
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRIOR-INFORMED FLOW MATCHING FOR GRAPH RE-
CONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Prior-Informed Flow Matching (PIFM), a conditional flow model for
graph reconstruction. Reconstructing graphs from partial observations remains a
key challenge; classical embedding methods often lack global consistency, while
modern generative models struggle to incorporate structural priors. PIFM bridges
this gap by integrating embedding-based priors with continuous-time flow match-
ing. Grounded in a permutation equivariant version of the distortion-perception
theory, our method first uses a prior, such as graphons or GraphSAGE/node2vec,
to form an informed initial estimate of the adjacency matrix based on local infor-
mation. It then applies rectified flow matching to refine this estimate, transporting
it toward the true distribution of clean graphs and learning a global coupling.
Experiments on different datasets demonstrate that PIFM consistently enhances
classical embeddings, outperforming them and state-of-the-art generative baselines
in reconstruction accuracy.

1 INTRODUCTION

Graph generative models have seen remarkable progress in recent years, enabling the synthesis of real-
istic graph structures in domains such as drug design (Yang et al., 2024) and social networks (Grover
et al., 2019). In particular, diffusion-based (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2023) and
flow-based (Qin et al., 2025; Eijkelboom et al., 2024) approaches have emerged as state-of-the-art.
While these models excel at unconditional generation and property-controlled generation, their appli-
cation to inverse problems, and in particular, the reconstruction of a graph from partial observations,
remains a fundamental open problem.

Graph reconstruction is a long-standing problem, traditionally framed as a link prediction task. Early
transductive methods, such as Node2Vec (Grover & Leskovec, 2016; Perozzi et al., 2014), model
edges independently and fail to capture global structural information. While inductive methods (Zhang
& Chen, 2018) like GraphSAGE (Hamilton et al., 2017) can capture expressive local patterns, they still
lack a global perspective on the graph’s structure. Conversely, recent generative models adapted from
image inpainting (Vignac et al., 2023; Trivedi et al., 2024) or guided by posterior sampling (Sharma
et al., 2024; Tenorio et al., 2025) can produce plausible completions but are not optimized for the
faithful recovery of the ground truth. This leaves open a critical gap: classical and heuristic-based
methods are local, while modern solvers are not designed for exact reconstruction.

In this work, we bridge this gap by introducing Prior-Informed Flow Matching (PIFM), a flow-
based model designed for high-fidelity graph reconstruction. We reformulate the problem through the
lens of the perception-distortion trade-off (Blau & Michaeli, 2018), which postulates that an optimal
estimator can be constructed in two stages (Freirich et al., 2021; Ohayon et al., 2025): (i) predicting
the Minimum Mean Squared Error (MMSE) estimator from local information, and (ii) learning an
optimal transport map from this initial estimate to the ground-truth graph distribution.

Our method approximates this two-step solution. For (i), we represent the posterior mean as
the expected value of a Bernoulli latent variable model with unknown probabilities, where the
latent structure is estimated using inductive (dataset-informed, such as graphons (Lovász, 2012)
and GraphSAGE (Hamilton et al., 2017)) or transductive estimators (instance-specific, such as
node2vec (Grover & Leskovec, 2016)). Then, for (ii), we approximate the optimal transport step
using a rectified flow model (Liu et al., 2023; Albergo et al., 2023), which maps the posterior mean to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the Prior-Informed Flow Matching (PIFM) graph reconstruction framework. Starting
from a partially observed adjacency matrix Aξ

1 = ξ ⊙A, where ξ denotes a mask, we form an initialization A0

by combining the observed entries with prior predictions fprior(A
ξ
1) obtained with an element-wise predictor. In

dark red we denote the true edges that are masked, while in light red those masked position that do not have an
edge between nodes. A rectified flow then interpolates linearly from A0 to the ground-truth graph A1 = A,
learning global structural information from a coupling of all the edges. The intermediate states At improve on
the prior-informed initialization, enabling recovery of the missing edges.

the distribution of clean graphs (see Fig. 1). Importantly, our architectures are permutation-equivariant,
ensuring a permutation-invariant parameterization of the posterior distribution.

We validate the advantages of PIFM through experiments on datasets with diverse characteristics,
including dense and sparse graphs. Our results show that PIFM effectively integrates structural priors
with flow-based modeling and can be interpreted as a form of graph inpainting, where missing edges
are inferred through a learned interpolation process.

Our contributions are as follows:

• We introduce a novel formulation for graph reconstruction based on a permutation-
equivariant distortion-perception trade-off.

• We propose PIFM, a new estimator based on flow matching that defines a prior-informed
source distribution using embeddings from latent graph models. PIFM enhances these initial
embeddings by learning a global structural coupling.

• We empirically validate our approach on link prediction, and two blind versions termed
expansion (recover the missing edges) and denoising (removing the spurious edges), showing
that PIFM significantly improves the reconstruction performance of predictors that rely
solely on local information.

2 RELATED WORKS

Flow/Diffusion models on graphs. Diffusion and flow-based graph generative models have shown
impressive performance in recent years. Early models, namely EDP-GNN (Niu et al., 2020) and
GDSS (Jo et al., 2022), employ score-based continuous diffusion over a relaxation of the graph
structure. However, given that graphs are inherently discrete, subsequent work has explored discrete
diffusion processes (Austin et al., 2021). Models like DiGress (Vignac et al., 2023) demonstrated
the effectiveness of this approach, which has been further advanced by discrete flow-based models
like DeFoG (Qin et al., 2025) and variational approaches like CatFlow (Eijkelboom et al., 2024). A
common point of these models is their reliance on a simple source distribution, such as Gaussian
(continuous) or uniform (discrete) noise. While effective for unconstrained generation, recent work
on image-based inverse problems demonstrates the advantages of learning a data-dependent flow,
using a prior-informed source distribution (Albergo et al., 2023; Delbracio & Milanfar, 2024; Ohayon
et al., 2025).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Graph topology inference via flow/diffusion-based solvers. Graph topology inference – the
task of recovering hidden edges from a partially observed graph – is a long-standing inverse prob-
lem (Segarra et al., 2017; Dong et al., 2016). Several methods adapt diffusion for constrained graph
generation, which is related to but distinct from topology inference. DiGress (Vignac et al., 2023)
introduced an inpainting mechanism, inspired by Repaint (Lugmayr et al., 2022), to generate graph
structures consistent with a partial observation. Similarly, in Trivedi et al. (2024) a similar mecha-
nism is used for completing partially observed graphs. PRODIGY (Sharma et al., 2024) enforces
hard constraints by projecting the graph estimate onto a feasible set at each sampling step. More
recently, GGDiff (Tenorio et al., 2025) incorporates a guidance mechanism as a flexible alternative
to inpainting. However, all these methods are designed for constrained generation (e.g., molecule
generation with a given scaffold) rather than recovering masked edges from a partially observed
graph. Hence, to the best of our knowledge, designing a diffusion-based model explicitly for graph
topology inference remains an open problem.

3 BACKGROUND

We represent an undirected graph G0 = {V, E}, where V denotes the nodes and E the edges, by its
binary symmetric adjacency matrix A0 ∈ RN×N .

Continuous flow matching for graph generation. Flow matching (Albergo et al., 2023; Lipman
et al., 2023) is a family of generative models that defines a continuous-time transport map from
samples A0 drawn from a source distribution p0 to samples A1 from a target distribution p1. It is
governed by the ODE

dAt = v(At, t) dt, (1)

where v(·, t) is a velocity field and At denotes a forward process, also known as stochastic interpolant,
for t ∈ [0, 1]. Typically, p0 is a tractable distribution (e.g., a Gaussian distribution), while p1
corresponds to the data distribution. To generate new samples, one must specify both At and v. A
common choice for the forward process is At = αtA0 + βtA1, where αt and βt are differentiable
functions such that α0 = 1, β0 = 0 and α1 = 0, β1 = 1. Differentiating this path gives a velocity
v(At, t) = α̇tA0+ β̇tA1. Despite its closed-form, this expression depends explicitly on A1, making
it impractical since the target is unknown at inference/sampling. To circumvent this, we instead
consider v(At, t) = EA0,A1

[α̇tA1 + β̇tA0 | At], the conditional expectation of the velocity given
At (Albergo et al., 2023), which is then approximated with a neural network vθ. The network is
trained using a mean squared error loss:

Et,A0,A1

[∥∥∥vθ(At, t)− (α̇tA1 + β̇tA0)
∥∥∥2
2

]
. (2)

In particular, this formulation does not require A0 and A1 to be independent; in fact, they might be
sampled from a joint distribution, allowing for richer transport plans in cases where paired data is
available. This has been exploited to solve inverse problems on images (Ohayon et al., 2025; Albergo
et al., 2024; Delbracio & Milanfar, 2024), and is directly related to our proposed method, as described
later.

Throughout this work, we consider the rectified flow case (Liu et al., 2023), where αt = 1− t and
βt = t. As shown in Tong et al. (2024), the velocity field associated with this linear path approximates
the optimal transport vector field when the joint distribution p(A0,A1) closely resembles the optimal
coupling between the marginals p(A0) and p(A1). We deferred to Appendix C.2 a more detailed
background on generative models on graphs beyond continuous flow matching, including diffusion-
based models, as well as related works.

4 METHOD

In Section 4.1, we introduce the distortion-perception trade-off (Blau & Michaeli, 2018) for graphs.
Then, in Section 4.2, we introduce methods for approximating the posterior mean. In Section 4.3, we
describe our implementation of the flow model to transport the predicted mean to the ground-truth
graphs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.1 GRAPH TOPOLOGY INFERENCE AS A DISTORTION-PERCEPTION TRADE-OFF

We aim to reconstruct the ground-truth adjacency matrix A of graph G from a partially observed
version, denoted by AO. This task can be formalized through the following distortion-perception
function:

D(P) = min
p(Â|AO)

{
Ep(A,Â)[∥A− Â∥2F] : d(pA, pÂ) ≤ P

}
, (3)

where Â is an estimator of A given the observation AO, and d(pA, pÂ) is a divergence between the
distributions pA (the distribution of clean graphs) and pÂ. Although we adopt MSE as the distortion
measure in (3), the formulation is general and supports other distortion metrics between the true
and predicted graphs (Blau & Michaeli, 2018). The function in (3) has been extensively studied
in the image domain (Freirich et al., 2021), where different values of P correspond to estimators
with varying characteristics in terms of average accuracy (distortion), and the degree to which the
reconstructed signal looks like the ground truth (perception). We adapt this framework to graphs by
estimating the matrix A, and accounting for symmetry constraints due to the permutation invariance
of graph representations.

Among all possible values of P , the most studied cases are P = ∞ and P = 0. The former
corresponds to the distortion function D(P =∞), whose solution is the posterior mean estimator
Â∗ = E[A | AO]. This estimator minimizes distortion, but does not impose constraints on the
distribution of outputs, potentially leading to unrealistic graphs. In contrast, when P = 0, the
estimator achieves a perfect perceptual reconstruction, meaning that the recovered graph has the same
structural properties than the original graph; in this case, pA = pÂ. As shown in Freirich et al. (2021),
the corresponding estimator can be obtained by solving the following optimal transport problem

p∗
Â,Â∗ = argmin

p∈Π(pA,pÂ∗)

E[∥Â− Â∗∥2F], (4)

where Π(pA, pÂ∗) is the set of all joint distributions (couplings) with fixed marginals pA and pÂ∗ .
Thus, finding the estimator Â associated with D(0) boils down to solving the optimal transport
problem between the distribution of clean graphs pA and of the MMSE estimator pÂ∗ . We can
approximate this by (i) computing Â∗ = E[A | AO] given an observation AO and (ii) sampling
from the conditional distribution p(A | Â∗). Intuitively, this approach builds the final prediction by
refining the initial guess Â∗.

