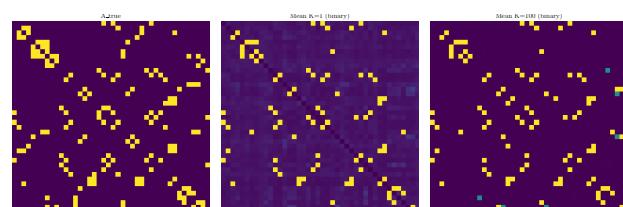
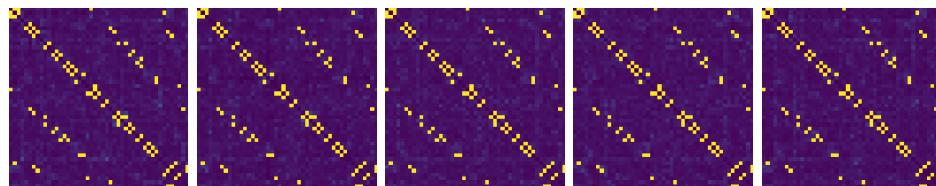


Figure 23: Graph reconstruction for sample 30, median raw

Figure 24: Individual samples for $K = 1$ and for sample 3

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

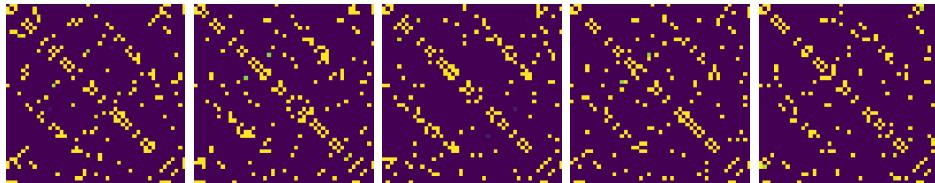


Figure 25: Individual samples for $K = 100$ and for sample 3

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

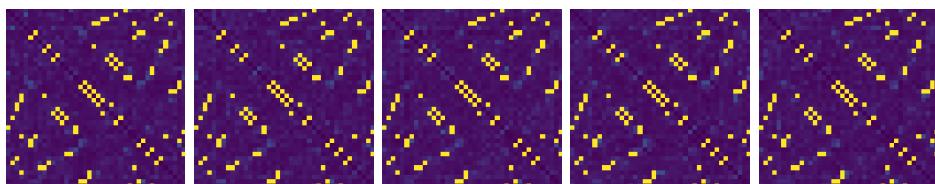


Figure 26: Individual samples for $K = 1$ and for sample 7

1591

1592

1593

1594

1595

1596

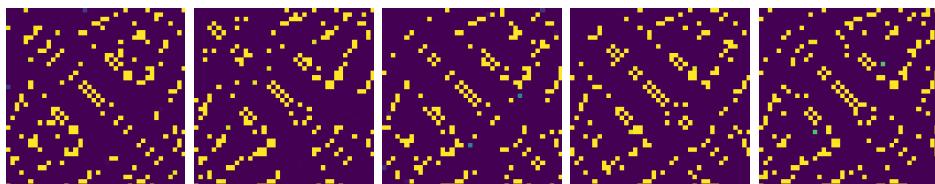


Figure 27: Individual samples for $K = 100$ and for sample 7

1606

1607

1608

1609

1610

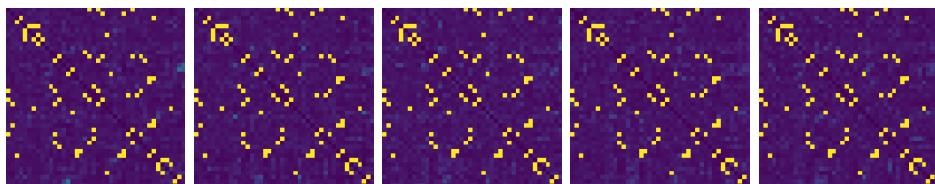
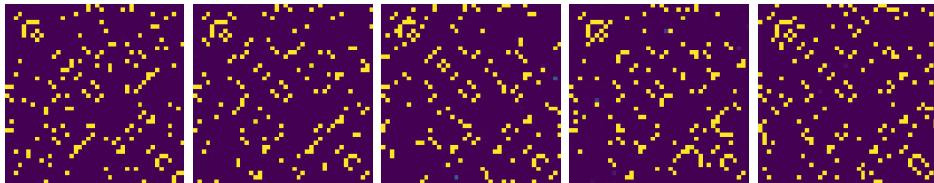


Figure 28: Individual samples for $K = 1$ and for sample 30

Figure 29: Individual samples for $K = 100$ and for sample 30

F.5 PIFM ON LARGE-SCALE GRAPHS

In this section, we train PIFM on large-scale graphs. In particular, we focus on CORA Yang et al. (2016).

