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Abstract001

The goal of language model (LM)-based002
zero-shot text-to-speech (TTS) is to synthe-003
size speech with voices unseen during train-004
ing. However, zero-shot TTS requires labeled005
speaker information for each utterance during006
training. This information is expensive to ac-007
quire, making it difficult to scale systems to008
large amounts of data. In this paper, we show009
that these issues can be overcome by simply010
combining a large dataset without speaker la-011
bels and a smaller dataset with speaker labels,012
before training a TTS model on the mixture. To013
prevent information mismatch between the two014
types of data, we introduce new data augmen-015
tation techniques to regularize model training:016
speaker dropout and speaker scrambling. As017
a result, we achieve relative gains up to 64%018
better speaker similarity and 80% lower WER,019
when compared to standard training recipes.020
We show that our method not only generalizes021
well to low-resource and cross-lingual settings,022
but also scales to over 200K hours of training023
data. We will open-source all code and pre-024
trained models. Audio samples are available at025
https://cccmon7.github.io/opus_tts/.026

1 Introduction027

Auto-regressive language models have recently028

become a popular formulation for text-to-speech029

(TTS) systems (Wang et al., 2023; Du et al., 2024;030

Maiti et al., 2024; Défossez et al., 2024) due to031

their ability to easily leverage text-only pre-training032

from Large Language Models (LLMs) (Touvron033

et al., 2023; Brown et al., 2020). These systems are034

capable of generating fluent and natural-sounding035

synthetic speech in a variety of voices while being036

relatively easy to train, making them a prime target037

for scaling (Huang et al., 2025).038

Increasing amounts of research has focused on039

this task of multi-speaker TTS, as it allows models040

to leverage more training data while allowing them041

to generate more diverse audio. Zero-shot TTS042

(Wang et al., 2023; Chen et al., 2024a; Casanova 043

et al., 2022, 2024; Wu et al., 2022) is a particu- 044

larly exciting implementation of this concept, as it 045

allows models to synthesize speech in voices that 046

were unseen during training. These models lever- 047

age an enrollment speaker prompt during inference, 048

which contains an audio example of the voice that 049

the model should mimic. 050

One key limitation of zero-shot TTS models is 051

their dependence on speaker information during 052

training, because learning to clone a voice demands 053

an additional utterance from the same speaker as 054

the target example. Obtaining such speaker labels 055

is a non-trivial cost that requires either manual an- 056

notations or complex speaker diarization pipelines 057

(Park et al., 2022), if not outright impossible due to 058

privacy concerns and data access conditions: stor- 059

ing such sensitive biometric data with the corre- 060

sponding speech is a genuine security issue. Such 061

expenses, combined with the complexity of TTS 062

model architectures (Du et al., 2024; Wang et al., 063

2023; Wu et al., 2022), only further increase the 064

difficulty in scaling TTS models to more data and 065

larger model sizes. 066

In this paper, we propose a straightforward two- 067

step method to relax this data constraint: we first 068

1.) merge gold-quality data annotated with speaker 069

information and silver-quality data without speaker 070

information, and then 2.) propose new data aug- 071

mentation techniques to regularize model training 072

on the mismatched data. 073

We ground our method in the same theoretical 074

mechanisms that motivate classifier-free guidance 075

(Ho and Salimans, 2021), leveraging a generative 076

model’s capacity to capture both conditional and 077

unconditional distributions. We exploit this for- 078

mulation to scale TTS models to large amounts 079

of data: samples with incomplete speaker meta- 080

data are modeled unconditionally, while samples 081

with the complete metadata are trained condition- 082

ally. Although simply combining the incomplete 083
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data can lead to large gains in generation quality,084