While the solution for P = ∞ achieves lower MSE, it may produce outputs that deviate from the
structural properties of the original data. This mismatch is problematic in settings like conditional
molecular generation, where the generated molecule must satisfy strict chemical validity constraints.
For such applications, the solution with P = 0 is more appropriate, as it guarantees that the generated
samples are structurally consistent with the data distribution. Therefore, this work focuses on the
case P = 0.

Permutation invariance on graphs: An additional constraint. Unlike images, graphs lack canoni-
cal node ordering, which imposes symmetry constraints on the data distribution and the reconstruction
function. First, the ground-truth distribution p(A) is permutation invariant, meaning that for any per-
mutation matrix Pπ associated with a node relabeling π, it holds that p(A) = p(P⊤

πAPπ). Second,
the estimator Â = f(AO) must be permutation equivariant, i.e., f(P⊤

πA
OPπ) = P⊤

π f(A
O)Pπ,

ensuring that relabeling the input results in a consistently relabeled output. These conditions are
necessary for solutions to (3) and (4) to be invariant to the node labeling. We now describe how to
implement the solution to (4).

4.2 APPROXIMATING THE POSTERIOR MEAN

As discussed in Section 4.1, our goal is to approximate the conditional mean E[A | AO] with a
permutation equivariant estimator. Before moving to particular parameterizations of the conditional
mean, we introduce two assumptions.
AS 1. We assume each edge in A ∈ {0, 1}n×n follows a Bernoulli distribution whose probabilities
depend on latent node variables z1, . . . , zn ∈ Z such that:

Aij ∼ Bernoulli(f(zi, zj)), 1 ≤ i < j ≤ n. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The function f maps pairs of latent variables to edge probabilities, i.e., f(zi, zj) = P (Aij |zi, zj) =
pij .
AS 2. We assume that the edges are conditionally independent given the latent structure, i.e., given
the latent structure Z = {z1, . . . , zn}, we have:

P (A | Z) =
∏

1≤i<j≤n

P (Aij | zi, zj). (6)

Under these two assumptions, and assuming access to the mapping z−1 : A → Z , the posterior
mean can be computed element-wise as E[A | AO] = P (A | z−1(AO)). We adopt two different
type of priors : (i) inductive methods, represented by graphons (Lovász, 2012; Avella-Medina
et al., 2018), which are bounded, symmetric and measurable functions W : [0, 1]2 → [0, 1], and
GraphSAGE (Hamilton et al., 2017), a GNN-based estimator and (ii) transductive ones, obtained
from node2vec (Grover & Leskovec, 2016), which provides an instance-level learned probabilistic
model.

Posterior mean using inductive methods (dataset-informed). We approximate the posterior mean
using two distinct dataset-informed, inductive approaches: graphons and GraphSAGE.

A graphon, defined as a symmetric functionW : [0, 1]2 → [0, 1], serves as a generative model for a
family of graphs:

zi ∼ Uniform[0, 1], i = 1, . . . , n, (7)
Aij ∼ Bernoulli(W(zi, zj)) , 1 ≤ i < j ≤ n.

Graphons provide a functional representation of exchangeable random graphs where the condi-
tional edge probability is [E[A | z]]ij = W(zi, zj). This offers a natural, permutation-equivariant
framework for estimating the posterior mean, though it requires access to the inverse mapping
zi = [z−1(AO)]i. SinceW is unknown, we estimate it using Scalable Implicit Graphon Learning
(SIGL) (Azizpour et al., 2025), which combines a graph neural network (GNN) encoder with an
implicit neural representation (INR). SIGL operates in three steps: (1) a GNN-based sorting step to
estimate latent node positions z; (2) a histogram approximation of the sorted adjacency matrices; and
(3) learning a graphon parameterization fϕ by minimizing its error against the histograms. A key
feature of SIGL is its ability to recover the inverse mapping z−1, making it uniquely suitable for our
model (Xia et al., 2023).

As an alternative inductive method, we use GraphSAGE (Hamilton et al., 2017). We train the model
on the partially observed graphs in the dataset to produce node embeddings {zi}Ni=1. From these
embeddings, we train a single logistic predictor on Hadamard edge features (zi⊙zj) to estimate edge
probabilities. The resulting conditional mean is parameterized as

[
E[A | AO]

]
ij
= fϕ(zi ⊙ zj).

Posterior mean using transductive methods (instance-specific). For a transductive approach,
we use node2vec to learn an instance-specific embedding and predictor for each graph. Similar
to the GraphSAGE method, we first train node2vec on a partially observed graph to obtain node
embeddings {zi}Ni=1. However, in contrast to the single predictor used for GraphSAGE, we fit a
distinct, per-graph logistic link predictor on Hadamard edge features with balanced negative sampling.
This yields the same conditional mean parameterization,

[
E[A | AO]

]
ij
= fϕ(zi ⊙ zj), but with a

predictor fϕ(·) that is unique to each graph instance. At inference time, this instance-specific model
is used to evaluate all masked pairs to compute the posterior mean.

4.3 LEARNING THE FLOW MODEL

We now approximate the posterior density p(A, Â∗) by learning a flow model. As explained
in Section 3, we need to specify the forward path At and the velocity field v. For the former,
inspired by Ohayon et al. (2025), we incorporate prior information as the initialization of the
forward path; with slight abuse of notation, we denote fprior as the prediction of the full graph (i.e.,
fprior(A

O) ≜ E[A | AO]). Specifically, we compute the sample A0 from the source distribution as
follows:

A0 = ξ ⊙A+ (1− ξ)⊙ (fprior(ξ ⊙A) + ϵs) , (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where A is the ground-truth graph, ξ is the corresponding mask (taking value 1 for the observed pairs
of nodes and 0 otherwise), and fprior(ξ ⊙A) is our approximate MMSE estimator for the masked
edges. We also add a small amount of noise ϵs ∼ N (0, σ2

s) following Albergo et al. (2024). We
define A1 = A for the target distribution.

Regarding the velocity field v, we use the architecture from Jo et al. (2022), a GNN-based network
that yields a permutation-equivariant parameterization (see Appendix E for details). Combined with
the assumptions for the posterior mean parameterization in Section 4.2, this gives a permutation-
invariant parameterization of the target density p(A1). Since graphs are exchangeable, the target
density should not depend on node ordering, making permutation invariance a desirable property.
This is formalized in Theorem 1.
Theorem 1. Let the prior estimator fprior : RN×N → RN×N and the velocity field vθ : RN×N ×
[0, 1] → RN×N both be permutation-equivariant. For any ground-truth graph A1 and mask ξ,
define the flow path from t = 0 to t = 1 as:

At = (1− t)A0 + tA1, where A0 = ξ ⊙A1 + (1− ξ)⊙ fprior(ξ ⊙A1).

Then the estimated density for A1, computed as

log p(A1) = log p(A0)−
∫ 1

0

tr

(
∂vθ(At, t)

∂At

)
dt, (9)

is guaranteed to be permutation-invariant.

The proof can be found in Appendix D.1. Since we know that the target probability density should
be permutation invariant, Theorem 1 guarantees that we are introducing the right inductive bias by
learning a distribution within the family of permutation invariant distributions.

Final algorithm. In Alg. 1, we describe our training and sampling algorithms. In essence, PIFM is
a general framework that learns a global graph structure to enhance simple, conditionally independent
edge-wise priors.

To illustrate what we mean by learning a global and dependent predictor, we now describe a toy
experiment. Consider a four-node graph G (see Fig. 2 (a)) where the goal is to predict the diagonal
edges under a specific constraint: the only valid outcomes are that both edges are present or both are
absent, i.e., E = {[e02 = 1, e13 = 1], [e02 = 0, e13 = 0]}. Moreover, we assume that the probability
of observing the first case is 0.6, while the second one is 0.4.

We first train an edge-wise prior using node2vec, which yields a probability of 0.6 for each diagonal
edge. Crucially, because node2vec models each edge prediction independently, this prior is misspeci-
fied. A standard predictor based on this prior would always predict [1, 1] if used as conditional mean
or, if sampling were to be performed, could generate invalid predictions such as [1, 0].

We then train a flow model using this node2vec prior to construct the initial state A0 as in (8).
After training (see Appendix E for details), we generate 200 samples, illustrated in Fig. 2(b); the
proportion of each mode is shown in Fig. 2(c). The results clearly demonstrate that the flow model
(i) successfully leverages global information, learning a probabilistic coupling between the edges, to
generate samples only from the two valid states, and (ii) learns the probability of each mode.

5 EXPERIMENTS

5.1 SETUP

We evaluate our method on three graph datasets: IMDB-B, PROTEINS, and ENZYMES. Thus, we
focus on families of graphs that are diverse to show that our model learns a general predictor. Future
work will focus on scaling to larger graphs, such as Cora. Each dataset is split into 85% train, 10%
validation, and 5% test graphs, and we evaluate reconstruction quality under two masking levels (10%
and 50% of edges, masks generated uniformly at random). The implementation details are provided
in Appendix E.

Evaluation metrics. Performance is measured exclusively on masked edges. We report both
threshold-dependent classification metrics (FPR, FNR) and threshold-independent metrics (ROC-
AUC, AP). Threshold-dependent metrics are computed by binarizing predictions at a fixed cutoff of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Training and Sampling
Training

1: Sample A1 ∼ p(A), a mask ξ, and time t ∼ U [0, 1].
2: Train MMSE estimator: fprior(AO)

3: Compute A0 ≜ ξ ⊙A1 + (1− ξ)⊙
(
fprior(A

O
1) + ϵs

)
, ϵs ∼ N (0, σ2

s)

4: Compute At ≜ (1− t)A0 + tA1.
5: Train flow model: θ∗ = argminθ EA1,A0,ξ,t∥ vθ(At, t)− (A1 −A0) ∥2F

Sampling (Reconstruction)
6: Initialize Â← ξ ⊙AO

1 + (1− ξ)⊙ fprior(A
O
1) + (1− ξ)⊙ ϵs, ϵs ∼ N (0, σ2

samp).
7: for i← 0, . . . ,K − 1 do

8: Â← Â+ 1
K

vθ∗

(
Â,

i

K

)
9: end for

10: Return Â

0 1

23

(a)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Value of Edge [0,2]
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

e
of

 E
dg

e
[1

,3
]

PIFM - k = 5
PIFM - k = 100
Node2Vec
Target modes

(b)
Mode [0,0] Mode [1,1] [1,0] and [0,1]

Class
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

37.00%

63.00%

0.00%

(c)

Figure 2: Toy experiment showcasing the advantage of PIFM (in this case, for link prediction). a) Graph G with
four nodes, where the hidden edges are e02 and e13. b) Generated samples by using node2vec and PIFM (our
proposed method): clearly, our method learns a probabilistic coupling, rendering a model that generates only the
two valid modes. c) Proportions of samples generated with PIFM from each mode; remarkably, the method also
learns a good approximation of the probability of each mode.

