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Abstract

Recently there has been a surge of interest to de-
ploy confidence set predictions rather than point
predictions in machine learning. Unfortunately, the
effectiveness of such prediction sets is frequently
impaired by distribution shifts in practice, and
the challenge is often compounded by the lack
of ground truth labels at test time. Focusing on a
standard set-valued prediction framework called
conformal prediction (CP), this paper studies how
to improve its practical performance using only
unlabeled data from the shifted test domain. This
is achieved by two new methods called ECP and
EACP, whose main idea is to adjust the score func-
tion in CP according to its base model’s own uncer-
tainty evaluation. Through extensive experiments
on a number of large-scale datasets and neural
network architectures, we show that our methods
provide consistent improvement over existing base-
lines and nearly match the performance of fully
supervised methods. Our code can be found at:
https://github.com/uoguelph-mlrg/EaCP.

1 INTRODUCTION

Advances in deep learning are fundamentally changing the
autonomous decision making pipeline. While most works
have focused on accurate point predictions, quantifying the
uncertainty of the model is arguably as important. Taking
autonomous driving for example: if a detection model pre-
dicts the existence of an obstacle, it would be reasonable
to take different maneuvering strategies depending on the
confidence of the prediction. But is that reliable? In a possi-
ble failure mode, the model could report 60% (resp. 99%)
confidence, but the probability of an obstacle actually show-
ing up is 99% (resp. 60%). Such discrepancy between the

†Work done while visiting Harvard University.

model’s own uncertainty evaluation and the ground truth
probability (or post-hoc frequency) is commonly observed
[Guo et al., 2017, Liang et al., 2023], and can compromise
the safety in downstream decision making.

Set-valued prediction provides an effective way to address
this problem [Chzhen et al., 2021], with conformal predic-
tion (CP; Vovk et al., 2005) being a well-known special case.
Given a fixed black-box machine learning model (called
the base model) and a covariate xtest, the goal of CP is
to generate a prediction set Ctest that contains (or, covers)
the unknown ground truth label ytest with a pre-specified
probability. Crucially, CP relies on the assumption that the
distribution of the data stream is exchangeable (a weaker
variant of i.i.d.), which allows the fairly straightforward
inference of ytest from xtest and the base model’s perfor-
mance on a pre-collected calibration dataset. Note that the
ground truth label ytest does not need to be revealed after
the set prediction is made: exchangeability together with a
large enough labeled calibration dataset is sufficient to en-
sure the desirable coverage probability. This is particularly
important for autonomous decision making, where real-time
data annotation is expensive or even infeasible.

However, real-world data streams are usually corrupted by
all sorts of distribution shifts, violating the exchangeability
assumption. Even when the data stream itself is exchange-
able, we often want to continually update the base model
rather than keeping it fixed, and this can be effectively un-
derstood as a distribution shift in the context of CP. In
such cases, simply applying exchangeability-based methods
could lead to highly inaccurate prediction sets [Tibshirani
et al., 2019, Bhatnagar et al., 2023a, Kasa and Taylor, 2023].
Therefore, making CP compatible with distribution shifts
has become a focal point of recent works.

A number of solutions have been proposed, but the key chal-
lenge still remains. For example, Gibbs and Candes [2021]
formulated the connection between CP and Online Convex
Optimization (OCO; Zinkevich, 2003), and the latter is able
to handle arbitrarily distribution-shifted environments. The
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weakness is that ground truth labels are now required at
test time (which we call full supervision), as opposed to the
standard CP procedure. In the other direction, there are CP
methods that combat distribution shifts without test time
labels [Tibshirani et al., 2019, Barber et al., 2023, Cauchois
et al., 2024], but they typically assume the distribution shifts
are “easy”, such that even without labels, we can still rigor-
ously infer the test distribution to a certain extent using the
labeled calibration dataset. Overall, it appears that handling
both difficulties – distribution shifts and the lack of test time
labels – is a formidable but important remaining challenge.

Contributions Focusing on classification, this paper de-
velops practical unsupervised methods to improve the ac-
curacy degradation of CP prediction sets under distribution
shifts. The overarching idea is to exploit the uncertainty eval-
uation of the base model itself. Although such a quantity
is not always calibrated in a strict sense, it has been con-
sistently observed to strongly correlate with the magnitude
of distribution shifts [Hendrycks and Gimpel, 2017, Wang
et al., 2021, Kang et al., 2024], thus providing a valuable
way to probe the test distribution without label access. Under
this high level idea, we make the following contributions.

• First, we propose a new CP-inspired method named
ECP (Entropy scaled Conformal Prediction). The key idea
is to scale up the score function in standard CP by an
“entropy quantile” of the base model, calculated on the
unlabeled test dataset, which measures the base model’s
own uncertainty on the test distribution.
More precisely, given each covariate xtest at test time, the
score function in standard CP is determined by the fixed
base model, and assigns each candidate label a “propensity
score”. Then, the CP prediction set Ctest simply includes
all the candidate labels whose score is above a certain
threshold.1 By scaling up the score function while keep-
ing the threshold fixed, ECP makes the prediction sets
larger, which naturally corresponds to the intuition that
the uncertainty of prediction should be inflated under dis-
tribution shifts. Moreover, the amount of such inflation is
strongly correlated with the magnitude of the distribution
shift, through the use of the entropy quantile.

• Second, we refine ECP using techniques from unsuper-
vised Test Time Adaptation (TTA) [Niu et al., 2022],
and the resulting method is named EACP (Entropy base-
adapted Conformal Prediction). The key idea is that while
ECP keeps the base model fixed at test time, we can con-
currently update it using entropy minimization [Grand-
valet and Bengio, 2004, Wang et al., 2021] – a widely
adopted idea in unsupervised TTA, alongside the afore-
mentioned entropy scaling. This “adaptively” reduces the
scaling effect that ECP applies to the score function, thus

1The score functions are assumed to be positively oriented
[Sadinle et al., 2019]: labels with larger score are more likely to be
included in the prediction set.

shrinking the prediction sets of ECP smaller.
• Finally, we evaluate the proposed methods on a wide

range of large-scale datasets under distribution shifts, as
well as different neural network architectures. We find
that exchangeability-based CP (with and without TTA on
the base model) consistently leads to lower-than-specified
coverage frequency. However, despite the absence of prac-
tical statistical guarantees in this setting, our methods can
effectively mitigate this under-coverage issue while keep-
ing the sizes of the prediction sets moderate. Furthermore,
our methods also significantly improve the prediction sets
generated by the base model itself (without CP). It shows
that by bridging the CP procedure (which is statistically
sound) and the base model’s own uncertainty evaluation
(which is often informative), our methods enjoy the prac-
tical benefit from both worlds.

