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ABSTRACT

Adversarial training has been shown to be reliable in improving robustness against
adversarial samples. However, the problem of adversarial training in terms of fair-
ness has not yet been properly studied, and the relationship between fairness and
accuracy attack still remains unclear. Can we simultaneously improve robustness
w.r.t. both fairness and accuracy? To tackle this topic, in this paper, we study the
problem of adversarial training and adversarial attack w.r.t. both metrics. We pro-
pose a unified structure for fairness attack which bring together common notions
in group fairness, and we theoretically prove the equivalence of fairness attack
against different notions. We show the alignment of fairness and accuracy at-
tack in disadvantaged groups, and we theoretically demonstrate that robustness of
samples w.r.t. adversarial attack against one metric also benefit from robustness of
samples w.r.t. adversarial attack against the other metric. Our work unifies adver-
sarial training and attack w.r.t. fairness and accuracy, where both metrics benefit
from robustness of the other metric under adversarial attack. Our study suggests
a novel way to incorporate adversarial training with fairness, and experimental
results show that our proposed method achieves better performance in terms of
robustness w.r.t. both fairness and accuracy.

1 INTRODUCTION

As machine learning systems have been increasingly applied in social fields, it is imperative that
machine learning models do not reflect real-world discrimination. However, machine learning mod-
els have been shown to have biased predictions against disadvantaged groups on several real-world
tasks (Larson et al., 2016; Dressel & Farid, 2018; Mehrabi et al., 2021a). In order to improve fair-
ness and reduce discrimination of machine learning systems, a variety of work has been proposed
to quantify and rectify bias in machine learning systems (Hardt et al., 2016; Kleinberg et al., 2016;
Mitchell et al., 2018).

Despite the emerging interest in fairness, the topic of adversarial fairness attack has not yet been
properly discussed. Most of current literature on adversarial training has been focusing on improving
robustness against accuracy attack (Chakraborty et al., 2018), while the problem of adversarial attack
and adversarial training w.r.t. fairness has been rarely addressed. Although adversarial training
has been widely discussed in fairness literature, much of them have been focusing on applying
adversarial learning as means to unlearn the impact of sensitive attributes to achieve fairness (Madras
et al., 2018; Creager et al., 2019). Mehrabi et al. (2021b) and Solans et al. (2020) made the first
attempt to propose novel ways to generate adversarial samples taking into account fairness objectives
to disturb the training process and exacerbate bias on clean testing data. However, the relationship
between fairness and accuracy attack is understudied, and it remains unclear whether it is possible
to incorporate adversarial training with fairness to improve robustness against fairness attack.

In light of current limitations on adversarial attack and adversarial training w.r.t. fairness, in this
work, we propose a general framework for fairness attack, where we show that different notions
in group fairness have similar targets in terms of adversarial attack, and specifically, in terms of
gradient-based attack, these notions are equivalent. Based on this unified framework, we discuss
the relationship between fairness and accuracy attack, and we show theoretically how robustness
w.r.t. fairness and accuracy can benefit from the other, i.e., the alignment between the two notions
in terms of robustness. Our discussion suggest a novel framework, fair adversarial training, to
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incorporate fair classification with adversarial training to improve robustness against fairness attack.
We summarize our contribution as follows:

• We propose a unified framework for adversarial attack fairness, which brings together dif-
ferent notions in group fairness.

• We theoretically demonstrate the alignment between robustness of fairness and accuracy,
and we propose a fair adversarial training approach that incorporates adversarial training
with fair classification.

• We empirically validate the superiority of our method under adversarial attack, and the
connection between robustness w.r.t. fairness and accuracy on three benchmark datasets.

2 RELATED WORK

2.1 FAIRNESS IN MACHINE LEARNING

Fairness has gained much attention in machine learning society. Different notions have been pro-
posed to quantify discrimination of machine learning models, including individual fairness (Lahoti
et al., 2019; John et al., 2020; Mukherjee et al., 2020), group fairness (Feldman et al., 2015; Hardt
et al., 2016; Zafar et al., 2017) and counterfactual fairness (Kusner et al., 2017). Our work is most
closely related with group fairness notion. Works on group fairness generally falls into three cate-
gories: preprocessing (Creager et al., 2019; Jiang & Nachum, 2020; Jang et al., 2021), where the
goal is to adjust training distribution to reduce discrimination; inprocessing (Zafar et al., 2017; Jung
et al., 2021; Roh et al., 2021), where the goal is to impose fairness constraint during training by
reweighing or adding relaxed fairness regularization; and postprocessing (Hardt et al., 2016; Jang
et al., 2022), where the goal is to adjust the decision threshold in each sensitive group to achieve
expected fairness parity.