0.5, so entries with predicted probability ≥ 0.5 are treated as edges and those < 0.5 as non-edges. In
addition, we use maximum mean discrepancy (MMD) (O’Bray et al., 2022) to compute the distance
between the generated graphs and the ground truth, serving as a proxy for computing the perception
quality. More details on these metrics are deferred to Appendix E.4.

Baselines. We compare PIFM against several baselines, including diffusion-based. Recall that
PIFM is composed of a one-shot prediction used as prior followed by a flow model. Naturally, we
compare PIFM to the accuracy of the one-shot prediction (without the flow) and with a flow with a
random starting point:

• SIGL Prior (Azizpour et al., 2025)/Node2Vec Prior (Grover & Leskovec, 2016)/GraphSAGE
Prior (Hamilton et al., 2017): one-shot predictions using the structural prior directly.

• Flow with Gaussian prior: flow model initialized from uniform Gaussian N (0.5, 1) noise on
masked entries.

• DiGress + RePaint (Vignac et al., 2023): unconditional DiGress combined with RePaint-style
resampling (Lugmayr et al., 2022).

• GDSS + RePaint (Jo et al., 2022): unconditional GDSS combined with RePaint-style resam-
pling (Lugmayr et al., 2022).

Algorithmic details of the baselines are provided in Appendix A. Lastly, we consider an additional
experiment on a transductive case (CORA Yang et al. (2016)), where we compared with traditional
baselines Li et al. (2023).

5.2 LINK PREDICTION

Tables 1 and 2 report results for 10% and 50% masking, respectively. Overall, PIFM improves the
AUC-ROC of all base priors (SIGL, node2vec, and GraphSAGE). E.g., compare node2vec with PIFM

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Graph reconstruction performance with 10% of edges masked (0.1 Drop). We report AUC, Average
Precision (AP↑), False Positive Rate (FPR↓), and False Negative Rate (FNR↓), all in percent (%). The best
result for each metric is in blue and the second best is green.

Mask Rate: 10% (0.1 Drop)
ENZYMES PROTEINS IMDB-B

Method AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓
Baselines
Node2Vec 24.62 59.60 51.39 37.96 33.24 64.40 48.56 35.37 65.00 56.36 50.27 41.68
SIGL 18.17 48.04 69.33 25.43 26.77 48.91 100.00 0.00 58.91 50.61 88.44 16.33
GraphSAGE 41.28 73.70 13.49 60.59 46.36 74.58 11.00 63.50 83.55 83.26 16.42 36.89
DiGress + RePaint 33.39 67.86 58.92 5.19 40.34 72.39 47.82 6.00 59.25 58.63 76.44 7.68
GDSS + RePaint 18.35 47.04 74.31 32.19 26.96 51.39 63.07 32.09 57.89 46.11 69.75 36.17
Flow w/ Gaussian prior 40.09 72.44 71.03 5.87 57.86 80.83 65.09 3.07 98.89 98.37 2.26 2.54
Ours
PIFM (Node2Vec) 41.67 76.86 72.09 5.11 58.25 81.74 59.37 6.34 97.60 97.28 1.37 3.77
PIFM (GraphSAGE) 47.21 80.25 72.85 2.40 54.79 81.02 55.73 5.40 99.37 98.79 1.81 3.37
PIFM (SIGL) 26.93 59.48 71.33 11.33 42.21 60.76 60.75 7.48 85.60 83.21 16.37 18.41

Table 2: Graph reconstruction performance with 50% of edges masked (0.5 Drop) (see Table 1 for definitions).

Mask Rate: 50% (0.5 Drop)
ENZYMES PROTEINS IMDB-B

Method AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓
Baselines

Node2Vec 19.14 55.22 46.37 44.29 23.51 53.83 51.37 44.36 54.20 52.22 48.41 47.51
SIGL 16.88 49.30 72.01 27.85 22.90 52.55 100.00 0.00 50.05 45.41 87.68 18.80
GraphSAGE 22.79 57.77 40.02 52.16 27.71 53.99 32.16 66.86 75.74 75.54 18.18 44.86
DiGress + RePaint 17.34 55.22 77.95 11.62 23.65 55.45 71.46 17.65 56.47 58.89 73.00 10.27
GDSS + RePaint 16.43 49.65 69.45 30.46 22.33 51.42 66.44 32.23 53.39 51.20 69.35 29.22
Flow w/ Gaussian prior 17.43 51.84 98.49 1.07 26.40 55.55 93.21 5.25 78.72 79.76 41.56 14.62

Ours
PIFM (Node2Vec) 22.95 59.14 90.71 3.53 27.57 59.68 87.05 8.98 84.46 85.71 32.95 15.03
PIFM (GraphSAGE) 25.44 61.36 95.62 1.86 35.50 60.61 85.05 10.23 93.13 93.84 17.52 7.61
PIFM (SIGL) 17.08 49.15 86.06 12.28 28.38 59.58 61.20 20.38 59.83 58.11 38.90 36.76

initialized with node2vec. The marked consistent gain can be attributed to the value added by the
flow model in capturing the distribution of the true graphs of interest. Moreover, the fact that PIFM
with some of the informative priors tends to outperform the flow with a Gaussian prior highlights the
value of the two-step procedure advocated here. Among the different priors used, PIFM(GraphSAGE)
tends to perform better, especially at a 50% drop rate and in the dense IMDB-B graphs.

For the experiments in this section, the reported PIFM results use K = 1, which yields the lowest
MSE and, accordingly, the highest AUC-ROC (consistent with the distortion–perception trade-off
discussed in Section 4.1). Notably, PIFM with K = 1 outperforms the priors (see Appendix F.2 for
an ablation of parameters), even though the latter approximate the MMSE estimator, which should
be optimal in terms of MSE. While this configuration is optimal for distortion, perceptual quality
improves with more steps, as explained below in Section 5.3. Finally, the assumptions in Section 4.2
are quite strong and lead to an approximate MMSE that is not truly optimal, allowing PIFM with
K = 1 to outperform by capturing global information that the different priors miss.

5.3 BLIND GRAPH RECONSTRUCTION

We focus on two blind versions of link prediction, namely expansion and denoising. In the expansion
case, we only get to observe a subset of the edges (but no non-edges), and we need to determine which
other entries correspond to existing edges. Conversely, for denoising, we get to observe a subset
of the non-edges (but no actual edge), and we need to determine which other entries correspond
to non-edges. These cases are more challenging than link prediction since transductive priors like
node2vec cannot be trained on the masked graphs (since we do not have positive and negative edges).
We present here the results for expansion. The results for denoising can be found in Appendix F.1.
Expansion. The goal in expansion is to predict a set of hidden edges EM given AO, such that the
edge set of the ground truth is E = EM ∪EO. Therefore, defining A1 = A, the initialization becomes
A0 = AO

1 +(1−AO
1)⊙ (fprior(A

O
1)+ϵs). The results for a drop rate of 50% are shown in Table 3.

Among all baselines, PIFM (GraphSAGE) attains the top AUC/AP on most of the metrics, surpassing
both the GraphSAGE prior and other diffusion baselines. Compared to a Gaussian start, the informed

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Performance for the expansion task with 50% of edges masked (0.5 Drop) (see Table 1 for definitions).

Mask Rate: 50% (0.5 Drop)
ENZYMES PROTEINS IMDB-B

Method AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓
Baselines

GraphSAGE 13.95 57.54 40.29 52.74 18.91 53.91 31.62 67.18 67.18 74.92 19.04 45.20
DiGress + RePaint 2.41 54.25 84.03 7.54 4.52 56.87 81.10 13.00 22.93 56.37 81.05 6.69
GDSS + RePaint 9.21 49.63 69.45 30.80 14.66 51.03 66.44 32.06 39.43 50.68 69.35 30.00
Flow w/ Gaussian prior 9.45 50.40 90.64 9.35 14.71 50.31 82.32 17.28 49.46 62.28 71.41 13.64

Ours
PIFM (GraphSAGE) 13.17 60.09 100.00 0.00 21.70 62.34 94.75 4.54 83.49 87.28 29.74 11.27

prior is crucial to improve AUC and AP, indicating effective global coupling beyond local scores.
Overall, PIFM serves as a better reconstructor in this challenging case, with K providing a tunable
perception–distortion trade-off (cf. Appendix F.3).

Distortion-perception trade-off. While a single-step reconstruction (K = 1) yields the lowest
distortion (AUC-ROC), we assess if more steps improve perceptual quality. We measure the MMD2

score between the generated and ground-truth graph distributions on the ENZYMES dataset as a
function of the number of steps, K. As shown in Fig. 3(a), the MMD2 score decreases as K increases,
signifying a closer match to the true data distribution and thus higher realism. We further validate
this by comparing graph statistics (degree, triangles, clustering coefficients), which also show that a
larger K more closely matches the ground-truth. Additional results and details are in Appendices F.3
and F.4.

01510 20 30 40 50 75 100

K

0.3

0.4

0.5

0.6

0.7

0.8

M
M

D
2

(a)

K = 1 K = 100 Ground-truth
0

1

2

3

4

V
al

u
e

(b) Degree

K = 1 K = 100 Ground-truth
0

5

10

15

20

25

30

V
al

u
e

(c) Triangles

K = 1 K = 100 Ground-truth
0.0

0.1

0.2

0.3

0.4

0.5

V
al

u
e

(d) Clustering Coefficient

Figure 3: Increasing the number of reconstruction steps (K) improves perceptual quality. (a) The MMD score,
measuring the distance to the true data distribution, decreases as K increases. (b-d) This result is corroborated
by key graph statistics, where the average degree, number of triangles, and clustering coefficient for graphs
generated with K = 100 more closely match the ground-truth distribution compared to those generated with
K = 1. Error bars indicate the standard deviation over 300 samples (10 samples for each of the 30 test graphs).

6 CONCLUSIONS

In this paper, we introduced Prior-Informed Flow Matching (PIFM), a method for graph reconstruction
that learns global structural information by integrating local edge predictors within a flow-based
generative model. PIFM formulates graph topology inference as a distortion-perception problem,
learning an optimal transport map from a local estimator to the ground-truth graph distribution.
We evaluate PIFM using two types of local estimators, inductive (graphons and graphSAGE) and
transductive (node2vec), which induce different reconstruction behaviors. Experiments on multiple
benchmark datasets show that PIFM consistently outperforms both classical embedding methods and
recent flow-based baselines, demonstrating the significant value of learning global edge correlations.

Our method has limitations, primarily inheriting the scalability challenges of diffusion models in
graphs. Future work could explore sub-graph-based alternatives to improve efficiency (Trivedi et al.,
2024). Additionally, our current formulation is limited to homogeneous graphs; extending PIFM to
heterogeneous graphs by defining the process in the probability simplex (Eijkelboom et al., 2024) or
using discrete flow models Qin et al. (2025) is another promising direction for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The experimental setups and results are detailed in Section 5 of the main paper. Further specifics,
including comprehensive dataset descriptions, additional experimental details, and ablation studies,
are provided in Appendix E. Furthermore, and to facilitate full reproducibility, we include a complete
codebase as supplementary material. This supplementary package contains clearly organized configu-
ration files (e.g., YAML files) that detail all hyperparameters used across our experiments, enabling
straightforward replication of our reported findings.

REFERENCES

Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. Soc. Networks, 25(3):211–230,
2003. doi: 10.1016/S0378-8733(03)00009-1.

