
Towards Rationale-Answer Alignment of LVLMs via Self-Rationale Calibration

Yuanchen Wu 1 2 * Ke Yan 2 Shouhong Ding 2 Ziyin Zhou 3 2 Xiaoqiang Li 1

Abstract
Large Vision-Language Models (LVLMs) have
manifested strong visual question answering capa-
bility. However, they still struggle with aligning
the rationale and the generated answer, leading
to inconsistent reasoning and incorrect responses.
To this end, this paper introduces Self-Rationale
Calibration (SRC) framework to iteratively cal-
ibrate the alignment between rationales and an-
swers. SRC begins by employing a lightweight
“rationale fine-tuning” approach, which modifies
the model’s response format to require a rationale
before deriving answer without explicit prompts.
Next, SRC searches a diverse set of candidate
responses from the fine-tuned LVLMs for each
sample, followed by a proposed pairwise scoring
strategy using a tailored scoring model, R-Scorer,
to evaluate both rationale quality and factual con-
sistency of candidates. Based on a confidence-
weighted preference curation process, SRC de-
couples the alignment calibration into a prefer-
ence fine-tuning manner, leading to significant im-
provements of LVLMs in perception, reasoning,
and generalization across multiple benchmarks.
Our results emphasize the rationale-oriented align-
ment in exploring the potential of LVLMs.

1. Introduction
Recently, with the advancement of large language models
(LLMs) (Dubey et al., 2024; Yang et al., 2024), the inte-
gration of visual encoders through multimodal alignment
pre-training and instruction fine-tuning has enabled Large
Vision-Language Models (LVLMs) to achieve significant
task-level generalization (Liu et al., 2024a; Wang et al.,
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Figure 1. SRC on different LVLMs. The evaluation dataset is
MMStar. The baselines are LLaVA-1.5-7B and LLaVA-Next-8B.

2024b). These advancements have expanded various appli-
cations, such as image captioning, visual chat, and visual
question answering (VQA). However, the misalignment of
LVLMs between their vision and text modalities (Cui et al.,
2023; Zhu et al., 2024), i.e., the model outputs some text
descriptions that do not match visual elements, is a crit-
ical issue for practical applications. Many studies have
been exploring post-training strategies, leveraging addi-
tional supervised fine-tuning (SFT) (Liu et al., 2023; Zhang
et al., 2025) or conducting preference alignment (Zhu et al.,
2024; Zhou et al., 2024b) to overcome this issue. The latter,
particularly through Direct Preference Optimization (DPO)
(Rafailov et al., 2024) to discourage models from generat-
ing counterfactual descriptions of images, has emerged as a
popular paradigm. Many works collect preference data in
diverse ways, such as perturbing image descriptions (Zhou
et al., 2024a), introducing expert models (Zhao et al., 2023),
or sampling from outputs (Zhou et al., 2024b), and achieve
promising results. However, this form of alignment, while
effective for visual description, overlooks the rationales
essential for generating factually grounded and logically
consistent responses, especially in VQA scenarios.

Moreover, the current instruction fine-tuning process (Liu
et al., 2024c) predominantly relies on datasets composed of
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Figure 2. Examples of model responses in VQA scenarios. Though the answers and visual elements are often correct (green), the
rationales may be counterfactual (red) or insufficient (orange). Rationales are generated using LLaVA-1.5-7B in multi-round dialogues.

short answers. This could result in models lacking explicit
rationale supervision, potentially leading to spurious causal
associations between instructions and responses, rather than
fostering a vision-driven thinking process in models. Hence,
in this paper, we seek to further explore the alignment
between a model’s rationale and its answers, and consider
a critical question: “Does a correct answer stem from a
reasonable and factually grounded rationale?”

To dive into this question, we prompt LVLMs to provide
rationales alongside their answers and assess their alignment
quality. As illustrated in Figure 2, although models often
produce correct answers, their rationales may be counter-
factual (#1), insufficient (#2), or unreasonable (#3) to
support the answers. Also, we can observe a notable uncer-
tainty of the sampled responses in terms of the answers with
rationales. To this end, we propose a “rationale-oriented”
preference alignment framework, named “Self-Rationale
Calibration (SRC)”. The key insight of SRC is that for any
given vision instruction (e.g., a VQA sample), the model’s
output space inherently contains a spectrum of rationale-
answer pairs (RAPs), ranging from relatively optimal pairs
(e.g., a rationale that is factually accurate and logically con-
sistent with the answer) to relatively inferior pairs (e.g., a
rationale that is counterfactual or invalid for the answer), re-
gardless of whether final answers are consistent with ground-
truth. By leveraging the model’s inherent output space, SRC
distinguishes between optimal and inferior RAPs to itera-
tively calibrate the model itself, progressively aligning the
model’s rationales with its answers.

Specifically, we first augment partial VQA samples to con-
struct RAPs and then fine-tune LVLMs using a lightweight
LoRA (Hu et al., 2021), inducing the model to provide
RAPs without explicit prompting. Using this variant as
the seed model, we perform sentence-level beam search in

the output space to generate diverse response candidates
for each visual instruction sample. Then, we introduce a
pairwise scoring strategy with a tailored LLM-based
scoring model named “R-Scorer” to evaluate these various
candidates. The motivation behind this strategy lies in the
open-ended nature of rationales: even among candidates
with correct answers, their rationales may vary in quality.
By performing pairwise scoring coupled with “LLM-as-
judge” (Zheng et al., 2023), SRC can effectively capture
the “relative superiority” between rationales among can-
didates, such as the reasoning process and logical relation-
ships between visual elements in the images. To further
address challenges such as neutral scoring results, which
may obscure differences between candidates, and to miti-
gate potential scoring biases, we aggregate the confidence
scores of the candidates to identify both optimal and infe-
rior candidates. Finally, the model’s rationale generation
process is calibrated through preference alignment, which
helps to improve its vision-driven thinking process. By iter-
atively applying the above process, the model progressively
improves its perception and reasoning abilities, leading to
enhanced overall performance.

Overall, our contributions are summarized as follows:

• Rationale-oriented Post-training Framework. We pro-
pose a novel framework, Self-Rationale Calibration (SRC),
to address the misalignment between rationales and answers
in LVLMs. SRC iteratively enhances models by leveraging
both optimal and inferior RAP candidates, focusing on the
relation between rationale and answer correctness.

• Pairwise Scoring Strategy with R-Scorer. We develop a
pairwise scoring strategy with a lightweight scoring LLM
named R-Scorer to assess the quality of response candidates.
This allows for relative comparisons between candidates,
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Prompt to Backtrack

Question: What powers the front most vehicle?

Thinking: A bicycle is visible attached to the front of 
the bus. Bicycles are typically powered by human 
feet through pedals. Output: The front-most …

Sharegpt4v

GT: Feet

Augment:

Figure 3. One rationale-augmented sample in our dataset. The
augmented sample has sufficient rationale to support GT.

enabling robust identification of optimal and inferior candi-
dates for preference fine-tuning.

• Enhanced Comprehensive capabilities of LVLMs.
Through extensive experiments, we demonstrate the effec-
tiveness of SRC. Compared to post-training techniques of
vision-text alignment, SRC significantly improves perfor-
mance in QA scenarios (as shown in Figure 1), achieving
strong generalization and reasoning capabilities.

2. Related Work
Preference and Modality Alignment of LVLMs. Prefer-
ence alignment is a post-training paradigm widely adopted
in recent LLMs, including methods such as PPO (Schulman
et al., 2017) and DPO (Rafailov et al., 2024), to align mod-
els with human preferences. In LVLMs, the inherent mis-
alignment between vision and text modalities—where tex-
tual descriptions fail to correspond to visual elements—has
led many recent approaches to leverage the popular DPO
method to alleviate this issue. Some studies rely on human
annotators (Li et al., 2023b; Yu et al., 2024a) or expert mod-
els (Zhao et al., 2023; Zhou et al., 2024b) to curate preferred
samples, while others introduce perturbed images to gener-
ate non-preferred samples (Deng et al., 2024; Zhou et al.,
2024a). Overall, these methods focus on the image caption-
ing task when constructing preference samples to promote
vision-text alignment through DPO. Instead, SRC targets on
the alignment between rationales and answers, especially
in VQA scenarios. Specifically, rather than merely ensuring
the correctness of visual element descriptions, SRC further
emphasizes reasoning and logical relationships between vi-
sual elements and instructions (questions).

Chain-of-Thought (CoT) Learning. CoT enables step-by-
step reasoning of LLMs for tackling complex questions (Wei
et al., 2022). Since OpenAI-o1 (OpenAI, 2024b), some
studies of LVLMs have been exploring autonomous and
structured reasoning in vision-language tasks through dis-
tillation. They generate high-quality reasoning paths from
expert models (e.g., GPT-4o (Xu et al., 2024)) through ex-
plicit CoT prompting, where the prompt is later removed
during SFT to allow models to mimic CoT reasoning au-
tonomously (Zhang et al., 2024; Guo et al., 2024). While
they share similarities with rationale fine-tuning, it is noted
that they emphasize long step-by-step CoT reasoning path

Figure 4. The criteria of data construction in Rationale Fine-
tuning: validity, coherence, and rationality.

by learning from large-scale datasets (from 100K to 12M
samples). In contrast, rationale fine-tuning of SRC is a
lightweight strategy that modifies models to explicitly out-
put rationales during question answering. The fine-tuned
variant will be used as the seed model for subsequent align-
ment of the rationale and answer through calibration.

3. Method: Self-Rationale Calibration
This section presents the proposed Self-Rationale Calibra-
tion (SRC) framework to enhance the alignment of the
factual and reasonable rationales with corresponding an-
swers. As depicted in Figure 5, it consists of four stages,
i.e., “Rationale Fine-tuning”, “Pairwise Candidate Scoring”,
“Confidence-weighted Preference Curation”, and “Calibra-
tion via Preference Fine-tuning”. Finally, we conduct the
above process to calibrate the model through multiple it-
erations, achieving both continual alignment and improve-
ment of the model. To address the challenge of evaluating
candidates and scoring efficiency in the Pairwise Scoring
stage, we further developed a lightweight LLM-based scorer,
named R-Scorer, tailored for SRC framework.

