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Abstract

Self-supervised features are the cornerstone of modern machine learning systems. They
are typically pre-trained on data collections whose construction and curation typically re-
quire extensive human effort. This manual process has some limitations similar to those
encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and
time-consuming, preventing scaling the dataset size. In this work, we consider the problem
of automatic curation of high-quality datasets for self-supervised pre-training. We posit
that such datasets should be large, diverse and balanced, and propose a clustering-based
approach for building ones satisfying all these criteria. Our method involves successive and
hierarchical applications of k-means on a large and diverse data repository to obtain clus-
ters that distribute uniformly among data concepts, followed by a hierarchical, balanced
sampling step from these clusters. Extensive experiments on three different data domains
including web-based images, satellite images and text show that features trained on our
automatically curated datasets outperform those trained on uncurated data while being on
par or better than ones trained on manually curated data. Our code is publicly available at
https://github.com/facebookresearch/ssl-data-curation.

1 Introduction

Self-supervised learning (SSL) is at the core of modern state-of-the-art machine learning systems. Large
language models (LLMs) are pre-trained in a self-supervised way using a language modeling objective (Rad-
ford et al., 2019; Ouyang et al., 2022; Raffel et al., 2020; Touvron et al., 2023), and foundational visual
encoders are trained with different flavors of contrastive learning (Richemond et al., 2020; Chen et al., 2020;
Caron et al., 2021; Oquab et al., 2023). LLMs achieve outstanding performance across all conventional nat-
ural language processing tasks, such as sentiment analysis, translation, summarisation, question answering,
or dialogue. For image representation, recent models achieve accuracies above 87% on ImageNet (Oquab
et al., 2023), evidencing that the gap with the absolute supervised state of the art is drastically shrink-
ing. Besides excellent performance on standard benchmarks, those models show strong out-of-distribution
generalization, opening new research avenues. SSL has been successfully applied to more narrow domains,
unlocking considerable model improvements, such as medical image analysis (Azizi et al., 2021; Chen et al.,
2024), learning phenotypic representations of cells (Ucar et al., 2021), and canopy height estimation for forest
growth monitoring (Tolan et al., 2023) to name a few.

SSL is unsupervised because it does not require human annotations for training the model. Because of that,
SSL enables scaling both the model and data without constraints regarding data annotation. However,
many previous attempts at scaling models and training data size have yielded unsatisfactory results. Large
language models trained on large pools of ill-curated text corpora led to subpar performance on standard
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Table 1: Effect of our data curation pipeline on three different data domains: web-based images in terms
of classification accuracy or ranking mAP (for “oxf-H”), text in terms of exact match (“nq” and “tqa”) or
accuracy (“arc-c” or “hellaswag”), and satellite images in terms of block R2 scores. Our automatic curation
method leads to significant gains in benchmarks compared to the raw datasets. Best results are in bold.

curation web-based images text satellite images
in-val in-A sketch cars oxf-H inat18 arc-c hellaswag nq tqa neon a-neon ca sao-paulo

✗ 82.8 46.9 54.0 71.7 14.3 65.9 35.5 51.9 19.1 41.3 0.54 0.34 0.76 0.41
ours 84.7 66.4 60.5 82.5 32.1 75.7 40.1 53.1 22.5 43.7 0.64 0.53 0.79 0.47

Figure 1: An overview of the data curation pipeline. Large data pool often exhibits a long-tailed distribution
of concepts. On web-based images repositories, concepts such as website or dog are much more present than
plunger. We apply hierarchical k-means to obtain clusters that spread uniformly over the concepts. Data
points are then sampled from the clusters to form a curated dataset that has a better balance of concepts.

benchmarks (Zhang et al., 2022; Le Scao et al., 2023). Training on random collections of internet images
also consistently led to a significant drop in performance (Doersch et al., 2015; Caron et al., 2019; Goyal
et al., 2019; 2021; Tian et al., 2021). This poor performance is likely due to the long-tail distribution of
concepts in uncurated datasets (see (Salakhutdinov et al., 2011; Zhu et al., 2014; Liu et al., 2019). As
shown by Wenzek et al. (2019), web data exhibits a highly non-uniform distribution of languages, and
proper language identification and filtering are required to obtain reliable monolingual text data. In image
collections, specific object categories dominate the distribution and appear in many images, while others are
significantly less present. Images containing a plunger constitute 0.1% of ImageNet but likely will be less
frequent in online images. This imbalance leads to biases toward a few dominant object categories in the
learned representation. We argue that balance is a necessary property of pre-trained datasets. We investigate
methods for automatically rebalancing datasets with long-tail distribution.