with relative gains up to 60% better speaker simi-085

larity and 60% lower word error rate-based intelli-086

gibility (WER), we also show that such an imple-087

mentation is suboptimal. We propose two straight-088

forward data-augmentation techniques to alleviate089

the train–test mismatch caused by incomplete data:090

(1) randomly dropping the speaker prompt and (2)091

sampling artificial speaker prompts from the tar-092

get speech. Together, these augmentations boost093

speaker similarity by 2% and reduce WER by 48%.094

Our contributions can be summarized as follows:095

1. We present a method that loosens the data con-096

straints of zero-shot TTS, making it far easier097

to scale models to larger training corpora.098

2. Our methods can lead to zero-shot TTS mod-099

els that are more robust, leading to relative100

gains up to 64% better speaker similarity101

and 80% lower WER, when compared to the102

vanilla TTS training recipe.103

3. Our methods reduce the amount of labeled104

speaker information needed to train TTS sys-105

tems: our models perform comparably to106

those trained without the augmentation on107

twice the amount of data. This method gen-108

eralizes cross-lingually, enabling the training109

of zero-shot TTS models without any speaker110

information in a language.111

4. By reducing the labeled information needed112

for TTS training, we show that our method can113

reduce the costs of automatic data annotation114

by as much as 22%, allowing us to train a115

SOTA TTS model on 200K hours of audio.116

2 Related Work117

2.1 Zero-Shot TTS118

The goal of zero-shot TTS is to synthesize speech119

with voices unseen during training. Large-scale120

training for zero-shot TTS has focused on two main121

branches of work: LM-based (Peng et al., 2024;122

Wang et al., 2023; Chen et al., 2024a; Du et al.,123

2024) and diffusion-based (Le et al., 2023; Lipman124

et al., 2023; Eskimez et al., 2024). Diffusion-based125

(and by extension flow-matching) approaches cen-126

ter around training a non-autoregressive model on127

continuous speech representations (Le et al., 2023;128

Liu et al., 2024). However, their non-autoregressive129

nature often requires explicit duration modelling or130

even frame-level speech/text alignments (Le et al., 131

2023). While these can be addressed with certain 132

training techniques (Eskimez et al., 2024), it comes 133

at the cost of heavier inference time constraints and 134

thus limits the usability of these models. 135

The LM-based approach typically involves train- 136

ing an auto-regressive language model (Brown 137

et al., 2020; Touvron et al., 2023) on discrete 138

speech tokens (Borsos et al., 2023; Lakhotia et al., 139

2021; Nguyen et al., 2023) quantized from a speech 140

representation model (Chen et al., 2024b, 2023a; 141

Kumar et al., 2023; Shi et al., 2024b; Chen et al., 142

2023b). This approach yields several key ad- 143

vantages, namely the ability to leverage text pre- 144

training from LLMs and their highly optimized 145

training frameworks/software (Rasley et al., 2020; 146

Dao et al., 2022; Dao, 2024). Combined with the 147

storage-efficient nature of the discrete speech to- 148

kens, this has made the LM-based approach much 149

easier to scale (Huang et al., 2025). Due to these 150

advantages, our work focuses on this formulation. 151

2.2 Speaker Dependencies in Zero-Shot TTS 152

Few works have attempted to remove the depen- 153

dency on speaker labels in zero-shot TTS. The most 154

similar to our work are SPEAR-TTS (Kharitonov 155

et al., 2023) and CosyVoice (Du et al., 2024), which 156

decouple LM-based TTS into two cascaded stages: 157

1.) text to semantic tokens and 2.) semantic to 158

acoustic tokens. In SPEAR-TTS, the second mod- 159

ule is trained on short segments by sampling a 160

prompt and target subsequence from each utterance. 161

While this allows for efficient self-supervised train- 162

ing, it disregards cases where speaker data is in- 163

fact available and prevents the model from learning 164

long-form speaker, phonetic, and prosodic patterns. 165

CosyVoice instead uses an averaged continuous 166

speaker embedding, which removes prosodic and 167

pronunciation information. Furthermore, the em- 168

bedding is always obtained from the same target 169

speech utterance during training, potentially over- 170

fitting to a single speaker prompt1. Our method 171

can be viewed as a form of semi-supervised train- 172

ing that addresses these issues, being able to scale 173

to more data and train on a diverse selection of 174

speaker prompts. Furthermore, our method only 175

requires a single-stage, simplifying the training pro- 176

cess and thus reducing the compute requirements, 177

while removing issues caused by potential errors in 178

the cascade during inference. 179

1This limitation also applies to models that instead condi-
tion the LM on continuous speaker representations.
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Figure 1: Overview of our proposed data concatenation and augmentation strategies for speaker-agnostic training.