3.1. Rationale Fine-tuning

Motivation. In the instruction fine-tuning stage, LVLMs
are heavily supervised with VQA samples with short an-
swers (Hudson & Manning, 2019; Masry et al., 2022). The
models tend to directly output brief answers, often requiring
prompting to generate specific rationales. Thus, we intro-
duce “rationale fine-tuning” to induce the model to provide
a rationales before providing a answer (i.e., RAPs) without
explicit prompting. After that, we use the fine-tuned vari-
ant to promote the alignment of answers and rationales to
improve the perceptual and reasoning performance.

Data Construction. We begin by collecting and sampling
publicly available VQA datasets, and augmenting them with
rationales, as shown in Figure 3. Specifically, we select
57k samples to build the data pool (details can be viewed
in Section 4.1), including three categories: perception &
world knowledge, chart understanding, and math & sci-
ence. Then, we augment these samples using an advanced
LVLM, Qwen2-VL-72B (Wang et al., 2024b), with a uni-

3



Towards Rationale-Answer Alignment of LVLMs via Self-Rationale Calibration

Q: What type of food is 
on the white plate?

Input Image

The image shows a white plate with 
three distinct items: a round, cheesy-
looking food item that resembles a 
muffin or biscuit; two inside

Thinking: A round, golden-brown food item 
with a cheesy topping is visible on the plate. 
This description matches the appearance of a 
muffin. 
Output: Muffin

Response Candidates (RAPs)

Search Space (sentence-level)

Thinking: There are two pieces of food 
on the plate, one of which appears to 
be a muffin or biscuit, while the other 
looks like a sandwich or a similar type 
of food ...

Rationale Fine-tuning

Data Pool

Augment with rationale

Response:
Thinking: …
Output: No, ….

Question: Are the 
bars horizontal?

Fine-tuning with LoRA

Giving a rationale before
answering

Scoring Matrix

···

M1,∗

M2,∗

M3,∗

M4,∗

M∗,1M∗,2M∗,3M∗,4
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Confidence-weighted Score
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𝑗

(M𝑖,𝑗 −M𝑗,𝑖)

0.50 0.25
1.00 0.75

Convert to rank-based score (Eq. 4)

Final winning score for curation:

Eq. 1 | Eq. 2

Thinking: The image shows a white plate with 
three distinct items: a round, cheesy-looking 
food item that resembles a muffin or biscuit; …

Preference Curation

Thinking: There are two pieces of food on the 
plate, one of which appears to be a muffin or 
biscuit, while the other looks like a sandwich … 

Calibration (Eq. 6)

Preferred

Non-preferred
0.75 0.25
0.50 1.00

ℒ 𝜋𝑡 𝜋𝑡−1 = −𝔼 𝑥 𝐲𝑤 𝐲𝑙 ∼𝒟

lo g 𝜎 𝛽lo g
𝜋𝑡 𝐲𝑤 ∣ 𝑥

𝜋𝑡−1 𝐲𝑤 ∣ 𝑥
− 𝛽lo g

𝜋𝑡 𝐲𝑙 ∣ 𝑥

𝜋𝑡−1 𝐲𝑙 ∣ 𝑥

···

෥𝑤𝑖 = 𝛼 ∗ R 𝑤𝑖 + 1 − 𝛼 ∗ R 𝑝𝑖 Eq. 5

Conf. rank: Win. rank:

Figure 5. Overview of SRC framework. The framework consists of four iterative stages: “Rationale Fine-tuning”, “Pairwise Candidate
Scoring”, “Confidence-weighted Preference Curation”, and “Calibration via Preference Fine-tuning”.

fied response format: “Thinking: (rationale) + Output: (an-
swer)”, serving as the dataset for fine-tuning, calibration,
and evaluation in our work. In this process, Qwen2-VL is
prompted with GT for each sample to backtrack the corre-
sponding rationale. The intermediate rationales are subse-
quently filtered using Qwen2.5-72B (Yang et al., 2024)
based on the three criteria in 4. This filtering process re-
sulted in a final dataset of approximately 43K samples. The
specific prompts employed in this data construction process
are provided in Appendix A.1.

Learning Rationales. Ghosh et al. (2024) demonstrate that
LoRA fine-tuning does not significantly alter the model’s
internal knowledge but instead adjusts the response for-
mat. Based on this insight, we adopt a lightweight LoRA
fine-tuning approach (e.g., rank=4 for adapting LLaVA-
1.5 (Liu et al., 2024a)). We empirically set a 2:1:1 sam-
pling ratio across the above three categories, and construct
a set of nearly 20K samples for rationale fine-tuning. The
fine-tuned models will be used as the seed models for the
subsequent self-rationale calibration process.

3.2. Pairwise Candidate Scoring

Motivation. Though some prior methods focus on assessing
answer correctness (Zelikman et al., 2022) or independently
scoring (Wang et al., 2024d) to identify the optimal response
and post-train LVLMs, they would face limitations when
applied to RAPs. One major issue is that, even among
candidates with correct answers, their rationales can vary
significantly, making it difficult to determine their quality
using GT. Moreover, relying on independent scoring fail to
capture the “relative superiority” of rationales. To address
these challenges, we propose a pairwise scoring approach
coupled with “LLM-as-judge” (Zheng et al., 2023). Further
discussions can be found in Appendix A.3.

Candidate Generation. By adopting beam search on sen-
tence level (the details are provided in Appendix A.2), we
generate multiple RAP response candidates in the data pool,
each accompanied by rationales and their corresponding
answers. For each sample, we collect a candidate set de-
noted as P. Considering the efficiency of pairwise scoring,
we select the N = min(N, |P|) most distinctive candidates
based on their sentence embeddings (Chen et al., 2024b),
where | · | represents the cardinality of a candidate set and
N = 6 in our practical implementation.

Pairwise Scoring. As shown in Figure 6, the input of
LLMs to conduct pairwise scoring includes three parts:
1⃝“Question with GT”, 2⃝“Candidate A with its factual

checks”, and 3⃝“Candidate B with its factual checks”. The
GT guarantees the correctness of the answer, while factual
checks evaluate the vision-text alignment of rationales. For
factual checks, LLMs pose three questions related to visual
elements in the rationale and prompt seed models to en-
gage in self-reflection checks, followed by He et al. (2024)
and Cheng et al. (2024). The scoring prompt used for the
LLM is provided in Appendix A.3. For each candidate pair
(Ci,Cj) ∈ P, its corresponding score si,j ∈ [−5, 5] reflects
the relative quality between the two candidates. A positive
score indicates that Ci is better than Cj , with a higher
score implying a greater degree of superiority, while a neg-
ative score suggests the opposite. Our early experiments
show that the order of candidates in the prompt significantly
impacts the pairwise scoring results when using either pro-
prietary or open-source LLMs. Thus, we apply bidirectional
scoring by swapping the candidate order.

3.3. Confidence-weighted Preference Curation

Calculation of Winning Score. After performing N(N−1)
pairwise scoring processes, we construct a score matrix
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M ∈ RN×N , where Mi,j = si,j for i ̸= j and Mi,i = 0.
Once the pairwise score matrix M is obtained, the winning
score wi of each candidate Ci relative to all other candi-
dates, is defined as:

wi =
∑
j

(Mi,j −Mj,i) , (1)

where j ∈ 1, . . . , N and j ̸= i. This score aggregates the
difference in pairwise scoring for candidate Ci. Addition-
ally, we explore an alternative winning score based on the
count, which is defined as:

wi =
∑
j

I(Mi,j > 0) +
∑
j

I(Mj,i < 0), (2)

where I(·) denotes the indicator function. wi reflects the
relative superiority of Ci compared to others within its
candidate set. However, multiple candidates have similar
quality, which could lead LLMs to assign neutral scores dur-
ing the scoring process. Also, the preference bias of LLMs
may lead to unsatisfactory scoring process. To address these
issues, we incorporate candidate confidence to calibrate wi

introduced in the following section.

Confidence Score of Candidates. Each response candidate
generated during sentence-level beam search is associated
with a probability, which can be interpreted as the corre-
sponding confidence score. It is derived from the language
decoder of the model and represents the cumulative log-
probability of generating a complete response. For candi-
date Ci, its confidence pi is formulated as:

pi =

len(Ci)∏
t=1

P (st | x, s1, s2, . . . , st−1), (3)

where len(Ci) denotes the number of sentences in Ci, x
indicates the multi-modal input (i.e., the input image and
text prompt), and st represents the t-th sentence within Ci.
A higher pi indicates the model’s stronger preference for
selecting the corresponding candidate as its response.

Confidence-weighted Winning Score. Since direct combi-
nation of wi with pi is challenging due to the inconsistent
ranges and scales of these two scores, we first convert wi

and pi to a unified rank-based score. Let {z1, z2, . . . , zN}
be a set of scores (e.g., {w1, . . . , wN} or {p1, . . . , pN}), we
define a rank transformation function R(·) that maps each
score zi to a normalized rank in the interval [0, 1]. Specifi-
cally, we sort the scores in descending order and assign each
score zi a rank, with rank 1 corresponding to the largest
value. The transformation is defined as:

R(zi) =
rank(zi)

N
, (4)

where rank(zi) ∈ {1, 2, . . . , N} denotes the ordinal posi-
tion of zi under descending order. After obtaining R(wi)

Figure 6. The pairwise scoring process. “C1/C2”: the factual
check question samples generated by the scoring LLMs.

and R(pi) for each candidate Ci, we combine them using
a weighting factor α ∈ [0, 1], resulting in the confidence-
weighted winning score w̃i:

w̃i = α ∗ R(wi) +
(
1− α

)
∗ R(pi). (5)

A higher w̃i indicates that candidate Ci excels in both pair-
wise scoring and the model’s confidence. It ensures that
both the winning score assigned by LLMs and the confi-
dence of the model itself are jointly considered during the
subsequent curation process.

Preference Curation. For each sample in the data pool,
we curate the preferred and non-preferred candidates after
deriving the confidence-weighted ranking scores w̃i for all
candidates. Specifically, the candidate with the highest w̃i

is selected as the preferred response yw and the one with
the lowest w̃i is chosen as the non-preferred response yl.