Nonetheless there are many recent successful applications of SSL at scale. LLMs are typically trained on a
carefully curated mix of data, often anchored around high-grade data sources such as Wikipedia (Touvron
et al., 2023). To scale the number of tokens, raw internet data is filtered to match the language and topic
distribution of Wikipedia. For foundational image models, relevant images are retrieved from a pool of
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random web images base on a seed, often manually labelled dataset. This ensures a relatively good balance
between visual concepts (Oquab et al., 2023). Robustness on downstream prediction tasks dramatically
benefits from using large models pre-trained on large datasets. While the works mentioned above constitute
strong proof points for SSL scaling, the data curation pipelines are rather ad hoc. In this work, we focus on
the principled and automatic curation of large-scale uncurated data, which we believe will be increasingly
important in future training pipelines. In order to push the limits of unsupervised pretraining, automatically
designing reliable training datasets remains an open research question. As opposed to the curation procedure
proposed by Oquab et al. (2023), we would like to design a generic curation algorithm agnostic to downstream
tasks. A principled and generic curation algorithm allows the possibility of inferring interesting properties
from completely uncurated data sources, independently of the specificities of the applications at hand.

We approach this problem from first principles and question the necessary characteristics of a good pre-
training dataset. We posit that such datasets should be large, diverse, and balanced. The importance of the
first two criteria has been demonstrated repeatedly (Kaplan et al., 2020; Hoffmann et al., 2022). Obtaining
large and diverse data is possible by leveraging large-scale web archives of Internet (Grave et al., 2018;
Wenzek et al., 2019). However, datasets assembled that way exhibit a long-tailed distribution of concepts,
i.e., a few dominant concepts take up a large portion of the dataset, while others appear less frequently.
This skewed distribution leads to features biased towards head concepts while ignoring those further in the
tail, preventing the model from learning universal features. Therefore, we claim that the balancing of data is
essential to avoid such biases. In our analysis, we use the term “concept” rather than “category” or “class”
as the latter is often poorly defined, subjective, and depends on the context. Moreover, a data point (an
image or a text paragraph) could belong to multiple such “classes”. In contrast, “concept” is a more abstract
term and allows us to have a more objective discussion. We do not explicitly define concepts, and instead
let the data define it. A concept emerges as the shared content of a group of data points that are similar
according to human perception. In the presence of – possibly weak – labels, a balance between concepts
could be achieved by capping the number of data points corresponding to each concept (Radford et al.,
2021; Dehghani et al., 2023; Xu et al., 2024). However, this is highly challenging in an unsupervised setting
without metadata access.

To achieve this goal, we introduce an automatic curation technique for constructing extensive balanced
datasets from an uncurated data source. From a large data pool containing a long-tail distribution of con-
cepts, our approach aims to rebalance the data such that less frequent concepts become more prominent
relative to prevalent ones. We consider a particular class of balanced datasets – ones that are sampled
uniformly from the support of the underlying data distribution, and seek to build one from the data pool.
Since no annotations are available, we leverage clustering-based methods to attain this goal. Given embed-
dings of all data points produced by a feature extractor, e.g., DINOv2 (Oquab et al., 2023) for images or
SBERT (Reimers & Gurevych, 2019) for text, we introduce a hierarchical k-means approach that allows
sampling points from a distribution that is close to the uniform distribution over the data support in the
embedding space (see Fig. 1 for an overview of the proposed method). We show that self-supervised features
trained on datasets curated with our method lead to large gains in benchmarks in three different domains:
web-based images, text and satellite images (Tab. 1).

The rest of the paper is organized as follows. We discuss the necessary properties of pre-training datasets
for self-supervised learning in Sec. 3.1, then describe the use of k-means or our proposed hierarchical k-
means to build datasets with these properties in Sec. 3.2 and 3.3. We show with simulated data in Sec. 4.1
that our approach effectively flattens the data distribution, thus pulling down dense areas corresponding
to redundant data and up-weighting the long-tail samples. Experiments on real-world web-based natural
images are shown in Sec. 4.2 demonstrating that our approach leads to improvements on most benchmarks,
in particular for robustness, out-of-distribution generalisation, and long-tailed cases. In order to assess the
generality of the method beyond natural images, we apply in Sec. 4.3 our approach to text and satellite
imaging data, showing significant improvements in both domains. These studies show that our method
enables effectively leveraging raw data to improve self-supervised feature learning, greatly alleviating costs
related to annotation and manual curation of datasets.
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2 Related work