Building the dataset. To enable scalable diffusion training on Cora while maintaining full-graph link prediction capabilities, we introduce a subgraph-based variant of PIFM following Limnios et al. (2023). We instantiate this via an edge-centered sampling scheme, where each subgraph represents a k -hop ego-network (capped at a maximum node count) centered around a seed edge from the training split. To ensure reproducibility, we sample a fixed set of seed edges and corresponding subgraphs which remain constant throughout each run.

Following a standard 85/5/10 (train/validation/test) edge split, we evaluate link prediction on held-out edges using the protocol established in the main paper. Furthermore, we utilize purely structural node features. By default, we concatenate: (i) Laplacian positional encodings derived from the smallest k generalized eigenvectors of $Lv = \lambda Dv$ computed on the training adjacency; and (ii) a 2-dimensional local context vector comprising both raw and normalized node degrees.

Training. To initialize PIFM, we first pre-train structural priors (GraphSAGE and Node2Vec) on the full Cora graph using only the training edge split (85% of edges). These learned embeddings are subsequently used to initialize PIFM for inference on the test split (10% of edges).

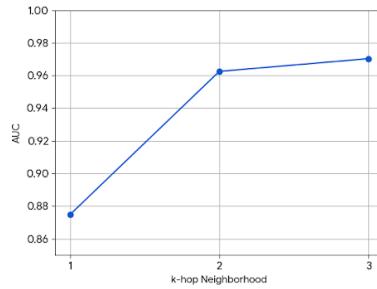
During PIFM training, each training edge seeds a unique edge-centered subgraph. Within each subgraph, we define the observed context as all other training edges, and a hidden region comprising all remaining node pairs (including non-edges and edges outside the context). The seed edge is explicitly masked from the context and designated as the sole supervision target. Consequently, each training example tasks the model with reconstructing a single missing edge within its local neighborhood.

We construct the initial state matrix \mathbf{A}_0 by combining the observed context with structural prior predictions in the hidden region. The flow model is then trained to denoise \mathbf{A}_0 toward the ground-truth local adjacency. While the flow ODE updates all entries within the hidden region, the gradient is computed exclusively from the seed edge. This adapts the global training procedure of Algorithm 1 to a localized, subgraph-based regime

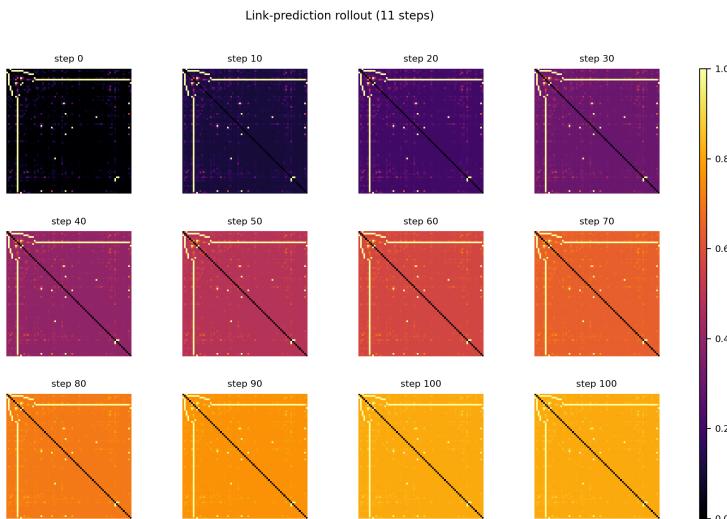
Inference. For inference, every held-out validation or test edge seeds a k -hop subgraph. We define the observed context using the training edges, remove the centered test edge from the mask, and apply diffusion to the resulting hidden region. We strictly evaluate the prediction for the centered held-out edge in each subgraph. To resolve potential overlapping, we aggregate predictions via logit averaging across all subgraphs where a specific edge is present, producing a single probability matrix over all node pairs. We then compute metrics on the held-out positive and negative edges. Since PIFM and the structural prior baseline are evaluated on the exact same set of pairs, the results isolate the specific benefits of the diffusion process