Edo M Airoldi, Thiago B Costa, and Stanley H Chan. Stochastic blockmodel approximation of a
graphon: Theory and consistent estimation. Advances in Neural Inf. Process. Syst. (NIPS), 26,
2013.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Michael Samuel Albergo, Mark Goldstein, Nicholas Matthew Boffi, Rajesh Ranganath, and Eric
Vanden-Eijnden. Stochastic interpolants with data-dependent couplings. In Intl. Conf. on Machine
Learning (ICML), pp. 921–937. PMLR, 2024.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Inf. Process. Syst. (NIPS),
34:17981–17993, 2021.

Marco Avella-Medina, Francesca Parise, Michael T Schaub, and Santiago Segarra. Centrality
measures for graphons: Accounting for uncertainty in networks. IEEE Transactions on Network
Science and Engineering, 7(1):520–537, 2018.

Ali Azizpour, Nicolas Zilberstein, and Santiago Segarra. Scalable implicit graphon learning. In Int.
Conf. on Artif. Intell. and Stat., 2025.

Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In Proceedings of the IEEE/CVF
Int. Conf. Comput. Vis. Pattern Recogn. (CVPR), pp. 6228–6237, 2018.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
In Intl. Conf. on Machine Learning (ICML), pp. 5453–5512. PMLR, 2024.

Stanley Chan and Edoardo Airoldi. A consistent histogram estimator for exchangeable graph models.
In Intl. Conf. on Machine Learning (ICML), pp. 208–216. PMLR, 2014.

Katherine Crowson, Stefan Andreas Baumann, Alex Birch, Tanishq Mathew Abraham, Daniel Z
Kaplan, and Enrico Shippole. Scalable high-resolution pixel-space image synthesis with hourglass
diffusion transformers. In Intl. Conf. on Machine Learning (ICML), 2024.

Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising
diffusion for image restoration. Trans. Mach. Learn. Res., 2024.

Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning laplacian
matrix in smooth graph signal representations. IEEE Trans. Signal Process., 64(23):6160–6173,
2016.

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
van de Meent. Variational flow matching for graph generation. Advances in Neural Inf. Process.
Syst. (NIPS), 37:11735–11764, 2024.

Dror Freirich, Tomer Michaeli, and Ron Meir. A theory of the distortion-perception tradeoff in
wasserstein space. In Advances in Neural Inf. Process. Syst. (NIPS), 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining., pp. 855–864, 2016.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs.
In Intl. Conf. on Machine Learning (ICML), pp. 2434–2444. PMLR, 2019.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Inf. Process. Syst. (NIPS), NIPS’17, pp. 1025–1035, 2017.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via
the system of stochastic differential equations. In Intl. Conf. on Machine Learning (ICML), pp.
10362–10383. PMLR, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Inf. Process. Syst. (NIPS), 35:26565–26577, 2022.

Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and Dawei
Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new benchmarking,
2023. URL https://arxiv.org/abs/2306.10453.

Stratis Limnios, Praveen Selvaraj, Mihai Cucuringu, Carsten Maple, Gesine Reinert, and Andrew
Elliott. Sagess: Sampling graph denoising diffusion model for scalable graph generation. arXiv
preprint, arXiv:2306.16827, 2023. doi: 10.48550/arXiv.2306.16827. URL https://arxiv.
org/abs/2306.16827.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In Intl. Conf. Learn. Repr. (ICLR), 2023.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In Intl. Conf. Learn. Repr. (ICLR), 2023.

László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc., 2012.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van
Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Int. Conf. Comput. Vis. Pattern Recogn. (CVPR), 2022.

Mark E. J. Newman. Clustering and preferential attachment in growing networks. Phys. Rev. E, 64
(2):025102, 2001. doi: 10.1103/PhysRevE.64.025102.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In Int. Conf. on Artif. Intell.
and Stat., pp. 4474–4484. PMLR, 2020.

Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph
generative models: Problems, pitfalls, and practical solutions. Intl. Conf. Learn. Repr. (ICLR),
2022.

Guy Ohayon, Tomer Michaeli, and Michael Elad. Posterior-mean rectified flow: Towards minimum
MSE photo-realistic image restoration. In Intl. Conf. Learn. Repr. (ICLR), 2025.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representations.
In ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining., pp. 701–710, 2014.

Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
for graph generation. Intl. Conf. on Machine Learning (ICML), 2025.

Santiago Segarra, Antonio G. Marques, Gonzalo Mateos, and Alejandro Ribeiro. Network topology
inference from spectral templates. IEEE Transactions on Signal and Information Processing over
Networks, 3(3):467–483, 2017.

Kartik Sharma, Srijan Kumar, and Rakshit Trivedi. Diffuse, sample, project: plug-and-play control-
lable graph generation. In Intl. Conf. on Machine Learning (ICML), 2024.

11

https://arxiv.org/abs/2306.10453
https://arxiv.org/abs/2306.16827
https://arxiv.org/abs/2306.16827

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. Advances in Neural Inf. Process. Syst.
(NIPS), 33:7462–7473, 2020.

Victor M Tenorio, Nicolas Zilberstein, Santiago Segarra, and Antonio G Marques. Graph guided
diffusion: Unified guidance for conditional graph generation. arXiv preprint arXiv:2505.19685,
2025.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Trans. Mach. Learn. Res., 2024.

Puja Trivedi, Ryan A Rossi, David Arbour, Tong Yu, Franck Dernoncourt, Sungchul Kim, Nedim
Lipka, Namyong Park, Nesreen K Ahmed, and Danai Koutra. Editing partially observable networks
via graph diffusion models. In Intl. Conf. on Machine Learning (ICML), 2024.

Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. In Intl. Conf. Learn. Repr. (ICLR),
2023.

Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for link
prediction. In Intl. Conf. Learn. Repr. (ICLR), 2024.

Xinyue Xia, Gal Mishne, and Yusu Wang. Implicit graphon neural representation. Int. Conf. on Artif.
Intell. and Stat., pp. 10619–10634, 2023.

Hongteng Xu, Dixin Luo, Lawrence Carin, and Hongyuan Zha. Learning graphons via structured
gromov-wasserstein barycenters. In Proc. AAAI Conf. Artif. Intell., pp. 10505–10513, 2021.

Nianzu Yang, Huaijin Wu, Kaipeng Zeng, Yang Li, Siyuan Bao, and Junchi Yan. Molecule generation
for drug design: a graph learning perspective. Fundam. Res., 2024.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In Intl. Conf. on Machine Learning (ICML), pp. 40–48. PMLR, 2016.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in Neural
Inf. Process. Syst. (NIPS), 31, 2018.

Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information, 2009.
URL https://arxiv.org/abs/0901.0553. Journal version: Eur. Phys. J. B 71:623–630
(2009), doi:10.1140/epjb/e2009-00335-8.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: a general graph neural network framework for link prediction. In Advances in Neural Inf.
Process. Syst. (NIPS), Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

12

https://arxiv.org/abs/0901.0553

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ALGORITHM

In this section, we describe the algorithms that we use as baselines. Each method serves distinct
purposes: SIGL/node2vec/GraphSAGE A0 tests whether the flow model provides meaningful im-
provement beyond the one-shot estimates given by the priors, uniform + flow evaluates whether the
SIGL/node2vec/GraphSAGE predicted graphons are good structural priors for effective denoising,
and DiGress + RePaint compares our model to standard modified unconditionally generation models.

A.1 UNIFORM + FLOW BASELINE

This baseline ablates the structural prior by initializing the flow from a state where unknown entries
are filled with uniform noise. The model then learns to denoise from this less-informed starting point.

Algorithm 2 Uniform + flow Training and Sampling
Training

1: Sample A1, a mask ξ, and time t ∼ U [0, 1].
2: Define initial state with Gaussian noise added to the masked region:

A0 ≜ ξ ⊙A1 + (1− ξ)⊙ U(0, 1)N×N + (1− ξ)⊙ ϵtrain, ϵtrain ∼ N (0, σ2
train).

3: Define interpolant At ≜ (1− t)A0 + tA1.
4: Solve θ∗ = argminθ EA1,ξ,t∥ vθ(At, t)− (A1 −A0) ∥2F .

Sampling (Reconstruction)
5: Given observed graph AO

1 , define the initial state with masked noise:

Â← ξ ⊙AO
1 + (1− ξ)⊙ U(0, 1)N×N + (1− ξ)⊙ ϵsamp, ϵsamp ∼ N (0, σ2

samp).

6: for i← 0, . . . ,K − 1 do

7: Â← Â+ 1
K

vθ∗

(
Â,

i

K

)
8: Return Â

A.2 DIGRESS + REPAINT BASELINE

Training (Unconditional) The model pθ is trained unconditionally on complete graphs A1 ∼ pdata
to reverse a discrete forward noising process q. The forward process is a fixed Markov chain
q(At|At−1) that corrupts the graph over T steps. The training objective is to learn the denoising
distribution pθ(A1|At), modeled as a categorical prediction task for each node and edge.

Algorithm 3 DiGress Unconditional Training

Forward Process: Sample a noised graph at any timestep t directly via At ∼ q(At|A1).
Denoising Objective:

1: Train a denoising network pθ(·, t) to predict the original graph A1 from At.
2: Minimize the expected cross-entropy loss w.r.t. the ground truth:

θ∗ = argmin
θ

EA1∼pdata,t∼U{1..T} [LCE (A1, pθ(At, t))]

Sampling (Conditional Reconstruction via RePaint) At inference, given an observed graph
AO

1 ≜ ξ ⊙ A1, the unconditionally trained model pθ∗ generates the missing entries. This is
achieved by iteratively re-imposing the known (unmasked) information during the reverse diffusion
process (Lugmayr et al., 2022).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 4 DiGress + RePaint Sampling

Input: Observed graph AO
1 , mask ξ, trained model pθ∗ , steps T .

Output: Reconstructed graph Â1.
1: Initialize ÂT ∼ pprior(·), where pprior is a random graph distribution.
2: for t = T, T − 1, . . . , 1 do
3: // Predict clean graph from current state
4: Ã1 = pθ∗(Ât, t).
5:
6: // Impose known data by noising it to the current step
7: Aknown

t ∼ q(At|AO
1).

8:
9: // Sample the unknown region by noising the prediction to the next step

10: Aunknown
t−1 ∼ q(At−1|Ã1).

11:
12: // Combine known and unknown parts for the next state
13: Ât−1 = ξ ⊙Aknown

t + (1− ξ)⊙Aunknown
t−1 .

14: end for
15: return pθ∗(Â1, 1)

A.3 NODE2VEC PRIOR (PER-GRAPH CLASSIFIER)

This baseline learns a per-graph edge-probability model from the observed subgraph. We (i) fit
node2vec embeddings on the observed topology and (ii) train a logistic classifier on Hadamard edge
features to produce probabilities on the masked pairs.

Algorithm 5 Node2Vec Prior: Training and Inference
Inputs: Full adjacency A1, mask ξ (ξij = 1 if observed), Node2Vec hyperparams (dim d, walk length L,
walks/node R, window w, p, q), negatives/positive ratio k.
Outputs: Probabilities P̂ on masked entries, i.e., fprior(A

O
1).

Training (per graph)
1: Construct observed graph AO

1 ← ξ ⊙A1.
2: Train Node2Vec on AO

1 to obtain node embeddings {zi}Ni=1 ∈ Rd.
3: Build labeled edge set on observed pairs (upper triangle i < j):

P+ = {(i, j) : ξij = 1, Aij = 1}, P− ∼ k-to-1 balanced samples from {(i, j) : ξij = 1, Aij = 0}.