Related works Considerable efforts have been devoted to
developing CP methods robust to distribution shifts, which
can be approximately categorized into two directions. The
first direction does not require test time labels [Tibshirani
et al., 2019, Cauchois et al., 2024], but the distribution shift
is assumed to be simple in some sense. The second direction
is connecting CP to adversarial online learning [Gibbs and
Candes, 2021], but the true labels are required at test time.
Due to space constraints, a thorough discussion is deferred
to Appendix A, as well as a number of applications that
motivate this work.

Our techniques are inspired by core ideas in (unsupervised)
TTA, whose goal is to update a trained machine learning
model at test time, using unlabeled data from shifted distri-
butions. To achieve this, one could update the batch-norm
statistics on the test data [Nado et al., 2020, Schneider et al.,
2020, Khurana et al., 2021], or minimize the test-time pre-
diction entropy – a natural measure of the model’s uncer-
tainty [Wang et al., 2021, Zhang et al., 2022, Niu et al., 2022,
Song et al., 2023, Press et al., 2024]. Notably, these meth-
ods can be applied to any probabilistic and differentiable
model (such as modern neural networks), which is naturally
congruent with the key strength of CP. However, to date
this line of works has not been connected to the conformal
prediction literature.

2 PRELIMINARIES OF CP

We begin by introducing the standard background of CP
without distribution shifts. For clarity, we assume i.i.d. data
in our exposition, rather than the slightly weaker notion of
exchangeability. Also see [Roth, 2022, Angelopoulos and
Bates, 2023, Tibshirani, 2023].

Let D be an unknown distribution on the space X × Y of
covariate-label pairs, and let α ∈ (0, 1) be the error rate we
aim for. Given a calibration dataset D consisting of n i.i.d.
samples {x∗

i , y
∗
i }i∈[n] ∼ Dn, the goal of CP is to generate



a set-valued function C : X → 2Y , such that

P(xtest,ytest)∼D,D∼Dn [ytest ∈ C(xtest)] ≥ 1− α. (1)

That is, for a fresh test sample (xtest, ytest) ∼ D, our pre-
diction set C(xtest) covers the ground truth label ytest with
guaranteed high probability. Notice that Eq.(1) alone is a
trivial objective, since it suffices to predict the entire label
space C(x) = Y for all x. Therefore, CP is essentially a
bi-objective problem: as long as Eq.(1) is satisfied, we want
the prediction set C(x) to be small.

The main difficulty of this set-valued prediction problem is
that the range of output 2Y is too large. In this regard, the
key idea of CP is reducing the problem to 1D prediction via
a trained machine learning model (called the base model),
such as a neural network. Specifically, we assume access to
a (positively oriented; i.e., larger is better) score function
s : X × Y → R+ given by the base model, such that for
each test covariate xtest ∈ X and candidate label y ∈ Y ,
s(xtest, y) measures how likely the model believes that y
is the true label ytest. Then, all there is left for CP is to
pick a threshold τD ∈ R that depends on the dataset D,
and predict the label set (if the score function is negatively
oriented, then ≥ is replaced by ≤)

C(xtest) := {y ∈ Y : s(xtest, y) ≥ τD} . (2)

Under the i.i.d. assumption, the coverage objective Eq.(1)
is satisfied by picking τD as the α(1 − n−1)-quantile of
the empirical scores {s(x∗

i , y
∗
i )}i∈[n]. Since the training

data of the base model is split from the calibration dataset
used to determine τD, this approach is commonly known as
split conformal prediction, which we refer to as SplitCP.
Notably, τD is determined by the calibration dataset D; once
the latter is fixed, there is no need to access the ground truth
labels at test time.

Examples in classification This paper focuses on clas-
sification. In this case, a simple and popular choice of the
score function is s(x, y) = πθ(x)y [Sadinle et al., 2019],
where πθ is a trained neural network parameterized by θ, and
πθ(x)y ∈ [0, 1] is the softmax score corresponding to one
of the k-classes y ∈ [k]. Such a score function is positively
oriented, which we adopt in this work. Another well-known
choice due to Romano et al. [2020] is negatively oriented,
and our methods can be applied there as well.

Distribution shift For the rest of this paper, we study
the following deviation of the above standard CP problem.
At test time, instead of working with a single test sample
(xtest, ytest) drawn from D, we consider a size-N collec-
tion of samples2 {xi, yi}i∈[N ] drawn from some new un-
known distribution Dtest. We only observe the covariates,

2The clearest notation is to index the test samples by
(xtest,i, ytest,i). Here we omit the subscript “test” for concise-
ness.

defined as the test dataset Dtest = {xi}i∈[N ]. Importantly,
the ground truth labels on Dtest are not revealed even after
predictions are made. The goal, from a practical perspective,
is to output a small prediction set C(xi) at each test covariate
xi, satisfying the specified empirical coverage rate,

1

N

N∑
i=1

1[yi ∈ C(xi)] ≥ 1− α.

The function C can now depend on both the labeled calibra-
tion dataset D and the unlabeled test dataset Dtest.

In general, it is impossible to prove meaningful bounds
without assuming some form of similarity between D and
Dtest, but we will show that with help from the base model,
the CP procedure can be modified to work well in practice.

3 OUR METHODS

In this section, we first propose a method called ECP (En-
tropy scaled Conformal Prediction), which improves the
coverage rate of CP by enlarging its prediction sets using
the uncertainty evaluation of the base model itself. Crucially,
this notion of uncertainty can be directly minimized and re-
fined through unsupervised TTA, leading to an improved
method called EACP (Entropy base-Adapted Conformal Pre-
diction). The latter is able to both recover the desired error
rate on many challenging distribution-shifted datasets, and
significantly reduce inflated set sizes under increased uncer-
tainty.

3.1 SCALING CONFORMAL SCORES BY
UNCERTAINTY

Let us start with a high-level motivation. Within the
SplitCP framework, an important design objective is lo-
cal adaptivity: the size of the prediction set C(x) needs to
vary appropriately with the covariate x. To this end, standard
practice is to adjust the score function s(x, y) based on some
notion of uncertainty (or difficulty) that the base model de-
cides at each x [Papadopoulos et al., 2008, Johansson et al.,
2015, Lei et al., 2018, Izbicki et al., 2020, Romano et al.,
2019, Seedat et al., 2023, Rossellini et al., 2024]. This has
the effect of inflating the prediction set on the base model’s
uncertain regions, and has been shown to improve the more
informative conditional coverage rate of CP [Angelopoulos
and Bates, 2023, Tibshirani, 2023].