E2 TTS (Eskimez et al., 2024) addresses the180

speaker dependency in flow matching models, al-181

though their goal was simplifying the training182

pipeline rather than scaling. They accomplish this183

by framing TTS as conditional masked language184

modeling, where the model must in-fill audio that185

corresponds to a masked time span, given the un-186

masked audio and text prompt. However, the ma-187

jor limitation of this method is that it requires the188

transcript of the speaker prompt during inference,189

which limits the cross-lingual capabilities of the190

model while being expensive to obtain. While this191

can be ameliorated by force-aligning the speech192

and text during training, this introduces a signif-193

icant cost that makes scaling even more difficult.194

Our method does not introduce any additional pre-195

processing expenses, making it far more scalable.196

3 Method197

LM-based TTS auto-regressively models the con-198

ditional probability of the t-length target speech199

tokens Y = (yt|t = 1, ..., T ), given the input text200

sequence X = (xn|n = 1, ..., N) and speaker to-201

ken prompt S = (sk|k = 1, ...,K):202 ∏
t

P (yt|y1:t−1, S,X) (1)203

This formulation places two main constraints on204

the data that can be used for TTS training: 1.) X205

must be the text transcript of Y and 2.) Y and S206

must be obtained from the same speaker. The for-207

mer constraint is relatively easy to address, since208

paired speech/text is often found naturally on the209

internet. The second constraint, which this work210

focuses on, is more problematic to satisfy. Crawled211

web data generally does not include per-utterance 212

speaker information (Chen et al., 2021; Galvez 213

et al., 2021; Li et al., 2023; He et al., 2024), and 214

performing speaker identification poses serious pri- 215

vacy concerns. While the former can be addressed 216

by pseudo-labeling (as done by He et al. (2024)), 217

this is very expensive and difficult to scale to large 218

amounts of data, while often introducing inaccu- 219

racies from multi-speaker segments (Clifton et al., 220

2020; He et al., 2024). 221

3.1 Speaker-Agnostic TTS Data Relaxation 222

Rather than being constrained by the limitations 223

of the conventional zero-shot TTS paradigm, we 224

propose a training framework that is agnostic to 225

speaker labels and facilitates scalable exploration 226

of TTS properties. In other words, the proposed 227

approach enables model training without the need 228

for speaker annotations. We define two types of 229

training data: (1) gold-standard data with paired 230

speech/text and speaker labels (X,Y, and S), and 231

(2) silver-standard data with only paired speech/- 232

text (X and Y ). The LM is thus trained to not only 233

perform speaker-conditional generation (Equation 234

1), but also speaker-unconditional generation: 235∏
t

P (yt|y1:t−1, X) (2) 236

In a theoretically ideal setting, this probability is 237

near impossible to model without S since the value 238

of Y is different for every speaker. However, since 239

in practice the LM is trained with teacher-forcing, 240

it instead models the probability of the next speech 241

token yt given the text sequence X and prior speech 242

tokens [y1, ..., yt−1]. The latter effectively acts as 243
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both prior context and a speaker prompt, making a244

solution feasible.245

3.2 Speaker Dropout246

To prevent the model from overfitting its speaker247

prompting abilities on the gold-standard data (as248

in Equation 1), we randomly drop out the speaker249

prompt S during training with some probability p.250

For each utterance in the gold data, we uniformly251

sample a value p̂. If p̂ <= p, the model is only252

conditioned on the text input X (Equation 2). Oth-253

erwise, the model is conditioned on both the text254

X and speaker prompt S (Equation 1).255

We note that the same dropout strategy is stan-256

dard in classifier-free guidance (Ho et al., 2021),257

which uses an unconditional model (Eq. 2) to steer258

a conditional one (Eq. 1) during inference. This259

dropout allows a single language model to cap-260

ture both the conditional and unconditional dis-261

tributions. In our case, however, the dropout is262

used purely for training regularization to prevent263

domain-specific overfitting, since our use of the sil-264

ver-quality data (Section 3.1) already enables the265

training of an unconditional model2. To the best266

of our knowledge, no prior works (Hussain et al.,267

2025; Darefsky et al., 2024) have studied the im-268

pact of this form of speaker dropout technique269

outside the use of classifier-free guidance.270

3.3 Speaker Scrambling271

Although speaker dropout curbs overfitting in272

conditional generation, it offers scant benefit on273

out-of-domain (OOD) inputs relative to the gold-274

standard audio. The underlying issue is a persistent275

train–test mismatch: the model is never trained to276

produce speaker-conditioned outputs for the silver-277

standard data. We tackle this limitation with a new278

straightforward augmentation scheme: speaker279

scrambling. For a target speech sequence Y , we280

exploit the time-invariance of speaker identity by281

randomly shuffling its acoustic tokens along the282

temporal axis. To curb data leakage, we then trun-283

cate the shuffled sequence at a random position r,284

yielding an artificial speaker prompt Ŝ:285

Ŝ = Truncate(Shuffle(Y ), r) (3)286

If truncation is not performed, the model will be287

overly biased towards the prompt tokens. During288

2Since our overall method is a training technique and
classifier-free guidance is an inference method, they can be
combined and used in a single model. We leave such explo-
rations to future work.