2.2 ADVERSARIAL MACHINE LEARNING

Adversarial training and adversarial attack have been widely studied in trustworthy machine learn-
ing. Goodfellow et al. (2014) proposes a simple one-step gradient-based attack to adversarially
perturb the predicted label. Madry et al. (2017) extends the one-step attack to an iterative attack
strategy, and shows that iterative strategy is better at finding adversarial samples. Accordingly, dif-
ferent methods on adversarial attack and defenses have been proposed (Shafahi et al., 2019; Wong
et al., 2020; Xie et al., 2020; Cui et al., 2021; Jia et al., 2022) to improve robustness of classi-
fier against accuracy attack. However, few literature has addressed adversarial training and attack
against fairness. Some work discusses the problem of fairness posioning attack during training
(Solans et al., 2020; Mehrabi et al., 2021b); however, it is not clear how fairness attack would influ-
ence the predicted soft labels, and the relationship between fairness and accuracy attack/robustness
remains unclear.

3 PROBLEM DEFINITION

3.1 ADVERSARIAL ATTACK W.R.T. ACCURACY

We start by formulating adversarial attack against accuracy. Denote x 2 Rn as the input feature, y 2
{0, 1} as the label, and a 2 {0, 1} as the one-hot encoding sensitive attribute 1. Let f : Rn ! [0, 1]
be the function of classifier, the objective of adversarial attack against accuracy for each sample
(x, y, a) can be formulated as

argmax
✏

LCE(f(x+ ✏), y), k✏k  ✏0,

where k✏k refers to the Lp norm of ✏ with a general choice of perturbation constraint in L1 norm,
and LCE is the cross-entropy loss. A common way to obtain adversarial samples is through pro-
jected gradient descent (PGD) attack, where the adversarial sample is updated in each step based on

1We formulate the problem under binary classification and binary sensitive attribute for simplicity; however,
our method can be readily generalized to multi-class and multi-sensitive-attribute scenario.
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the signed gradient:

xt+1 = ⇧x+S

�
xt + ↵ sign (rxLCE(x, y))

�
,

where ↵ is the step size, and S := {✏, k✏k  ✏0} is the set of allowed perturbation. PGD attack has
been shown to be effective in finding adversarial samples compared with one-step adversarial attack
(Madry et al., 2017).

3.2 ADVERSARIAL ATTACK W.R.T. FAIRNESS

Fairness adversarial attack have yet been less studied in current literature. In light of the formulation
of accuracy adversarial attack, we propose to formulate fairness adversarial attack as follows:

argmax
✏

L(f(x+ ✏), y), k✏k  ✏0,

where L is some relaxed fairness constraint. Below we discuss the specific formulation of L for two
widely adopted group fairness notions: disparate impact (DI) and equalized odds (EOd).

Consider a testing set S = {(xi, yi, ai), 1  i  N} and denote Sjk = {xi|yi = j, ai = k}, and
S.k = {xi|ai = k}. The relaxations (Madras et al., 2018; Wang et al., 2022) for fairness attack
corresponding to DI and EOd can be formulated as:

LDI =

�����
X

xi2S.1

f(xi)

|S.1|
�

X

xi2S.0

f(xi)

|S.0|

����� , (1)

LEOd =

�����
X

xi2S00

f(xi)

|S00|
�

X

xi2S01

f(xi)

|S01|

�����+

�����
X

xi2S10

f(xi)

|S10|
�

X

xi2S11

f(xi)

|S11|

����� , (2)

And fair adversarial samples can be obtained similarly via PGD attack:

xt+1 = ⇧x+S

�
xt + ↵ sign (rxL(x, y))

�
.