4: Features: xij ← zi ⊙ zj (Hadamard product); Labels: yij ∈ {0, 1}.
5: Fit a logistic classifier gϕ(x) = σ(w⊤x+ b) (L2-regularized; class-balanced).

Inference (per graph)
6: For each masked pair (i, j) with ξij = 0, compute xij ← zi ⊙ zj .
7: Predict P̂ij ← gϕ(xij) and set P̂ji ← P̂ij .
8: Return P̂ as fprior(A

O
1) (used in Eq. (8)).

Notes. (i) We train embeddings only on AO
1 to avoid leakage. (ii) The Hadamard feature works well

and is symmetric; concatenation can be used but breaks symmetry unless sorted. (iii) Thresholding at
0.5 yields hard reconstructions; we use scores P̂ directly in PIFM.

B BACKGROUND

B.1 GRAPHONS AND GRAPHON ESTIMATION

As described in Section 4.2, a graphon is defined as a bounded, symmetric, and measurable function
W : [0, 1]2 → [0, 1] (Lovász, 2012). By construction, a graphon acts as a generative model for
random graphs, allowing the sampling of graphs that exhibit similar structural properties. To generate
an undirected graph G with N nodes from a given graphonW , the process consists of two main steps:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(1) assigning each node a latent variable drawn uniformly at random from the interval [0, 1], and (2)
connecting each pair of nodes with a probability given by evaluatingW at their respective latent
variable values.

The generative process in (7) can also be viewed in reverse: given a collection of graphs (represented
by their adjacency matrix) D = {At}Mt=1 that are sampled from an unknown graphonW , estimate
W . Several methods have been proposed for this task (Chan & Airoldi, 2014; Airoldi et al., 2013; Xu
et al., 2021; Xia et al., 2023; Azizpour et al., 2025). We focus on SIGL (Azizpour et al., 2025), a
resolution-free method that, in addition to estimating the graphon, also infers the latent variables η,
making it particularly useful for model-driven augmentation in GCL. This method parameterizes the
graphon using an implicit neural representation (INR) (Sitzmann et al., 2020), a neural architecture
defined as fϕ(x, y) : [0, 1]2 → [0, 1] where the inputs are coordinates from [0, 1]2 and the output
approximates the graphon valueW at a particular position. In a nutshell, SIGL works in three steps:
(1) a sorting step using a GNN gϕ′(A) that estimates the latent node positions or representations η;
(2) a histogram approximation of the sorted adjacency matrices; and (3) learning the parameters ϕ by
minimizing the mean squared error between fϕ(x, y) and the histograms (obtained in step 2). More
details of SIGL are provided in Appendix B.1.

B.2 NODE2VEC

node2vec (Grover & Leskovec, 2016) is a scalable model for learning continuous node representations
in graphs. This methods is transductive, meaning that it generates an embedding per graph. It extends
the Skip-gram model from natural language processing to networks by sampling sequences of nodes
through biased random walks. Node2vec introduces two hyperparameters (p, q) that interpolate
between breadth-first and depth-first exploration. This flexibility allows embeddings to capture both
homophily (nodes in the same community) and structural equivalence (nodes with similar roles, e.g.,
hubs), which frequently coexist in real-world graphs.

The embeddings are learned via stochastic gradient descent with negative sampling to maximize
the likelihood of preserving sampled neighborhoods. Once learned, node embeddings can be
combined through simple binary operators (e.g., Hadamard product) to form edge features, enabling
applications such as link prediction. Empirically, node2vec has been shown to outperform prior
unsupervised embedding methods across tasks like classification and link recovery, while remaining
computationally efficient and scalable to large graphs (Grover & Leskovec, 2016).

B.3 GRAPHSAGE

GraphSAGE (Hamilton et al., 2017) is an inductive technique for link prediction based on graph
neural networks (GNN) framework designed to generate embeddings for nodes in large, evolving
graphs. It consists of two-steps: for a target node, it first samples a fixed-size neighborhood of
adjacent nodes, and then it aggregates feature information from these sampled neighbors. By learning
aggregation functions (such as a mean, pool, or LSTM aggregator) rather than embeddings for every
single node, GraphSAGE can efficiently generate predictions for nodes that were not part of the
training set, making it highly scalable and effective for real-world applications like social networks
and recommendation systems.

B.4 GRAPH DIFFUSION MODELS

Diffusion models are generative frameworks composed by two processes: a forward process that
systematically adds noise to data until it becomes pure noise, and a reverse process that learns to
reverse this, generating new data by starting from noise and progressively denoising it. While these
models exist for both discrete (Vignac et al., 2023) and continuous domains (Jo et al., 2022), we
describe the continuous case which is the most related to our method. Here, a graph G0 is defined
by its node features X0 ∈ RN×F and its weighted adjacency matrix A0 ∈ RN×N . Following the
GDSS framework, the forward process is described by a stochastic differential equation (SDE) that
gradually perturbs the graph data over a time interval t ∈ [0, T]:

dGt = −
1

2
β(t)Gt dt+

√
β(t) dWt

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

In this equation, Wt represents standard Brownian motion (i.e., noise), and β(t) is a noise schedule
that typically increases over time. This process is designed so that by the final time T , the original
data distribution GT is indistinguishable from a standard Gaussian.

The generative reverse process is defined by another SDE that traces the path from noise back to data.
This process relies on the score function, ∇Gt log p(Gt), which is the gradient of the log-density
of the noisy data at time t. Since the true score function is unknown, it must be approximated.
This is done using a neural network, or score network, which is trained to predict the score. For
graphs, separate networks are often used for the adjacency matrix and node features: ϵθA

(At, t) and
ϵθX

(Xt, t). These networks are trained by minimizing the denoising score-matching loss.

Once trained, these score networks can be plugged into the reverse SDE. New graphs are then
generated by solving this SDE numerically using standard samplers like DDPM or DDIM.

C RELATED WORKS

C.1 LINK PREDICTION

Link prediction aims to determine if an unobserved edge should exist between two nodes within
a partially observed graph (Newman, 2001; Adamic & Adar, 2003; Zhou et al., 2009). Classical
approaches rely on topology-only heuristics.

More recently, unsupervised node embedding methods have become an effective strategy for link
prediction. These methods learn a low-dimensional vector for each node that represents neighborhood
similarity and community structure, often using random walks and an objective similar to Skip-gram.
Consequently, nodes that are close in the embedding space are more likely to be linked. DeepWalk
was a pioneering method that modeled short random walks to learn generalizable representations
for tasks like predicting missing links (Perozzi et al., 2014). Node2vec builds on DeepWalk by
employing biased, second-order random walks to balance breadth-first and depth-first searches and
by converting node embeddings into edge features. In node2vec, embeddings for nodes f(u) and
f(v) are combined with binary operators to create an edge representation g(u, v), which a classifier
then uses to determine if the edge (u, v) exists (Grover & Leskovec, 2016).

Graph neural networks (GNNs) are also widely used for edge reconstruction. A typical encoder-
decoder framework uses message passing to learn node embeddings and a simple decoder to generate
link scores. Inductive frameworks like GraphSAGE learn functions to sample and aggregate features
from a node’s neighborhood, allowing the model to generalize to new nodes or graphs (Hamilton
et al., 2017). A different approach focuses on modeling the pair representation directly. For example,
Neural Bellman-Ford Networks (NBFNet) frame link prediction as a path-aggregation problem. The
score for a pair of nodes is calculated as the sum of all path representations between them, with
each path being a product of its edge representations. This formulation is solved using a generalized
Bellman-Ford iteration, where NBFNet parameterizes the operators with neural functions, creating
an interpretable and inductive framework (Zhu et al., 2021).

C.2 DIFFUSION-BASED INVERSE PROBLEMS SOLVER FOR GRAPHS

We now expand on diffusion-based solvers for graph inverse problems. Given a condition C and
a reward function r(G0) that quantifies how close the sample G0 is to meeting C, the objective
is to generate graphs G0 that maximize the reward function. From a Bayesian perspective, this
problem boils down to sampling from the posterior p(G0|C) ∝ p(C|G0)p(G0) where p(C|G0) ∝
exp (r(G0)) is a likelihood term and p(G0) is a prior given by the pre-trained diffusion model. We
now describe previous works for both differentiable and non-differentiable reward functions.

Guidance with Differentiable Reward Functions. Several approaches have been developed to
guide generative models when the objective can be expressed as a differentiable reward function,
particularly for inverse problems in imaging. These methods typically leverage the differentiability of
the reward – often a likelihood tied to a noisy measurement – to calculate a conditional score using
Bayes’ rule:

∇Gt log p(Gt|C) = ∇Gt log p(C|Gt) +∇Gt log p(Gt)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In this formulation, the diffusion model naturally serves as the prior (p(Gt)), while the likeli-
hood term (p(C|Gt)) provides the guidance. However, directly computing the score of the like-
lihood term is intractable because it requires integrating over all possible clean data: p(C|Gt) =∫
p(C|G0)p(G0|Gt)dG0.

To overcome this, a common technique is to approximate the posterior distribution p(G0|Gt) with a
Gaussian centered at the MMSE denoiser. This denoised estimate can be calculated efficiently using
Tweedie’s formula:

E[G0|Gt] =
1

αt

(
Gt + σ2

t∇Gt
log p(Gt, t)

)
While this framework is established for images, its application to graph-based inverse problems is
less explored. This is primarily because most interesting properties and constraints in graphs are not
differentiable. Some graph-specific methods, like DiGress (Vignac et al., 2023), implement guidance
by training an auxiliary model, similar to classifier-free guidance, which introduces additional
complexity.

Guidance with Non-Differentiable Reward Functions. For the more common scenario of non-
differentiable constraints in graph generation, alternative strategies have emerged. The PRODIGY
method, for instance, operates by repeatedly applying a two-step process at each denoising step:
generation followed by projection.

First, it uses the unconditional diffusion model to produce a candidate sample Ĝt−1. Second, it
projects this candidate onto the set of valid solutions using a projection operator: ΠC(Ĝt−1) =

argminZ∈C∥Z − Ĝt−1∥22. Since applying the full projection at every step can destabilize the
generation process, PRODIGY uses a partial update to balance constraint satisfaction with the learned
diffusion trajectory:

Gt−1 ← (1− γt)Ĝt−1 + γtΠC(Ĝt−1)

This approach has two main limitations. First, it is only practical for simple constraints where the
projection operator ΠC(·) has an efficient, closed-form solution. Second, it applies the projection
directly to the noisy intermediate sample Gt, whereas the constraint C is defined on the clean data
G0, creating a domain mismatch. Recently, in Tenorio et al. (2025), the authors leverage zeroth-order
optimizaton to build a guidance term, improving over PRODIGY in challenging tasks.

C.3 FLOW-BASED INVERSE SOLVERS

More recently, two flow-based generative models for graphs have been proposed. Catflow, introduced
in Eijkelboom et al. (2024), formulates flow matching as a variational inference problem, allowing
to build a model for categorical data. The key difference between Catflow and traditional flow
matching is that in the former, the objective is to approximate the posterior probability path, which is
a distribution over possible end points of a trajectory. Compared to discrete diffusion, this formulation
defines a path in the probability simplex, building a continuous path. This formulation boils down to
a cross-entropy loss. Another recent work is DeFoG, introduced in Qin et al. (2025). This method is
inspired by discrete flow matching (Campbell et al., 2024), where a discrete probability path is used.
Similarly, the loss is a cross-entropy.

