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Abstract

The goal of language model (LM)-based
zero-shot text-to-speech (TTS) is to synthe-
size speech with voices unseen during train-
ing. However, zero-shot TTS requires labeled
speaker information for each utterance during
training. This information is expensive to ac-
quire, making it difficult to scale systems to
large amounts of data. In this paper, we show
that these issues can be overcome by simply
combining a large dataset without speaker la-
bels and a smaller dataset with speaker labels,
before training a TTS model on the mixture. To
prevent information mismatch between the two
types of data, we introduce new data augmen-
tation techniques to regularize model training:
speaker dropout and speaker scrambling. As
a result, we achieve relative gains up to 64%
better speaker similarity and 80% lower WER,
when compared to standard training recipes.
We show that our method not only generalizes
well to low-resource and cross-lingual settings,
but also scales to over 200K hours of training
data. We will open-source all code and pre-
trained models. Audio samples are available at
https://cccmon7.github.io/opus_tts/.

1 Introduction

Auto-regressive language models have recently
become a popular formulation for text-to-speech
(TTS) systems (Wang et al., 2023; Du et al., 2024;
Maiti et al., 2024; Défossez et al., 2024) due to
their ability to easily leverage text-only pre-training
from Large Language Models (LLMs) (Touvron
etal., 2023; Brown et al., 2020). These systems are
capable of generating fluent and natural-sounding
synthetic speech in a variety of voices while being
relatively easy to train, making them a prime target
for scaling (Huang et al., 2025).

Increasing amounts of research has focused on
this task of multi-speaker TTS, as it allows models
to leverage more training data while allowing them
to generate more diverse audio. Zero-shot TTS

(Wang et al., 2023; Chen et al., 2024a; Casanova
et al., 2022, 2024; Wu et al., 2022) is a particu-
larly exciting implementation of this concept, as it
allows models to synthesize speech in voices that
were unseen during training. These models lever-
age an enrollment speaker prompt during inference,
which contains an audio example of the voice that
the model should mimic.

One key limitation of zero-shot TTS models is
their dependence on speaker information during
training, because learning to clone a voice demands
an additional utterance from the same speaker as
the target example. Obtaining such speaker labels
is a non-trivial cost that requires either manual an-
notations or complex speaker diarization pipelines
(Park et al., 2022), if not outright impossible due to
privacy concerns and data access conditions: stor-
ing such sensitive biometric data with the corre-
sponding speech is a genuine security issue. Such
expenses, combined with the complexity of TTS
model architectures (Du et al., 2024; Wang et al.,
2023; Wu et al., 2022), only further increase the
difficulty in scaling TTS models to more data and
larger model sizes.

In this paper, we propose a straightforward two-
step method to relax this data constraint: we first
1.) merge -quality data annotated with speaker
information and silver-quality data without speaker
information, and then 2.) propose new data aug-
mentation techniques to regularize model training
on the mismatched data.

We ground our method in the same theoretical
mechanisms that motivate classifier-free guidance
(Ho and Salimans, 2021), leveraging a generative
model’s capacity to capture both conditional and
unconditional distributions. We exploit this for-
mulation to scale TTS models to large amounts
of data: samples with incomplete speaker meta-
data are modeled unconditionally, while samples
with the complete metadata are trained condition-
ally. Although simply combining the incomplete
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data can lead to large gains in generation quality,
with relative gains up to 60% better speaker simi-
larity and 60% lower word error rate-based intelli-
gibility (WER), we also show that such an imple-
mentation is suboptimal. We propose two straight-
forward data-augmentation techniques to alleviate
the train—test mismatch caused by incomplete data:
(1) randomly dropping the speaker prompt and (2)
sampling artificial speaker prompts from the tar-
get speech. Together, these augmentations boost
speaker similarity by 2% and reduce WER by 48%.

Our contributions can be summarized as follows:

1. We present a method that loosens the data con-
straints of zero-shot TTS, making it far easier
to scale models to larger training corpora.