4 FAIR ADVERSARIAL TRAINING

4.1 EQUIVALENCE BETWEEN EOD AND DI ATTACK

We now discuss the detailed relationship between DI and EOd attack. The following corollary states
the compatibility of the two objectives:

Corollary 1. The adversarial objective of EOd and DI attack are equivalent per sample up to an
multiplicative constant.

We defer the proof to appendix. Corollary 1 shows the equivalence between adversarial attack
against different group fairness notions, where attack targeting at group fairness perturb the predicted
soft labels against sensitive attributes. Specifically, in the context of gradient-based attack, we have
EOd and DI attack equivalent.

Next, we take EOd attack as an example to demonstrate the behavior of fairness attack in different
sensitive groups. Without loss of generality, assume a = 1 is the advantaged group, and assume the
average positive predictions are biased towards the advantaged group, that is, the average positive
prediction is greater in the advantaged group:

X

xi2Sy0

f(xi)

|Sy0|


X

xi2Sy1

f(xi)

|Sy1|
, y 2 {0, 1}. (3)
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Consider the adversarial EOd loss in equation 2. For a sample (xj , yj , aj) in advantaged group (i.e.,
aj = 1), based on equation 3 we can rewrite LEOd as:

LEOd =

�����
X

xi2S00

f(xi)

|S00|
�

X

xi2S01

f(xi)

|S01|

�����+

�����
X

xi2S10

f(xi)

|S10|
�

X

xi2S11

f(xi)

|S11|

�����

=
f(xj)

|Syj1|
+

X

xi2Syj1\{xj}

f(xi)

|Syj1|
�

X

xi2Syj0

f(xi)

|Syj0|
+

������

X

xi2Sȳj0

f(xi)

|Sȳj0|
�

X

xi2Sȳj1

f(xi)

|Sȳj1|

������

=
f(xj)

|Syj1|
+ Cj ,

(4)

where ȳj = |1� yj | and Cj is a constant w.r.t. xj thus does not affect @LEOd

@xj

. Based on equation 4
we can derive that the adversarial perturbation w.r.t. LEOd is expected to maximize the predicted
soft labels for samples in the advantaged group.

Similarly, for sample (xk, yk, ak) in the disadvantaged group (ak = 0), we have:

LEOd =

�����
X

xi2S00

f(xi)

|S00|
�

X

xi2S01

f(xi)

|S01|

�����+

�����
X

xi2S10

f(xi)

|S10|
�

X

xi2S11

f(xi)

|S11|

�����

= �f(xk)

|Syk0|
+ Ck,

(5)

where Ck is a constant w.r.t. xk thus does not affect @LEOd

@xk

. And based on equation 5 we can
derive that adversarial perturbation w.r.t. LEOd is expected to minimize the predicted soft labels in
disadvantaged group, which is the opposite from samples in advantage group.

4.2 ALIGNMENT BETWEEN EOD AND ACCURACY ATTACK

We move on to discuss the connection between EOd and accuracy attack. Without loss of generality,
assume the positive label is the favorable outcome for classification, we have the following corollary
regarding the connection between fairness and accuracy attack:
Corollary 2. The fairness adversarial attack and accuracy adversarial attack are in alignment
regarding true negative (TN) and false positive (FP) samples in advantaged group and true positive
(TP) and false negative (FN) samples in disadvantaged group.

We defer the detailed proof to appendix. It is worth noticing that the fairness adversarial attack and
accuracy adversarial attack operates towards the opposite direction for the other two pairs. That
is, for TP samples in advantaged group and TN samples in disadvantaged group: as in equation 4
and equation 5, the adversarial attack regarding fairness is expected to maximize the predicted con-
fidence for samples in the two sensitive groups (i.e., maximizing the predicted soft labels for TP
samples in advantage group, and minimizing the predicted soft labels for TN samples in disad-
vantaged group), while adversarial attack regarding accuracy is expected to minimize the predicted
confidence for the two sensitive groups. Similarly, for FN samples in the advantaged group and FP
samples in the disadvantaged group: the fairness attack is expected to ‘correct’ the predicted soft
labels, i.e., the predicted adversarial labels is expected to be in alignment with ground-truth labels,
while accuracy attack is expected to exacerbate the error.