Self-supervised learning is at the core of modern machine learning. For natural language processing,
language modeling is a fundamental task that is self-supervised by nature. Training neural language models
started with relatively simple architectures, such as feed-forward models (Bengio et al., 2000), or plain
recurrent neural networks (Elman, 1990; Hochreiter & Schmidhuber, 1997; Mikolov et al., 2010). Leveraging
larger data and training larger models has opened the way to leveraging language models for representation
learning (Radford et al., 2017; 2018; Devlin et al., 2019). Finetuning BERT models on the task at hand has
become the standard procedure most NLP practitioners follow. Recently, pushing the language modeling
paradigm to the extreme has led to astonishing progress in learning large-scale models (Chowdhery et al.,
2022; Hoffmann et al., 2022; Ouyang et al., 2022; Achiam et al., 2023; Touvron et al., 2023), fundamentally
changing the AI research field.

At the same time, unsupervised learning of visual features has also received much interest in computer vision
over the last few years. Initially, self-supervised learning methods relied on well-tailored pretext tasks. The
idea was that general visual features would emerge by training a neural network to solve these simple ad
hoc tasks, which require the model to understand and reason about specific image properties. In parallel,
several methods based on recognizing each image as its own class have been proposed (Dosovitskiy et al.,
2014; Bojanowski & Joulin, 2017; Wu et al., 2018). Following this path, many alternative “general” self-
supervised loss functions have been proposed, resulting in what can be referred to as Joint Embedding
Architectures (LeCun, 2022). A vast body of work is dedicated to designing such losses. This includes
contrastive-based methods (Oord et al., 2018; Chen et al., 2020; Hénaff et al., 2020), with variants including
a momentum queue (He et al., 2020) and exploiting the nearest neighbor graph (Dwibedi et al., 2021). Along
with that, some losses based on clustering (Caron et al., 2018; Asano et al., 2020; Caron et al., 2020; Assran
et al., 2022), distillation (Grill et al., 2020; Caron et al., 2021), and information maximization (Zbontar
et al., 2021; Bardes et al., 2022) have been proposed in the literature. This quick advance in the field led to
astonishing progress of the representation power of SSL models. This work focuses on building high-quality
pre-training datasets for SSL with an automatic curation approach. We evaluate our curated datasets with
DINOv2 (Oquab et al., 2023), a distillation-based approach which shows successful training attempts on
large, curated image datasets. Evaluating our curation pipeline with other SSL methods is beyond the scope
of this work – we assume that our conclusions hold for similar training algorithms (SimCLR, MoCo, SwAV).

Data curation. High-quality data has been a key component in training state-of-the-art models, both for
NLP and computer vision. In the context of self-supervised learning, where no metadata is required, it is still
essential to leverage large volumes of high-quality data. As one of the first striking examples, the word vectors
trained with word2vec (Mikolov et al., 2013) have been extremely popular with practitioners. Their quality
was directly influenced by using a carefully selected dataset of more than 1B words. In order to produce
high-quality word vectors in many more languages, Grave et al. (2018) have further pushed the direction of
large-scale data curation. By filtering Common Crawl data, the authors managed to obtain large datasets to
train reliable word vectors for 157 languages. Recently, state-of-the-art open-source LLMs (Touvron et al.,
2023) also leverage this type of carefully curated large data from the web (Wenzek et al., 2019).

Most successful self-supervised visual models are trained on the curated ImageNet dataset (Deng et al., 2009)
(without labels). There have been some initial attempts at training on other datasets, often created from
large uncurated data sources. Doersch et al. (2015) show that self-supervised methods can be trained on
uncurated visual data, and Caron et al. (2019); Goyal et al. (2019) show how it can be scaled to hundreds
of millions of uncurated images. Similarly, Goyal et al. (2021; 2022a) leverage billions of random internet
images to obtain high-quality self-supervised features. Asano et al. (2021) propose an ImageNet-sized dataset
of uncurated images to facilitate research beyond curated images. With the goal of training on uncurated
data, Tian et al. (2021) propose a solution inspired by the divide and conquer algorithm. In that setup, the
uncurated dataset is split into coherent parts using clustering, and individual models are trained with SSL
on those parts. A large model is obtained by distilling knowledge from the part-specific models. Oquab et al.
(2023) propose to retrieve the closest images to a fixed set of datasets of interest in an unsupervised manner.
This principle shares some similarities with the general idea of label propagation for semi-supervised learning,
which was explored by Yalniz et al. (2019). This method shows good results, but selecting images based
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on queries from specific datasets may ignore a wide range of visual concepts in Internet-based repositories.
Contrary to prior work, we do not use image labels in our curation pipeline. Instead, we rely on clustering
methods to select a balanced but diverse set of images for self-supervised training.