2. Our methods can lead to zero-shot TTS mod-
els that are more robust, leading to relative
gains up to 64% better speaker similarity
and 80% lower WER, when compared to the
vanilla TTS training recipe.

3. Our methods reduce the amount of labeled
speaker information needed to train TTS sys-
tems: our models perform comparably to
those trained without the augmentation on
twice the amount of data. This method gen-
eralizes cross-lingually, enabling the training
of zero-shot TTS models without any speaker
information in a language.

4. By reducing the labeled information needed
for TTS training, we show that our method can
reduce the costs of automatic data annotation
by as much as 22%, allowing us to train a
SOTA TTS model on 200K hours of audio.

2 Related Work

2.1 Zero-Shot TTS

The goal of zero-shot TTS is to synthesize speech
with voices unseen during training. Large-scale
training for zero-shot TTS has focused on two main
branches of work: LM-based (Peng et al., 2024;
Wang et al., 2023; Chen et al., 2024a; Du et al.,
2024) and diffusion-based (Le et al., 2023; Lipman
et al., 2023; Eskimez et al., 2024). Diffusion-based
(and by extension flow-matching) approaches cen-
ter around training a non-autoregressive model on
continuous speech representations (Le et al., 2023;
Liu et al., 2024). However, their non-autoregressive
nature often requires explicit duration modelling or

even frame-level speech/text alignments (Le et al.,
2023). While these can be addressed with certain
training techniques (Eskimez et al., 2024), it comes
at the cost of heavier inference time constraints and
thus limits the usability of these models.

The LM-based approach typically involves train-
ing an auto-regressive language model (Brown
et al., 2020; Touvron et al., 2023) on discrete
speech tokens (Borsos et al., 2023; Lakhotia et al.,
2021; Nguyen et al., 2023) quantized from a speech
representation model (Chen et al., 2024b, 2023a;
Kumar et al., 2023; Shi et al., 2024b; Chen et al.,
2023b). This approach yields several key ad-
vantages, namely the ability to leverage text pre-
training from LLMs and their highly optimized
training frameworks/software (Rasley et al., 2020;
Dao et al., 2022; Dao, 2024). Combined with the
storage-efficient nature of the discrete speech to-
kens, this has made the LM-based approach much
easier to scale (Huang et al., 2025). Due to these
advantages, our work focuses on this formulation.

2.2 Speaker Dependencies in Zero-Shot TTS

Few works have attempted to remove the depen-
dency on speaker labels in zero-shot TTS. The most
similar to our work are SPEAR-TTS (Kharitonov
etal., 2023) and Cosy Voice (Du et al., 2024), which
decouple LM-based TTS into two cascaded stages:
1.) text to semantic tokens and 2.) semantic to
acoustic tokens. In SPEAR-TTS, the second mod-
ule is trained on short segments by sampling a
prompt and target subsequence from each utterance.
While this allows for efficient self-supervised train-
ing, it disregards cases where speaker data is in-
fact available and prevents the model from learning
long-form speaker, phonetic, and prosodic patterns.
CosyVoice instead uses an averaged continuous
speaker embedding, which removes prosodic and
pronunciation information. Furthermore, the em-
bedding is always obtained from the same target
speech utterance during training, potentially over-
fitting to a single speaker prompt'. Our method
can be viewed as a form of semi-supervised train-
ing that addresses these issues, being able to scale
to more data and train on a diverse selection of
speaker prompts. Furthermore, our method only
requires a single-stage, simplifying the training pro-
cess and thus reducing the compute requirements,
while removing issues caused by potential errors in
the cascade during inference.

'This limitation also applies to models that instead condi-
tion the LM on continuous speaker representations.
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Figure 1: Overview of our proposed data concatenation and augmentation strategies for speaker-agnostic training.

E2 TTS (Eskimez et al., 2024) addresses the
speaker dependency in flow matching models, al-
though their goal was simplifying the training
pipeline rather than scaling. They accomplish this
by framing TTS as conditional masked language
modeling, where the model must in-fill audio that
corresponds to a masked time span, given the un-
masked audio and text prompt. However, the ma-
jor limitation of this method is that it requires the
transcript of the speaker prompt during inference,
which limits the cross-lingual capabilities of the
model while being expensive to obtain. While this
can be ameliorated by force-aligning the speech
and text during training, this introduces a signif-
icant cost that makes scaling even more difficult.
Our method does not introduce any additional pre-
processing expenses, making it far more scalable.