3.4. Calibration via Preference Fine-tuning

To refine the model’s rationales, we employ Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2024), which
encourages the model to favor preferred responses yw over
non-preferred ones yl without relying on an explicit re-
ward model. This calibration process adopts an iterative
approach, progressively enhancing the model across mul-
tiple iterations. At each iteration t, the model πt−1 from
the previous iteration generates updated preference pairs D
(with t = 0 corresponding to the seed model). These pairs
guide the subsequent fine-tuning, where πt is calibrated by
optimizing the log-sigmoid of the preference margin:

L(πt;πt−1) = −E(x,yw,yl)∼D[
log σ

(
β log

πt(yw | x)
πt−1(yw | x) − β log

πt(yl | x)
πt−1(yl | x)

)]
,

(6)
where σ(·) denotes the log-sigmoid function and β is a scal-
ing factor. By maximizing this margin at each iteration, the
model learns to robustly favor the optimal RAP candidates,
ensuring continual improvement in the process.
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Table 1. The main results of SRC on LLaVA-1.5 and LLaVA-Next across all benchmarks. CP: Coarse Perception; FP: Fine-grained
Perception; IR: Instance Reasoning; LR: Logical Reasoning; S&T: Science and Technology.

General Capabilities Specific-domain VQA
Method Overall CP FP IR LR Math S&T ChartQAVAL LLaVAW HallusionBench

LLaVA-1.5-7B 32.1 59.2 25.2 39.6 24.4 24.0 20.4 17.8 61.8 24.7
+ POVID (Zhou et al., 2024a) 32.2 58.0 25.2 40.0 24.4 23.6 22.0 18.4 65.9 24.8
+ HA-DPO (Zhao et al., 2023) 33.0 58.0 26.0 40.0 28.0 24.8 21.2 17.7 65.8 26.2
+ SIMA (Wang et al., 2024c) 32.8 59.6 26.4 40.8 24.4 27.2 18.4 18.6 62.2 24.1
+ SeVA (Zhu et al., 2024) 33.3 58.0 28.4 40.8 24.8 25.6 22.0 18.4 66.3 27.1
+ RLAIF-V (Yu et al., 2024b) 33.7 60.4 29.6 42.0 24.0 24.0 22.4 18.9 64.1 21.6
+ CSR (Zhou et al., 2024b) 32.7 57.6 26.4 39.2 24.4 26.4 22.4 19.3 64.5 25.7
+ SRC (ours) 38.9 61.6 33.2 43.6 32.8 33.2 28.8 24.4 65.5 27.3

LLaVA-Next-8B 42.6 63.6 41.2 54.8 40.4 29.6 26.4 68.7 64.1 32.1
+ SRC (ours) 47.6 69.2 45.6 52.4 45.6 39.6 33.2 71.4 67.4 37.5

3.5. R-Scorer: An Scoring Model Tailored for SRC

Motivation. Our early experiments indicate that the scor-
ing performance of open-source LLMs (Dubey et al., 2024;
Yang et al., 2024), even with their 70B versions, is still
unsatisfactory. While proprietary LLMs (e.g., GPT-4o (Ope-
nAI, 2024a)) manifest superior scoring performance, their
costs render them impractical for large-scale pairwise scor-
ing tasks. Thus, we developed a 1.5B model tailored for
scoring, aiming to reduce reliance on proprietary LLMs
while significantly improving the scoring efficiency.

Data Collection and Training. We sample 40K pairwise
scoring examples from Section 3.2 and then sent them to
GPT-4o (OpenAI, 2024a) to obtain scores. To improve the
scoring quality and alleviate the scoring bias of GPT-4o,
manual filtering and resampling are conducted, resulting
in 21K training samples with an approximately normal dis-
tribution (details can be viewed in Appendix B.3). Us-
ing this curated scoring training set, we fine-tuned the
Qwen-2.5-1.5B model (Yang et al., 2024) with LoRA
and construct the R-Scorer model. Notably, during the
scoring phase, we incorporate factual checks. However,
for efficiency training, these checks were neglected in the
training stage. Despite this, we observe that the model can
still demonstrate robust generalization, effectively scoring
candidates considering factual correctness.

4. Experiments
4.1. Setup

Models. We evaluate the effectiveness of the proposed SRC
on the two baselines: LLaVA-1.5-7B (Liu et al., 2024a) and
the LLaMA-3-based LLaVA-Next-8B (Liu et al., 2024b).
During the rationale fine-tuning phase, the LoRA rank for
LLaVA-1.5 and LLaVA-Next-8B is set to 4 and 32, respec-
tively, while the training data remains identical for both
models. In the calibration phase, the LoRA rank for both
baseline models is fixed at 256. Notably, each iteration

R-Scorer vs baseline

R-Scorer vs GPT-4o

R-Scorer vs LLaMA-3.1 57.6 14.0 28.4

42.0 19.2 38.8

81.6 12.8 5.6

Score Variation：

R-Scorer: 0.760 | LLaMA-3.1: 1.845 | GPT-4o: 0.860 (lower is better)

Human evaluation win rate (win | tie | lose)：

Figure 7. Variation and Win Rate (Human Evaluation) of
LLMs. Variation is computed as the absolute difference. The
evaluation samples are excluded during the training of R-Scorer.

utilizes the same data samples as in the previous iteration.
More training details can be found in Appendix B.1.

Datasets. We sampled and augmented 57K VQA exam-
ples (refer to Section 3.5) to construct the training datasets
of our paper. For the perception & world knowledge, we
utilized datasets including LLaVA-150k (Liu et al., 2024c),
VQAv2 (Goyal et al., 2017), ShareGPT-4V (Chen et al.,
2025), GQA (Hudson & Manning, 2019), IDK (Min et al.,
2024), TallyQA (Acharya et al., 2019), VizWiz (Gurari
et al., 2018), and OODVQA (Tu et al., 2023). For chart
understanding, we selected ChartQA (Masry et al., 2022)
and DocVQA (Mathew et al., 2021). For math & science,
we sampled from MathVision (Wang et al., 2024a) and
AI2D (Kembhavi et al., 2016). The specific number of
samples for each set is detailed in Appendix B.2. For the
calibration process, we constructed a training dataset of
12k samples using the remaining data from the rationale
fine-tuning phase, adhering to a 2:1:1 sample ratio.

Evaluation. We adopt MMStar (Chen et al., 2024c), an
advanced benchmark of evaluation the comprehensive capa-
bilities of LVLMs, as the primary evaluation metric. MM-
Star integrates multiple benchmarks, e.g., MMBench (Liu
et al., 2025), SEEDBench (Li et al., 2023a), MathVista (Lu
et al., 2023), and MMMU (Yue et al., 2024), while address-
ing the data leakage issues and following the vision-centric
QA principle. Additionally, we evaluate performance on
specific-domain VQA tasks, which include ChartQA (Masry
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Figure 8. Impact of SRC across iteration steps on overall perfor-
mance (MMStar) and semantic entropy for baseline models.

et al., 2022), LLaVABench (Liu et al., 2024c), and Hallu-
sionBench (Guan et al., 2023).

4.2. Main results

SRC enhances both reasoning and perception capabili-
ties of LVLMs across diverse tasks. By aligning rationales
with answers through rationale calibration, SRC signifi-
cantly boosts overall performance on MMStar, improving
LLaVA-1.5-7B and LLaVA-Next-8B from 32.1 and 42.6
to 38.9 and 47.6, respectively. Beyond reasoning improve-
ments in domains such as math and science, we can note
that SRC also boosts perceptual abilities, e.g., with fine-
grained perception in LLaVA-1.5 rising from 25.2 to 33.2
and coarse perception in LLaVA-Next increasing from 63.6
to 69.2. Compared to existing post-training methods using
DPO, SRC outperforms in most evaluation metrics, except
for a minor shortfall on LLaVA-Bench. This is likely due
to the adjustments in response formatting in SRC, affecting
its “LLM-as-judge” evaluations. Furthermore, we tested
ChartQA and Hallusionbench datasets, SRC also elevates
specific-domain VQA scores. For instance, on LLaVA-Next,
SRC increased the scores from 68.7 to 71.4 and from 32.1 to
37.5, respectively. Figure 9 illustrates QA cases across dif-
ferent scenarios, demonstrating that models enhanced with
SRC can better comprehend visual information and pro-
vide a reasonable rationale to generate accurate responses.
When encountering hallucination-inducing cases, the SRC-
enhanced models can accurately output image-grounded
facts, producing correct judgements and responses.

SRC exhibits a consistent enhancement in both capa-
bilities and semantic consistency over iterations. As
shown in Figure 8, starting from the rationale fine-tuned
seed model, LLaVA-1.5 and LLaVA-Next achieved initial
MMstar scores of 34.7 and 42.6, respectively, which were
eventually increased to 38.9 (step 3) and 47.6 (step 2). By
tracking semantic entropy (Farquhar et al., 2024), we ob-

Table 2. Comparision of scoring strategies and models. The
complete evaluation results can be viewed in Table 5.

Strategy / Models (1 iteration) Overall CP FP Math

Seed Model (LLaVA-1.5 baseline) 34.7 57.6 26.0 28.4

Score by count + R-Scorer 35.4 58.0 20.8 29.2
Score by sum (w/o fact check) + R-Scorer 35.2 59.2 26.4 30.4
Score by sum + R-Scorer (default) 36.5 59.2 33.6 30.0

Score by sum + Qwen-2.5-70B 36.3 59.2 32.0 29.2
Score by sum + LLaMA-3.1-70B 36.1 58.8 31.6 28.8

Table 3. Ablation of CoT prompting and rationale fine-tuning.
∗: LLaVA-1.5 failed to test due to limited in-context learning.

Ablation Overall CP FP Math

LLaVA-1.5-7B 32.1 59.2 25.2 24.0
+ Prompt control* - - - -
+ SFT w/o rationale 33.7 59.0 24.4 29.2
+ SRC w/o Rationale Fine-tune 34.0 59.6 24.8 28.8
+ SRC (default) 38.9 61.6 33.2 33.2

LLaVA-Next-8B 42.6 63.6 41.2 29.6
+ Prompt control 40.8 62.4 37.2 35.6
+ SFT w/o rationale 42.7 62.0 38.0 35.2
+ SRC w/o Rationale Fine-tune 44.2 62.8 43.2 31.2
+ SRC (default) 47.6 69.2 45.6 39.6

served a slight increase in semantic entropy after rationale
calibration compared to the baseline model. However, as
the iterative process progresses, the semantic entropy of the
model gradually decreases, reflecting enhanced semantic
consistency in the model’s output space and reduced re-
sponse uncertainty. We reckon that this improvement can
be attributed to SRC’s iterative candidate search and scoring
process, during which the pair-wise scoring with R-Scorer
identifies an response with optimal semantics (i.e., answers
with rationales). This process enables the model to progres-
sively align the rationale and answer, leading to responses
that exhibit consistent semantics across iterations.