Data pruning and active learning seek to reduce the size of the training dataset to save computation
and/or annotation cost. Data pruning finds and removes redundant or troublesome data points from the
training set to improve learning. Typical approaches involves ranking data points according to some pruning
metrics and remove low-ranked ones. Notable metrics include distance to prototypes (Sorscher et al., 2022),
training error (Paul et al., 2021), forgetting score (Toneva et al., 2019) or influence score (Feldman & Zhang,
2020). Most data pruning methods require label information. Active learning alternates between training
models and selecting the best next samples to annotate until an annotation budget cost is met (Settles,
2009a). Samples are selected so as to maximize the model’s performance. Common selection strategies
include choosing the most representative (Geifman & El-Yaniv, 2017; Sener & Savarese, 2018) or informative
samples (Brust et al., 2019; Choi et al., 2021) or both (Zhdanov, 2019; Ash et al., 2020; Vo et al., 2022).
Different from these works, we do not focus on reducing resource cost and do not require data labels, we seek
instead to correct the distribution of SSL pre-training data with an automatic and unsupervised pipeline.

Clustering or cluster analysis aims at finding structures in data by dividing it into coherent, disjoint
parts. Clustering methods can be centroid-based such as k-means (Arthur & Vassilvitskii, 2007; Lloyd,
1982) or mean-shift (Cheng, 1995), density-based such as DBSCAN (Ester et al., 1996; Schubert et al.,
2017), statistical model-based with Gaussian Mixture Model (Yang et al., 2012) or hierarchical such as
agglomerative (Defays, 1977; Sibson, 1973). It has found wide applications in various scientific fields, often
used to introduce structures into data to ease further analysis. In computer vision, researchers have applied
clustering for image segmentation (Achanta et al., 2012), quantization (Jégou et al., 2011) or bag-of-visual-
words extraction (Lazebnik et al., 2006; Jégou et al., 2010). Our use of k-means clustering is close to active
learning (Settles, 2009b) or data pruning (Sorscher et al., 2022) methods as part of the data selection or
ranking process. Contrary to them, we do not employ k-means since it is sub-optimal for our purpose, and
instead propose hierarchical k-means to sample balanced datasets. Hierarchical application of k-means has
been considered before by Nister & Stewenius (2006) to build vocabulary trees of visual concepts. In a
top-down manner, k-means is first used to divide the dataset into multiple clusters, then a separate k-means
is applied onto each cluster to obtain finer clusters on which the process continues recursively. In contrast,
our method builds the tree in a bottom-up manner where subsequent k-means is applied on the centroids
obtained with the previous k-means. As we will see in Sec. 3, in contrary to Nister & Stewenius (2006),
our approach is guaranteed to produce approximately balanced clusterings. More recently, Ma et al. (2024)
also employs a two-step k-means clustering to obtain data clusters with different granularity for training
CLIP (Ramesh et al., 2021) data experts.

3 Approach

3.1 A Criterion for Creating Pre-training Datasets

Using self-supervised learning, one can potentially train models to represent all concepts adequately. How-
ever, this is only possible if the pre-training data is large, diverse, and covers enough concepts. It has been
previously shown that large and diverse datasets are essential to training large models which produce better
embeddings than smaller counterparts (Caron et al., 2019; 2021; Ramesh et al., 2021). Large and diverse
datasets have also been used in recent self-supervised learning approaches and yield better performance on
downstream tasks (Ramesh et al., 2021; Oquab et al., 2023) and more robust features (Goyal et al., 2022a).
They are typically obtained by crawling online data repositories and applying a heuristic for data curation.

Web-based data collections, however, often have a long-tailed distribution of concepts (Reed, 2001; Liu et al.,
2022). Some concepts are dominant and take up a large portion of the dataset. In contrast, many remaining
concepts appear much less frequently. This discrepancy can bias the training of the model towards the
dominant concepts, or in the worst case, prevent the models from learning meaningful presentations at all.
We believe that balance, defined as having roughly the same number of data points per concept, is another
important criterion for self-supervised learning datasets. This criterion has yet to be thoroughly studied,
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Table 2: Accuracy on ImageNet classification (Deng et al., 2009) of self-supervised features trained on
ImageNet and its unbalanced variants. The degree of imbalance increases with the factor α. The original
ImageNet dataset corresponds to α = 0.