3 Method

LM-based TTS auto-regressively models the con-
ditional probability of the ¢-length target speech
tokens Y = (y|t = 1,...,T'), given the input text
sequence X = (xz,|n = 1,..., N) and speaker to-
ken prompt S = (silk =1,..., K):
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This formulation places two main constraints on
the data that can be used for TTS training: 1.) X
must be the text transcript of Y and 2.) Y and S
must be obtained from the same speaker. The for-
mer constraint is relatively easy to address, since
paired speech/text is often found naturally on the
internet. The second constraint, which this work
focuses on, is more problematic to satisfy. Crawled

web data generally does not include per-utterance
speaker information (Chen et al., 2021; Galvez
et al., 2021; Li et al., 2023; He et al., 2024), and
performing speaker identification poses serious pri-
vacy concerns. While the former can be addressed
by pseudo-labeling (as done by He et al. (2024)),
this is very expensive and difficult to scale to large
amounts of data, while often introducing inaccu-
racies from multi-speaker segments (Clifton et al.,
2020; He et al., 2024).

3.1 Speaker-Agnostic TTS Data Relaxation

Rather than being constrained by the limitations
of the conventional zero-shot TTS paradigm, we
propose a training framework that is agnostic to
speaker labels and facilitates scalable exploration
of TTS properties. In other words, the proposed
approach enables model training without the need
for speaker annotations. We define two types of
training data: (1) -standard data with paired
speech/text and speaker labels (X, Y, and .S), and
(2) silver-standard data with only paired speech/-
text (X and Y'). The LM is thus trained to not only
perform speaker-conditional generation (Equation
1), but also speaker-unconditional generation:
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In a theoretically ideal setting, this probability is
near impossible to model without S since the value
of Y is different for every speaker. However, since
in practice the LM is trained with teacher-forcing,
it instead models the probability of the next speech
token y; given the text sequence X and prior speech
tokens [y1, ..., y+—1]. The latter effectively acts as



both prior context and a speaker prompt, making a
solution feasible.

3.2 Speaker Dropout

To prevent the model from overfitting its speaker
prompting abilities on the -standard data (as
in Equation 1), we randomly drop out the speaker
prompt S during training with some probability p.
For each utterance in the data, we uniformly
sample a value p. If p <= p, the model is only
conditioned on the text input X (Equation 2). Oth-
erwise, the model is conditioned on both the text
X and speaker prompt S' (Equation 1).

We note that the same dropout strategy is stan-
dard in classifier-free guidance (Ho et al., 2021),
which uses an unconditional model (Eq. 2) to steer
a conditional one (Eq. 1) during inference. This
dropout allows a single language model to cap-
ture both the conditional and unconditional dis-
tributions. In our case, however, the dropout is
used purely for training regularization to prevent
domain-specific overfitting, since our use of the sil-
ver-quality data (Section 3.1) already enables the
training of an unconditional model®. To the best
of our knowledge, no prior works (Hussain et al.,
2025; Darefsky et al., 2024) have studied the im-
pact of this form of speaker dropout technique
outside the use of classifier-free guidance.

3.3 Speaker Scrambling

Although speaker dropout curbs overfitting in
conditional generation, it offers scant benefit on
out-of-domain (OOD) inputs relative to the -
standard audio. The underlying issue is a persistent
train—test mismatch: the model is never trained to
produce speaker-conditioned outputs for the silver-
standard data. We tackle this limitation with a new
straightforward augmentation scheme: speaker
scrambling. For a target speech sequence Y, we
exploit the time-invariance of speaker identity by
randomly shuffling its acoustic tokens along the
temporal axis. To curb data leakage, we then trun-
cate the shuffled sequence at a random position r,
yielding an artificial speaker prompt S:

S = Truncate(Shuffle(Y"), ) 3)

If truncation is not performed, the model will be
overly biased towards the prompt tokens. During

2Since our overall method is a training technique and
classifier-free guidance is an inference method, they can be
combined and used in a single model. We leave such explo-
rations to future work.

