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ABSTRACT

Question-answering (QA) is a natural approach for humans to un-
derstand a piece of music audio. However, for machines, accessing
a large-scale dataset covering diverse aspects of music is crucial, yet
challenging, due to the scarcity of publicly available music data of
this type. This paper introduces MQAD, a music QA dataset built on
the Million Song Dataset (MSD), encompassing a rich array of mu-
sical features - including beat, chord, key, structure, instrument, and
genre — across 270,000 tracks, featuring nearly 3 million diverse
questions and captions. MQAD distinguishes itself by offering de-
tailed time-varying musical information such as chords and sections,
enabling exploration into the inherent structure of music within a
song. To compile MQAD, our methodology leverages specialized
Music Information Retrieval (MIR) models to extract higher-level
musical features and Large Language Models (LLMs) to generate
natural language QA pairs. Then, we leverage a multimodal LLM
that integrates the LLaMA2 and Whisper architectures, along with
novel subjective metrics to assess the performance of MQAD. In ex-
periments, our model trained on MQAD demonstrates advancements
over conventional music audio captioning approaches. The dataset
and codes are at https://github.com/oyzh888/MQAD.

Index Terms— Query answering, Music Information Retrieval
(MIR), LLM, dataset.

1. INTRODUCTION

Question-Answering (QA) systems provide an intuitive interface for
interacting with and understanding music. While recent advance-
ments in Large Language Models (LLMs), such as ChatGPT, have
demonstrated ability to generate datasets in various domains [1, 2, 3],
applications to Music Information Retrieval (MIR) remain underex-
plored. As study suggests [4], training LLMs on music-specific QA
data enables models to perform a wide range of tasks, reflecting what
we refer to as “emergent intelligence” [5, 6, 7, 8]–the ability to pro-
vide nuanced answers to complex music-related queries.

Recent advances in multimodal LLMs (MLLMs) have shown
considerable promise [1, 2, 3]. Foundational models for vision-
language integration are detailed in [9, 1, 10, 11], while [2, 4, 12, 13,
14] are highlighted as seminal works within the audio domain. De-
spite this progress, the MIR domain lacks a robust baseline, with [14]
emerging as a foundational MLLM without offering open-source
training dataset, underscoring the community’s need for a compre-
hensive dataset to effectively train MLLMs. While LP-MusicCaps
[15] and MU-LLaMA [4] have made notable contributions to the
MIR community, they often fall short in handling intricate musi-
cal details such as chord progressions, song structure, and rhythmic
changes. Existing datasets either focus on music tagging or lack the
comprehensive QA capacity needed for in-depth music analysis.

Fig. 1. The MQAD dataset offers diverse coverage of fine-grained
MIR facets, making it ideal for training music LLMs.

To address these limitations, we introduce MQAD, a large-scale
music QA dataset based on the Million Song Dataset (MSD) [16].
MQAD includes over 270,000 tracks and nearly 3 million QA pairs
and captions, covering a wide spectrum of musical features such as
beats, chords, key, structural sections, and notes of multiple instru-
ments. As illustrated in Figure 1, the dataset enables LLMs to delve
into the temporal and structural aspects of music, offering a richer
understanding of its components.

Leveraging MQAD, we train a multimodal LLM that integrates
the LLaMA2 [17] and Whisper [12] architectures, yielding state-
of-the-art results in music captioning and question answering tasks.
Additionally, we introduce a novel evaluation metric based on GPT-
4 Turbo [18, 19, 20, 21], designed to simulate human judgment in
assessing the quality of music QA systems.

In summary, our contributions are threefold: (1) we compile
MQAD, the most extensive music QA dataset to date (with 3 million
QA pairs); (2) we develop a multimodal LLM trained on MQAD,
demonstrating significant improvements in music captioning; and
(3) we introduce new evaluation metrics for assessing music QA sys-
tems from multiple perspectives.