D PROOFS

D.1 PROOF FOR THEOREM 1

Proof. Our goal is to show that for any permutation matrix P, our estimated density satisfies
log p(P⊤A1P) = log p(A1). First, we notice that tr

(
∂vθ(At,t)

∂At

)
= ⟨vθ(At, t), dAt⟩F Let’s define

a permuted graph A′
1 = P⊤A1P and a similarly permuted mask ξ′ = P⊤ξP; to simplify notation,

we denote F (.) = log p(.).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

First, we establish the equivariance of the initial state A0. Let A′
0 be the initial state constructed

from the permuted graph A′
1 and mask ξ′.

A′
0 = ξ′ ⊙A′

1 + (1− ξ′)⊙ fprior(ξ
′ ⊙A′

1)

= (P⊤ξP)⊙ (P⊤A1P) + (1−P⊤ξP)⊙ fprior((P
⊤ξP)⊙ (P⊤A1P))

= P⊤(ξ ⊙A1)P+P⊤(1− ξ)P⊙ fprior(P
⊤(ξ ⊙A1)P) (since ⊙ distributes over P)

The key requirement for this proof is the permutation equivariance of the prior estimator, fprior. This
condition is satisfied by both prior models used in our work. Our SIGL-based prior is permutation
equivariant by design, as it uses a GNN encoder to learn the graphon structure. Our node2vec-based
prior enforces permutation equivariance by first mapping nodes to a canonical ordering based on
the principal components of their embeddings, ensuring that any permutation of an input graph is
processed identically.

With the permutation equivariance of fprior established, such that fprior(P
⊤XP) = P⊤fprior(X)P,

we can apply this property:

A′
0 = P⊤(ξ ⊙A1)P+P⊤(1− ξ)P⊙ (P⊤fprior(ξ ⊙A1)P)

= P⊤(ξ ⊙A1)P+P⊤((1− ξ)⊙ fprior(ξ ⊙A1))P

= P⊤ (ξ ⊙A1 + (1− ξ)⊙ fprior(ξ ⊙A1))P

= P⊤A0P

Thus, the initial state A0 is permutation-equivariant.

Next, we examine the flow path A′
t corresponding to the permuted graph A′

1:

A′
t = (1− t)A′

0 + tA′
1

= (1− t)(P⊤A0P) + t(P⊤A1P)

= P⊤((1− t)A0 + tA1)P

= P⊤AtP.

The path itself is equivariant. The differential element also transforms equivariantly: dA′
t =

P⊤dAtP.

Now, we evaluate the scalar function F (A′
1) by integrating along the permuted path A′

t:

F (A′
1) = −

∫ 1

0

⟨vθ(A′
t, t), dA

′
t⟩F dt+ C

Substituting the equivariant forms for the path and its differential:

F (A′
1) = −

∫ 1

0

⟨vθ(P⊤AtP, t),P⊤dAtP⟩F dt+ C

By the assumed permutation equivariance of the velocity field vθ, we have vθ(P
⊤AtP, t) =

P⊤vθ(At, t)P. Substituting this in:

F (A′
1) = −

∫ 1

0

⟨P⊤vθ(At, t)P,P⊤dAtP⟩F dt+ C

The Frobenius inner product ⟨A,B⟩F = tr(A⊤B) is invariant to unitary transformations. Specifi-
cally, for any orthogonal matrix P (where P⊤P = I):

⟨P⊤XP,P⊤YP⟩F = tr
(
(P⊤XP)⊤(P⊤YP)

)
= tr

(
P⊤X⊤PP⊤YP

)
= tr

(
P⊤X⊤YP

)
= tr(X⊤Y)

= ⟨X,Y⟩F .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Applying this property, the integrand simplifies:

⟨P⊤vθ(At, t)P,P⊤dAtP⟩F = ⟨vθ(At, t), dAt⟩F

The integrand is identical for both the original and permuted inputs. Therefore, the integrals are
equal:

F (P⊤A1P) = −
∫ 1

0

⟨vθ(At, t), dAt⟩F dt+ C = F (A1)

This confirms that the scalar function F is permutation-invariant.

E EXPERIMENTAL DETAILS

E.1 DETAILS ABOUT THE ARCHITECTURE

Our model adopts a modified version of the adjacency score network architecture introduced in
GDSS (Jo et al., 2022). The network is a permutation-equivariant graph neural network designed
to approximate the scores ∇At

log pt(Xt,At) and ∇xt
log pt(xt,At) at each diffusion step; in this

paper, we use only score w.r.t. At. Concretely, the architecture consists of stacked message-passing
layers followed by a multi-layer perceptron. Each layer propagates node and edge information
through adjacency-based aggregation, ensuring equivariance under node relabeling. Time information
t is incorporated by scaling intermediate activations with the variance of the forward diffusion process,
following the practice in continuous-time score models. Residual connections and normalization
layers are used to stabilize training. The final output is an N × N tensor matching the adjacency
dimension. This design provides the required permutation-equivariance and expressive power while
remaining computationally tractable for mid-sized benchmark graphs.

The modification that incorporates is a module to build an embedding for the variable t and a FiLM
style modulation to incorporate noise conditioning. In particular, we incorporate the following
modules:

• A positional encoding based on a sinusoidal embedding following Karras et al. (2022)

• An MLP layer with SiLU activation per attention layer

• A modulation at each attention layer, where we scale the hidden features by an adaptive
RMS norm operation (Crowson et al., 2024)

E.2 DETAILS ABOUT THE DATASETS

In Table 4 we report the statistics of the datasets used in the main text.

Table 4: Statistics of the datasets used for evaluation.

Dataset # Graphs Avg. Nodes Avg. Edges # Classes Domain
ENZYMES 600 32.63 62.14 6 Bioinformatics
PROTEINS 1,113 39.06 72.82 2 Bioinformatics
IMDB-B 1,000 19.77 96.53 2 Social Network

E.3 HYPERPARAMETERS

E.3.1 FLOW-BASED BASELINES

We report the hyperparameters governing the model and training. All three baselines use the same
rectified-flow architecture and optimizer family; the only substantive differences are the prior settings.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Node2Vec prior (per-graph link predictor)

n2v_dim 64
n2v_walk_length 30
n2v_walks_per_node 10
n2v_context 10
n2v_p, n2v_q 1.0, 1.0
n2v_epochs 1000
clf_epochs 1000

PIFM (Node2Vec) Link Prediction, 10% masked

batch_size 64 (IMDB-B & ENZYMES), 32 (PROTEINS)
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train/val/test_noise_std 0.01(IMDB-B), 0.1 (PROTEINS & ENZYMES)
ode_steps (Euler, K) 1 to 100
prior Node2Vec (per-graph classifier)

PIFM (Node2Vec) Link Prediction, 50% masked

batch_size 64 (IMDB-B & ENZYMES), 32 (PROTEINS)
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train/val/test_noise_std 0.01(IMDB-B), 0.1 (PROTEINS & ENZYMES)
ode_steps (Euler, K) 1 to 100
prior Node2Vec (per-graph classifier)

Hyperparameter: PIFM(SIGL) Value

denoiser epochs 1000
SIGL hyperparams same as original paper
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train_noise_std (masked t=0) 0.05
val_noise_std (masked t=0) 0.05
ode_steps (Euler, K) 1000 (default)
prior SIGL (pretrained graphon; sort_ckpt, inr_ckpt)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

PIFM (GraphSAGE) Link Prediction, 10% masked

batch_size 64 (IMDB-B & ENZYMES), 32 (PROTEINS)
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train/val/test_noise_std 0.05 (IMDB-B), 0.1 (PROTEINS & ENZYMES)
ode_steps (Euler, K) 1 to 100
prior GraphSAGE (default hyperparameters)

PIFM (GraphSAGE) Link Prediction, 50% masked

batch_size 64 (IMDB-B & ENZYMES), 32 (PROTEINS)
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train/val/test_noise_std 0.05 (IMDB-B & PROTEINS), 0.1 (ENZYMES)
ode_steps (Euler, K) 1 to 100
prior GraphSAGE (default hyperparameters)

Flow w/ Gaussian Prior Value

epochs 1000
batch_size 64 (default), 32 (PROTEINS)
optimizer Adam
learning_rate 2e-4
dropout 0.2
hidden_dim 32
num_layers 5
num_linears 2
channels {c_init: 2, c_hid: 8, c_final: 4}
train_noise_std (masked t=0) 0.00
val_noise_std (masked t=0) 0.00
ode_steps (Euler, K) 1 to 100
prior None (masked entries initialized fromN (0.5, 1))

DiGress + RePaint Value

train.n_epochs 3000
train.batch_size 12
model.diffusion_steps 1000
model.n_layers 8
model.lambda_train [5, 0]
model.extra_features all
model.hidden_mlp_dims {X: 128, E: 64, y: 128}
model.hidden_dims {dx: 256, de: 64, dy: 64, n_head: 8,

dim_ffX: 256, dim_ffE: 64, dim_ffy: 256}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

GDSS + RePaint Setting

Sampler predictor / corrector S4 / None
nsteps / SNR / scale_eps 1 / 0.15 / 0.7
Probability flow / noise removal / ε False / True / 10−5

Batch size (DataLoader) from config (e.g., 12)
Mask mode (default) dataset
Observed graph Aobs (Atrue ⊙mask); symmetrized, no self-loops
Binarization threshold (metrics) 0.5

E.4 METRICS CALCULATION

We evaluate performance only on the set of masked (unknown) edges in the upper triangle of the
adjacency matrix. For each test graph, all metrics are computed on these entries and then averaged
across graphs.

Metrics Used in Tables We report the following four metrics in the main results:

• Area Under the ROC Curve (AUC). Computed on the raw predicted scores (when available).
AUC measures the probability that a randomly chosen true edge receives a higher predicted score
than a randomly chosen non-edge. Larger AUC indicates stronger ranking performance.

• Average Precision (AP). Computed from the precision–recall curve induced by ranking the
predictions. AP summarizes how well the model recovers true edges across all possible thresholds,
with higher values indicating better precision–recall trade-offs.

• False Positive Rate (FPR). After thresholding predictions at 0.5, the FPR is defined as

FPR =
FP

FP + TN
,

• False Negative Rate (FNR). After thresholding predictions at 0.5, the FNR is defined as

FNR =
FN

FN+ TP
,

• MMD. A kernel-based method that measures the difference between two probability distributions
by embedding them in a feature space and finding the maximum difference between their mean
embeddings.

AUC and AP are threshold-independent metrics (computed directly on the provided scores), while
FPR and FNR are threshold-dependent error rates (obtained after binarizing at 0.5). All values
reported in the tables are averaged over test graphs and expressed in percentage.

F ADDITIONAL RESULTS

F.1 DENOISING.