The R-Scorer manifests alignment with human prefer-
ences and lower sensitivity of candidate order. Following
the same procedure as in the training phase, we generated
200 sets of bidirectional scoring results, calculated vari-
ations after swapping candidate orders, and manually as-
sessed the alignment with human preference ratings. As
shown in Figure 7, the results demonstrate that our 1.5B R-
Scorer outperforms the original 1.5B Qwen-2.5 (81.6% win
rate) and the 70B LLaMA-3.1 (Dubey et al., 2024) (57.6%
win rate) in terms of variation and alignment with human
preferences. Compared to the proprietary model, GPT-4o,
the R-Scorer achieves comparable performance (42.0%
win rate) while offering significant advantages in inference
efficiency and costs. Additional experimental details and
comparative results are provided in Appendix C.
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Question: How many police officers are in the image?

LLaVA-Next-8B: There is no police officer in the image.

+ SRC: Thinking: In the image, there is one person wearing a green 
vest with reflective stripes, which is characteristic of a police 
officer‘s uniform. This individual is standing among a group of people 
dressed in colorful costumes. Output: There is one police officer.

Coarse Perception: Question: What type of electronic device is on the 
table? 

LLaVA-Next-8B: Laptop computer.

+ SRC: The device on the table has a keyboard and a mouse, 
which are typical components of a desktop computer setup. This 
visual detail supports the response. Output: Desktop computer.

Fine-grained Perception:

Instance Reasoning: Question: Which property do these three objects have 
in common?

LLaVA-Next-8B: They all share a shiny property.

+ SRC: Thinking: All three objects in the image - popcorn, log, and 
tree bark - have a rough texture, which is indicative of being 
bumpy. Output: They all share a bumpy property.

Math: Question: How many times Dissatisfied more than satisfied?

+ SRC: Thinking: The pie chart shows that 78% of respondents are dissatisfied 
with the country‘s direction, while 20% are satisfied. To find out ..., we divide 
the percentage of dissatisfied by the percentage of satisfied. This calculation 
gives us 78% / 20% = 3.9. Output: 3.9x

LLaVA-Next-8B: Dissatisfied is 1.9 times more than satisfied.

Hallusionbench: Question: According to the pizza image in the figure, is 
this pizza a Hawaiian Pizza?

LLaVA-Next-8B: Yes, the pizza in the image is a Hawaiian Pizza. It is 
topped with tomato sauce, cheese, …, which are common 
ingredients for a Hawaiian-style pizza.

+ SRC: Thinking: The pizza in the image has a golden-brown crust 
topped with a red sauce, white cheese, and green herbs. There are 
no visible slices of pineapple or ham, which are typical toppings for 
a Hawaiian pizza. Output: No, it is not a Hawaiian pizza.

Original: Margherita

Hallusionbench: Question: Are all the items in this figure ice cream bars?

LLaVA-Next-8B: Yes, all the items in the figure are ice cream bars. 
They are covered in various toppings such as nuts, coconut, and 
possibly other ingredients, but the central component is the ice 
cream bar itself.

+ SRC: Thinking: The image shows several ice cream bars, 
identifiable by … and the presence of ice cream cores. However, 
there is also a small bowl in the top left corner that contains a 
different substance, which is not an ice cream bar. Output: No

(image edited)
yogurt (top left)

(name edited)

Figure 9. Various QA scenarios. The baseline model of LLaVA-Next-8B outputs incorrect responses. After incorporating SRC, the
model not only provides correct answers but also aligns the rationale effectively with the answers.
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Figure 10. Ablation of α and data scale of calibration process.
LLaVA-1.5 is used as our experiment baseline.

4.3. Ablation Study

Different Scoring Strategies. Table 2 examines the dif-
ferent scoring strategies using LLaVA-1.5 as our baseline.
As observed, the winning score computed by the “sum”
strategy (Equation 1) is more effective than that based on
the “count” strategy (Equation 2). This suggests that the
differences among candidates are challenging to distinguish
between them using the “count” strategy. Moreover, incor-
porating factual checks during the scoring process proves
to be beneficial, as it significantly enhances the model’s
fine-grained perception capability (from 26.4 to 33.6). This
demonstrates the model’s ability to perform visual factual
check by itself, thereby guiding the R-Scorer to assign more
accurate scores and promote the calibration process.

Different Scoring Models. In Table 2, we compared the
results of SRC using Qwen-2.5-70B (Yang et al., 2024)
and LLaMA-3.1-70B (Dubey et al., 2024) in the pairwise
scoring process. We can observe that SRC with R-Scorer

achieves the best post-training performance (from 34.7 to
36.5). It reveals that while the R-Scorer has only 2% of
the parameters compared to the former LLMs, it manifests
superior scoring performance and provides better preference
pairs for the calibration process.

Prompt Control and Calibration without Rationales. Ta-
ble 3 presents an analysis of the prompting strategy and
rationale learning. For conducting prompting in evaluation
(details in Appendix B), while LLaVA-Next demonstrated
improvements in mathematical reasoning, its overall perfor-
mance exhibited a decline. Regarding rationale learning, we
assessed the model’s performance after fine-tuning using the
same data with the original GT. Compared to the baseline
models, the overall improvement was marginal, indicating
that learning output rationales can enhance the model’s per-
formance rather than data with GT itself . We also tested
SRC without the rationale fine-tuning stage, and the model
still achieved a certain level of improvement (32.1 to 34.0).
However, the improvement was less pronounced compared
to calibrating the rationale fine-tuned seed model (34.7 to
38.9). This highlights that calibrating the model on ratio-
nales is more effective in exploring the models’ potential
than calibration based solely on responses.

Tradeoff on α and the data scale of calibration. As
shown in Figure 10(a), we analyze the impact of α in the
confidence-weighted winning score (Equation 5). Increas-
ing α (i.e., giving more weight to the R-scorer) improves
overall performance, with the most notable gain in Math
solutions (26.4 to 32.4), indicating that providing a rationale
before generating an answer can enhance the model’s per-
formance to some extent. Figure 10(b) explores the impact
of SRC training data scale, showing consistent performance
gains, particularly in perception and science & technology
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tasks, though with a slight decline in math solutions. These
results highlight the tradeoffs between α and data scale in
balancing task-specific performance and overall robustness.

5. Conclusion
In this paper, we introduce Self-Rationale Calibration (SRC)
to address the alignment of rationales with answers in
LVLMs. By iteratively enhancing models through rationale-
oriented preference fine-tuning, SRC bridges the gap be-
tween reasoning processes and factual correctness in re-
sponses, particularly in VQA scenarios. We introduce R-
Scorer, an efficient LLM-based scoring model, to assess
candidate responses with pairwise comparisons, enabling
nuanced evaluation of rationale quality. Extensive exper-
iments demonstrate that SRC significantly improves both
general and domain-specific capabilities, including reason-
ing and perception, outperforming existing post-training
methods. Notably, SRC enhances semantic consistency and
reduces uncertainty in responses across iterations. These
results underscore the potential of rationale-based alignment
to foster comprehensive improvements in LVLMs, advanc-
ing their reasoning and generalization capabilities.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Acharya, M., Kafle, K., and Kanan, C. Tallyqa: Answering

complex counting questions. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pp. 8076–
8084, 2019.

Chen, D., Chen, R., Zhang, S., Liu, Y., Wang, Y., Zhou, H.,
Zhang, Q., Wan, Y., Zhou, P., and Sun, L. Mllm-as-a-
judge: Assessing multimodal llm-as-a-judge with vision-
language benchmark. arXiv preprint arXiv:2402.04788,
2024a.

Chen, J., Xiao, S., Zhang, P., Luo, K., Lian, D.,
and Liu, Z. Bge m3-embedding: Multi-lingual,
multi-functionality, multi-granularity text embeddings
through self-knowledge distillation. arXiv preprint
arXiv:2402.03216, 2024b.

Chen, L., Li, J., Dong, X., Zhang, P., Zang, Y., Chen, Z.,
Duan, H., Wang, J., Qiao, Y., Lin, D., et al. Are we on the
right way for evaluating large vision-language models?
arXiv preprint arXiv:2403.20330, 2024c.

Chen, L., Li, J., Dong, X., Zhang, P., He, C., Wang, J., Zhao,

F., and Lin, D. Sharegpt4v: Improving large multi-modal
models with better captions. In European Conference on
Computer Vision, pp. 370–387. Springer, 2025.

Cheng, K., Li, Y., Xu, F., Zhang, J., Zhou, H., and Liu, Y.
Vision-language models can self-improve reasoning via
reflection. arXiv preprint arXiv:2411.00855, 2024.

Cui, C., Zhou, Y., Yang, X., Wu, S., Zhang, L., Zou, J.,
and Yao, H. Holistic analysis of hallucination in gpt-4v
(ision): Bias and interference challenges. arXiv preprint
arXiv:2311.03287, 2023.

Deng, Y., Lu, P., Yin, F., Hu, Z., Shen, S., Zou, J., Chang,
K.-W., and Wang, W. Enhancing large vision language
models with self-training on image comprehension. arXiv
preprint arXiv:2405.19716, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Farquhar, S., Kossen, J., Kuhn, L., and Gal, Y. Detecting
hallucinations in large language models using semantic
entropy. Nature, 630(8017):625–630, 2024.

Ghosh, S., Evuru, C. K. R., Kumar, S., S, R., Aneja, D.,
Jin, Z., Duraiswami, R., and Manocha, D. A closer look
at the limitations of instruction tuning. In Forty-first
International Conference on Machine Learning, 2024.

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and
Parikh, D. Making the v in vqa matter: Elevating the
role of image understanding in visual question answer-
ing. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 6904–6913, 2017.