Key idea Inspired by these results, our key idea is to apply
an analogous uncertainty scaling on the score function, to
improve the performance of CP under distribution shifts.
However, instead of using the uncertainty of the base model
at each covariate x, we draw a crucial connection to unsu-
pervised TTA, and evaluate the base model’s uncertainty
on the whole distribution-shifted test dataset Dtest – this
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Figure 1: Entropy vs. the softmax score of the true label,
averaged on each dataset. Different colors represent different
datasets, and darker shades represent greater severity levels
of ImageNet-C corruptions. See Section 4 for more details
on the datasets.

effectively aggregates its “localized” uncertainty at the test
covariates {xi}i∈[N ]. In other words, instead of aiming for
“local adaptivity” as in prior works, we use uncertainty scal-
ing to achieve the adaptivity w.r.t. the unknown distribution
shift.

Prediction entropy More concretely, which uncertainty
measure should we use on the base model? As discussed
above, the ideal dataset-specific uncertainty measure would
follow from a “localized” uncertainty measure at each co-
variate x, and in the context of classification, a particularly
useful one is the entropy of the base model’s probabilistic
prediction,

h(x) = −
∑
y∈[k]

πθ(x)ylogπθ(x)y.

Previous works have established the relation between such
an entropy notion and the magnitude of the distribution shift,
showing that larger shifts are strongly correlated with higher
entropy (thus higher uncertainty in the base model) [Wang
et al., 2021, Kang et al., 2024]. We provide a consistent but
unique observation in Figure 1, which plots the relation be-
tween the entropy (averaged over all x values in the dataset)
and the softmax score of the true label (also averaged over
x), evaluated on a ResNet-50 model3 and across a range of
datasets. For the true label to be included in the CP predic-
tion set, which is eventually what we aim for, its softmax
score should be greater than the CP threshold τD. Figure 1
shows that an increase in entropy is associated with a de-
crease in the softmax score of the true label, which crucially
means that we need to scale up the score function in order
to still cover the true label.

3We fix the base model to ResNet-50 in most of our experi-
ments, unless otherwise specified.

Now consider going from the “localized” uncertainty
measure h(x) to an uncertainty measure on the test
dataset Dtest, denoted as utest. One could use the aver-
age N−1

∑N
i=1 h(xi), but to increase the robustness, we

define utest as the β-quantile of {h(xi)}i∈[N ], where β is
a hyperparameter. Quite surprisingly, we find that simply
setting β to the desired coverage rate 1− α is a fairly reli-
able choice in practice (see Figure 2), which gives a robust
(over)-estimate of typical h(x) values on the test dataset. We
perform all the experiments with this direct relationship to
avoid excessive hyperparameter tuning, but it can be further
refined if desired.

Method: ECP Now we are ready to use utest above to
scale the score functions on the test dataset, without label
access. The resulting method is named as ECP (Entropy
scaled Conformal Prediction).

Formally, define qβ(·) as the β-th quantile of its argument,
and let the base model’s uncertainty measure utest be the
“entropy quantile”

utest = q1−α({h(xi)}i∈[N ]). (3)

On any test covariate xi, modified from Eq.(2), we scale the
score function by max(1, utest) to form the prediction set

C(xi) := {y ∈ [k] : s(xi, y) ·max(1, utest) ≥ τD}. (4)

Here, we take a maximum with 1 to ensure that the predic-
tion sets of ECP cannot be smaller than those of standard
SplitCP. The pseudocode is presented as Algorithm 1 in
the next subsection.

To recap, the intuition of ECP is that a larger distribution
shift will result in larger entropy predicted by the base
model, which then leads to a correspondingly larger up-
scaling of the score function. In this way, more candidate
labels have scores larger than the fixed CP threshold τD,
and the prediction set grows. Without any access to the test
labels, this can help mitigate the under-coverage issue of
standard SplitCP under distribution shifts, and further
details are provided in our experiments (Section 4).

3.2 OPTIMIZING UNCERTAINTY USING TTA

While ECP already improves the coverage rate of
SplitCP on several datasets, it inevitably leads to larger
set sizes and, like typical post-hoc CP methods, still relies
on a fixed base model. To remedy this, we refine ECP using
entropy minimization [Grandvalet and Bengio, 2004, Wang
et al., 2021], a classical idea in unsupervised TTA which
updates the base model itself on the unlabeled test dataset.
Although such techniques in unsupervised TTA have been
investigated in the context of top-1 accuracy, we take a differ-
ent perspective and study their ability to improve set-valued
classifiers like conformal predictors.
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Figure 2: The targeted coverage rate 1 − α vs. the empirical coverage rate, induced by ECP with different β values
(represented by different colors). It shows that simply setting β = 1− α in ECP (i.e., the blue dots) consistently works well
for all but the most severe distribution shifts (e.g., ImageNet-R and ImageNet-C Contrast Severity 5). Such an observation
also holds across various α values, suggesting the effectiveness of this hyperparameter choice.

Key idea Concretely, we first rewrite the entropy h(x) as
a loss function w.r.t. the base model’s parameter θ,

L(x; θ) := h(x) = −
∑
y∈[k]

πθ(x)ylogπθ(x)y. (5)

Our main idea is to update the base model by minimizing
this loss function (or a suitable variant) on the test dataset
Dtest, before applying ECP. This brings two benefits.

• The updated base model is better suited for the shifted
distribution Dtest, which generally improves the quality
of the prediction sets built on top of it.

• The base model’s entropy determines the amount of pre-
diction set inflation due to ECP. By directly minimizing
the entropy, the resulting prediction sets can be smaller.

Method: EACP A number of specific TTA methods have
been developed to minimize entropy, while ensuring cer-
tain notions of stability. In this work, we leverage a recent
method called ETA (Efficient Test-time Adaptation; Niu
et al. 2022), due to its simplicity and effectiveness even
under continual distribution shifts [Press et al., 2023]. Com-
bining this with ECP results in a new CP method, which we
call EACP (Entropy base-Adapted Conformal Prediction).

In practice, one could simply call ETA as a subroutine, so
here we only present its high level idea for completeness.
First, the test dataset Dtest is divided into a collection of

batches. On each batch (i.e., xi with a collection of indices
i), ETA filters the base model’s outputs (i.e., softmax scores)
s(xi, ·) by excluding the outputs similar to those already
seen. Then, it reweighs the remaining indices based the as-
sociated entropy h(xi), with lower entropy (less uncertain)
indices receiving higher weights. This leads to a weighted
batch variant of the loss function Eq.(5), which is then mini-
mized by performing a single gradient update. Subsequently,
the updated base model is applied to ECP to form the pre-
diction sets of EACP, according to Eq.(4).

The combined pseudo-code of ECP and EACP is provided in
Algorithm 1. Here we include an uncertainty scaling func-
tion f as a small generalization, which acts on the entropy
quantile before generating the prediction sets. So far we
have only considered the trivial scaling f(x) = x, but more
choices will be studied in the next subsection.