Related Works The exploration of music through the lens of
QA systems has gained increasing attention alongside the develop-
ment of LLMs. The MUSIC-AVQA dataset was introduced to sup-
port spatio-temporal understanding of musical content [22], offer-



Fig. 2. MQAD dataset construction and MMQAD model training.

ing 45K QA pairs across 33 question templates that span multiple
modalities and question types. However, its primary focus is on mu-
sic performance in videos, limiting its scope. In [15], LLMs were
employed to generate captions for music, enhancing existing music
tagging datasets. However, their approach is limited to general music
tags, such as genre, mood, instrument, and tempo, and lacks the ca-
pability to provide nuanced temporal music information. Similarly,
[23] developed a QA agent system that uses GPT-4 Turbo to clas-
sify questions, combined with an autonomous MIR model to han-
dle specific MIR tasks. However, it did not integrate music-specific
knowledge into LLM or generate a dataset that could be used by the
broader community to train music-focused LLMs. In contrast, [4]
introduced a model aimed at improving music captioning through a
music question-answering dataset. However, this dataset was small
in scale and did not adequately address temporal aspects of music.

2. METHODOLOGY

2.1. MQAD: Music QA Dataset

Data source The MQAD dataset is built upon the Million Song
Dataset (MSD) [16], inheriting its vast array of genres and tags to en-
sure broad coverage. Our selection criteria is based on [24], yielding
high-quality samples of about 270k tracks in total (approximately
20% of MSD).

Feature Extraction We utilized specialized MIR models for fea-
ture extraction, including beat tracking [25], chord and key detection
[26], structure segmentation [27], and vocal and instrument tran-
scription [28]. These models are based on Transformer architec-
ture and demonstrate state-of-the-art or comparable performance on
their respective benchmarks. The extracted features are formatted
as follows: Beat: documented in line format, each beat shows its

Fig. 3. RAG for generating QA pair and caption.

timestamp and beat count, where a beat count of 1 indicates a down-
beat [29]. Chord: noted with their starting and ending times and the
chord name [30]. Structure: musical sections are listed line-by-line,
each showing starting and ending times, with labels such as ‘intro’,
‘verse’, ‘chorus’, ‘interlude’, ‘bridge’, ‘outro’, and ‘silence’ [31].
Key: each musical section is accompanied with a key and a mode
of major or minor. Instrument Transcription: the transcribed MIDI
covers up to 12 tracks of instruments including vocals, bass, drums,
guitar, and more [28], formatted in JSON. Each track entry includes
a list of polyphonic notes with onset and offset times and a pitch.
Empty lists denote the absence of certain instruments.

These textual representations of musical events provide a rich
metadata layer, enhancing the generation of QA pairs and allowing
LLMs to delve into the dynamic structural compositions of music
within a song.

QA Pair Generation We used an LLM to generate text QA pairs
from the extracted musical event data and the meta-information pro-
vided by MSD. To enhance the diversity and depth of the ques-
tions, we integrated a sophisticated Retrieval-Augmented Genera-
tion (RAG) system [18, 32], as illustrated in Figure 3. The genera-
tion process includes:
• Backbone prompt: Following the approach used by LLark [14],

we inform GPT with the background, tasks, and system status,
applying key modules to ensure high-quality, diverse content.

• Meta Questions from Music Experts (green block): In collabora-
tion with music experts, we developed meta questions covering a
wide range of music perspectives. Randomly incorporating these
questions into prompts ensures that each QA pair probes different
musical aspects, adding specificity and depth.