1674
 1675
 1676
 1677
 1678
 Table 6: Link prediction on CORA (hidden edges) with a GraphSAGE structural prior. We report AUC, Average
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 We report PIFM's performance on Cora for different k -hop neighborhoods during subgraph sampling, and the
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 embedding dimension of the laplacian positional encodings. We include also the average node counts for each
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 subgraph for each case.

Method	AUC↑	AP↑	FPR↓	FNR↓
GraphSAGE	95.61	47.76	0.59	23.79
1hop 2dim-embed (~ 16.7 nodes)	87.47	61.07	1.00	0.00
2hop 2dim-embed (~ 58.0 nodes)	96.25	75.39	1.00	0.00
3hop 2dim-embed (~ 154.5 nodes)	97.03	33.71	1.00	0.00
4hop 8dim-embed (~ 210.4 nodes)	96.14	21.53	1.00	0.00
NCNC Wang et al. (2024) (from Li et al. (2023))	96.90	-	-	-
NCN Wang et al. (2024) (from Li et al. (2023))	96.76	-	-	-



1705
 1706
 1707
 Figure 30: AUC vs k -hop neighborhood. We observe that adding more hops enhances the performance
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 of PIFM, as it exploits more information.



1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797

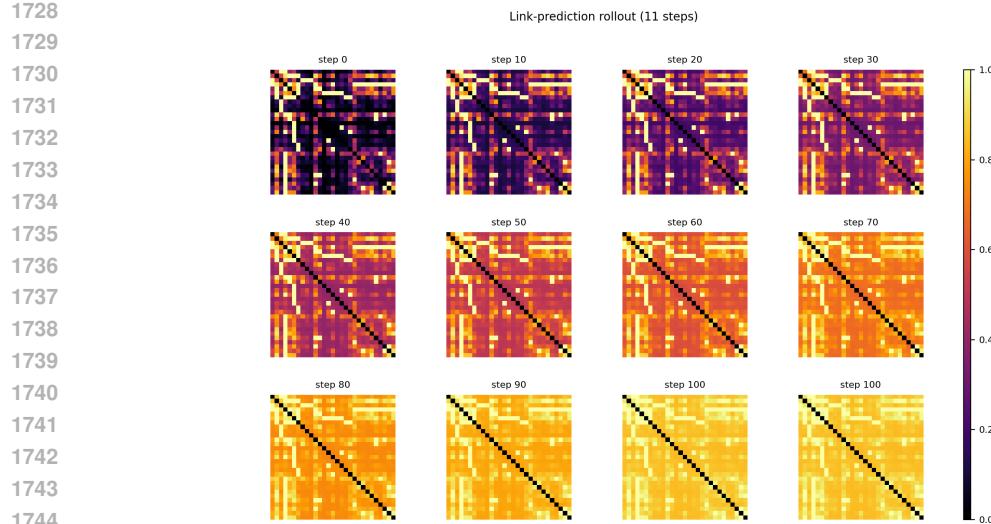


Figure 32: Visualization of the intermediate adjacency matrices of a sagraph for CORA.

F.6 INTERMEDIATE ADJACENCY MATRICES

In Figs. 33- 35, we show visualizations of the diffusion trajectory of the link-prediction sampler by "snapshotting" the predicted adjacency matrix at steps 0 to 100 in 10-step-increment of a 100-step-total sample path. Each panel shows the raw adjacency values, zeroed on the diagonal, rendered with the colormap with black associated to 0 and yellow to 1. The most bottom-right panel is the ground-truth adjacency for comparison.

To see the sampling process, progress from left-to-right and top-to-bottom shows how the sampler denoises toward the final reconstruction (steps=100). From those images we could see the smooth transitions along the full reconstruction trajectory of PIFM.