In Section 4, we demonstrate that EACP can further im-
prove the empirical performance of ECP, by increasing the
coverage rate while maintaining informative set sizes.

3.3 UNCERTAINTY SCALING FUNCTION

In Eq.(4), we essentially scale the score functions linearly
by the entropy quantile utest of the base model. However,
this can be adjusted more generally by any (potentially non-
linear) function f(·). The best choice of f(·) depends on the
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Figure 3: utest versus τD/τtest on a log-log scale. On mild and moderate distribution shifts, the linear fit on the log-log plot
has slope between 1 and 2. This suggests the effectiveness of using a linear or quadratic function as f(·), which acts on
the entropy quantile. However, we also observe that a higher-order polynomial is required on more difficult shifts, such as
ImageNet-R.

Algorithm 1 Combined pseudocode of ECP and EACP

Require: Test dataset Dtest = {xi}i∈[N ]; trained model
with parameter θ and softmax score πθ(x)y; targeted error
rate α; score threshold τD for the error rate α, calculated
on a calibration dataset D; uncertainty scaling function
f : R+ → R+.
if EACP then

θ ← ETA(θ,Dtest) ▷ TTA sub-routine
end if
utest ← q1−α({h(xi)}i∈[N ]) ▷ Eq.(3)
utest ← f(utest) ▷ Uncertainty scaling
for xi ∈ Dtest do

return C(xi) := {y ∈ [k] : s(xi, y)·max(1, utest) ≥
τD} ▷ Predict the label set, Eq.(4)
end for

unknown relation between utest and the (1−α)-quantile of
the ground truth labels’ conformal scores, denoted as4

τtest := q1−α [s(xi, yi);xi ∈ Dtest] .

The optimal f(·) should satisfy f(utest) = τD/τtest.

While finding this optimal f(·) is obviously infeasible with-
out observing the ground truth labels at test time, in Figure 3
we empirically evaluate the ideal choice in a post-hoc man-
ner, across different datasets, in order to demonstrate the
insights. Recall that both utest and τtest depend on the de-
sired error rate α. Therefore, for each dataset, we vary α and
plot the resulting utest versus τD/τtest on a log-log scale. If
we mildly restrict f(·) to the family of polynomials, then its
optimal order can be approximated by the slope of a linear
fit on the log-log plot. We only use not-too-small α values

4Recall that the data we face at test time is denoted as
{xi, yi}i∈[N ], with the observed part (covariates) denoted as
Dtest = {xi}i∈[N ].

(i.e., the lower left corner on the plot) for the linear fit, since
it is closer to the typical practice and less prone to noise.

Figure 3 shows that the optimal polynomial order generally
increases with the severity of the distribution shift, which is
consistent with the fact that a larger polynomial order would
lead to larger prediction sets using our methods. While end-
users can refine f(·) based on a preference towards ensuring
coverage or small set sizes, we will empirically validate that
our methods with either linear scaling (denoted by ECP1

/ EACP1) or quadratic scaling (denoted by ECP2 / EACP2)
perform well in a wide range of settings.

4 EXPERIMENTS

We conduct experiments across a number of large-scale
datasets and neural network architectures. Our setup builds
on the standard SplitCP procedure introduced in Sec-
tion 2, which relies on a held-out, in-distribution, “devel-
opment set” for calibrating the CP threshold. On ImageNet
variants, we split the original ImageNet development set
(i.e., not used for model training) into a CP calibration set
consisting of 25,000 samples, and an in-distribution test set
(sometimes called the validation set in the CP literature).
The readers are referred to Appendix B for more details.

The conformal threshold is found on the calibration set, and
used in subsequent distribution-shifted settings. Importantly,
after the conformal threshold is estimated in-distribution,
all subsequent steps are unsupervised. We show results on
both stationary and continuously shifting test distributions.

Baselines We compare our proposed methods to the fol-
lowing baselines:

• NAIVE: generating prediction sets by including classes
until their cumulative softmax score is greater or equal to



1− α (the target coverage level). This is generated by the
base model itself, without the CP post-processing.

• Standard SplitCP: applying the CP threshold directly
on the distribution-shifted data.

• SplitCP with ETA: applying the CP threshold while
updating the base model using ETA.

Furthermore, in settings with stationary distribution shifts,
we compare to Robust Conformal (RC; Cauchois et al. 2024),
an existing CP algorithm that handles distribution shifts via
robust optimization. In settings with continual distribution
shifts, we compare to a number of OCO-based algorithms
[Bhatnagar et al., 2023a, Gibbs and Candès, 2024, Zhang
et al., 2024] that require additional access to the ground
truth labels.

In all experiments, the target coverage rate is set to 0.90.
We also analyze our methods with both linear and quadratic
scaling, as described in Section 3.3.

Datasets We investigate a number of ImageNet [Deng
et al., 2009] variants including: ImageNet-V2 [Recht
et al., 2019], ImageNet-R [Hendrycks et al., 2021a], and
ImageNet-A [Hendrycks et al., 2021b]. We also test our
approach on datasets from the WILDS Benchmark [Koh
et al., 2021] which represent in-the-wild distribution shifts
across many real world applications, including iWildCam
(animal trap images), RXRX1 (cellular images), and FMOW
(satellite images).

While the previous datasets present a single distribution
shift, the ImageNet-C [Hendrycks and Dietterich, 2019]
dataset allows us to investigate shifts across many types
and severities. Specifically, ImageNet-C applies 19 visual
corruptions to the ImageNet validation set across four cor-
ruption categories — noise, blur, weather, and digital, with
five severity levels for each corruption. See Appendix B.1
for more details on the datasets.

Stationary shifts Table 1 summarizes our results on var-
ious natural distribution-shifted datasets. We observe that
SplitCP (with or without TTA) can exhibit significant
gaps with respect to the target coverage rate, whereas ECP
closes the gap quite effectively while maintaining meaning-
ful set sizes. Coverage is further improved via EACP, which
also helps reducing set sizes on some datasets. In general,
we also observe an improvement over RC and NAIVE: the
linear scaling variant of our methods has similar coverage
rates as these baselines, while the set sizes are typically
smaller.

Here we can see the trade-off between linear and quadratic
uncertainty scaling. EACP2 consistently achieves higher cov-
erage rates, however this also leads to “over-coverage” on
some datasets and thus larger sets. In contrast, EACP1 leads
to lower coverage but also smaller set sizes. This trade-off
can be selected by end-users based on their preference for

more accurate or more efficient prediction sets. In subse-
quent experiments, we will focus on demonstrating the bene-
fit of EACP2 on coverage, while noting that the observed set
sizes are nonetheless practically useful and far from trivial.