Guan, T., Liu, F., Wu, X., Xian, R., Li, Z., Liu, X., Wang, X.,
Chen, L., Huang, F., Yacoob, Y., et al. Hallusionbench:
An advanced diagnostic suite for entangled language hal-
lucination and visual illusion in large vision-language
models. arXiv preprint arXiv:2310.14566, 2023.

Guo, J., Zheng, T., Bai, Y., Li, B., Wang, Y., Zhu, K., Li,
Y., Neubig, G., Chen, W., and Yue, X. Mammoth-vl:
Eliciting multimodal reasoning with instruction tuning at
scale. arXiv preprint arXiv:2412.05237, 2024.

Gurari, D., Li, Q., Stangl, A. J., Guo, A., Lin, C., Grauman,
K., Luo, J., and Bigham, J. P. Vizwiz grand challenge:
Answering visual questions from blind people. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3608–3617, 2018.

He, J., Lin, H., Wang, Q., Fung, Y., and Ji, H. Self-
correction is more than refinement: A learning framework
for visual and language reasoning tasks. arXiv preprint
arXiv:2410.04055, 2024.

9



Towards Rationale-Answer Alignment of LVLMs via Self-Rationale Calibration

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Hudson, D. A. and Manning, C. D. Gqa: A new dataset for
real-world visual reasoning and compositional question
answering. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6700–
6709, 2019.

Kembhavi, A., Salvato, M., Kolve, E., Seo, M., Hajishirzi,
H., and Farhadi, A. A diagram is worth a dozen images.
In European conference on computer vision, pp. 235–251.
Springer, 2016.

Li, B., Wang, R., Wang, G., Ge, Y., Ge, Y., and Shan, Y.
Seed-bench: Benchmarking multimodal llms with gener-
ative comprehension. arXiv preprint arXiv:2307.16125,
2023a.

Li, L., Xie, Z., Li, M., Chen, S., Wang, P., Chen, L., Yang,
Y., Wang, B., and Kong, L. Silkie: Preference distilla-
tion for large visual language models. arXiv preprint
arXiv:2312.10665, 2023b.

Liu, F., Lin, K., Li, L., Wang, J., Yacoob, Y., and Wang, L.
Mitigating hallucination in large multi-modal models via
robust instruction tuning. In The Twelfth International
Conference on Learning Representations, 2023.

Liu, H., Li, C., Li, Y., and Lee, Y. J. Improved baselines
with visual instruction tuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 26296–26306, 2024a.

Liu, H., Li, C., Li, Y., Li, B., Zhang, Y., Shen, S.,
and Lee, Y. J. Llava-next: Improved reason-
ing, ocr, and world knowledge, January 2024b.
URL https://llava-vl.github.io/blog/
2024-01-30-llava-next/.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction tun-
ing. Advances in neural information processing systems,
36, 2024c.

Liu, Y., Duan, H., Zhang, Y., Li, B., Zhang, S., Zhao, W.,
Yuan, Y., Wang, J., He, C., Liu, Z., et al. Mmbench:
Is your multi-modal model an all-around player? In
European conference on computer vision, pp. 216–233.
Springer, 2025.

Liu, Z., Lu, M., Zhang, S., Liu, B., Guo, H., Yang, Y.,
Blanchet, J., and Wang, Z. Provably mitigating overopti-
mization in rlhf: Your sft loss is implicitly an adversarial
regularizer. arXiv preprint arXiv:2405.16436, 2024d.

Lu, P., Bansal, H., Xia, T., Liu, J., Li, C., Hajishirzi,
H., Cheng, H., Chang, K.-W., Galley, M., and Gao,
J. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint
arXiv:2310.02255, 2023.

Masry, A., Long, D. X., Tan, J. Q., Joty, S., and Hoque,
E. Chartqa: A benchmark for question answering about
charts with visual and logical reasoning. arXiv preprint
arXiv:2203.10244, 2022.

Mathew, M., Karatzas, D., and Jawahar, C. Docvqa: A
dataset for vqa on document images. In Proceedings
of the IEEE/CVF winter conference on applications of
computer vision, pp. 2200–2209, 2021.

Min, Y., Chen, Z., Jiang, J., Chen, J., Deng, J., Hu, Y., Tang,
Y., Wang, J., Cheng, X., Song, H., et al. Imitate, explore,
and self-improve: A reproduction report on slow-thinking
reasoning systems. arXiv preprint arXiv:2412.09413,
2024.

OpenAI. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024a.

OpenAI. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024b.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 2024.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Tu, H., Cui, C., Wang, Z., Zhou, Y., Zhao, B., Han, J., Zhou,
W., Yao, H., and Xie, C. How many unicorns are in this
image? a safety evaluation benchmark for vision llms.
arXiv preprint arXiv:2311.16101, 2023.

Wang, K., Pan, J., Shi, W., Lu, Z., Zhan, M., and Li, H. Mea-
suring multimodal mathematical reasoning with math-
vision dataset. arXiv preprint arXiv:2402.14804, 2024a.

Wang, P., Bai, S., Tan, S., Wang, S., Fan, Z., Bai, J., Chen,
K., Liu, X., Wang, J., Ge, W., et al. Qwen2-vl: Enhancing
vision-language model’s perception of the world at any
resolution. arXiv preprint arXiv:2409.12191, 2024b.

Wang, X., Chen, J., Wang, Z., Zhou, Y., Zhou, Y., Yao,
H., Zhou, T., Goldstein, T., Bhatia, P., Huang, F., et al.
Enhancing visual-language modality alignment in large
vision language models via self-improvement. arXiv
preprint arXiv:2405.15973, 2024c.

10

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


Towards Rationale-Answer Alignment of LVLMs via Self-Rationale Calibration

Wang, Y., Cao, M., Lin, H., Han, M., Ma, L., Jiang, J.,
Cheng, Y., and Liang, X. Eaco: Enhancing alignment in
multimodal llms via critical observation. arXiv preprint
arXiv:2412.04903, 2024d.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Xu, G., Jin, P., Hao, L., Song, Y., Sun, L., and Yuan, L.
Llava-o1: Let vision language models reason step-by-
step. arXiv preprint arXiv:2411.10440, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2.5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yu, T., Yao, Y., Zhang, H., He, T., Han, Y., Cui, G., Hu,
J., Liu, Z., Zheng, H.-T., Sun, M., et al. Rlhf-v: To-
wards trustworthy mllms via behavior alignment from
fine-grained correctional human feedback. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13807–13816, 2024a.

Yu, T., Zhang, H., Yao, Y., Dang, Y., Chen, D., Lu, X., Cui,
G., He, T., Liu, Z., Chua, T.-S., et al. Rlaif-v: Aligning
mllms through open-source ai feedback for super gpt-
4v trustworthiness. arXiv preprint arXiv:2405.17220,
2024b.

Yue, X., Ni, Y., Zhang, K., Zheng, T., Liu, R., Zhang, G.,
Stevens, S., Jiang, D., Ren, W., Sun, Y., et al. Mmmu: A
massive multi-discipline multimodal understanding and
reasoning benchmark for expert agi. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9556–9567, 2024.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zhang, J., Wang, T., Zhang, H., Lu, P., and Zheng, F. Re-
flective instruction tuning: Mitigating hallucinations in
large vision-language models. In European Conference
on Computer Vision, pp. 196–213. Springer, 2025.

Zhang, R., Zhang, B., Li, Y., Zhang, H., Sun, Z., Gan, Z.,
Yang, Y., Pang, R., and Yang, Y. Improve vision lan-
guage model chain-of-thought reasoning. arXiv preprint
arXiv:2410.16198, 2024.

Zhao, Z., Wang, B., Ouyang, L., Dong, X., Wang, J., and
He, C. Beyond hallucinations: Enhancing lvlms through
hallucination-aware direct preference optimization. arXiv
preprint arXiv:2311.16839, 2023.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36:
46595–46623, 2023.

Zhou, Y., Cui, C., Rafailov, R., Finn, C., and Yao, H. Align-
ing modalities in vision large language models via pref-
erence fine-tuning. arXiv preprint arXiv:2402.11411,
2024a.

Zhou, Y., Fan, Z., Cheng, D., Yang, S., Chen, Z., Cui, C.,
Wang, X., Li, Y., Zhang, L., and Yao, H. Calibrated
self-rewarding vision language models. arXiv preprint
arXiv:2405.14622, 2024b.

Zhu, K., Zhao, L., Ge, Z., and Zhang, X. Self-supervised
visual preference alignment. In Proceedings of the 32nd
ACM International Conference on Multimedia, pp. 291–
300, 2024.

11



Appendix for Self-Rationale Calibration

In this appendix, we provide the details omitted in the main text, offering additional analyses and discussions.

• Appendix A: Additional implementation details of SRC (cf. Section 3 of the main paper).

• Appendix B: Additional experimental settings in this paper (cf. Section 4 of the main paper).

• Appendix C: Additional experiment results and discussions in this paper (cf. Section 4 of the main paper).

A. Implementation Details
A.1. Data Construction

In SRC, we adopt Qwen2-VL-72B (Wang et al., 2024b) to enhance our collected data samples by incorporating rationales
(visual clues) before the answers. This approach enables the rationale fine-tuned model to autonomously generate rationales
without requiring explicit prompts. The prompts used for data augmentation and filtering are illustrated in Figure 13.
During data augmentation, we employ the tags <perception> and <output> as special identifiers to distinguish the
rationale from the answer. In-context learning is achieved by providing a manually annotated sample case, which serves as
the most critical step in the process. Subsequently, during rationale fine-tuning, these tags are replaced with “Thinking:”
and “Output:”, while keeping the original question unchanged. This design choice is based on our early experiments,
which revealed that using placeholders with special symbols like <..> resulted in inferior model performance compared to
natural language expressions such as “Thinking:” and “Output:”. This finding is further discussed in Appendix C.3.
Following this, we employ Qwen-2.5-72B (Yang et al., 2024) to filter the augmented data. The filtering criteria primarily
evaluate whether the rationale is logical and fully supports the answer. If the rationale fails to effectively support the final
answer, it is excluded from the dataset. More samples can be viewed in Figure 14.