Listing 1 Example Python code for speaker
dropout and speaker scrambling.
import random

1
2 import numpy as np

3

4 def preprocess(text, speech, spk, p, v):

5 Wi

6 Args:

7 text (array): input text

8 speech (array): target speech

9 spk (array or None): speaker prompt
10 p (float): speaker dropout prob

11 v (float): scrambling prob

12 Returns:

13 text (array): input text

14 speech (array): target speech

15 spk (array or None): speaker prompt
16 e

17 # speaker dropout

18 if random.random() < p:

19 spk = None

20 # speaker scrambling

21 if random.random() < v:

22 1 = len(speech)

23 # randomly shuffle across time

24 idx = np.random.permutation(l)

25 scrambled = speech[idx]

26 # take a random subsequence

27 start = random.randint(0, 1 // 2 - 1)
28 spk = scrambled[start: start+l // 4]
29 return text, speech, spk

training, we append S to each silver-standard ex-
ample—or replace the original prompt S in -
standard data—with probability v. The input text
X and the target speech Y remain untouched, re-
sulting in

Hp(yt’ylzt—ly 5’, X) 4)
t

The technique is visualized in Figure 1 and an ex-
ample Python implementation of this technique is
shown in Listing 1.

4 Experimental Setup

Our models use a delay interleave decoder-only
Transformer (Vaswani et al., 2017) architecture
(Copet et al., 2024) for multi-stream language mod-
eling. Audio waveforms are converted into dis-
crete tokens with a DAC-style neural codec (Ku-
mar et al., 2023) from ESPnet-Codec? (Shi et al.,
2024b) (8 streams, vocabulary size= 8192) and
XEUS (Chen et al., 2024b) embeddings quantized
with K-means (1 stream, vocabulary size= 5000),
leading to a total of 9 audio input/output streams.
The Transformer decoder and text embeddings are

3https://huggingface.co/ftshijt/espnet_codec_
dac_large_v1.4_360epoch
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Figure 2: Overview of the multi-stream architecture.
The input text tokens are shown in grey, the speaker
prompt in blue, and the target speech tokens in orange.

initialized with a pre-trained SmolLLM with 360M
parameters *. We use the same text tokenizer as
the pre-trained model, which has a vocabulary size
of 49K. Models are trained for 400K steps with
pure bfloat16, Deepspeed (Rasley et al., 2020), and
the Adam optimizer (Kingma and Ba, 2015). The
learning rate is linearly warmed up to 0.0001 for
10K steps, after which it is held constant. We use
the final checkpoint for evaluation. Inference is
performed with top-k sampling with £ = 30 and
a sampling temperature of 0.7. Sampling is per-
formed 10 times per input, and we report the aver-
age result across the 10 generated samples. We set
both the speaker dropout p and scrambling rate v to
0.5. Each model is trained on 16 NVIDIA GH200
GPUs for 30 hours. We conduct our experiments
using the ESPnet-SLM toolkit (Tian et al., 2025;
Watanabe et al., 2018).

4.1 Training Data

Our primary training set consists of 46K hours of
English audiobook recordings from LibriVox, ob-
tained by combining LibriSpeech 960 (Panayotov
etal., 2015) and the English portion of MLS (Pratap
et al.). Importantly, the metadata for these record-
ings include the ground-truth speaker ID, which
allows us to use this dataset as the -standard

*https://huggingface.co/blog/smollm

TTS data described in Section 3.1.

For the silver-standard speech data where the
ground-truth speaker information is unknown, we
use a cleaned version of YODAS (Li et al., 2023)
from Tian et al. (2025), which has 70K hours of
English speech mined from YouTube.