• Dynamic Prompt System (red block): To mitigate the tendency
of LLMs like GPT-4 Turbo to generate repetitive responses, we
implemented a dynamic prompting system that includes a de-



Dataset # item Duration (h) C/A Avg. Token

General Audio Domain
AudioCaps [33] 51k 144.9 1 9.0±N/A
LAION-Audio [34] 630k 4325.4 1-2 N/A
WavCaps [35] 403k 7568.9 1 7.8±N/A

Music Domain
MusicCaps [36] 6k 15.3 1 48.9±17.3
LP-MusicCaps-MC [15] 6k 15.3 4 44.9±21.3
LP-MusicCaps-MTT [15] 22k 180.3 4 24.8±13.6
LP-MusicCaps-MSD [15] 514k 4283.1 4 37.3±26.8
MQAD(QA) 804k 11804 4 102.6±23.8
MQAD-Full 3M 28556 11 ∼100

Table 1. Comparison of different audio-caption datasets. ‘C/A’ is
the number of captions per audio.

duplication block to suppress questions asked previously.
• High Diversity Parameter: We set a high temperature (0.95) using

GPT-4 Turbo to further increase the diversity of the generated QA
pairs, significantly surpassing the diversity with GPT-3.5.

These optimizations greatly reduce the question duplication rate
from over 5% to less than 0.05%. The combined use of a RAG sys-
tem, expert-derived meta questions, and GPT-4 Turbo makes MQAD
one of the most comprehensive music QA datasets available.

Dataset Statistics Table 1 compares various audio-caption datasets.
MQAD-Full comprises 4 QA pairs and 7 captions per track in 270k
MSD audio clips, totaling 3 million items—5× larger than compara-
ble datasets and 500× larger than MusicCaps [36], one of the most
widely used MIR datasets. An example comparison is illustrated in
Figure 1. Due to computational constraints, this work focuses on the
MQAD(QA) subset, representing 36% (4/11) of the dataset, contain-
ing only QA pairs. The remaining 64% (7/11), mainly captions, is
reserved for future use. Table 1 highlights the detailed and extensive
QA pairs of MQAD, which offers rich MIR information.

2.2. MMQAD: Multimodal LLM

We developed the MMQAD model to validate the MQAD dataset,
using LLAMA2-7B [17] as the LLM backbone and Whisper [12] as
the audio encoder. Following practices in [2, 4, 12, 13, 14], input
text and audio are tokenized by LLAMA2 and Whisper encoders,
respectively, and processed by LLAMA2. LLAMA2’s strong per-
formance, community support, and resource efficiency made it the
ideal choice, enabling MMQAD to handle both textual and auditory
inputs for diverse MIR tasks.

The training of MMQAD was conducted on the MQAD dataset,
utilizing a subset (i.e., ‘qa’ key) of the question set specifically tai-
lored for our QA use cases. For all experiments, the input to the en-
coder is an audio clip of up to 30 seconds at a 16kHz sampling rate,
converted to a log-scaled mel spectrogram with 80 mel bins, a 25 ms
Hann window, a 10 ms stride, and a 10 ms hop size. All models were
trained using the AdamW optimizer with a learning rate of 1e-4. We
employed a cosine learning rate decay to zero after a warm-up period
of 1000 steps. Two scenarios of training processes are considered:
pre-training and fine-tuning. For pre-training, we used a batch size
of 256, and the models were trained for 32,768 steps. For fine-tuning
and transfer learning, we used a batch size of 64 and trained for 10
epochs. Beam search with 5 beams was employed for the inference
of all models. We trained the self-attention layers using LoRA [37]
and froze the Whisper encoder to conserve computational resources.
For fine-tuning, we slightly decreased the learning rate.

2.3. Subjective and Objective Metrics

For evaluation, we primarily focus on objective metrics as sug-
gested in [15], which include BLEU1 to 4 (B1– 4), METEOR (M),
ROUGE-L (R-L), and BERTScore. Other than that, we propose a
(pseudo-) subjective metric that leverages LLM as an judger. Re-
search in the NLP domain has shown a high correlation between
human judgment and assessments made by LLMs [18, 19, 20, 21],
supporting the use of this metric to evaluate the overall quality of
MMQAD outputs from a comprehensive perspective. Specifically,
we employed GPT4-Turbo to compare predicted answers with the
ground truth across eight distinct musical dimensions: Average Ac-
curacy, Average Keywords Matching, and various Average Music
Metrics including beat tracking, structural segmentation, chord and
key detection, instrumentation, genre, and cultural appropriateness.