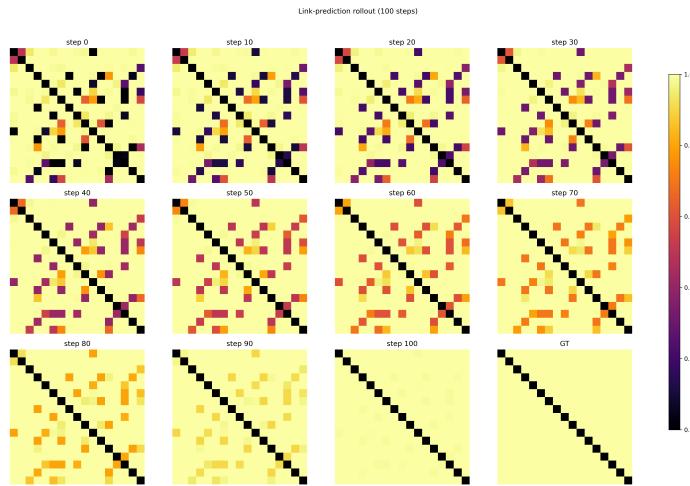


Figure 33: Visualization of IMDB 50% drop rate reconstruction. (Graph 1)

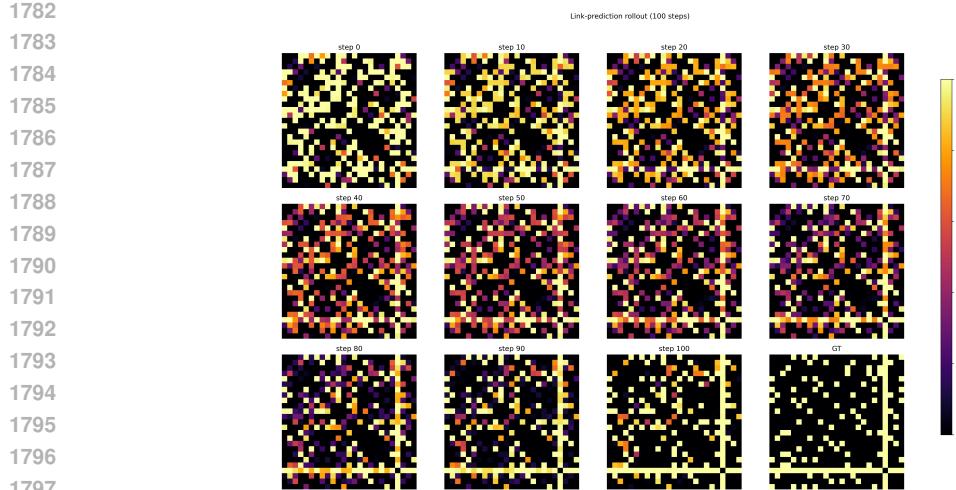


Figure 34: Visualization of IMDB 50% drop rate reconstruction. (Graph 2)

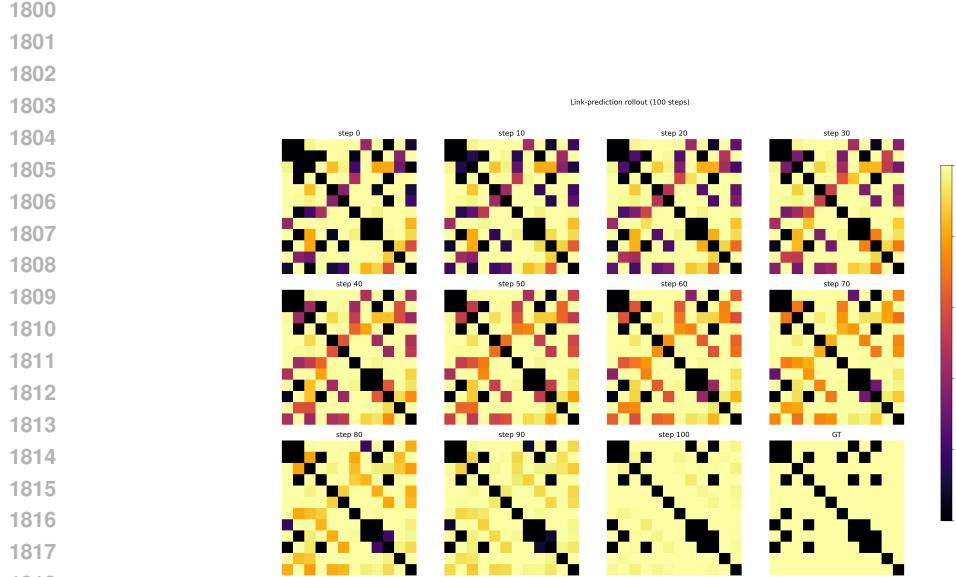


Figure 35: Visualization of IMDB 50% drop rate reconstruction. (Graph 3)