A.2. Candidate Generation

SRC employs a sentence-level beam search to generate diverse response candidates while ensuring inference efficiency.
Unlike standard beam search, which constructs the search tree at the token level, SRC builds the search tree at the sentence
level, where each leaf node corresponds to a complete sentence rather than a token. For the first layer of the search tree, we
expand the beam width to include five nodes (i.e., number of beams = 5), and for other layers, we randomly sample two
nodes per layer to maintain diversity while improving inference efficiency. The eos token id represents the token for a
period, with its value varying depending on the underlying LLM, while the maximum sentence length is set to 1024 tokens.
To avoid infinite loops, we implement mechanisms to eliminate sentence repetition and filter out undesired keywords, with
each sentence limited to a maximum of 100 tokens. Additionally, the diversity penalty is set to 3.0 for LLaVA-1.5 and 2.0
for LLaVA-Next, balancing the diversity and quality of the sampled candidates.

A.3. Pairwise Candidate Scoring

Why use Pairwise Candidate Scoring? A straightforward approach to scoring response candidates is to assign independent,
absolute scores to each response. However, independent scoring has limitations both methodologically and in implementation.
Methodologically, rationales differ from direct answers in that their semantics are less explicit and are inherently more
open-ended. This makes it difficult for independent scoring to capture the relative differences between rationales, as it lacks
the ability to determine whether one candidate is better or worse compared to others. From an implementation perspective,
we observed that open-source LLMs exhibit noticeable scoring biases when assigning absolute scores (see Figure 11).
For instance, certain models, such as GPT-4o-mini, tend to cluster scores around 1 and 4, whereas others, like GPT-4o,
skew towards 0 and 5. These biases complicate the preference curation process, as many candidates end up with identical
scores, making it challenging to distinguish between preferred and non-preferred responses. To evaluate this approach, we
further conducted a detailed analysis of the model’s performance, as provided in Appendix C.1.
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C
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Figure 11. The distributions of independent scoring through recent advanced LLMs. The scoring prompt is detailed in Figure 16.

Why use LLMs instead of MLLMs for scoring? We opted for LLMs over MLLMs in the scoring process due to findings
from prior research (Chen et al., 2024a), which highlighted the limitations of MLLMs in evaluative tasks (such as scoring
and batch ranking) compared to LLMs. These limitations make LLMs a more reliable choice for our scoring strategy.

Implementation. The scoring prompt is presented in Figure 15. For LLMs, the evaluation of response candidates focuses
on two key aspects: (1) the correctness of visual elements (i.e., the alignment between vision and text), which is achieved
through factual verification, and (2) the coherence between the rationale and the answer, leveraging the “LLM-as-a-judge”
capabilities. The scoring scale ranges from −5 to 5. During our experiments, we observed notable variations in scores
depending on the order of the candidates. To mitigate this issue, we implemented bidirectional scoring, as elaborated in the
main paper. Additionally, we incorporated a scoring case into the prompt to enhance scoring stability through in-context
learning. Once the scoring matrix for each sample was obtained, we calculated the absolute scores for each candidate to
derive confidence-weighted winning scores, which were subsequently used for preference curation.

B. Experiment Details
B.1. LoRA in Rationale and Preference Fine-tuning

During the rationale calibration stage, the LoRA ranks for LLaVA-1.5 and LLaVA-Next are set to 4 and 32, respectively,
with their corresponding LoRA learning scales set to twice the rank. The learning rates for both models are set to 1e-5. In
the preference fine-tuning stage, the LoRA rank for both LLaVA-1.5 and LLaVA-Next is set to 256, with a learning scale of
512 and a learning rate of 5e− 7. For DPO, the regularization weight β is set to 0.1. Additionally, we incorporate an SFT
loss following RPO (Liu et al., 2024d), with the loss weight for the SFT term set to 0.02. The iterative training is carried out
over three iterations.

B.2. Data Construction of SRC

We curated a training set of 57K samples from 11 popular datasets in LVLMs, encompassing three major categories:
perception & world knowledge, chart understanding, and math & science. Detailed descriptions of each dataset and their
respective contributions to the SRC training set are provided in Table 4. Before data augmentation, we applied rigorous
filtering to remove general knowledge that does not require visual context for answering, which is often found in datasets
like LLaVA-150k and ShareGPT-4V. This ensured that only QA pairs strongly tied to visual content were retained. After
augmentation (Section 3.1), the final dataset comprised 43K samples, with examples shown in Figure 14. For the rationale
fine-tuning and DPO calibration phases, we prioritized non-redundant entries and maintained a 2:1:1 ratio across the three
major categories. Within each category, uniform sampling was employed to ensure diverse coverage of all data types.

B.3. Data Construction of R-Scorer

The training of R-Scorer involves learning a pair-scoring process. We sampled 40K pairwise comparison examples generated
by LLaVA-1.5, selecting candidates across different categories in a 2:1:1 ratio. To enhance the model’s scoring sensitivity
to the order of candidates, each pair of candidates was swapped, resulting in two samples for the R-Scorer training dataset
(essentially incorporating 20K unique pairs of candidates). These samples were scored using GPT-4o-11-20, followed by
manual curation to filter out anomalies—such as samples with high scoring variance after swapping candidate order—and
resampling using a normal distribution. This process resulted in a final training set of 21K examples, as shown in Figure 19.
Notably, the training process does not involve explicit factual checking. However, our experiments demonstrate that the
model can generalize to consider factual correctness effectively.
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Category Dataset Description # of items

Perception &
World Knowledge

LLaVA-150k (Liu et al., 2024c) Focuses on multimodal conversations generated by
GPT-4V for advancing VQA and related tasks 7155

ShareGPT-4V (Chen et al., 2025)
GQA (Hudson & Manning, 2019) Compositional question answering over images with rea-

soning and relational understanding
5574

IDK (Min et al., 2024) Explores uncertainty and knowledge gaps in visual ques-
tion answering tasks

2842

TallyQA (Acharya et al., 2019) Centers on counting-based reasoning tasks across diverse
image domains

2980

VizWiz (Gurari et al., 2018) Assists visually impaired users with real-world images
and questions

1993

OODVQA (Tu et al., 2023) Addresses out-of-distribution generalization challenges
in VQA

667

Chart Understanding
ChartQA (Masry et al., 2022) Focuses on interpreting graphical data through question

answering
7761

DocVQA (Mathew et al., 2021) Requires understanding textual and structural informa-
tion in scanned documents

4734

Math & Science
MathVision (Wang et al., 2024a) Combines symbolic and visual reasoning to solve mathe-

matical problems
1443

AI2D (Kembhavi et al., 2016) Advances diagram understanding through visual and
textual question answering

7887

Table 4. Overview of datasets sampled in SRC. It includes three categories and 11 datasets commonly used in training of LVLMs.

Strategy / Models (1 iteration) Overall CP FP IR LR Math S&T

Seed Model (LLaVA-1.5 baseline) 34.7 57.6 26.0 45.6 28.0 28.4 22.8

Independent scoring + Qwen-2.5-72B 35.3 58.4 27.2 40.0 32.4 31.2 22.4

Score by count + R-Scorer 35.4 58.0 20.8 48.0 32.0 29.2 24.4
Score by sum (w/o fact check) + R-Scorer 35.2 59.2 26.4 40.4 33.6 30.4 21.2
Score by sum + R-Scorer-7B 36.8 59.6 32.8 40.4 33.2 31.2 23.6
Score by sum + R-Scorer-1.5B (default) 36.5 59.2 33.6 40.8 32.8 30.0 22.8

Score by sum + Qwen-2.5-72B 36.3 59.2 32.0 40.8 31.6 29.2 25.0
Score by sum + LLaMA-3.1-70B 36.1 58.8 31.6 41.2 31.2 28.8 25.0

Table 5. Comparison of scoring strategies and models. The evlauation benchmark is MMStar (Chen et al., 2024c). CP: Coarse
Perception, FP: Fine-grained Perception, IR: Instance Reasoning, LR: Logical Reasoning, S&T: Science and Technology.

B.4. Prompt for Baseline Models in Evaluation

In Table 3, we also evaluated the performance of the original baseline models (LLaVA-1.5 and LLaVA-Next) using a
rationale prompt designed to achieve “providing a rationale before answering”. The prompt used during the experiments was
as follows: “<image><question> Please think step-by-step and follow the output format: Thinking: xxx Output: xxx”.
For LLaVA-1.5, we found that this prompt consistently failed to elicit a rationale from the model, likely due to the weaker
LLM capabilities of Vicuna in LLaVA-1.5. In contrast, LLaVA-Next (LLaMA-3) was able to generate rationales using the
rationale prompt. From Table 3, we observe that while this approach improved the model’s performance on math-related
solutions, it led to a decline in performance on other types of tasks, such as perception and logical reasoning.

C. More Experiments and Discussions
C.1. Comparison of Scoring Strategies and LLMs

In this section, we present the results of scoring strategies on improving model performance during the calibration process.
We also provide a comparative analysis of independent scoring and experiments with larger-scale R-Scorers.

Independent Scoring. In this scoring process, the LLM assigns scores to each response candidate independently and then
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Ablation Overall CP FP IR LR Math S&T

LLaVA-1.5-7B (baseline) 32.1 59.2 25.2 39.6 24.4 24.0 20.4
(i) without special tag 34.2 59.6 26.4 41.6 26.8 26.0 24.8
(ii) <thinking>+<output> 29.4 55.6 19.4 38.0 20.8 23.2 19.6
(iii)[thinking]+[output] 31.3 57.2 21.8 38.4 25.2 25.2 20.0
(iv) Thinking+Output (default) 34.7 57.6 26.0 45.6 28.0 28.4 22.8

Table 6. Evaluation of response format in rationale fine-tuning. The evlauation benchmark is MMStar (Chen et al., 2024c). CP: Coarse
Perception; FP: Fine-grained Perception; IR: Instance Reasoning; LR: Logical Reasoning; S&T: Science and Technology.