Listing 1 Example Python code for speaker
dropout and speaker scrambling.
1 import random
2 import numpy as np
3

4 def preprocess(text, speech, spk, p, v):
5 """
6 Args:
7 text (array): input text
8 speech (array): target speech
9 spk (array or None): speaker prompt

10 p (float): speaker dropout prob
11 v (float): scrambling prob
12 Returns:
13 text (array): input text
14 speech (array): target speech
15 spk (array or None): speaker prompt
16 """
17 # speaker dropout
18 if random.random() < p:
19 spk = None
20 # speaker scrambling
21 if random.random() < v:
22 l = len(speech)
23 # randomly shuffle across time
24 idx = np.random.permutation(l)
25 scrambled = speech[idx]
26 # take a random subsequence
27 start = random.randint(0, l // 2 - 1)
28 spk = scrambled[start: start+l // 4]
29 return text, speech, spk

training, we append Ŝ to each silver-standard ex- 289

ample—or replace the original prompt S in gold- 290

standard data—with probability v. The input text 291

X and the target speech Y remain untouched, re- 292

sulting in 293∏
t

P (yt|y1:t−1, Ŝ,X) (4) 294

The technique is visualized in Figure 1 and an ex- 295

ample Python implementation of this technique is 296

shown in Listing 1. 297

4 Experimental Setup 298

Our models use a delay interleave decoder-only 299

Transformer (Vaswani et al., 2017) architecture 300

(Copet et al., 2024) for multi-stream language mod- 301

eling. Audio waveforms are converted into dis- 302

crete tokens with a DAC-style neural codec (Ku- 303

mar et al., 2023) from ESPnet-Codec3 (Shi et al., 304

2024b) (8 streams, vocabulary size= 8192) and 305

XEUS (Chen et al., 2024b) embeddings quantized 306

with K-means (1 stream, vocabulary size= 5000), 307

leading to a total of 9 audio input/output streams. 308

The Transformer decoder and text embeddings are 309

3https://huggingface.co/ftshijt/espnet_codec_
dac_large_v1.4_360epoch
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Figure 2: Overview of the multi-stream architecture.
The input text tokens are shown in grey, the speaker
prompt in blue, and the target speech tokens in orange.