In Table 2, we show fine-grained results on one corruption
type for each ImageNet-C category, and across each severity
level. Here we see the benefit of leveraging an uncertainty
notion that can be directly minimized and refined on new test
samples. Specifically, EACP2 is able to recover the target
coverage rate on almost all corruption types and severities.

Next, Figure 4 contains the results using neural networks
of various architectures and parameter counts, on all 19 cor-
ruption types of ImageNet-C (average across five severity
levels). Besides showing the superior performance of our
methods, we observe that the SplitCP baseline (with and
without TTA) generates prediction sets with little variance
in the set sizes, regardless of the achieved coverage rates.
We argue that this is an undesirable behavior, as the set sizes
themselves are often used to encode uncertainty evaluations
by set-valued classifiers. Our results demonstrate that ex-
plicitly incorporating the base model’s own uncertainty into
CP can help mitigating this issue.

Continuous shifts Finally, we investigate continuous dis-
tribution shifts, and the results are shown in Table 3. This
has been previously studied under online conformal predic-
tion, and we build on the experimental setup of [Bhatnagar
et al., 2023b, Zhang et al., 2024]. Specifically, the environ-
ment shifts between ImageNet-C severity level 1 to level
5 (either suddenly or gradually; see Figure 6), while sam-
pling random corruptions at each corresponding severity.
We emphasize that this is a particularly challenging task, as
it presents a continuous shift in both the magnitude as well
as type of corruption. See Appendix B.2 for more details on
this experiment. Here, we compare with existing supervised
methods that rely on the correct label being revealed after
every prediction.

Overall, our methods demonstrate competitive performance
with respect to supervised baselines: the average set sizes
are significantly smaller despite a slight drop in the aver-
age coverage rate. We also measure the local coverage error
LCE128 across the worst sliding window of 128 samples, and
similarly the worst local set size, LSS128. While the super-
vised methods unsurprisingly result in better local coverage,
they also lead to local set sizes that are much larger.

5 CONCLUSION

This paper studies how to improve set-valued classification
methods on distribution-shifted data, without relying on
labels from the target dataset. This is an important chal-
lenge in many real world settings, where exchangeability
assumptions are violated and labels may be difficult to at-



Table 1: ECP and EACP can achieve very competitive empirical coverage rates on a number of distribution-shifted datasets,
across a variety of imaging domains (ecological, cellular, satellite, etc). All results are from ResNet-50 models except
FMOW, which uses a DenseNet-121 [Huang et al., 2016]. Quadratic uncertainty scaling provides better coverage rates,
however, linear scaling results in smaller set sizes.

Method ImageNet-V2 ImageNet-R ImageNet-A iWildCam RXRX1 FMOW

Coverage

SplitCP 0.81 0.50 0.03 0.84 0.84 0.87

NAIVE 0.88 0.69 0.14 0.76 0.48 0.83
RC 0.88 0.63 0.14 0.99 0.91 0.93
ETA 0.81 0.62 0.05 0.84 0.87 0.87

ECP1 0.86 0.61 0.10 0.84 0.87 0.93
ECP2 0.91 0.72 0.27 0.88 0.90 0.96
EACP1 0.86 0.71 0.14 0.84 0.90 0.93
EACP2 0.91 0.80 0.30 0.89 0.93 0.94

Set Size

SplitCP 2.5 3.4 3.4 3.9 81.8 6.2

NAIVE 11.7 20.9 12.7 2.5 6.4 5.8
RC 5.5 10.7 9.6 125 166 10.2
ETA 2.5 3.0 3.6 3.8 100 6.5

ECP1 4.2 9.1 7.4 3.8 105 10.3
ECP2 7.6 23.3 15.1 5.5 137 15.3
EACP1 4.5 6.8 8.7 3.7 133 11.1
EACP2 8.7 16.1 10.1 5.6 177 16.4

Table 2: Coverage on four different corruption types representing each ImageNet-C category. Compared to the baselines,
ECP2 closes the coverage gap on most severity levels, while EACP2 further improves this by achieving the target coverage
rate 0.90 on nearly all corruption types and severities.

Method Contrast Brightness Gaussian Noise Motion Blur
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

NAIVE 0.91 0.89 0.87 0.83 0.76 0.92 0.92 0.91 0.91 0.90 0.88 0.85 0.79 0.69 0.79 0.91 0.90 0.85 0.77 0.71

SplitCP [Sadinle et al., 2019] 0.83 0.78 0.66 0.36 0.09 0.88 0.87 0.86 0.83 0.78 0.79 0.69 0.50 0.26 0.07 0.83 0.74 0.57 0.37 0.27

ETA [Niu et al., 2022] 0.87 0.86 0.84 0.79 0.63 0.88 0.88 0.87 0.86 0.84 0.86 0.82 0.76 0.69 0.54 0.86 0.84 0.80 0.73 0.68

ECP2 (ours) 0.93 0.92 0.89 0.79 0.60 0.94 0.94 0.94 0.93 0.92 0.92 0.88 0.80 0.86 0.38 0.94 0.92 0.86 0.75 0.68

EACP2 (ours) 0.93 0.93 0.93 0.92 0.87 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.90 0.84 0.93 0.92 0.92 0.91 0.89

Table 3: We evaluate performance on the challenging setting of continuously shifting distributions. The “label free” column
denotes whether a method relies on labels at test-time from the target data. We recall that SplitCP does not adapt to new
data. In addition to the average coverage (↑) and average size (↓), we also measure the worst local coverage error LCE128
(↓) and worst local set size LSS128, (↓) on a sliding window of 128 test points.

Gradual shift Sudden shift

Label Free Method Avg. Cov Avg. Size LCE128 LSS128 Avg. Cov Avg. Size LCE128 LSS128

- SplitCP [Sadinle et al., 2019] 0.59 3.1 0.70 3.6 0.59 2.8 0.71 3.5

✗ SAOCP [Bhatnagar et al., 2023a] 0.79 145 0.24 353 0.78 139 0.28 349
✗ DtACI [Gibbs and Candès, 2024] 0.90 101 0.07 455 0.90 142 0.09 450
✗ MAGL-D [Zhang et al., 2024] 0.90 403 0.05 856 0.90 355 0.05 844
✗ MAGL [Zhang et al., 2024] 0.90 117 0.06 573 0.90 168 0.3 704
✗ MAGDIS [Zhang et al., 2024] 0.90 417 0.06 841 0.90 372 0.07 852