Note that this version of YODAS contains
speaker pseudo-labels through the use of a pre-
trained Pyannote diarization model (Bredin et al.,
2020) during the cleaning process, based on He
et al. (2024). We generally do not use these pseudo-
labels, so that we can better simulate in-the-wild
conditions where speaker information is truly un-
known. The only exception is in Section 5.5, where
we compare the effectiveness of our method against
speaker pseudo-labels.

4.2 Evaluation

To evaluate the generalizability of our technique,
we use multiple test sets from a wide variety of
domains for our evaluation: LibriSpeech test-clean
(audiobooks) (Panayotov et al., 2015), VCTK (ac-
cented read speech) (Yamagishi et al., 2019), and
Genshin > (voice dubbing). We consider VCTK as
the primary measure of performance, as it is con-
sidered OOD for both the and silver quality
data while being a standard academic benchmark.
Ablative studies (Sections 5.2, 5.3, and 5.5) are per-
formed on the in-domain LibriSpeech test-clean.

Following recent speech synthesis studies (Es-
kimez et al., 2024; Wang et al., 2023; Chen et al.,
2024a; Anastassiou et al., 2024; Huang et al., 2023),
we use automatic proxy metrics for objective eval-
uations. We focus on three such proxy metrics:
Word Error Rate (WER) for intelligibility, UT-
MOS (Baba et al., 2024) for audio quality, and
Speaker Embedding Similarity (SPK). WER is ob-
tained from Whisper V3 Turbo (Radford et al.,
2023) and SPK is calculated using a pre-trained
WavLM+ECAPA-TDNN (Jung et al., 2024; Chen
et al., 2022). We use VERSA (Shi et al., 2024a) to
calculate each metric.

5 Results

Our main results are shown in Table 1, where we
vary the TTS model training along two axes: use
of data augmentation (none vs the methods pro-
posed in Section 3) and training data ( only vs

+Silver). Model A1 is trained on only -
standard data without the proposed data augmenta-

5https://github.com/espnet/espnet/tr‘ee/master/
egs2/genshin/tts1
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Table 1: Cross-domain evaluation of each TTS model, trained with or without the proposed augmentation techniques.
Models are evaluated using WER ({), Proxy MOS (71), and SPK (1). Model A1 serves as the baseline system that
represents the standard TTS LM training recipe, whereas B2 uses our proposed methods.

ID Training Data Augmentation test-clean VCTK Genshin

WER SPK UTMOS ‘ WER SPK UTMOS ‘ WER SPK UTMOS
Al X 6.0 0.62 3.96 124 0.28 3.68 23.7 0.39 3.34
A2 v 56 0.62 3.99 29 039 3.93 204  0.39 3.25
B1 +Silver X 6.5 0.67 3.91 49 045 3.80 23.8 046 3.08
B2 +Silver v 4.7  0.68 4.05 25 046 4.00 16.8 0.47 3.47

tion, serving as the baseline that represents the stan-
dard TTS LM training recipe. While it achieves
strong performance on the in-domain evaluation
(test-clean), it generalizes poorly to OOD speaker
prompts (VCTK and Genshin), with noticeable
degradations on the two other test sets. Naively
adding the silver-standard data largely alleviates
this issue (A1 vs B1), but leads to degradations in
in-domain performance. Nevertheless, the largest
improvements from scaling to more data are in
speaker similarity, with a relative 64% increase on
VCTK. The results show that B2, the model trained
on the additional silver-quality data with data aug-
mentation, clearly performs the best: model B2
achieves the best scores in all 9 metrics / datasets.
The data augmentation not only recovers the degra-
dations on test-clean WER and MOS, but also im-
proves generation quality in all 3 metrics in the
OOD test sets. This highlights the importance of
using both of our proposed techniques in building
more robust TTS systems.