3. EXPERIMENTS

We compared MMQAD and MusicCaps-LP models using the test
sets of LP-MusicCaps-MC and MQAD.

3.1. Datasets and Models

Three datasets are studied in this work: LP-MusicCaps-MSD, LP-
MusicCaps-MC, and our MQAD. LP-MusicCaps-MSD consists of
approximately 445K training examples. This dataset serves as a pre-
training resource for music captioning tasks. LP-MusicCaps-MC is
more concise dataset with about 2.6K training examples and 2.8K
test examples. This is used to assess the model’s performance in both
supervised and zero-shot settings. MQAD is our primary dataset,
featuring approximately 804K training QA pairs derived from 213K
songs. The validation set contains about 46K QA pairs from 12K
songs, and the test set includes 110K QA pairs across 28K songs,
with a subset of 500 high-quality questions, providing a wide spec-
trum for comprehensive evaluation.

Since QA tasks include captioning, we adapted the LP-MusicCaps-
MC test set into a QA format for fair comparison. This was achieved
by appending the prompt “write a music caption for this track” to
allow the MMQAD model to process it as a music captioning task.
In contrast, MusicCaps-LP, being a native music captioning model
designed exclusively for audio input, does not require any textual
prompts.

For pre-training, three models are defined as follows: MMQAD-
B is pre-trained on the combination of LP-MusicCaps-MSD training
set and MQAD training set. MMQAD-C is pre-trained exclusively
on the MQAD training set. MMQAD-D is pre-trained on the LP-
MusicCaps-MSD training set alone.

For fine-tuning, we define MMQAD-C+F, where we further
fine-tuned MMQAD-C on LP-MusicCaps-MC training set, to verify
improvement in music captioning under supervised conditions.

3.2. Result for Music Captioning Task

Table 2 shows the music captioning performance on the LP-
MusicCaps-MC test set. In the pre-training setting, MMQAD-C
outperforms other models, particularly in METEOR and ROUGE-L
scores, underscoring the advantages of utilizing the MQAD dataset.

In the fine-tuning setting, the models enhanced through fine-
tuning generally show improved performance, with MMQAD-C+F
particularly excelling. This highlights the effectiveness of the
MQAD dataset in refining music captioning tasks.

Comparing the performance of MMQAD-C and MMQAD-D,
we observe differences between MQAD and LP-MusicCaps-MSD,



Model Supervised Metrics(%) Length
B1 B2 B3 B4 M R-L BERT-S Avg.Token

Baseline
Supervised Model 28.51 13.76 7.59 4.79 20.62 19.22 87.05 46.7±16.5

Pre-training (Zero-shot Captioning)
Tag Concat [2, 13] 4.33 0.84 0.26 0.00 3.10 2.01 79.30 23.8±12.1
Template [14] 7.22 1.58 0.46 0.00 5.28 6.81 81.69 25.8±12.4
K2C-Aug [22] 7.67 2.10 0.49 0.10 7.94 11.37 82.99 19.9±7.6
LP-MusicCaps[15] 19.77 6.70 2.17 0.79 12.88 13.03 84.51 45.3±28.0
MMQAD-B (Ours) 13.16 4.18 1.52 0.54 11.24 13.91 85.18 24.9±5.4
MMQAD-C (Ours) 21.55 7.16 1.58 0.44 19.41 15.94 85.41 75.3±12.1
MMQAD-D (Ours) 10.65 3.17 1.00 0.31 9.52 12.60 85.19 28.0±10.5

Fine-tuning (Transfer Learning)
Tag Concat [2, 13] 28.65 14.68 8.68 5.82 21.88 21.31 87.67 41.8±14.3
Template [14] 28.41 14.49 8.59 5.78 21.88 21.25 87.72 41.1±13.2
K2C-Aug [22] 29.50 14.99 8.70 5.73 21.97 20.92 87.50 44.1±15.0
LP-MusicCaps[15] 29.09 14.87 8.93 6.05 22.39 21.49 87.78 42.5±14.3
MMQAD-C+F (Ours) 30.30 15.49 8.80 5.63 22.25 21.56 87.78 45.12±13.71

Table 2. Music captioning results on the MusicCaps test set.