initialized with a pre-trained SmolLM with 360M310

parameters 4. We use the same text tokenizer as311

the pre-trained model, which has a vocabulary size312

of 49K. Models are trained for 400K steps with313

pure bfloat16, Deepspeed (Rasley et al., 2020), and314

the Adam optimizer (Kingma and Ba, 2015). The315

learning rate is linearly warmed up to 0.0001 for316

10K steps, after which it is held constant. We use317

the final checkpoint for evaluation. Inference is318

performed with top-k sampling with k = 30 and319

a sampling temperature of 0.7. Sampling is per-320

formed 10 times per input, and we report the aver-321

age result across the 10 generated samples. We set322

both the speaker dropout p and scrambling rate v to323

0.5. Each model is trained on 16 NVIDIA GH200324

GPUs for 30 hours. We conduct our experiments325

using the ESPnet-SLM toolkit (Tian et al., 2025;326

Watanabe et al., 2018).327

4.1 Training Data328

Our primary training set consists of 46K hours of329

English audiobook recordings from LibriVox, ob-330

tained by combining LibriSpeech 960 (Panayotov331

et al., 2015) and the English portion of MLS (Pratap332

et al.). Importantly, the metadata for these record-333

ings include the ground-truth speaker ID, which334

allows us to use this dataset as the gold-standard335

4https://huggingface.co/blog/smollm

TTS data described in Section 3.1. 336

For the silver-standard speech data where the 337

ground-truth speaker information is unknown, we 338

use a cleaned version of YODAS (Li et al., 2023) 339

from Tian et al. (2025), which has 70K hours of 340

English speech mined from YouTube. 341

Note that this version of YODAS contains 342

speaker pseudo-labels through the use of a pre- 343

trained Pyannote diarization model (Bredin et al., 344

2020) during the cleaning process, based on He 345

et al. (2024). We generally do not use these pseudo- 346

labels, so that we can better simulate in-the-wild 347

conditions where speaker information is truly un- 348

known. The only exception is in Section 5.5, where 349

we compare the effectiveness of our method against 350

speaker pseudo-labels. 351

4.2 Evaluation 352

To evaluate the generalizability of our technique, 353

we use multiple test sets from a wide variety of 354

domains for our evaluation: LibriSpeech test-clean 355

(audiobooks) (Panayotov et al., 2015), VCTK (ac- 356

cented read speech) (Yamagishi et al., 2019), and 357

Genshin 5 (voice dubbing). We consider VCTK as 358

the primary measure of performance, as it is con- 359

sidered OOD for both the gold and silver quality 360

data while being a standard academic benchmark. 361

Ablative studies (Sections 5.2, 5.3, and 5.5) are per- 362

formed on the in-domain LibriSpeech test-clean. 363

Following recent speech synthesis studies (Es- 364

kimez et al., 2024; Wang et al., 2023; Chen et al., 365

2024a; Anastassiou et al., 2024; Huang et al., 2023), 366

we use automatic proxy metrics for objective eval- 367

uations. We focus on three such proxy metrics: 368

Word Error Rate (WER) for intelligibility, UT- 369

MOS (Baba et al., 2024) for audio quality, and 370

Speaker Embedding Similarity (SPK). WER is ob- 371

tained from Whisper V3 Turbo (Radford et al., 372

2023) and SPK is calculated using a pre-trained 373

WavLM+ECAPA-TDNN (Jung et al., 2024; Chen 374

et al., 2022). We use VERSA (Shi et al., 2024a) to 375

calculate each metric. 376

5 Results 377

Our main results are shown in Table 1, where we 378

vary the TTS model training along two axes: use 379

of data augmentation (none vs the methods pro- 380

posed in Section 3) and training data (Gold only vs 381

Gold+Silver). Model A1 is trained on only gold- 382

standard data without the proposed data augmenta- 383

5https://github.com/espnet/espnet/tree/master/
egs2/genshin/tts1
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Table 1: Cross-domain evaluation of each TTS model, trained with or without the proposed augmentation techniques.
Models are evaluated using WER (↓), Proxy MOS (↑), and SPK (↑). Model A1 serves as the baseline system that
represents the standard TTS LM training recipe, whereas B2 uses our proposed methods.

ID Training Data Augmentation test-clean VCTK Genshin
WER SPK UTMOS WER SPK UTMOS WER SPK UTMOS

A1 Gold ✗ 6.0 0.62 3.96 12.4 0.28 3.68 23.7 0.39 3.34
A2 Gold ✓ 5.6 0.62 3.99 2.9 0.39 3.93 20.4 0.39 3.25

B1 Gold+Silver ✗ 6.5 0.67 3.91 4.9 0.45 3.80 23.8 0.46 3.08
B2 Gold+Silver ✓ 4.7 0.68 4.05 2.5 0.46 4.00 16.8 0.47 3.47

tion, serving as the baseline that represents the stan-384

dard TTS LM training recipe. While it achieves385

strong performance on the in-domain evaluation386

(test-clean), it generalizes poorly to OOD speaker387

prompts (VCTK and Genshin), with noticeable388

degradations on the two other test sets. Naively389

adding the silver-standard data largely alleviates390

this issue (A1 vs B1), but leads to degradations in391

in-domain performance. Nevertheless, the largest392

improvements from scaling to more data are in393

speaker similarity, with a relative 64% increase on394

VCTK. The results show that B2, the model trained395

on the additional silver-quality data with data aug-396

mentation, clearly performs the best: model B2397

achieves the best scores in all 9 metrics / datasets.398

The data augmentation not only recovers the degra-399

dations on test-clean WER and MOS, but also im-400

proves generation quality in all 3 metrics in the401

OOD test sets. This highlights the importance of402

using both of our proposed techniques in building403

more robust TTS systems.404

5.1 Subjective Evaluations405

We also conducted subjective evaluations on406

A1, B1, and B2 using two tests: Comparative407

Mean Opinion Score (CMOS) for naturalness and408

Speaker Similarity Mean Opinion Score (SMOS),409

following the setups of (Ju et al., 2024; Eskimez410

et al., 2024; Wang et al., 2023). We generated 20411

samples from each system, each from a different412

speaker. We hired 30 MTurk annotators, leading413

to 600 total samples per system for each test. For414

CMOS, annotators compared the generated sam-415

ple with the ground truth, without knowing which416

was which. They were asked to rate naturalness417

on a scale of -3 to 3, where negative values indi-418

cate preference for the ground truth and vice versa419

for positive values. For SMOS, annotators com-420

pared the audio prompt with the generated sample421

or ground truth and rated the speaker similarity on422

a scale of 1 (not similar at all) to 5 (identical). More423

Table 2: Subjective evaluation on VCTK.