✓ ETA [Niu et al., 2022] 0.69 2.9 0.52 3.4 0.67 2.7 0.54 3.5
✓ ECP2 (ours) 0.84 36.6 0.35 90.4 0.82 37.5 0.38 88.5
✓ EACP2 (ours) 0.88 22.4 0.20 47.8 0.86 23.1 0.28 55.7

tain. We propose an uncertainty-aware method based on
the prediction entropy (ECP), and leverage unsupervised
test time adaptation to update the base model and refine
its uncertainty (EACP). We demonstrate that the proposed

methods are able to recover the desired error rate on a wide
range of distribution shifts, while maintaining efficient set
sizes. Furthermore, they are even competitive with super-
vised approaches on challenging and continuously shifting
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Figure 4: Our EACP2 method is able to improve coverage using various neural network models and architectures, under a
diverse range of distribution shifts. It consistently “hugs” the desired coverage rate, while maintaining practical set sizes.
Results are averaged across five severity levels for each corruption type in the ImageNet-C dataset. We zoom in on the right
to clearly show the benefit of adapting at test time. Larger markers reflect a larger neural network parameter count.

distributions. We hope this inspires future works continuing
to tackle this important challenge.
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In Appendix A, we provide an extensive overview of additional related works. Further, Appendix B contains detailed
information on our studied datasets and experimental protocols, including TTA hyper-parameters, CP procedure, and the
setup for continual distribution shifts. Appendix C discusses other possible uncertainty measures and their deficiencies.
Appendix D contains additional experiment results.

A ADDITIONAL RELATED WORKS

CP in decision making Our interest in the considered setting – distribution shifts without test time labels – is mainly
motivated by the growing applications of CP in autonomous decision making. A very much incomplete list: see [Lekeufack
et al., 2024] for a generic treatment; [Lindemann et al., 2023] for trajectory optimization in robotics; [Yang and Pavone,
2023, Gao et al., 2024] for 3D vision; [Kumar et al., 2023, Cherian et al., 2024, Gui et al., 2024, Mohri and Hashimoto,
2024, Quach et al., 2024] for large language models (LLMs); and [Ren et al., 2023] for LLM-powered robotics.

CP under distribution shifts As discussed in the main paper, considerable efforts have been devoted to developing CP
methods robust to distribution shifts. We now survey two possible directions and their respective limitations.

• The first direction does not require test time labels, but the distribution shift is assumed to be simple in some sense. For
example, Tibshirani et al. [2019] studied CP under covariate shifts, where the distribution of the label y conditioned on the
covariate x remains unchanged. Here, it suffices to use the classical likelihood ratio reweighting on the calibration dataset,
but accurately estimating the likelihood ratio can be challenging in practice. Another idea is to take a robust optimization
perspective by assuming a certain maximum level of distribution shift and protecting against the worst case, e.g., [Roth,
2022, Chapter 8] and [Cauchois et al., 2024]. The weakness here is the sensitivity to the hyperparameter, and the obtained
prediction sets could be overly conservative.

Various works built on these two ideas. Barber et al. [2023] generalized the reweighting idea to handle mild but general
distribution shifts, but choosing the weights is generally unclear in practice. Ai and Ren [2024] tackled general distribution
shifts by combining reweighting and robust optimization, which also combines the strengths and limitations from the two
sides. Ge et al. [2024] extended the two ideas to the aggregation of multiple CP algorithms.

• The second direction is connecting CP to adversarial online learning. A line of works [Gibbs and Candes, 2021, An-
gelopoulos et al., 2023, Gibbs and Candès, 2024, Bhatnagar et al., 2023b, Zhang et al., 2024] applied regret minimization
algorithms in OCO to select the score threshold in CP, and Bastani et al. [2022] achieved this task using multicalibration.
By relaxing the CP objective from the coverage probability to the post-hoc coverage frequency, these methods can handle
arbitrary continual distribution shifts. However, they require the true label to be provided after every prediction, which is a
limiting requirement for many use cases in autonomous decision making. Our experiments will show that it is possible to
achieve comparable performance in these settings without this limitation, i.e., being “label free”.



B EXPERIMENTAL DETAILS

B.1 DATASET DETAILS

We perform experiments on a number of large-scale datasets that are frequently used to evaluate deep learning performance
under distribution shift [Koh et al., 2021, Wang et al., 2021, Minderer et al., 2021, Niu et al., 2022, Zhang et al., 2022,
Bhatnagar et al., 2023a, Zhang et al., 2024]:

• ImageNet-V2 [Recht et al., 2019] is an ImageNet test-set that contains 10,000 images that were collected by closely
following the original ImageNet data collection process.

• ImageNet-R [Hendrycks et al., 2021a] includes renditions (e.g., paintings, sculptures, drawings, etc.) of 200 ImageNet
classes, resulting in a test set of 30,000 images.

• ImageNet-A [Hendrycks et al., 2021b] consists of 7,500 real-world, unmodified, and naturally occurring adversarial
images which a ResNet-50 model failed to correctly classify.

• ImageNet-C [Hendrycks and Dietterich, 2019] applies 19 visual corruptions across four categories and at five severity
levels to the original ImageNet validation set.

• iWildCam [Koh et al., 2021, Beery et al., 2020] contains camera-trap images from different areas of the world, representing
geographic distribution-shift. It includes a validation set of 7,314 images from the same camera traps the model was
trained on, which is used as our calibration data, as well as 42,791 images from different camera traps that is used as our
test set. The images contain one of the 182 possible animal species.

• RXRX1 [Koh et al., 2021, Taylor et al., 2019] consists of high resolution fluorescent microscopy images of human cells
which have been given one of 1,139 genetic treatments, with the goal of generalizing across experimental batches. It is
split into a 40,612 in-distribution validation set and 34,432 test set.

• FMOW [Koh et al., 2021, Christie et al., 2018] is a satellite imaging dataset with the goal of classifying images into one
of 62 different land use or building types. It consists of 11,483 validation images from the years from 2002–2013, and
22,108 test images from the years from 2016–2018.

B.2 EXPERIMENTAL PROTOCOLS

Conformal prediction Our split conformal prediction set-up follows previous works [Angelopoulos et al., 2021, An-
gelopoulos and Bates, 2023], which divides a held-out dataset into a calibration and test set. On ImageNet variants, we split
the original validation set in half to produce 25,000 calibration points and 25,000 in-distribution test points. The calibrated
scores and / or threshold are then used for subsequent distribution-shifted data. On the WILDS datasets, we similarly split
the in-distribution validation sets.

Adaptation procedure Our ImageNet-based experiments are conducted on pre-trained ResNets provided by the torchvision
library1, and ViTs provided by the timm library 2. Experiments on WILDS datasets are conducted using pre-trained models
provided by the authors of that study 3. For EACP and ETA, we closely follow the optimization hyperparameters from the
original paper [Niu et al., 2022]: we use SGD optimizer with a momentum of 0.9 and learning rate of 0.00025. We use a
batch size of 64 for all ImageNet experiments, 128 for RXRX1 and FMOW, and 42 for iWildCam. Our experiments are
conducted using a single NVIDIA A40 GPU.