Model Supervised Metrics(%) Length
B1 B2 B3 B4 M R-L BERT-S Avg.Token

LP-MusicCaps[15] 15.24 4.74 1.17 0.28 12.14 13.72 84.48 50.12± 14.06
MMQAD-B (Ours) 51.86 35.01 25.59 19.78 40.23 36.13 91.32 75.14± 13.95
MMQAD-C (Ours) 51.47 34.65 25.35 19.58 40.04 35.77 91.31 74.85± 14.06
MMQAD-D (Ours) 7.33 2.18 0.72 0.25 9.78 13.39 85.49 32.93± 18.31

Table 3. Music QA results on the MQAD test set.

suggesting that combining datasets, as in MMQAD-B, may not
yield significant performance improvements. This highlights that
MMQAD, leveraging a large-scale LLM like LLAMA2-7B, requires
diverse QA data for effective training. The fixed-question approach
in LP-MusicCaps-MSD may limit its performance. For details on
the ‘Supervised Model’ in Table 2, see [15].

Furthermore, we observe MMQAD’s performance appears to be
inferior to other models in BLEU-3 and BLEU-4. This can be at-
tributed to its tendency to generate more detailed responses, aver-
aging 75.3 tokens per output. This verbosity particularly affects the
results of longer n-grams (i.e., BLEU-3 and BLEU-4), where the
lengthy generated text results in lower scores despite the correctness
of the content. In contrast, shorter n-grams like BLEU-1 are less
impacted by such verbosity.

3.3. Results for the Music QA Task

Evaluating the music question-answering task poses significant
challenges, necessitating both subjective and objective approaches.
Given the limited scope of the LP-MusicCaps-MC, which con-
tains fewer than 6,000 entries, it does not sufficiently challenge a
model’s comprehensive QA capabilities. Therefore, we compiled
the MQAD test set, which includes 100K samples featuring detailed
MIR questions such as chord progression and music structure.

For objective evaluation, Table 3 presents the QA perfor-
mance comparison on the MQAD test set. Comparing between
LP-MusicCaps and MMQAD shows that MMQAD-B achieves the
best results across all metrics, slightly surpassing MMQAD-C.
However, MMQAD-D underperforms significantly due to its train-
ing data being limited to music captions, which do not adequately
test its broader QA capabilities.

For subjective evaluation, considering the costs associated with
using GPT-4, we selected 500 representative cases from our MQAD

Metric(%) -B -C -D
Accuracy 87 86 26
Keywords Match 89 87 28
Beat Tracking 85 85 24
Structural Segment 87 87 22
Key Detection 82 80 21
Genre and Mood 86 85 32
Instrument Presence 85 85 28
Cultural Appropriateness 77 76 22

Table 4. Subjective music QA results of models MMQAD-B,
MMQAD-C, and MMQAD-D using GPT-4 on MQAD test set.

test set that span a broad spectrum of MIR questions. As indicated in
Table 4, MMQAD-B stands out as the top performer, which is in line
with the findings in Table 3. Overall, our models consistently exhibit
superior performance across various MIR dimensions, demonstrat-
ing the efficacy of our testing suite in evaluating QA quality across
a diverse range of metrics.

4. CONCLUSION

We have presented the MQAD dataset and the MMQAD model,
which establish a new paradigm for research in MIR by leverag-
ing the power of large-scale, diverse QA datasets and multimodal
LLMs. By offering a detailed exploration of music through the lens
of question-answering systems, we have demonstrated the potential
for significant advancements in how machines understand and inter-
act with music. For future work, our dataset could enhance text-
to-music generation by integrating with MMQAD, enabling more
nuanced user queries for temporal control, which may improve the
quality and precision of generated outputs.
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