ID Data Aug. CMOS↑ SMOS↑

Ground Truth - n/a 4.11±0.05

A1 Gold ✗ −0.016±0.084 2.89±0.08

B1 Gold+Silver ✗ 0.020±0.084 3.58±0.06

B2 Gold+Silver ✓ −0.085±0.086 3.74±0.06

details can be found in Appendix 6. 424

We find that all models achieved a degree of nat- 425

uralness that is indistinguishable from the ground 426

truth (Ju et al., 2024; Anastassiou et al., 2024; Es- 427

kimez et al., 2024), with no statistically signifi- 428

cant differences across the three evaluated models 429

(p ≈ 0.8). However, there were clear differences in 430

the SMOS scores, with models also trained on sil- 431

ver-quality data adhering significantly better to the 432

audio prompt (2.89 for A1 vs 3.58 and 3.74 for B1 433

and B2, respectively). This shows the importance 434

of scaling to more data as well as the effectiveness 435

of our technique for doing so. 436

5.2 Impact of Data Augmentation 437

We analyze the effect of changing the speaker 438

prompt dropout/scrambling rate on TTS qual- 439

ity. We train 4 different TTS models on the 440

Gold+Silver mixture with dropout/scrambling 441

rates of [0.0, 0.1, 0.3, 0.5], respectively. Table 3 442

shows the results of this ablation on test-clean. We 443

found that higher dropout/scrambling rates to be 444

more effective, with values of 0.3 and 0.5 both out- 445

performing the no augmentation baseline in most 446

metrics. Interestingly, using a value that is too low 447

(0.1) leads to significant performance degradations 448

across all 3 metrics. 449

We also ablate the effects of each data augmenta- 450

tion technique, with results on test-clean shown in 451

Table 4. Applying speaker dropout alone improves 452

WER at the cost of SPK, with no change in MOS, 453

while the addition of speaker scrambling further 454

improves all metrics. 455
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Table 3: Impact of the scrambling/dropout rate on Lib-
riSpeech test-clean.

p/v WER SPK UTMOS

0.0 6.5 0.67 3.91
0.1 9.7 0.65 3.75
0.3 6.3 0.66 3.93
0.5 4.7 0.68 4.05

Table 4: Ablating the effect of each data augmentation
on LibriSpeech test-clean, with p = 0.5.

Dropout Scrambling WER SPK UTMOS

✗ ✗ 6.5 0.67 3.91
✓ ✗ 6.3 0.66 3.91
✓ ✓ 4.7 0.68 4.05

5.3 Impact of Speaker Information Amount456

In this section, we analyze the effect of decreasing457

the amount of ground-truth speaker labels in our458

data, with and without our proposed data augmen-459

tation techniques. We train 4 TTS models on dif-460

ferent subsets of the Gold+Silver data mixture by461

decreasing the amount of gold-standard data from462

46K hours to 960 hours, 400 hours, and 200 hours463

respectively. This process is conducted once with464

models trained using the proposed augmentation465

techniques, and once without any augmentation.466

The change in WER, SPK, and MOS on Lib-467

riSpeech test-clean as the amount of gold-standard468

data is decreased is shown in Figure 3. Models469

trained with the data augmentation generally per-470

form better across all 3 metrics at each resource471

level, showing the generalizability of our method.472

One can also observe that our proposed methods473

scale well to the low-resource regime, showing that474

our technique can enable stronger TTS systems475

with minimal amounts of labeled speaker data.476

5.4 Cross-lingual Generalization477

The lack of speaker labels is an even larger limita-478

tion to non-English TTS, as speaker information479

is even more scarce. Diarization models are also480

more inconsistent in multilingual settings (Kalluri481

et al., 2024), making pseudo-labels weak. We thus482

ask the following research question: can we still483

create a zero-shot TTS system without any speaker484

information in a language? We analyze the cross-485

lingual generalizability of our method, where the486

gold-standard with speaker information is in one487

language, and the silver-standard data is in another.488

In this experiment, we use the 2000 hour Ger-489

Table 5: Cross-lingual benchmark on MLS German.