5.1 Subjective Evaluations

We also conducted subjective evaluations on
A1, B1, and B2 using two tests: Comparative
Mean Opinion Score (CMOS) for naturalness and
Speaker Similarity Mean Opinion Score (SMOS),
following the setups of (Ju et al., 2024; Eskimez
et al., 2024; Wang et al., 2023). We generated 20
samples from each system, each from a different
speaker. We hired 30 MTurk annotators, leading
to 600 total samples per system for each test. For
CMOS, annotators compared the generated sam-
ple with the ground truth, without knowing which
was which. They were asked to rate naturalness
on a scale of -3 to 3, where negative values indi-
cate preference for the ground truth and vice versa
for positive values. For SMOS, annotators com-
pared the audio prompt with the generated sample
or ground truth and rated the speaker similarity on
ascale of 1 (not similar at all) to 5 (identical). More

Table 2: Subjective evaluation on VCTK.

ID Data Aug. | CMOS?t SMOSt

Ground Truth - | n/a 4.1150.05
Al X —0.01610.084 2.89+0.08
B1 +Silver X 0.02040.084 3.58+0.06
B2 +Silver v —0.085+0.086 3-74:t0.06

details can be found in Appendix 6.

We find that all models achieved a degree of nat-
uralness that is indistinguishable from the ground
truth (Ju et al., 2024; Anastassiou et al., 2024; Es-
kimez et al., 2024), with no statistically signifi-
cant differences across the three evaluated models
(p =~ 0.8). However, there were clear differences in
the SMOS scores, with models also trained on sil-
ver-quality data adhering significantly better to the
audio prompt (2.89 for A1 vs 3.58 and 3.74 for B1
and B2, respectively). This shows the importance
of scaling to more data as well as the effectiveness
of our technique for doing so.

5.2 Impact of Data Augmentation

We analyze the effect of changing the speaker
prompt dropout/scrambling rate on TTS qual-
ity. We train 4 different TTS models on the

+Silver mixture with dropout/scrambling
rates of [0.0,0.1,0.3,0.5], respectively. Table 3
shows the results of this ablation on test-clean. We
found that higher dropout/scrambling rates to be
more effective, with values of 0.3 and 0.5 both out-
performing the no augmentation baseline in most
metrics. Interestingly, using a value that is too low
(0.1) leads to significant performance degradations
across all 3 metrics.

We also ablate the effects of each data augmenta-
tion technique, with results on test-clean shown in
Table 4. Applying speaker dropout alone improves
WER at the cost of SPK, with no change in MOS,
while the addition of speaker scrambling further
improves all metrics.



Table 3: Impact of the scrambling/dropout rate on Lib-
riSpeech test-clean.

p/v | WER SPK UTMOS
00 | 65 067 391
01 | 97 065 375
03 | 63 066 393
05 | 47 068  4.05

Table 4: Ablating the effect of each data augmentation
on LibriSpeech test-clean, with p = 0.5.

Dropout Scrambling | WER SPK UTMOS
X X 6.5 0.67 391
4 X 63  0.66 391
4 4 47  0.68 4.05

5.3 Impact of Speaker Information Amount

In this section, we analyze the effect of decreasing
the amount of ground-truth speaker labels in our
data, with and without our proposed data augmen-
tation techniques. We train 4 TTS models on dif-
ferent subsets of the +Silver data mixture by
decreasing the amount of -standard data from
46K hours to 960 hours, 400 hours, and 200 hours
respectively. This process is conducted once with
models trained using the proposed augmentation
techniques, and once without any augmentation.
The change in WER, SPK, and MOS on Lib-
riSpeech test-clean as the amount of -standard
data is decreased is shown in Figure 3. Models
trained with the data augmentation generally per-
form better across all 3 metrics at each resource
level, showing the generalizability of our method.
One can also observe that our proposed methods
scale well to the low-resource regime, showing that
our technique can enable stronger TTS systems
with minimal amounts of labeled speaker data.

5.4 Cross-lingual Generalization
The lack of speaker labels is an even larger limita-
tion to non-English TTS, as speaker information
is even more scarce. Diarization models are also
more inconsistent in multilingual settings (Kalluri
et al., 2024), making pseudo-labels weak. We thus
ask the following research question: can we still
create a zero-shot TTS system without any speaker
information in a language? We analyze the cross-
lingual generalizability of our method, where the
-standard with speaker information is in one
language, and the silver-standard data is in another.
In this experiment, we use the 2000 hour Ger-

Table 5: Cross-lingual benchmark on MLS German.