F.7 TRAINING COST

All the models are trained on NVIDIA A100-SXM4-80GB GPUs. Fitting the Node2Vec prior takes roughly 1 to 1.5 hours depending on the datasets. Once the prior is fixed, the flow model itself has essentially the same training loop and cost as when using a Gaussian prior: end-to-end training of the flow model itself takes about 2 hours on ENZYMEs and IMDB-B, and about 4 to 5 hours on PROTEINS. We did not observe a noticeable difference in training behavior between the Gaussian and prior-informed variants, and the model behaves similarly under different edge-drop rates.

F.8 TRANSFERABILITY

We have experimented the 10% and 50%-drop-rate IMDB-B checkpoints for PIFM and used on PROTEINS and ENZYMEs dataset with the same drop rates, and the best results and the results at the end of the 100 sampling steps of each run are as shown below.

1836 Table 7: Transferability of IMDB-B PIFM checkpoints (with graphSAGE priors) to PROTEINS
 1837 and ENZYMEs. We use the 10% and 50%-drop-rate checkpoints trained on IMDB-B and evaluate
 1838 them on the corresponding 10% and 50% drop-rate settings of the target datasets. For each setting,
 1839 we report the best value over 100 sampling steps and the value at the final step ($t = 100$). Metrics
 1840 are Average Precision (AP), AUC, False Negative Rate (FNR), and False Positive Rate (FPR). All
 1841 metrics are reported in percent.

1842

Source checkpoint	Target dataset	AP \uparrow	AUC \uparrow	FNR \downarrow	FPR \downarrow
<i>Structural priors (no flow)</i>					
PROTEINS (10% drop)	ENZYMEs (10% drop)	41.28	73.70	13.49	60.59
IMDB-B (10% drop)	PROTEINS (10% drop)	46.36	74.58	11.00	63.50
ENZYMEs (10% drop)	PROTEINS (10% drop)	46.36	74.58	11.00	63.50
PROTEINS (50% drop)	ENZYMEs (50% drop)	23.08	57.72	40.02	52.16
IMDB-B (50% drop)	PROTEINS (50% drop)	27.71	53.99	32.16	66.86
ENZYMEs (50% drop)	PROTEINS (50% drop)	27.71	53.99	32.16	66.86
<i>PIFM</i>					
PROTEINS (10% drop)	ENZYMEs (10% drop)	43.87	76.96	71.96	4.24
IMDB-B (10% drop)	PROTEINS (10% drop)	46.79	75.53	47.07	11.62
ENZYMEs (10% drop)	PROTEINS (10% drop)	49.63	76.60	59.02	6.63
PROTEINS (50% drop)	ENZYMEs (50% drop)	25.68	61.88	95.37	1.70
IMDB-B (50% drop)	PROTEINS (50% drop)	24.88	59.02	61.02	24.32
ENZYMEs (50% drop)	PROTEINS (50% drop)	26.81	55.80	86.13	9.97

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

From the table we can see that the model degrades the predictions a lot at lower (10%) drop rates, making the results incomparable when comparing to results in Table 1. It can be seen that with more steps integrated, at the final step $t = 100$ the metrics are much worse than the best result over all sampling steps or the structural prior. Although at higher (50%) drop rates the best results are more comparable to the best results in Table 2, this is due to the graphs being very corrupted under 50% drop rate and hence the observed graphs are much more degraded than they used to be.