Spk Label WER SPK UTMOS

Ground Truth 20.1 0.40 2.53
Augmentation 20.9 0.57 2.70

Table 6: Comparison on test-clean of different speaker
pseudo-labeling methods for silver-quality data.

Spk Label WER SPK UTMOS

None 6.5 0.67 3.91
Diarization 8.3 0.65 3.89
Scrambled (proposed) 4.7 0.68 4.05

man subset of MLS (Pratap et al.) for the silver- 490

standard data, and compare it to a model trained 491

only on German MLS, but with the ground truth 492

speaker labels. We evaluate models with the same 493

3 metrics, although we note that UTMOS is not 494

trained on German, hence lower overall UTMOS 495

scores when compared to previous sections. In 496

Table 5, our method without any German speaker 497

labels achieves only 0.8 worse WER, while achiev- 498

ing higher SPK and UTMOS. This shows the po- 499

tential of our method in aiding the development of 500

large-scale TTS systems in non-English languages. 501

5.5 Comparing with Speaker Pseudo-labels 502

An alternative (albeit expensive) method to our 503

proposed technique is to generate pseudo speaker 504

labels for the training data by using a speaker di- 505

arization or clustering model. This is the process 506

used to create large-scale open TTS datasets, such 507

as Emilia (He et al., 2024). However, diarization is 508

costly, and may represent up to 22% of the compute 509

used for pseudo-labeling (Figure 4). 510

Table 6 shows the compares models trained 511

on the Gold+Silver data mixture with different 512

speaker pseudo-labeling strategies on the silver- 513

quality data: no speaker pseudo-labels, diarization- 514

based pseudo-labels, and our speaker scrambling- 515

based pseudo-labels. We find that the use of the 516

diarization-based pseudo-labels can actually de- 517

grade performance, likely due to mis-identifying 518

different speakers as a single person and thus lead 519

to training on bad prompts. On the other hand, our 520

proposed method shows clear improvements over 521

the no labeling baseline. 522

5.6 Scaling Properties 523

We combine the speaker-agnostic training lessons 524

learned in the previous sections to develop a new 525

7



Figure 3: Change in evaluation metrics as the amount of gold-standard data increases.

Figure 4: Comparison of data cleaning costs with and
without speaker diarization.

SOTA TTS model trained on over 200K hours of526

English audio. We collect additional data from527

the 100,00 Podcasts Dataset (Clifton et al., 2020)528

and the Emilia (He et al., 2024). 100,00 Podcasts529

consists of 60K hours of English podcast audio530

from Spotify, whereas Emilia contains 45K hours531

of cleaned web-crawled English. Due to the noise532

in the original meta-data, we clean and re-segment533

the Spotify audio by performing voice activity de-534

tection and ASR, intentionally omitting diarization535

to show the usefulness of our technique in real-536

world settings. By omitting the diarization step, we537

are able to make data processing 22% faster, reduc-538

ing the average processing time from 212 seconds539

per clip to 166 seconds (Figure 4).540

We compare our scaled model (which we refer541

to as OpusTTS) to 5 SOTA open-source models542

in Table 7 on LibriSpeech test-clean: CosyVoice543

(Du et al., 2024), reproduced versions for VallE-X544

and VallE-2 (Wang et al., 2023; Chen et al., 2024a),545

ESPnet-SLM (Tian et al., 2025), and Sesame CSM546

(Schalkwyk et al., 2025). OpusTTS achieves the547

best SPK, second-best WER, and third-best UT-548

MOS, despite being relatively lightweight in pa-549

Table 7: Comparison with SOTA zero-shot TTS systems
on test-clean. ⋆ indicates reproduction. The best model
is bold, while the second best is underlined.