4.3 ALIGNMENT BETWEEN EOD AND ACCURACY ROBUSTNESS

We now discuss the alignment between robustness w.r.t. fairness and accuracy. Although the re-
lationship between robustness w.r.t. the two metrics seem straightforward on certain groups, the
relationships on other groups are not clear. Before we state the detailed relationship, we first state
the assumption we need to prove the relationship:
Assumption 1. The gradient of f w.r.t. input feature x is Lipschitz with constant K.

Under Assumption 1, we have the following guarantee for robustness against EOd attack under
adversarial training w.r.t. accuracy:
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Theorem 1. For classifier f under accuracy adversarial training, let D(x) := |L(f(xEOd
adv ), y) �

L(f(x), y)| be the change of cross-entropy loss for sample x under EOd attack, consider FN sample
xFN,1 in the advantaged group and TP sample xTP,0 in the disadvantaged group, let �t�1

TP,0 be the
change of xTP,0’s predicted label under ✏-level accuracy attack at (t � 1)-th iteration, let xt be the
adversarial sample obtained at (t � 1)-th iteration during EOd attack, the difference of robustness
against ✏-level EOd attack with step size ↵ and up to T iterations between the two samples are
upper-bounded by the robustness of TP sample against accuracy attack up to an addictive constant:

|D(xFN,1)�D(xTP,0)|  min
xTP,02S10

↵
TX

t=1

"p
nKd(xt�1

FN,1, x
t�1
TP,0)

f(xt�1
FN,1)

+

�����
f(xt�1

TP,0)� f(xt�1
FN,1)

f(xt�1
FN,1)f(x

t�1
TP,0)

����� �
t�1
TP,0

#
.

Detailed proof can be found in the appendix. As discussed in Section 4.2, fairness robustness of TP
samples in the disadvantaged group benefit directly from adversarial training w.r.t. accuracy, while
robustness of FN samples in the advantaged group are not clearly related with adversarial training
w.r.t. accuracy. Instead, we compare robustness of disadvantaged TP sample and advantaged FN
sample to provide robustness guarantee for FN samples against EOd attack. Besides, as fairness
attack regarding disadvantaged TP samples and advantaged FN samples are towards the opposite
directions, Theorem 1 also shows the benefit of robustness against accuracy attack to EOd attack,
where both samples contribute to lower change of EOd under fairness attack. For a classifier f 0

under normal training, we have similar upper-bound, except that we now have �
0
t�1

TP,0 � �t�1
TP,0, which

indicates a looser upper-bound compared with classifiers under adversarial training. For marginal
FN samples which are more vulnerable under EOd attack, we have their robustness bounded by
marginal TP samples, and smaller �TP,0, or tighter bound indicates better robustness. In this way,
classifiers under accuracy adversarial training also achieve improvement in fairness robustness. Sim-
ilar inequality in Theorem 1 also holds for FP samples in the disadvantaged group and TN samples
in the advantaged group:
Remark 1. For FP sample xFP,0 in the disadvantaged group and TN sample xTN,1 in the advantaged
group, we have similar inequality regarding the upper-bound of robustness difference:

|D(xFP,0)�D(xTN,1)|  min
xTN,12S01

↵
TX

t=1

"p
nKd(xt�1

FP,0, x
t�1
TN,1)

f(xt�1
FP,0)

+

�����
f(xt�1

FP,0)� f(xt�1
TN,1)

f(xt�1
TN,1)f(x

t�1
FP,0)

����� �
t�1
TN,0

#
.

For the reversed direction, under Assumption 1, we have the following guarantee for robustness
against accuracy attack under adversarial training w.r.t. EOd:
Theorem 2. For classifier f under EOd adversarial training, let F (x) := |f(xACC

adv ) � f(x)| be
the change of predicted soft label under ✏-level accuracy attack, consider TP samples xTP,1 in the
advantaged group and its neighbor TP sample xTP,0 in the disadvantaged group, let �0TP be the
change of soft label of xTP,0 under ✏-level EOd attack with step size ↵ and up to T iterations, let xt

be the adversarial sample under accuracy attack at (t�1)-th iteration, the robustness of TP samples
xTP,1 in the advantaged group against ✏-level accuracy attack are upper-bounded by robustness of
xTP,0 against ✏-level EOd attack up to an addictive constant:

F (xTP,0)  min
xTP,02S10

�0TP +
TX

t=1

p
n↵Kd(xTP,0,t�1, xTP,0,t�1).