Continuous shift We adopt a slightly modified version of the experimental design for continuous distribution shift
presented in previous works [Bhatnagar et al., 2023a, Zhang et al., 2024]. This involves sampling random corruptions from
the ImageNet-C dataset under two regimes: gradual shifts where the severity level first increases in order from {1, ..., 5}
then decreases from {5, ..., 1}, and sudden shifts where the severity level alternates between 1 and 5. In addition to sampling
random corruptions, we also consider in Figure 6 results on the “easier” setting of shifting severities on a single corruption
type.
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Figure 5: Similarly to Figure 1, we present the relation between different uncertainty measures and the average score of the
true label. We see that softmax variance (left) has an inverse relation with distribution shift, and 1− maximum softmax is a
bounded metric that may provide an insufficient adjustment.

C WHAT IS THE RIGHT MEASURE OF UNCERTAINTY?

Although in Section 3.1 we propose adjusting the conformal scores by the prediction entropy of the base model, it is worth
asking if there exist other notions of uncertainty that may instead be used. Here, we consider two additional uncertainty
measures and their relation with the softmax value of the true label (which is ultimately what we would like to include in
our prediction set), and show they are ill-suited for our task. Firstly, in Figure 5a we consider the variance of the softmax
scores. Perhaps surprisingly, we see that distribution shift most often leads to a smaller variance, thus conveying that the
base model is less uncertain. This suggests that softmax variance is a deficient uncertainty measure as it fails to capture the
actual underlying uncertainty on distribution-shifted data.

We also consider 1− maximum softmax score as another possible uncertainty measure, and see in Figure 5b that distribution
shift is associated with smaller maximum softmax values. Unlike softmax variance, this does appear to better capture the
uncertainty, as we would expect the base model to be less confident on distribution-shifted data. However, this uncertainty
measure can still only take a maximum value of one and thus may not provide necessary adjustment magnitude, and it is
unknown if it can reliably update the base model label-free.

While there may exist better uncertainty measures that future works can explore, these results suggest that the prediction
entropy is a simple and reliable measure for conformal adjustments that can effectively capture the underlying uncertainty.

D ADDITIONAL EXPERIMENTS

D.1 OTHER TTA METHODS

We investigate our methods performance with another base TTA method in Table 4. Here, we use the Tent update [Wang
et al., 2021], which is a simpler version of ETA with no re-weighing of the entropy loss. While our proposed methods are
also compatible with Tent, we notice that the more powerful ETA leads to better coverage and set sizes as seen in Table 1.
We can expect that additional improvements in TTA will similarly lead to improvements in our EACP method.

1https://github.com/pytorch/vision
2https://github.com/huggingface/pytorch-image-models
3https://github.com/p-lambda/wilds

https://github.com/pytorch/vision
https://github.com/huggingface/pytorch-image-models
https://github.com/p-lambda/wilds


Table 4: Our proposed EACP performs well with other TTA methods, as seen here using Tent Wang et al. [2021] as the TTA
update.

Dataset SplitCP Tent ECP2 EACP2

(coverage / set size) (coverage / set size) (coverage / set size) (coverage / set size)

ImageNet-V2 0.81 / 2.5 0.81 / 2.6 0.91 / 8.0 0.92 / 9.6
ImageNet-R 0.50 / 3.2 0.58 / 3.3 0.73 / 23 0.77 / 17
ImageNet-A 0.07 / 1.5 0.21 / 3.1 0.58 / 204 0.40 / 24

iWildCam 0.83 / 3.5 0.81 / 2.6 0.89 / 5.7 0.85 / 3.4
RXRX1 0.85 / 83 0.87 / 101 0.90 / 136.7 0.92 / 176
FMOW 0.87 / 6.3 0.85 / 5.7 0.96 / 15.6 0.94 / 13.4

D.2 MORE ARCHITECTURE COMPARISONS

In Table 5, we further demonstrate our methods improvements to coverage loss on natural distribution shifts using diverse
neural network architectures. As expected, larger and more accurate neural networks result in better coverage and smaller set
sizes using ECP and EACP Ṫhis is encouraging as it demonstrates our methods can scale along with the underlying model.

Table 5: On natural distribution shifts, the performance of our methods scale well with the performance of the base classifier.
This is encouraging as it suggests compatibility

Dataset Model SplitCP ETA ECP2 EACP2

(coverage / set size) (coverage / set size) (coverage / set size) (coverage / set size)

ImageNet-V2

Resnet50 0.81 / 2.5 0.81 / 2.5 0.91 / 7.6 0.91 / 8.7
Resnet152 0.81 / 2.0 0.81 / 2.1 0.89 / 4.6 0.91 / 6.3
Vit-S 0.80 / 1.5 0.80 / 1.5 0.90 / 3.4 0.90 / 3.4
ViT-B 0.80 / 1.2 0.80 / 1.2 0.90 / 2.4 0.90 / 2.4

ImageNet-R

Resnet50 0.50 / 3.4 0.62 / 3.0 0.72 / 23.3 0.80 / 16.1
Resnet152 0.53 / 2.7 0.60 / 2.6 0.71 / 15.3 0.79 / 17.3
Vit-S 0.52 / 1.3 0.53 / 1.3 0.74 / 12.3 0.75 / 11.8
ViT-B 0.58 / 0.9 0.59 / 0.9 0.78 / 8.3 0.79 / 8.0

ImageNet-A

Resnet50 0.03 / 3.4 0.05 / 3.6 0.27 / 15.1 0.30 / 19.1
Resnet152 0.18 / 3.0 0.17 / 3.3 0.43 / 11.8 0.50 / 19.6
Vit-S 0.37 / 1.7 0.37 / 1.7 0.65 / 8.4 0.66 / 8.3
ViT-B 0.47 / 1.2 0.47 / 1.2 0.76 / 6.5 0.76 / 6.4

D.3 CONTINUOUS SHIFTS

In Figure 6, we visualize the coverage and set-sizes of our unsupervised methods and a number of supervised baselines
on the previously described continuous distribution shifts. We show results on random corruption types as well as fixed
corruption types. Our proposed methods perform well across all these settings; they closely maintain coverage even on
sudden and severe shifts, while leading to substantially smaller set sizes than the baselines.

D.4 IMAGENET-C ALL SEVERITY LEVELS

In Figure 7, we present full results across all ImageNet-C severity levels. We see that our method is effective in recovering
coverage even under many highly severe distribution shifts, and nearly always recovers the desired coverage on less severe
shifts.