Model Params. WER SPK UTMOS

CosyVoice 300M 5.0 0.51 4.15
VallE-X ⋆ 300M 27.3 0.35 3.38
VallE 2 ⋆ 800M 27.8 0.46 3.65
ESPnet-SLM 440M 3.1 0.55 4.03
CSM 1B 20.3 0.65 4.11

OpusTTS (ours) 440M 4.5 0.71 4.07

rameter count and only using transparent data. 550

6 Conclusion 551

In this paper, we present a novel yet simple tech- 552

nique to relax the data constraints of language 553

model-based zero-shot TTS systems, allowing 554

them to be more easily scaled to over hundreds 555

of thousands of hours of audio. Our method ex- 556

ploits the teacher-forcing paradigm used to train 557

Transformer-based language models, bypassing the 558

dependency on speaker information. We show- 559

case the effectiveness of this formulation by train- 560

ing models on a mixture of gold-quality TTS 561

with speaker labels and silver-quality data with- 562

out speaker labels. In doing so, we show the im- 563

portance of incorporating certain data augmenta- 564

tion techniques in making this formulation work, 565

such as speaker dropout and our newly introduced 566

speaker scrambling. Our technique outperforms 567

the use of diarization-based pseudo-labeling and 568

can generalize to cross-lingual transfer learning. 569

Finally, we showcase the production capabilities of 570

our method by scaling TTS training to 200K hours, 571

leading to a new SOTA open-source model. In the 572

future, we hope to scale to even more data and en- 573

hance our model’s capabilities with post-training. 574
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Limitations575

While our method allows for LM-based TTS sys-576

tems to be more easily scaled to large amounts of577

training data, the effectiveness of this technique578

is still bound by the quality of the data collected.579

Carelessly including large amounts of low-quality580

data, such inaccurate speech/text pairs or noisy581

audio, can instead harm performance. The perfor-582

mance of LM-based TTS methods are also bound583

by the quality of their speech tokenizer, whose584

reconstruction accuracy may bottleneck the qual-585

ity of the generated speech. Finally, our training586

and evaluation is performed primarily on English.587

While we expect that our technique is sufficiently588

general and simple enough to generalize to many589

languages, more in-depth studies would be bene-590

ficial. We note that these techniques are known591

weaknesses of LM-based TTS models in general,592

and are not unique to our proposed method.593

Ethical Considerations594

Speaker identity and attributes are sensitive biomet-595

ric information. While our proposed technique can596

prevent the use of performing speaker identification597

on audio data, it does not completely eliminate the598

need for labeled speaker information in zero-shot599

TTS training. We also acknowledge the dangers600

of voice cloning technologies like zero-shot TTS,601

such as impersonation or fraud. However, there602

is also a reproducibility crisis in large-scale TTS603

research, as many SOTA models are not released604

nor transparent on the training data used. As such,605

we choose to release our pre-trained models under606

non-commercial licenses (CC-BY-NC 4.0) follow-607

ing the access conditions of the training data, des-608

ignated solely for research purposes, and explicitly609

forbid their use for malicious activities. While one610

may argue that bad actors may still use the models611

regardless of the license, we note that there are al-612

ready several similarly performant models released613

for non-research use (Nari Labs, 2025; Schalkwyk614

et al., 2025).615
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Appendix – Subjective Evaluation927

We conducted subjective evaluations using two928

tests: Comparative Mean Opinion Score (CMOS)929

for naturalness and Speaker Similarity Mean Opin-930

ion Score (SMOS), following the setups of (Ju et al.,931

2024; Eskimez et al., 2024; Wang et al., 2023) after932

review board approval. Participants were informed933

that their work would be used to evaluate speech934

processing systems. We generated 20 samples from935

each system, each from a different speaker. 30936

MTurk annotators scored each system, leading to937

600 total samples per system for each test. Annota-938

tors were paid upon completion of all annotations,939

at a rate of $0.11 USD per minute.940

For CMOS, annotators were shown the gener-941

ated sample next to the ground truth sample and942

were asked “Which recording sounds more natural?943

Please rate on a scale of −3 to 3.” They were pre-944

sented with a 7 point scale, with −3 indicating that945

the ground truth was “clearly more natural” and946

3 being the generated sample was “clearly more947

natural”. A score of 0 indicated that "Both sam-948

ples are equally natural". We shuffled the order in949

which the recordings were presented, both within950

and between pairs. Annotators were not told which951

recording was the ground truth.952

For SMOS, annotators were shown the speaker953

prompt paired with either the ground truth or a954

generated sample. They were asked “How similar 955

are the two speakers in the recording? Please rate 956

on a scale of 1 to 5.” A score of 1 meant that the 957

speakers in the two recordings were “Not similar at 958

all“, while a score of 5 indicated that the speakers 959

were “identical.” A score of 3 meant that the two 960

speakers were “moderately similar.” We shuffled 961

the order in which the recordings were presented, 962

both within and between pairs. Annotators were 963

not told which recording was the speaker prompt. 964
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