Ablation Overall CP FP IR LR Math S&T

LLaVA-1.5-7B 32.1 59.2 25.2 39.6 24.4 24.0 20.4
+ Prompt control - - - - - - -
+ SFT w/o rationale 33.7 59.6 24.4 40.4 26.0 29.2 22.8
+ SRC w/o Rationale Fine-tune 34.0 60.0 28.8 41.2 31.6 28.8 23.6
+ SRC (default) 38.9 61.6 33.2 43.6 32.8 33.2 28.8

LLaVA-Next-8B 42.6 63.6 41.2 54.8 40.4 29.6 26.4
+ Prompt control 40.8 62.4 37.2 52.0 35.2 35.6 22.4
+ SFT w/o rationale 42.7 62.0 38.0 53.2 38.4 35.2 27.6
+ SRC w/o Rationale Fine-tune 44.2 62.8 43.6 54.0 47.6 31.6 27.6
+ SRC (default) 47.6 69.2 45.6 52.4 45.6 39.6 33.2

Table 7. Ablation of CoT prompting and rationale fine-tuning. The evlauation benchmark is MMStar (Chen et al., 2024c). CP: Coarse
Perception; FP: Fine-grained Perception; IR: Instance Reasoning; LR: Logical Reasoning; S&T: Science and Technology.

selects preferred and non-preferred candidates for iterative calibration. The prompt template used is illustrated in Figure 16,
where the pairwise scoring-related components are removed while retaining the “question”, “response candidate”, “factual
check”, and “reference answer”. The experimental results are shown in Table 5, where we observe that with the same scoring
model (Qwen-2.5-72B), the pairwise scoring strategy employed in SRC significantly outperforms the independent scoring
strategy. The improvement is particularly notable in fine-grained perception capability (+6.4).

Larger R-Scorer. Using Qwen-2.5-7B (Wang et al., 2024b) as the base LLM, we performed LoRA fine-tuning (rank=16)
with consistent scoring training data, as detailed in Section 3.5. The results indicate that a larger R-Scorer provides overall
better calibration performance, particularly in categories such as reasoning, mathematics, and science & technology. We
attribute this improvement to the larger LLM’s enhanced reasoning and world knowledge capabilities, enabling it to better
capture rationale differences in these areas and select superior preference pairs for calibration. However, considering the
4–5x inference burden, we choose the 1.5B version of R-Scorer in SRC for a more balanced trade-off.

C.2. More results and visualizations

In this section, we provide additional experimental results and visualizations. The complete results of the ablation studies
are shown in Table 7. We also present the scoring visualizations of the R-Scorer, as illustrated in Figure 18. Instead of
directly outputting scores, the R-Scorer first provides a concise rationale before assigning a score. In Figure 17, we include
additional responses from LLaVA-Next after applying SRC, further demonstrating the effectiveness of the model’s rationale.

C.3. Response Format in Rationale Fine-tuning

During the rationale fine-tuning phase, we introduced specific tags to assist the model in distinguishing between rationale
and answer segments. Four variants were evaluated in our experiments: (i) no special tags, (ii) using “<thinking>”
and “<output>” tags, (iii) employing “[thinking] and [output]” tags, and (iv) utilizing natural language-like
expressions such as “Thinking and Output”. The results, tabulated in Table 6, reveal that the model’s performance
significantly degraded after rationale fine-tuning when explicit special tags (variants ii and iii) were introduced. This
indicates that special tags might disrupt the model’s inherent logical structure during language generation, leading to
decreased performance. In contrast, when no tags were applied (variant i) or natural language-style tags (variant iv) were
used, the rationale effectively improved the quality of the answers. Remarkably, even without the subsequent rationale
calibration process, the model demonstrated enhanced overall capabilities.
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(a) LLaVA-1.5 (b) LLaVA-Next

Figure 12. Confidence distribution of preferred and non-preferred candidates for LLaVA-1.5 (Liu et al., 2024a) and LLaVA-Next (Liu
et al., 2024b). The sampling probability is computed by normalizing the logits of each candidate through the SoftMax function.

C.4. The Confidence of Preferred and Non-preferred Candidates

One inevitable challenge in the scoring process is the presence of multiple candidates with similar quality, which may
cause LLMs to assign neutral scores. Additionally, the inherent preference biases of LLMs can lead to suboptimal scoring
outcomes. Thus, we incorporate the confidence of response candidates as a post-processing step to refine the scoring results.
Here, we analyze the relationship between curated candidates and their confidence levels. Our findings reveal that the
preferred candidates from both LLaVA-1.5 and LLaVA-Next generally exhibit higher confidence compared to non-preferred
candidates. The difference in confidence between preferred and non-preferred candidates is slightly more noticeable for
LLaVA-Next. These results indicate a positive correlation between response candidates and their confidence scores; however,
it is important to note that low confidence does not necessarily imply that a candidate is non-preferred.
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Please augment each JSON-formatted dialogue by adding visual clues to 
{{"from": "gpt", "value": "xxxx"}} responses based on the user's question ({{"from": "human"}}).

# Instructions:
1. Add visual clues in <perception> tags for each {{"from": "gpt", "value": "xxxx"}} response. These clues should support the 
final answer by first identifying the relevant objects and then providing reasoning based on the visual clues.
2. Do not modify the original "value": "xxxx". It must be enclosed within <response> tags.

# Rules (the content in the <perception> tag):
1. The visual clues should provide reasoning in a natural flow, first locating the objects, then identifying key features relevant 
to the question, and finally supporting the answer based on these features.
2. Do not directly answer the question in the <perception> tag.
3. If the question does not require visual clues to answer, output "No perception required." in the tag.

# Sample:
{
    "id": "xxxx",
    "image": "coco/train2017/xxxx.jpg",
    "conversations": [
        {
            "from": "human",
            "value": "<image_1>\nHow many giraffes are in the image?"
        },
        {
            "from": "gpt",
            "value": "<perception>In the image, a giraffe is clearly visible on the left side, with its long neck and spotted coat 
standing out against the background. Another giraffe can be seen in the middle of the frame, its full body in view and slightly 
taller than the first. Both giraffes are easily distinguishable based on their unique patterns and long necks.</perception> 
<response>There are two giraffes in the image.</response>"
        }
    ]
}

# Input: {input}

You will receive a JSON of a multimodal model conversation. 
Your task is to check the validity of the visual reasoning path in the <perception> tag restrictly.

# Guideline：
* Valid reasoning path: The model should be able to reach the response in the <response> tag through the visual reasoning 
path in the <perception> tag. The reasoning path must be logical and fully support the response in the <response> tag.
* Invalid reasoning path: The path does not lead to the result in the <response> tag or does not provide any helpful 
information for the response in the <response> tag.

# Output：
* If the reasoning path is valid, return 'valid'. 
* If the reasoning path is invalid, return 'invalid' with a brief reason in parentheses.

Now, please check: {input}

AUGMENT

FILTER

Figure 13. The prompt for augmenting the VQA samples and filtering low-quality augmented samples. For different VQA datasets
(e.g., perception and math solution), we manually design different samples for in-context learning.
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Question: Is this man skiing in the trees?

Thinking: The skier is on a clear path without any 
immediate obstacles such as trees, suggesting he is not 
skiing through the trees.
Output: No

Perception:

Question: Is this Bibsy?

Thinking: The image shows a yellow package with a 
barcode and some text, including ‘www.mms.com’. 
There is no indication or visual clue that suggests this is 
related to Bibsy. Output: No, this is not Bibsy.

World Knowledge:

Question: What is the first data in orange line?

Thinking: The first data point on the orange line, which 
represents U.S. confidence in Putin, is located at the far 
left of the graph. This point corresponds to the year 2003 
and has a value of 41%, indicating that 41% of Americans 
had confidence in Putin at that time.
Output: 41%

Chart:

Question: What is the red letter on the plane?

Thinking: The image is in black and white, making it 
impossible to determine the color of any objects or 
letters on the plane. Output: There is no red letter on 
the plane in the picture as it's a black and white photo.

Perception:

Math:

Question: The diagram shows an equilateral triangle 
and a regular pentagon. What is the value of $x$? 

Thinking: The diagram illustrates an equilateral triangle 
and a regular pentagon sharing a common vertex. The 
interior angle of a regular pentagon is 108 degrees, and 
since the triangle is equilateral, each of its angles 
measures 60 degrees. The value of x can be found by 
subtracting the interior angle of the pentagon from the 
straight angle formed at the shared vertex, which is 180 
degrees. Therefore, x = 180 - 108. Output: Answer is 132.

Figure 14. The augmented QA data samples used in SRC. The samples are augmented by Qwen2-VL-72B (Wang et al., 2024b).

You are a precise evaluator of model response quality.

Each Response has two part, i.e., “Thinking” part (Thinking: xxx) and “Output” part (Output: xxx). Your task is to compare 
Response A and Response B based on the provided question, their corresponding factual checks, and the reference (golden) 
answer. 

# Please evaluate from the following perspectives:
0. The **top** priority: The Output of a good response MUST be aligned with the Output of the reference answer.
1. Whether the response‘s “Thinking” part contains content that is counter-intuitive to the image facts (for example, 
outputting something that does not exist).
2. Whether the response’s “Thinking” part can effectively support the “Output” part.

# Score criteria:
- The comparison score ranges from **-5 to 5**. The sign of the score MUST clearly reflect which response is superior: Positive 
score (+): A > B | Negative score (-): B > A
- If Response A is better than Response B, MUST assign a **positive** score (closer to 5).
- If Response B is better than Response A, MUST assign a **negative** score (closer to -5).

# Return
Please first evaluate the response in ONLY one sentence and return the final score at the end. The score is wrapped with the 
<> symbol (for example, <5>, <-5>).

# Example:
(A is better than B => MUST give a **positive** score): Response A describes xxx correctly, which is visible in the image, while 
Response B inaccurately describes counter-factual xxxx. Therefore, Response A is more accurate and reliable. <X>
(B is better than A => MUST give a **negative** score): Response A incorrectly describes xxx, which is not visible in the image, 
while Response B accurately describes xxxx without any counter-intuitive content. Therefore, Response B is more accurate and 
reliable. <-X>

---
Now please make an evaluation. The image corresponding question is: {question}
---
Response A: {response_a}
Factual Check of Response A: {check_a}
---
Response B: {response_b}
Factual Check of Response B: {check_b}
---
Reference Answer: {reference_answer}

Pair-wise Scoring

Figure 15. The Pairwise Scoring prompt adopted in Section 3.2 for LLMs.
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You are a precise evaluator of model response quality.