This second problem is the complement of expansion, meaning that we seek to remove a set of
spurious edges ES from AO, such that the edge set of the ground truth is E = EO \ ES . Hence,
the initialization becomes A0 = AO

1 ⊙ (fprior(A
O
1) + ϵs). We assume that 20% of the edges are

flipped; the results are shown in Table 5. Similarly to expansion, PIFM (GraphSAGE) attains the best
AUC/AP on all datasets, again surpassing the GraphSAGE prior and remaining baselines. It strongly
reduces false positives from the given prior initialization, while FNR is low on dense IMDB-B (2.67)
and higher on sparser sets. Overall, PIFM removes spurious edges more reliably while improves
other metrics as well.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Performance for the denoising task with 20% of upper-triangle 0-entries flipped (0.2 Flip). We
report AUC, Average Precision (AP↑), False Positive Rate (FPR↓), and False Negative Rate (FNR↓), all in
percent (%). The best result for each metric is in bold blue and the second best is green. The metrics are
restricted on the upper-triangle 1-region of AO , and compared against A1 on that region.

Flip Rate: 20% (0.2 Flip)
ENZYMES PROTEINS IMDB-B

Method AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓ AP ↑ AUC ↑ FNR ↓ FPR ↓
Baselines

GraphSAGE 68.19 73.89 16.14 61.72 73.79 76.70 12.68 60.47 92.54 77.29 16.77 53.37
DiGress + RePaint 41.98 49.38 87.91 13.33 49.36 51.20 78.44 18.19 80.54 51.59 73.41 23.49
GDSS + RePaint 44.59 50.86 69.18 29.70 49.72 49.43 68.39 32.64 82.36 53.23 69.05 26.00
Flow w/ Gaussian prior 49.90 54.56 52.30 38.93 57.18 58.70 62.84 24.32 96.75 94.63 3.80 12.66

Ours
PIFM (GraphSAGE) 69.40 77.17 45.66 18.14 77.43 81.78 32.41 20.91 98.46 96.52 2.67 12.10

F.2 ADDITIONAL EXPERIMENTS

Our method has two main hyperparameters:

1. σs, which is used for computing ϵs ∼ N (0, sigma2s) in A0 = ξ ⊙ A1 + (1 − ξ) ⊙(
fprior(A

O
1) + ϵs

)
2. K, which are the total number of steps in the Euler approximation

F.2.1 PERFORMANCE AS A FUNCTION OF σs

We run an ablation of the performance of PIFM with GraphSAGE as a function of σs. We focus on
ENZYMES and IMDB, and we evaluate the ROC for the best value of K for each noise level.

The ablation is illustrated in Fig. 4. First, we observe that the gains of using PIFM are higher for
a smaller drop rate, as expected; in particular, we observe that PIFM with σs jumps from ≈ 0.73
for σs = 0 to ≈ 0.81 for σs = 0.1. Second, for both configurations, performance peaks not at zero
noise, but at a small noise level of σs = 0.1. This suggests that a slight injection of noise benefits
model generalization. Beyond this optimal point, increasing the noise level leads to a steady decline
in performance, meaning that the effect of the prior decreases, as expected.

0.0 0.2 0.4 0.6 0.8 1.0
Noise Level s

0.55

0.60

0.65

0.70

0.75

0.80

Be
st

 R
OC

 A
UC

 S
co

re

Drop Rate

0.1
0.5

Figure 4: ROC as a function of the noise σs in p(A0). The impact of noise level σs on model
performance, measured by the best ROC AUC score. Results are shown for two different drop rates:
0.1 (blue) and 0.5 (orange). A small amount of noise improves performance for both configurations,
after which increasing noise leads to performance degradation.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F.2.2 PERFORMANCE AS A FUNCTION OF K

To determine the optimal number of processing steps, K, we evaluated model performance while
varying this parameter from 1 to 100. Figures 5 and 6 shows the results for a fixed drop rate of 0.1
and 0.5 respectively, across five different noise levels.

A key observation is that peak performance, in terms of AUC-ROC, is achieved within a very small
number of steps, typically for K < 10. In particular, the introduction of a moderate noise level allows
the model to achieve its highest overall score (≈ 0.80 ROC AUC) in a single step (K = 1). However,
this advantage diminishes as the number of steps increases. The model without noise (σs = 0.0)
provides the most stable and consistently high performance for larger K. Conversely, a high noise
level (σs = 1) consistently degrades performance regardless of the number of steps. This analysis
suggests a trade-off: while noise can provide a significant boost for models with very few steps, a
no-noise configuration is more robust for models with a larger number of steps.

0 20 40 60 80 100
Number of Steps (n_steps)

0.55

0.60

0.65

0.70

0.75

0.80

RO
C

AU
C

Sc
or

e

ROC AUC vs. n_steps for Drop Level: 0.1

Noise Level

0.0
0.01
0.05
0.1
1.0

0 2 4 6 8 10
Number of Steps (n_steps)

0.55

0.60

0.65

0.70

0.75

0.80

RO
C

AU
C

Sc
or

e

ROC AUC vs. n_steps for Drop Level: 0.1

Noise Level

0.0
0.01
0.05
0.1
1.0

Figure 5: An analysis of the ROC AUC score as a function of the number of processing steps (K) for
a drop rate of 10%. This experiment was conducted with a fixed drop rate of 0.1, while varying the
noise level, σs. The results show that the optimal number of steps is small, typically under 10.

0 20 40 60 80 100
Number of Steps (n_steps)

0.50

0.52

0.54

0.56

0.58

0.60

RO
C

AU
C

Sc
or

e

ROC AUC vs. n_steps for Drop Level: 0.5

Noise Level

0.0
0.01
0.05
0.1
1.0

0 2 4 6 8 10
Number of Steps (n_steps)

0.50

0.52

0.54

0.56

0.58

0.60

RO
C

AU
C

Sc
or

e

ROC AUC vs. n_steps for Drop Level: 0.5

Noise Level

0.0
0.01
0.05
0.1
1.0

Figure 6: An analysis of the ROC AUC score as a function of the number of processing steps (K) for
a drop rate of 50%. This experiment was conducted with a fixed drop rate of 0.1, while varying the
noise level, σs. The results show that the optimal number of steps is small, typically under 10.

F.3 DISTORTION-PERCEPTION TRADE-OFF.

Here we expand on the distortion-perception trade-off by computing the MMD. The results are shown
in Figures 7 and 8. Again, both figures show that the MMD² distance decreases as we increase
K; this is particular noticeable for 0 < σs ≤ 0.1. In other words, if we aim for a high-quality
perceptual reconstruction, we should consider σs = 0.01 or 0.05. However, if we are aiming for high
reconstruction quality in terms of AUC-ROC, we should use σs = 0.1 (see Fig.4). In other words,
the choice of the K is heavily dependent of the downstream task.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Number of Steps (n_steps)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
M

D^
2

Sc
or

e

MMD^2 Score vs. n_steps for Drop Level: 0.1

Noise Level

0.0
0.01
0.05
0.1
1.0

0 2 4 6 8 10
Number of Steps (n_steps)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
M

D^
2

Sc
or

e

MMD^2 Score vs. n_steps for Drop Level: 0.1

Noise Level

0.0
0.01
0.05
0.1
1.0

Figure 7: Analysis of the perception component of the distortion-perception trade-off. The plot shows
the MMD² score (where lower is better) versus the number of steps, K, for a fixed drop rate of 0.1.
Each line represents a different noise level σs.

0 20 40 60 80 100
Number of Steps (n_steps)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
M

D^
2

Sc
or

e

MMD^2 Score vs. n_steps for Drop Level: 0.5

Noise Level

0.0
0.01
0.05
0.1
1.0

0 2 4 6 8 10
Number of Steps (n_steps)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
M

D^
2

Sc
or

e

MMD^2 Score vs. n_steps for Drop Level: 0.5

Noise Level

0.0
0.01
0.05
0.1
1.0

Figure 8: Analysis of the perception component of the distortion-perception trade-off. The plot shows
the MMD² score (where lower is better) versus the number of steps, K, for a fixed drop rate of 0.5.
Each line represents a different noise level σs.

F.3.1 ADDITIONAL METRICS

This section incorporates additional metrics to showcase the observed performance trade-off. The
resultsa for IMDB are in Figs. 9 and 10, for PROTEINS in Figs. 11 and 12, and for ENZYMES in
Figs. 13 and 14. While an increased number of steps yields an improvement in generating an estimated
graph with statistics that more closely align with the ground-truth distribution, the reconstruction
performance (measured in terms of AUC) declines relative to the initial step. Critically, the trend
is found to be highly contingent on the underlying dataset’s sparsity. For the dense case (IMDB),
the AUC exhibits a consistent monotonic decrease after the optimal initial guess, independent of
drop rates. In contrast, the sparser PROTEINS and ENZYMES datasets demonstrate an intermediate
improvement as the number of steps increases, though their overall AUC still trails that achieved at
the initial step (t = 1).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 9: IMDB dataset, expansion task,
10% drop rate

Figure 10: IMDB dataset, expansion
task, 50% drop rate

Figure 11: PROTEINS dataset, expan-
sion, 50% drop rate

Figure 12: PROTEINS dataset, expan-
sion, 50% drop rate

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 13: ENZYMES dataset, expan-
sion, 10% drop rate

Figure 14: ENZYMES dataset, expan-
sion, 50% drop rate

F.4 EXAMPLES OF RECONSTRUCTED GRAPHS

We show here a few samples for the expansion case. We plot the samples from ENZYMES, using a
subset of the dataset used in Section 5.3.

Binary comparison. In this case, we first compare the thresholded versions (with 0.5) of the mean
matrices. We compute this for 3 graphs in the test set (3, 7 and 29). The plots are in Figs. 15, 16
and 17

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 15: Graph reconstruction for sample 3, thresholded with 0.5

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 16: Graph reconstruction for sample 7, thresholded with 0.5

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 17: Graph reconstruction for sample 30, thresholded with 0.5

Raw comparison - Mean. In this case, we compare the raw versions of the mean matrices. We
compute this for 3 graphs in the test set (3, 7 and 29). The plots are in Figs. 18, 19 and 20. Notice that
the mean reconstructions for K = 100 have values that are between 0 and 1; this can be explained
by looking at individual samples (see below), which are more diverse, and therefore, they have
non-overlapping set of existing edges.

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 18: Graph reconstruction for sample 3, mean raw

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 19: Graph reconstruction for sample 7, mean raw

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 20: Graph reconstruction for sample 30, mean raw

Raw comparison - Median. In this case, we compare the raw versions of the median matrices. We
compute this for 3 graphs in the test set (3, 7 and 29). The plots are in Figs. 21, 22 and 23.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 21: Graph reconstruction for sample 3, median raw

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 22: Graph reconstruction for sample 7, median raw

A true Mean K=1 (binary) Mean K=100 (binary)

Figure 23: Graph reconstruction for sample 30, median raw

Individual samples for each graph. Lastly, we show the raw versions of different realizations
(individual samples) for each graph. We compute this for 3 graphs in the test set (3, 7 and 29).
Interesting, the samples for K = 100 are more diverse (similar to the case of images in Ohayon et al.
(2025)); this diversity explains why the raw mean in Figs. 18, 19 and 20 have values that are not
exactly 0 or 1 (which means that there are non-overal between samples).

Figure 24: Individual samples for K = 1 and for sample 3

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 25: Individual samples for K = 100 and for sample 3

Figure 26: Individual samples for K = 1 and for sample 7

Figure 27: Individual samples for K = 100 and for sample 7

Figure 28: Individual samples for K = 1 and for sample 30

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 29: Individual samples for K = 100 and for sample 30

F.5 PIFM ON LARGE-SCALE GRAPHS

In this section, we train PIFM on large-scale graphs. In particular, we focus on CORA Yang et al.
(2016).