D.5 ORACLE RESULTS

Here we compare our methods with an oracle that has observed labels from the distribution-shifted dataset. Specifically, the
oracle is the THR conformal prediction method [Sadinle et al., 2019] that has been calibrated on half of the distribution-
shifted dataset, following regular split conformal. Since the oracle is guaranteed to provide the desired coverage level in this
set-up, our comparison focuses on the prediction set sizes; we refer to the main paper for coverage comparisons. We observe
in Table 6 that in every case except FMOW, a variant of ECP and EACP achieves smaller set sizes than the oracle. In Table 7,
EACP consistently achieves substantially smaller set sizes on ImageNet-C while also recovering error targets (see Table 2).
We reiterate here that smaller sets are preferred if error rates are maintained.

Table 6: ECP and EACP achieve prediction set sizes that are often equal or smaller than the oracle method. Coverage rate is
0.90.

Method ImageNet-V2 ImageNet-R ImageNet-A iWildCam RXRX1 FMOW

Set Size

ORACLE 6.8 79.0 95.3 6.6 140 7.87

ECP1 4.2 9.1 7.4 3.8 105 10.3
ECP2 7.6 23.3 15.1 5.5 137 15.3

EACP1 4.5 6.8 8.7 3.7 133 11.1
EACP2 8.7 16.1 10.1 5.6 177 16.4

Table 7: Comparison of ECP and EACP on a subset of synthetic shifts. The numbers refer to severity level.

Method Contrast Brightness Gaussian Noise Motion Blur
1 3 5 1 3 5 1 3 5 1 3 5

ORACLE 5.5 30.3 562 2.5 3.7 9.8 6.2 70.6 317 9.7 101 638

Set Size ECP2 10.5 27.8 180 5.3 7.7 14.9 10.0 43.1 109 12.9 43.7 79.0

EACP2 5.5 7.4 25 4.5 5.7 7.6 5.7 16.0 42.7 6.3 12.8 25.5

D.6 IN-DISTRIBUTION RESULTS

In Table 8, we observe that our methods maintain coverage and reasonable set sizes on in-distribution data.

Table 8: Results on in-distribution data using ImageNet-1k validation set.

SplitCP ECP1 ECP2 EACP1 EACP2

Coverage 0.90 0.92 0.94 0.91 0.93
Set size 2.1 2.8 4.2 2.8 4.1

D.7 COMPARISON WITH WEIGHTED CP

Tibshirani et al. [2019] present a method for improving coverage under covariate shift by re-weighing calibration scores
based on an estimated likelihood ratio (wcp). Although estimating likelihood ratios in our setting is challenging, we
nonetheless present a comparison here for completeness. We follow their approach and train a probabilistic classifier, here a
CNN, on each calibration-test pair.

Table 9 suggests that this method may have limited performance in our studied setting. This may be due to the challenge
in estimating accurate likelihood ratios in high-dimensional settings, [Cauchois et al., 2024]. We do not claim that wcp
definitely cannot perform well, however the sparsity of previous literature here suggests that further studies may be required.
Finally, note that wcp is ill-suited for the case of continuously shifting distributions, further limiting its general applicability.



Table 9: The wcp method appears to provide minimal coverage improvements in this setting, possibly due to the difficulty
in estimating likelihood ratios.

Method ImageNet-V2 ImageNet-R ImageNet-A

Coverage

SplitCP 0.81 0.50 0.03

wcp 0.82 0.35 0.06

ECP2 0.91 0.72 0.27
EACP2 0.91 0.80 0.30

Set Size

SplitCP 2.5 3.4 3.4

wcp 2.6 0.74 4.3

ECP2 7.6 23.3 15.1
EACP2 8.7 16.1 10.1

D.8 AFFECTS OF MODEL CALIBRATION

We conduct experiments investigating affects of model calibration on the robustness of our entropy-based method. We
employ temperature scaling with T < 1.0 to deliberately sharpen the model’s logits, inducing overconfidence and emulating
a more poorly calibrated base model. We further compare with a temperature value determined to improve calibration (on
in-distribution data), as measured using Expected Calibration Error (ECE).

Results for two distribution-shifted datasets can be seen in Table 10. Our results suggest that our method is fairly robust to
miscalibration. Considerably higher ECE (worse calibration) leads to only minor drops in prediction set accuracy. This may
potentially be due to our use of an entropy quantile, which aggregates uncertainty across the test data, mitigating issues
caused by a smaller number of miscalibrated points.

Table 10: Our use of an entropy quantile renders our method robust to poor model calibration.

(a) ImageNet-V2 coverage results with different temperature scaling.

Method T = 1.15 T = 1.0 T = 0.9 T = 0.8
ECE = 0.02 ECE = 0.03 ECE = 0.06 ECE = 0.08

SplitCP 0.81 0.81 0.81 0.81
ETA 0.81 0.81 0.81 0.81
ECP 0.92 0.91 0.90 0.87
EACP 0.92 0.91 0.90 0.88

(b) ImageNet-R coverage results with different temperature scaling.

Method T = 1.15 T = 1.0 T = 0.9 T = 0.8
ECE = 0.02 ECE = 0.03 ECE = 0.06 ECE = 0.08

SplitCP 0.49 0.50 0.50 0.51
ETA 0.61 0.62 0.62 0.63
ECP 0.76 0.72 0.70 0.67
EACP 0.83 0.80 0.77 0.75
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(a) Shifting (random) corruptions
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(b) Contrast corruption

0 100 200 300 400 500 600 700 800

0.75

0.80

0.85

0.90

0.95

Lo
ca

l C
ov

er
ag

e

0 100 200 300 400 500 600 700 800
0.75

0.80

0.85

0.90

0.95

Lo
ca

l C
ov

er
ag

e

0 100 200 300 400 500 600 700 800
0

50

100

150

200

Lo
ca

l S
et

 S
ize

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

Lo
ca

l S
et

 S
ize

0 100 200 300 400 500 600 700 800
Time

1

2

3

4

5

Co
rru

pt
io

n 
Le

ve
l

0 100 200 300 400 500 600 700 800
Time

1

2

3

4

5

Co
rru

pt
io

n 
Le

ve
l

SplitCP
ETA

ECP
EACP

MagnitudeLearner
MagLearnUndiscounted

MagnitudeLearnerV2
SAOCP

DtACI

(c) Brightness corruption
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(d) Gaussian noise corruption
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(e) Motion blur corruption

Figure 6: Our unsupervised methods ECP and EACP are able to provide nearly the same empirical coverage, and considerably
smaller set sizes, that supervised methods on continuously shifting distributions. Dashed lines denote methods that rely on a
ground truth label being revealed at test time.
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Figure 7: Performance on 19 ImageNet-C corruptions on each severity level. EACP2 hugs the desired coverage line on nearly
all severity levels. Larger markers indicate larger parameter count.
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