Each Response has two part, i.e., "Thinking" part (Thinking: xxx) and "Output" part (Output: xxx). Your task is to compare 
Response A and Response B based on the provided question and the reference (golden) answer. 

# Please evaluate from the following perspectives:
0. The **top** priority: The "Output" of a good response MUST be aligned with the "Output" of the reference answer.
1. Whether the response's "Thinking" part contains content that is close to the "Thinking" of the reference answer.

# Score criteria:
- Score ranges from **0 to 5**. The sign of the score MUST clearly reflect which the above perspectives.
- A score of **0** means the response is very poor.
- A score of **5** means the response is excellent.

# Return
Please first evaluate the response in ONLY one sentence and return the final score at the end. The score is wrapped with the 
<> symbol (for example, <5>).

---
Now please make an evaluation. The image corresponding question is: {question}
---
Response: {response_a}
Factual Check of Response A: {check_a}
---
Reference Answer: {reference_answer}

Independent Scoring

Figure 16. The independent scoring prompt adopted in Appendix 3.2 using LLMs.

Question: What is the dominant feature in the image?

LLaVA-Next-8B: The city skyline.

+ SRC: Thinking: The image prominently displays a tall building 
towering over the cityscape. The buildings, including the skyscraper, 
are the most prominent architectural elements in the scene. Output: 
The buildings are the dominant feature in the image.

Coarse Perception: Question: How many apples are there in the image? 
And how many bananas are there?

LLaVA-Next-8B: 2 apples and 1 banana.

+ SRC: Thinking: In the image, there is one apple located 
towards the left side and one banana positioned towards the 
right side. Output: 1 apple and 1 banana

Fine-grained Perception:

Instance Reasoning: Question: What is the relationship between the people 
in the image?

LLaVA-Next-8B: Professional Relationship

+ SRC: Thinking: The two individuals are standing close to each 
other, smiling, and appear to be enjoying their time together. They 
are both holding snowboards, suggesting they share a common 
interest in snowboarding. Their body language and proximity 
indicate a friendly relationship. Output: Friend Relationship

Hallusionbench: Question: Is the right orange circle the same size as the left 
orange circle?

LLaVA-Next-8B: Yes, the orange circles on the right and left are the 
same size. They are both centered within their respective groups of 
circles and appear to be of equal diameter.

+ SRC: Thinking: The right orange circle appears to be larger than 
the left orange circle, as it covers more of the surrounding area. 
Output: No

Right is larger

Hallusionbench: Question: According to the information provided in the table, 
does the album “Midnights” have a sale of 422,000 in 2022?

LLaVA-Next-8B: Yes, according to the table, the album 
"Midnights" by Harry Styles has a sale of 422,000 in 2022.

+ SRC: Thinking: The table shows that the album 'Midnights' by 
Harry Styles had a sale of 1,818,000 in 2022. This is indicated by 
the entry of the 'Sale' column for that specific album. Output: No

(information edited)

“Midnights”: 1,818,000

(image edited)

Instance Reasoning: Question: According to the table, what was the rate of change 
between 2014 and 2015? (Unit: employees per year)

LLaVA-Next-8B: -2

+ SRC: Thinking: The table shows the number of employees with 
health care benefits from 2012 to 2016. For the year 2014, there 
were 23 employees, and in 2015, there were 22 employees. The 
difference between these two numbers is 1 employee. Output: -1

Math: Question: What is the fraction of females facing the camera?

+ SRC: Thinking: In the image, there are five individuals facing the 
camera. Four of them are clearly visible and identifiable as 
females. This observation leads to the conclusion that the fraction 
of females facing the camera is four out of five, which corresponds 
to the option C. Output: C (0.8)

LLaVA-Next-8B: 1.0

Math: Question: How many items sold less than 5 units in at least one store?

+ SRC: Thinking: The bar chart shows four items: very, mill, cop, and 
dot. Each ... By examining the heights of these bars, we can see that 
very and mill have bars that do not reach the 5-unit mark in either 
store. This observation leads us to conclude that there are two items 
selling less than 5 units in at least one store. Output: Two items

LLaVA-Next-8B: 3 items

Figure 17. Various QA scenarios. The baseline model of LLaVA-Next-8B outputs incorrect responses. The cases are selected from
MMStar (Chen et al., 2024c) and HallusionBench (Guan et al., 2023).
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Question: How many police officers are in the image?

Candidate #1: Thinking: A slice of coffee cake is placed on a glass plate, which is typically used for serving desserts. This suggests that the coffee cake is 
intended to be served as a dessert. Output: Dessert

Candidate #2: Thinking: The coffee cake is placed on a table, and there is a cup of coffee nearby, suggesting that it is meant to be enjoyed with a hot beverage. 
This combination is commonly associated with breakfast. Output: The coffee cake is intended to be served with coffee, which is typically associated with 
breakfast.

R-Scorer: Response A incorrectly identifies the coffee cake as a dessert, while Response B suggests it is for breakfast, which is 
closer to the reference answer's context of a morning or lunchtime meal, making Response B slightly more aligned with the 
reference. <-2>

Question: How much did investment in personalized medicine grow between 2006 and 2010?

Candidate #1: Thinking: The bar representing the year 2010 shows an increase in investment compared to the previous year. The height of the bar indicates 
the percentage change in investment. In this case, the bar reaches up to 51%, which is the percentage increase in investment during that period. Output: 51

Candidate #2: Thinking: The bar chart shows two bars representing the investment in personalized medicine from 2006 to 2015. For the period 2006-
2010, there is a bar that reaches up to 77% on the y-axis, indicating the growth in investment during that time frame. Output: 77

R-Scorer: Response A incorrectly identifies the growth percentage as 51%, while Response B also incorrectly identifies it as 77%; 
however, both responses fail to match the reference output of 73%. In terms of the \"Thinking\" part, Response B is closer to the 
reference by correctly identifying the relevant period, but it still provides an incorrect percentage. Therefore, Response B is slightly 
better in terms of understanding the context, but both responses fail in the output alignment. <-1>

Question: What prominent structure can be seen in the background besides the city buildings?

Candidate #1: In the background, there is a large structure with a distinctive shape and color, which is characteristic of a Ferris wheel. This structure stands 
out against the cityscape and the river. Output: A Ferris wheel can be seen in the background of the image, along with the city buildings and the river.

Candidate #2: Thinking: A large structure with a distinctive white top can be seen in the background, towering above the cityscape. This structure is 
easily recognizable due to its height and unique design. Output: A prominent structure in the background besides the city buildings is the London Eye, a 
giant Ferris wheel.

R-Scorer: Response A provides a more detailed and accurate description of the Ferris wheel, aligning well with the reference 
answer and the factual checks, while Response B inaccurately describes the Ferris wheel as a white top. <3>

Question: Is the cat spotted in the image?

Candidate #1: Thinking: The image shows a cat with distinct black patches on its fur. The cat's fur pattern is clearly visible, indicating that it is indeed spotted. 
Output: Yes, the cat is spotted in the image.

Candidate #2: The image shows a cat with distinct black patches on its fur. These patches are clearly visible and cover a significant portion of the cat's 
body. Output: Yes, the cat is spotted in the image.

R-Scorer: Response A is more aligned with the reference answer as it correctly identifies the cat's fur pattern as spotted, while 
Response B incorrectly states that the black patches cover a significant portion of the cat's body. <3>

Figure 18. The scoring cases of R-Scorer. Though the answers/visual elements are often correct (green), the rationales may be
counterfactual (red) or insufficient (orange). The pair-wise scorer can capture subtle diffences between candidates.
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Towards Rationale-Answer Alignment of LVLMs via Self-Rationale Calibration

Input：

You are tasked with evaluating the quality of model responses based on a given question and a reference (golden) answer. 
Each response consists of two parts:
1.Thinking: The reasoning process behind the response.

2.Output: The final answer provided by the model.
Evaluation Criteria
1.Top Priority: The "Output" of a good response must align with the "Output" of the reference answer.

2.Thinking Alignment: The "Thinking" part of the response should be close to the "Thinking" of the reference answer.
Scoring System
•Score Range: -5 to 5

• Positive Score (+): Indicates that Response A is better than Response B.

• Negative Score (-): Indicates that Response B is better than Response A.

•Score Assignment:

• If Response A is better, assign a positive score (closer to 5).

• If Response B is better, assign a negative score (closer to -5).
Evaluation Example
•Positive Score Example: "Response A describes xxx correctly, which is visible in the image, while Response B inaccurately 
describes counter-factual xxxx. Therefore, Response A is more accurate and reliable. <X>"

•Negative Score Example: "Response A incorrectly describes xxx, which is not visible in the image, while Response B accurately 
describes xxxx without any counter-intuitive content. Therefore, Response B is more accurate and reliable. <-X>"
Current Evaluation Task
Question: What color is the traffic light in the image?
Responses:
•Response A:

• Thinking: The image shows a traffic light with three distinct colors: red, yellow, and green. The red light is clearly 
visible, indicating that vehicles must stop.

• Output: The traffic light in the image is red.

•Response B:

• Thinking: The image shows a traffic light with three distinct colors: red, yellow, and green. The red light is clearly 
visible, indicating that vehicles must stop. The yellow light is partially obscured by the fog, but it is still visible enough 
to see its color. The green light, which is the signal for vehicles to proceed, is also partially obscured by fog but can still 
be seen.

• Output: The traffic light in the image has a red, yellow, and green light. The red light is currently showing, indicating 
that vehicles must stop. The yellow light is partially obscured by the fog, but it is still visible enough to see its color.

Reference Answer:
•Thinking: The traffic light in the image has three distinct sections, each with a different colored light. The top section is red, 
the middle section is yellow, and the bottom section is green. The yellow light is currently illuminated.

•Output: The traffic light in the image is displaying the yellow color.

Data Sample of Training R-Scorer

Output：

Response A incorrectly identifies the traffic light as displaying red when the reference indicates it is displaying yellow, while 
Response B provides additional, albeit unnecessary, details but still misidentifies the illuminated color as red. Therefore, both 
responses fail to align with the reference, but Response B's expanded explanation of the traffic light structure slightly adheres 
more closely to the "Thinking" of the reference. <-2>

Figure 19. Training samples of R-Scorer. The factual check is not involved in the training stage.
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