Here the adversarial attack against fairness and accuracy are in alignment regarding disadvantaged
TP samples, which we use to upper-bound robustness of advantaged TP samples under accuracy
attack. Theorem 2 shows that adversarial training w.r.t. fairness also benefits robustness w.r.t. accu-
racy. For a classifier f 0 under normal training, we have similar inequality except that we now have
�0

0

TP � �0TP. Similar upper-bound also holds for TN samples:
Remark 2. For TN sample xTN,1 in the advantaged group and TN sample xTN,0 in the disadvantaged
group, we have similar inequality regarding the upper-bound of robustness against accuracy attack:

F (xTN,1)  min
xTN,12S01

�0TN +
TX

t=1

p
n↵Kd(xTN,1,t�1, xTN,1,t�1).
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4.4 FAIR ADVERSARIAL TRAINING

One direct result regarding Theorem 1 is to incorporate adversarial samples w.r.t. accuracy attack
during training to obtain a fair classifier that is also robust to adversarial fairness perturbations.
Consider the relaxed EOd loss under fairness perturbation:

L0
EOd

=

�����
X

xi2S00

(f(xi)� �i)

|S00|
�

X

xi2S01

(f(xi) + �i)

|S01|

�����+

�����
X

xi2S10

(f(xi)� �i)

|S10|
�

X

xi2S11

(f(xi) + �i)

|S11|

�����
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�i
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�i
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= LEOd +
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�i
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+
X

xi2S01

�i
|S01|

+
X

xi2S10

�i
|S10|

+
X

xi2S11

�i
|S11|

,

(6)
where the relaxed EOd loss under adverasrial perturbation is upper-bounded by the relaxed EOd loss
without adversarial perturbation and robustness of samples against EOd adversarial attack. A direct
implication of this formulation is to improve robustness of classifier w.r.t. fairness by incorporating
adversarial samples and fairness constraints during training:

argmin
✓

1

N

NX

i=1

LCE(f(x
ACC
adv,i), yi), s.t. L  �, (7)

where L can be specified by fairness relaxations as regularization during training, or can be implic-
itly specified as preprocessing or postprocessing techniques.

5 EXPERIMENTS

We evaluate our method on three datasets: Adult (Dua & Graff, 2017), COMPAS (Larson et al.,
2016) and German (Dua & Graff, 2017). The sensitive attributes are chosen as race for Adult and
COMPAS and sex for German. Details of the datasets are in the Appendix.

We use accuracy as performance evaluation, and disparate impact (DI) and equalized odds (EOd)
as fairness metric. The classifier for all compared methods is chosen as MLP, and all methods are
trained under the same data partition. During adversarial training, the perturbation level is set as 0.2
for Adult dataset, 0.005 for COMPAS dataset and 0.01 for German dataset, where the the perturba-
tion level is empirically determined to achieve largest perturbation while still ensuring convergence.

5.1 ROBUSTNESS AGAINST EOD ATTACK

We compare five different methods with our fair adversarial training method. Specifically, we con-
sider three different versions for our fair adversarial training method (preprocessing, inprocessing
and postprocessing). The three versions differ in the fairness regularization L in equation 7.

• Baseline: MLP model under normal training.
• Preprocessing: MLP model under normal training with label processed by Jiang & Nachum

(2020).
• Postprocessing: MLP model under normal training with postprocessing technique by Jang

et al. (2022).
• Inprocessing: MLP model under normal training with relaxed EOd constraint by Wang

et al. (2022).
• Adversarial training: MLP model under adversarial training w.r.t. accuracy.
• Adversarial training (preprocessing): MLP model under adversarial training w.r.t. accuracy

with training label processed by Jiang & Nachum (2020).
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(a) EOd (Adult) (b) DI (Adult) (c) Accuracy (Adult)

(d) EOd (COMPAS) (e) DI (COMPAS) (f) Accuracy (COMPAS)

(g) EOd (German) (h) DI (German) (i) Accuracy (German)

Figure 1: Change in accuracy, DI and EOd under EOd attack on three datasets. Our adversarial train-
ing methods (preprocessing, inprocessing, postprocessing) obtain improved fairness (lower EOd and
DI) and accuracy with significant margin.