1860

1861

1862

1863

1864

1865

1866

F.9 THRESHOLDING LEVELS

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

We investigated the impact of alternative thresholding levels—specifically 0.3 and 0.7, beyond the standard 0.5—on the evaluation metrics, with results presented in Figures 36 and 37. We observed that adjusting the threshold yields a marginal increase in the Area Under the Curve (AUC). We hypothesize this is partly driven by the model’s inherent behavior of actively pushing output values towards the binary extremes (0 or 1). However, we noted a slightly larger, albeit still minimal, improvement for lower values of K, where the influence of the prior is greater and output values are typically further away from 0 and 1. Crucially, despite these dynamics, the use of an alternative threshold does not lead to a statistically significant improvement in overall performance.

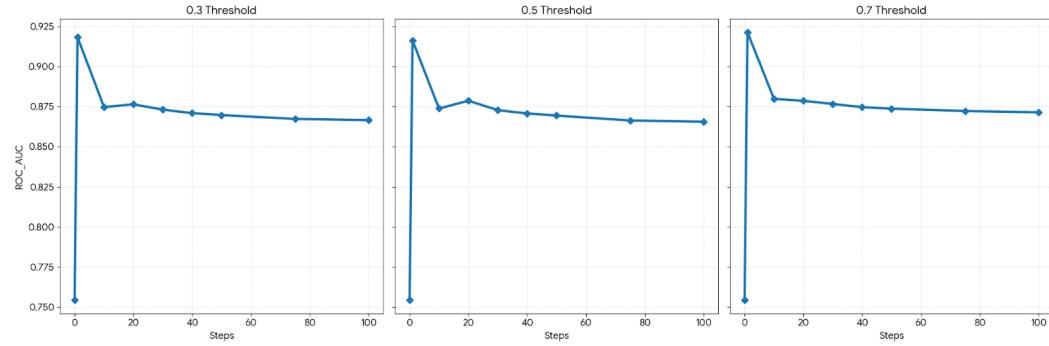


Figure 36: ROC-AUC vs number of steps sampled for IMDB dataset, link prediction task, 50% drop rate under 0.3, 0.5, and 0.7 thresholding levels.

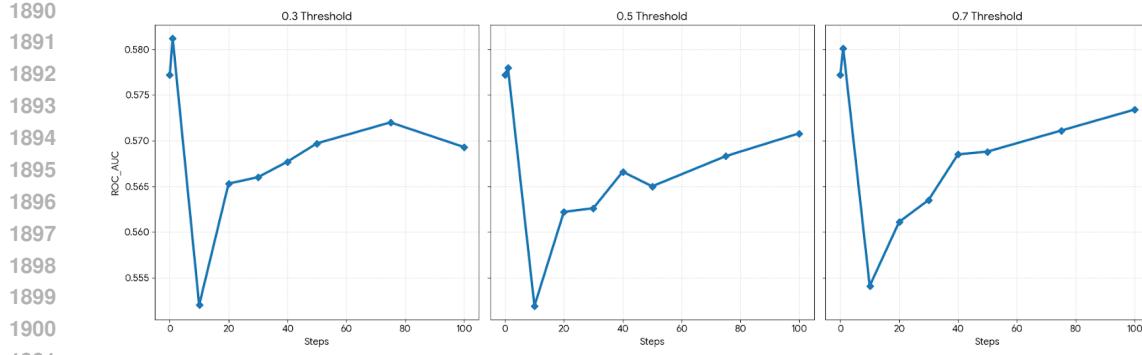


Figure 37: ROC-AUC vs number of steps sampled for ENZYMES dataset, link prediction task, 50% drop rate under 0.3, 0.5, and 0.7 thresholding levels.

G LIMITATIONS

Despite these advantages, PIFM has apparent limitations. It's performance heavily depends on the quality of prior estimation, as shown by the gap between the node2vec-prior and graphon-prior versions of PIFM. Moreover, graphons may not be the most suitable prior in practice: they are fundamentally limit objects defined for limits of dense graphs, which restricts their applicability to sparse real-world networks. Graphons also does not capture dependencies between edges beyond what can be explained through the latent coordinates. Additionally, the current formulation is restricted to undirected and unweighted graphs, and the training overhead is higher than one-shot priors.

Looking forward, promising directions include extending PIFM to incorporate node and edge attributes for richer graph inference tasks, scaling the method to larger and more complex real-world networks, and enhancing the graphon prior by learning a dictionary of graphons from which the model can adaptively select during sampling. Such a design would provide more faithful prior initialization for datasets containing diverse graph types.