Building the datataset. To enable scalable diffusion training on Cora while maintaining full-graph
link prediction capabilities, we introduce a subgraph-based variant of PIFM following Limnios et al.
(2023). We instantiate this via an edge-centered sampling scheme, where each subgraph represents a
k-hop ego-network (capped at a maximum node count) centered around a seed edge from the training
split. To ensure reproducibility, we sample a fixed set of seed edges and corresponding subgraphs
which remain constant throughout each run.

Following a standard 85/5/10 (train/validation/test) edge split, we evaluate link prediction on held-out
edges using the protocol established in the main paper. Furthermore, we utilize purely structural node
features. By default, we concatenate: (i) Laplacian positional encodings derived from the smallest k
generalized eigenvectors of Lv = λDv computed on the training adjacency; and (ii) a 2-dimensional
local context vector comprising both raw and normalized node degrees.

Training. To initialize PIFM, we first pre-train structural priors (GraphSAGE and Node2Vec) on
the full Cora graph using only the training edge split (85% of edges). These learned embeddings are
subsequently used to initialize PIFM for inference on the test split (10% of edges).

During PIFM training, each training edge seeds a unique edge-centered subgraph. Within each
subgraph, we define the observed context as all other training edges, and a hidden region comprising
all remaining node pairs (including non-edges and edges outside the context). The seed edge is
explicitly masked from the context and designated as the sole supervision target. Consequently,
each training example tasks the model with reconstructing a single missing edge within its local
neighborhood.

We construct the initial state matrix A0 by combining the observed context with structural prior
predictions in the hidden region. The flow model is then trained to denoise A0 toward the ground-
truth local adjacency. While the flow ODE updates all entries within the hidden region, the gradient
is computed exclusively from the seed edge. This adapts the global training procedure of Algorithm 1
to a localized, subgraph-based regime

Inference. For inference, every held-out validation or test edge seeds a k-hop subgraph. We define
the observed context using the training edges, remove the centered test edge from the mask, and apply
diffusion to the resulting hidden region. We strictly evaluate the prediction for the centered held-out
edge in each subgraph. To resolve potential overlapping, we aggregate predictions via logit averaging
across all subgraphs where a specific edge is present, producing a single probability matrix over all
node pairs. We then compute metrics on the held-out positive and negative edges. Since PIFM and
the structural prior baseline are evaluated on the exact same set of pairs, the results isolate the specific
benefits of the diffusion process

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 6: Link prediction on CORA (hidden edges) with a GraphSAGE structural prior. We report AUC, Average
Precision (AP), False Positive Rate (FPR), False Negative Rate (FNR), and Mean Reciprocal Rank (MRR).
We report PIFM’s performance on Cora for different k-hop neighborhoods during subgraph sampling, and the
embedding dimension of the laplacian positional encodings. We include also the average node counts for each
subgraph for each case.

Method AUC↑ AP↑ FPR↓ FNR↓
GraphSAGE 95.61 47.76 0.59 23.79
1hop 2dim-embed (∼ 16.7 nodes) 87.47 61.07 1.00 0.00
2hop 2dim-embed (∼ 58.0 nodes) 96.25 75.39 1.00 0.00
3hop 2dim-embed (∼ 154.5 nodes) 97.03 33.71 1.00 0.00
4hop 8dim-embed (∼ 210.4 nodes) 96.14 21.53 1.00 0.00

NCNC Wang et al. (2024) (from Li et al. (2023) 96.90 - - -
NCN Wang et al. (2024) (from Li et al. (2023) 96.76 - - -

Results. Results in Table 6 show that PIFM is learning useful global structural representations even
on very large graphs by exploiting the subgraph sampling approach. Increasing the neighborhood size
is also helpful for PIFM to obtain a richer set of local information on large graphs like CORA. We
compare with a few baselines from Li et al. (2023); we used their reported results. In addition to the
metrics, we have included Figure 31 and Figure 32 for visualizations of the intermediate adjacencies
of PIFM when reconstructing on CORA.

Figure 30: AUC vs k-hop neighborhood. We observe that adding more hops enhances the performance
of PIFM, as it exploits more information.

Figure 31: Visualization of the intermediate adjacency matrices of a sugraph for CORA.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 32: Visualization of the intermediate adjacency matrices of a sugraph for CORA.

F.6 INTERMEDIATE ADJACENCY MATRICES

In Figs. 33- 35, we show visualizations of the diffusion trajectory of the link-prediction sampler by
"snapshotting" the predicted adjacency matrix at steps 0 to 100 in 10-step-increment of a 100-step-
total sample path. Each panel shows the raw adjacency values, zeroed on the diagonal, rendered
with the colormap with black associated to 0 and yellow to 1. The most bottom-right panel is the
ground-truth adjacency for comparison.

To see the sampling process, progress from left-to-right and top-to-bottom shows how the sampler
denoises toward the final reconstruction (steps=100). From those images we could see the smooth
transitions along the full reconstruction trajectory of PIFM.

Figure 33: Visualization of IMDB 50% drop rate reconstruction. (Graph 1)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 34: Visualization of IMDB 50% drop rate reconstruction. (Graph 2)

Figure 35: Visualization of IMDB 50% drop rate reconstruction. (Graph 3)

F.7 TRAINING COST

All the models are trained on NVIDIA A100-SXM4-80GB GPUs. Fitting the Node2Vec prior takes
roughly 1 to 1.5 hours depending on the datasets. Once the prior is fixed, the flow model itself has
essentially the same training loop and cost as when using a Gaussian prior: end-to-end training of
the flow model itself takes about 2 hours on ENZYMES and IMDB-B, and about 4 to 5 hours on
PROTEINS. We did not observe a noticeable difference in training behavior between the Gaussian
and prior-informed variants, and the model behaves similarly under different edge-drop rates.

F.8 TRANSFERABILITY

We have experimented the 10% and 50%-drop-rate IMDB-B checkpoints for PIFM and used on
PROTEINS and ENZYMES dataset with the same drop rates, and the best results and the results at
the end of the 100 sampling steps of each run are as shown below.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 7: Transferability of IMDB-B PIFM checkpoints (with graphSAGE priors) to PROTEINS
and ENZYMES. We use the 10% and 50%-drop-rate checkpoints trained on IMDB-B and evaluate
them on the corresponding 10% and 50% drop-rate settings of the target datasets. For each setting,
we report the best value over 100 sampling steps and the value at the final step (t = 100). Metrics
are Average Precision (AP), AUC, False Negative Rate (FNR), and False Positive Rate (FPR). All
metrics are reported in percent.

Source checkpoint Target dataset AP↑ AUC↑ FNR↓ FPR↓
Structural priors (no flow)
PROTEINS(10% drop) ENZYMES (10% drop) 41.28 73.70 13.49 60.59
IMDB-B (10% drop) PROTEINS (10% drop) 46.36 74.58 11.00 63.50
ENZYMES (10% drop) PROTEINS (10% drop) 46.36 74.58 11.00 63.50
PROTEINS (50% drop) ENZYMES (50% drop) 23.08 57.72 40.02 52.16
IMDB-B (50% drop) PROTEINS (50% drop) 27.71 53.99 32.16 66.86
ENZYMES (50% drop) PROTEINS (50% drop) 27.71 53.99 32.16 66.86

PIFM
PROTEINS (10% drop) ENZYMES (10% drop) 43.87 76.96 71.96 4.24
IMDB-B (10% drop) PROTEINS (10% drop) 46.79 75.53 47.07 11.62
ENZYMES (10% drop) PROTEINS (10% drop) 49.63 76.60 59.02 6.63
PROTEINS (50% drop) ENZYMES (50% drop) 25.68 61.88 95.37 1.70
IMDB-B (50% drop) PROTEINS (50% drop) 24.88 59.02 61.02 24.32
ENZYMES (50% drop) PROTEINS (50% drop) 26.81 55.80 86.13 9.97

From the table we can see that the model degrades the predictions a lot at lower (10%) drop rates,
making the results incomparable when comparing to results in Table 1. It can be seen that with more
steps integrated, at the final step t = 100 the metrics are much worse than the best result over all
sampling steps or the structural prior. Although at higher (50%) drop rates the best results are more
comparable to the best results in Table 2, this is due to the graphs being very corrupted under 50%
drop rate and hence the observed graphs are much more degraded than they used to be.

F.9 THRESHOLDING LEVELS

We investigated the impact of alternative thresholding levels—specifically 0.3 and 0.7, beyond the
standard 0.5—on the evaluation metrics, with results presented in Figures 36 and 37. We observed
that adjusting the threshold yields a marginal increase in the Area Under the Curve (AUC). We
hypothesize this is partly driven by the model’s inherent behavior of actively pushing output values
towards the binary extremes (0 or 1). However, we noted a slightly larger, albeit still minimal,
improvement for lower values of K, where the influence of the prior is greater and output values
are typically further away from 0 and 1. Crucially, despite these dynamics, the use of an alternative
threshold does not lead to a statistically significant improvement in overall performance.

Figure 36: ROC-AUC vs number of steps sampled for IMDB dataset, link prediction task, 50% drop
rate under 0.3, 0.5, and 0.7 thresholding levels.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 37: ROC-AUC vs number of steps sampled for ENZYMES dataset, link prediction task, 50%
drop rate under 0.3, 0.5, and 0.7 thresholding levels.

G LIMITATIONS

Despite these advantages, PIFM has apparent limitations. It’s performance heavily depends on the
quality of prior estimation, as shown by the gap between the node2vec-prior and graphon-prior
versions of PIFM. Moreover, graphons may not be the most suitable prior in practice: they are
fundamentally limit objects defined for limits of dense graphs, which restricts their applicability to
sparse real-world networks. Graphons also does not capture dependencies between edges beyond what
can be explained through the latent coordinates. Additionally, the current formulation is restricted to
undirected and unweighted graphs, and the training overhead is higher than one-shot priors.

Looking forward, promising directions include extending PIFM to incorporate node and edge at-
tributes for richer graph inference tasks, scaling the method to larger and more complex real-world
networks, and enhancing the graphon prior by learning a dictionary of graphons from which the model
can adaptively select during sampling. Such a design would provide more faithful prior initialization
for datasets containing diverse graph types.

36

	Introduction
	Related works
	Background
	Method
	Graph topology inference as a distortion-perception trade-off
	Approximating the posterior mean
	Learning the flow model

	Experiments
	Setup
	Link Prediction
	Blind graph reconstruction

	Conclusions
	Algorithm
	Uniform + flow Baseline
	DiGress + RePaint Baseline
	Node2Vec Prior (Per-Graph Classifier)

	Background
	Graphons and graphon estimation
	Node2vec
	GraphSAGE
	Graph Diffusion Models

	Related works
	Link prediction
	Diffusion-based inverse problems solver for graphs
	Flow-based inverse solvers

	Proofs
	Proof for Theorem 1

	Experimental details
	Details about the architecture
	Details about the datasets
	Hyperparameters
	Flow-based baselines

	Metrics Calculation

	Additional results
	Denoising.
	Additional experiments
	Performance as a function of _s
	Performance as a function of K

	Distortion-perception trade-off.
	Additional metrics

	Examples of reconstructed graphs
	PIFM on large-scale graphs
	Intermediate adjacency matrices
	Training cost
	Transferability
	Thresholding levels

	Limitations