• Adversarial training (inprocessing): MLP model under adversarial training w.r.t. accuracy
with relaxed Eod constraint by Wang et al. (2022).

• Adversarial training (postprocessing): MLP model under adversarial training w.r.t. accu-
racy with predicted label postprocessed by Jang et al. (2022).

Results on classifiers under EOd attack are shown in Fig. 1 - 2. The EOd attack enforces biased
predictions against testing samples based on the sensitive information, and under a successful at-
tack (the EOd reaches its maximum), the DI also reaches its maximum, while the accuracy under
adversarial attack is determined by the base rate of sensitive groups. Compared with methods under
adversarial training, methods under normal training show a sharp increase in DI and EOd under ad-
versarial attack, and improvement in fairness of classifiers under normal training do not help with the
robustness under adversarial perturbation. In comparison, classifiers under adversarial training w.r.t.
accuracy show improvement in terms of robustness against fairness attack, and classifiers under fair
adversarial training show further remarkable improvement in terms of robustness against fairness
attack 2. This shows that improving robustness against accuracy attack also improves robustness
against fairness attack and is in line with our discussion in equation 6.

Furthermore, in Fig. 3 show the effect of perturbation levels during training on Adult dataset, where
the results show that larger perturbation level during training indicates better robustness against

2We defer the detailed values for fair adversarial training in Appendix, as part of the fair adversarial training
results are overlapped with each other.
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(a) Black true positive
rate (TPR)

(b) White TPR (c) Black true negative
rate (TNR)

(d) White TNR

(e) Black TPR (f) White TPR (g) Black TNR (h) White TNR

(i) Male TPR (German) (j) Female TPR (k) Male TNR (l) Female TNR

Figure 2: Change of TPR and TNR under EOd attack on three datasets.

fairness adversarial attack for both vanilla adversarial training and fair adversarial training during
testing. We defer full results of varying training perturbation levels to appendix.

5.2 ROBUSTNESS AGAINST ACCURACY ATTACK

We move on to discuss the improvement of robustness w.r.t. accuracy under adversarial training
w.r.t. fairness. We compare two different methods:

• baseline: MLP model under normal training.
• Adversarial training (EOd): MLP model under adversarial training w.r.t. relaxed EOd.

We show results on classifiers under accuracy attack on Adult dataset in Fig. 4. Under a successful
accuracy attack (the accuracy reaches its minimum), the EOd also becomes zero, while DI does
not necessarily vanishes due to distributional disparities across sensitive groups. Compared with
baseline classifier, classifier under adversarial training w.r.t. EOd shows remarkable improvement in
robustness against accuracy attack. This shows that robustness against accuracy attack also benefits
from adversarial training against fairness. Results on other datasets are shown in the appendix.

6 CONCLUSION

Fairness attack and fairness adversarial training is an important yet not properly addressed problem.
In this paper, we propose a unified framework for fairness attack against group fairness notions,
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(a) EOd (adv) (b) EOd (adv+pre) (c) EOd (adv+in) (d) EOd (adv+post)

(e) DI (adv) (f) DI (adv+pre) (g) DI (adv+in) (h) DI (adv+post)

(i) Acr (adv) (j) Acr (adv+pre) (k) Acr (adv+in) (l) Acr (adv+post)

Figure 3: Change of accuracy and EOd under EOd attack with varying training perturbation ✏ on
Adult dataset.

(a) Accuracy (b) DI (c) EOd

Figure 4: Results of a classifier adversarial trained w.r.t. EOd. Change of accuracy, DI and EOd
under accuracy attack on Adult dataset.

where we show theoretically the alignment of attack against different notions, and we demonstrate
the connections between fairness attack and conventional accuracy attack. We show theoretically the
alignment between accuracy robustness and fairness robustness, and we propose a fair adversarial
training structure, where the goal is to improve adversarial robustness w.r.t. accuracy while ensuring
fairness. We show from experiments that our method achieves better robustness under fairness ad-
versarial attack, and we show from experiments the alignment between robustness w.r.t. fairness and
accuracy. Future directions include finding alternative relaxations for fairness attack, and alternative
training strategies for fair adversarial training.
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