Spk Label | WER SPK UTMOS
Ground Truth | 20.1 0.40 2.53
Augmentation | 209  0.57 2.70

Table 6: Comparison on test-clean of different speaker
pseudo-labeling methods for silver-quality data.

Spk Label | WER SPK  UTMOS
None 6.5 0.67 391
Diarization 83 0.65 3.89
Scrambled (proposed) | 4.7  0.68 4.05

man subset of MLS (Pratap et al.) for the silver-
standard data, and compare it to a model trained
only on German MLS, but with the ground truth
speaker labels. We evaluate models with the same
3 metrics, although we note that UTMOS is not
trained on German, hence lower overall UTMOS
scores when compared to previous sections. In
Table 5, our method without any German speaker
labels achieves only 0.8 worse WER, while achiev-
ing higher SPK and UTMOS. This shows the po-
tential of our method in aiding the development of
large-scale TTS systems in non-English languages.

5.5 Comparing with Speaker Pseudo-labels

An alternative (albeit expensive) method to our
proposed technique is to generate pseudo speaker
labels for the training data by using a speaker di-
arization or clustering model. This is the process
used to create large-scale open TTS datasets, such
as Emilia (He et al., 2024). However, diarization is
costly, and may represent up to 22% of the compute
used for pseudo-labeling (Figure 4).

Table 6 shows the compares models trained
on the +Silver data mixture with different
speaker pseudo-labeling strategies on the silver-
quality data: no speaker pseudo-labels, diarization-
based pseudo-labels, and our speaker scrambling-
based pseudo-labels. We find that the use of the
diarization-based pseudo-labels can actually de-
grade performance, likely due to mis-identifying
different speakers as a single person and thus lead
to training on bad prompts. On the other hand, our
proposed method shows clear improvements over
the no labeling baseline.

5.6 Scaling Properties

We combine the speaker-agnostic training lessons
learned in the previous sections to develop a new
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SOTA TTS model trained on over 200K hours of
English audio. We collect additional data from
the 100,00 Podcasts Dataset (Clifton et al., 2020)
and the Emilia (He et al., 2024). 100,00 Podcasts
consists of 60K hours of English podcast audio
from Spotify, whereas Emilia contains 45K hours
of cleaned web-crawled English. Due to the noise
in the original meta-data, we clean and re-segment
the Spotify audio by performing voice activity de-
tection and ASR, intentionally omitting diarization
to show the usefulness of our technique in real-
world settings. By omitting the diarization step, we
are able to make data processing 22% faster, reduc-
ing the average processing time from 212 seconds
per clip to 166 seconds (Figure 4).

We compare our scaled model (which we refer
to as OpusTTS) to 5 SOTA open-source models
in Table 7 on LibriSpeech test-clean: CosyVoice
(Du et al., 2024), reproduced versions for VallE-X
and VallE-2 (Wang et al., 2023; Chen et al., 2024a),
ESPnet-SLM (Tian et al., 2025), and Sesame CSM
(Schalkwyk et al., 2025). OpusTTS achieves the
best SPK, second-best WER, and third-best UT-
MOS, despite being relatively lightweight in pa-
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Table 7: Comparison with SOTA zero-shot TTS systems
on test-clean. % indicates reproduction. The best model
is bold, while the second best is underlined.

Model Params. ‘ WER SPK UTMOS
Cosy Voice 300M 5.0 0.51 4.15
VallE-X % 300M | 273 0.35 3.38
VallE 2 % 800M | 27.8 0.46 3.65
ESPnet-SLM 440M 31 055 4.03
CSM 1B 203 0.65 4.11
OpusTTS (ours) 440M ‘ 45 0.71 4.07

rameter count and only using transparent data.

6 Conclusion

In this paper, we present a novel yet simple tech-
nique to relax the data constraints of language
model-based zero-shot TTS systems, allowing
them to be more easily scaled to over hundreds
of thousands of hours of audio. Our method ex-
ploits the teacher-forcing paradigm used to train
Transformer-based language models, bypassing the
dependency on speaker information. We show-
case the effectiveness of this formulation by train-
ing models on a mixture of -quality TTS
with speaker labels and silver-quality data with-
out speaker labels. In doing so, we show the im-
portance of incorporating certain data augmenta-
tion techniques in making this formulation work,
such as speaker dropout and our newly introduced
speaker scrambling. Our technique outperforms
the use of diarization-based pseudo-labeling and
can generalize to cross-lingual transfer learning.
Finally, we showcase the production capabilities of
our method by scaling TTS training to 200K hours,
leading to a new SOTA open-source model. In the
future, we hope to scale to even more data and en-
hance our model’s capabilities with post-training.



Limitations

While our method allows for LM-based TTS sys-
tems to be more easily scaled to large amounts of
training data, the effectiveness of this technique
is still bound by the quality of the data collected.
Carelessly including large amounts of low-quality
data, such inaccurate speech/text pairs or noisy
audio, can instead harm performance. The perfor-
mance of LM-based TTS methods are also bound
by the quality of their speech tokenizer, whose
reconstruction accuracy may bottleneck the qual-
ity of the generated speech. Finally, our training
and evaluation is performed primarily on English.
While we expect that our technique is sufficiently
general and simple enough to generalize to many
languages, more in-depth studies would be bene-
ficial. We note that these techniques are known
weaknesses of LM-based TTS models in general,
and are not unique to our proposed method.

Ethical Considerations

Speaker identity and attributes are sensitive biomet-
ric information. While our proposed technique can
prevent the use of performing speaker identification
on audio data, it does not completely eliminate the
need for labeled speaker information in zero-shot
TTS training. We also acknowledge the dangers
of voice cloning technologies like zero-shot TTS,
such as impersonation or fraud. However, there
is also a reproducibility crisis in large-scale TTS
research, as many SOTA models are not released
nor transparent on the training data used. As such,
we choose to release our pre-trained models under
non-commercial licenses (CC-BY-NC 4.0) follow-
ing the access conditions of the training data, des-
ignated solely for research purposes, and explicitly
forbid their use for malicious activities. While one
may argue that bad actors may still use the models
regardless of the license, we note that there are al-
ready several similarly performant models released
for non-research use (Nari Labs, 2025; Schalkwyk
et al., 2025).
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Appendix — Subjective Evaluation

We conducted subjective evaluations using two
tests: Comparative Mean Opinion Score (CMOS)
for naturalness and Speaker Similarity Mean Opin-
ion Score (SMOS), following the setups of (Ju et al.,
2024; Eskimez et al., 2024; Wang et al., 2023) after
review board approval. Participants were informed
that their work would be used to evaluate speech
processing systems. We generated 20 samples from
each system, each from a different speaker. 30
MTurk annotators scored each system, leading to
600 total samples per system for each test. Annota-
tors were paid upon completion of all annotations,
at a rate of $0.11 USD per minute.

For CMOS, annotators were shown the gener-
ated sample next to the ground truth sample and
were asked “Which recording sounds more natural?
Please rate on a scale of —3 to 3. They were pre-
sented with a 7 point scale, with —3 indicating that
the ground truth was “clearly more natural” and
3 being the generated sample was “clearly more
natural”. A score of 0 indicated that "Both sam-
ples are equally natural". We shuffled the order in
which the recordings were presented, both within
and between pairs. Annotators were not told which
recording was the ground truth.

For SMOS, annotators were shown the speaker
prompt paired with either the ground truth or a
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generated sample. They were asked “How similar
are the two speakers in the recording? Please rate
on a scale of 1 to 5.” A score of 1 meant that the
speakers in the two recordings were “Not similar at
all“, while a score of 5 indicated that the speakers
were “identical.” A score of 3 meant that the two
speakers were “moderately similar.”” We shuffled
the order in which the recordings were presented,
both within and between pairs. Annotators were
not told which recording was the speaker prompt.
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