Imbalance factor α 0.0 0.5 1.0 2.0
Accuracy 82.7 79.0 74.2 57.0

partly due to the widespread use of balanced seed datasets such as Wikipedia or ImageNet (Deng et al.,
2009), but also the challenging nature of building a balanced dataset in an unsupervised setting. We show
the importance of the balanced criterion with empirical results for image representations. In Tab. 2, we
report the performance of models trained on datasets of varying imbalance factors. We artificially generate
unbalanced variants of ImageNet by resampling this dataset such that the class sizes follow a power law
with the scaling exponent α taken in {0.5, 1, 2}. It can be observed that more unbalanced datasets (large α)
result in worse accuracy in linear classification on ImageNet.

This observation leads us to the following proposition: Datasets for self-supervised learning should be large,
diverse, and balanced. Data curation for SSL thus involves building datasets with all these properties. We
propose to build such datasets by selecting balanced subsets of large online data repositories. As these
repositories already cover a diverse set of concepts, a large balanced subset satisfies all the criteria. It is
noteworthy that compared to the raw data repository, its balanced subsets down-weight head concepts in
favor of making tail concepts more prominent. This could lead to a performance drop in downstream tasks
involving the head concepts, as we will see in Sec. 4.2.3. However, by balancing datasets, we do not seek to
improve features’ performance on specific individual downstream tasks or data domains, but generally on all
tasks and domains. We confirm this with empirical results in Sec. 4.2.

If all data points in the repository are associated with categorical labels, curation would simply involve
sampling the same number of data points from each category. When such labels are unavailable, we can
imitate this process by dividing the data pool into clusters using methods such as k-means (Lloyd, 1982;
Arthur & Vassilvitskii, 2007) and considering the cluster index as a proxy category. We will discuss the
limitations of this approach in the next section. In this work, we propose a more general approach: sampling
data points from the uniform distribution over the support of the data distribution. A subset obtained that
way is asymptotically balanced concept-wise if the embedding space in which the distribution is manipulated
is well organized. In such space, data points that are semantically more similar lie close to each other, or in
other words, the induced metric distance reflects the “semantic distance”. For example, an embedding space
where concepts are represented with small, non-overlapping blobs of equal size would be an ideal space. In
this case, our proposed sampling approach is asymptotically equivalent to sampling the same number of
points from each concept. Since access to such embeddings for web-based data is not available in practice,
we approximate them with existing embeddings that are known to induce a meaningful distance function
such as DINOv2 (Oquab et al., 2023) or SBert (Reimers & Gurevych, 2019).

Problem statement. Let P be the data distribution from a source we can sample from, e.g., the Internet,
and X a set of samples drawn from P . We suppose that data are represented by vectors in Rd such that X
is an element of Rn×d. We want to select a subset S of X as if we directly sampled it from U , the uniform
distribution over the support of P . Note that with reasonable assumptions, U is well defined. Let p be the
density of P , we suppose that P lives in a compact set in Rd, i.e., its support Ω = {x | p(x) > 0} is bounded.
This assumption is reasonable since our data points are features extracted from neural networks, which are
always numerically bounded and typically have small norms. The indicator function 1Ω is measurable since
Ω is measurable and finitely integrable thanks to the compactness assumption. We can define U as the
probability distribution with density u = 1

vol(Ω)1Ω where vol(Ω) =
∫
1Ω is the volume of Ω.

Next, we discuss using k-means clustering to sample a balanced data pool subset and its limitations. We
show that we can address these limitations with a better choice of distance function or, more simply, our
proposed method, which is based on a successive, hierarchical application of the k-means algorithm on the
raw data. The centroids of clusters obtained with this method follow a distribution close to U . Sampling
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Figure 2: Normalized histograms of centroids computed by k-means with d(x, y) = ∥x − y∥s for different
values of s. The vanilla k-means centroids (s = 2) approximately follow the theoretical Panter and Dite
formula with un-normalized density p1/3 (Panter & Dite, 1951) with p is the data distribution’s density.
Larger values of s result in flatter distributions of centroids.

from these clusters is thus approximately equivalent to sampling directly from U . Finally, we discuss several
data selection methods from the obtained clusters.

3.2 Rebalancing datasets with k-means

K-means clustering (Arthur & Vassilvitskii, 2007; Lloyd, 1982) is a computationally affordable technique
for finding coherent structures in data. It divides data into groups such that data points in the same
group are close to each other, according to some distance, while those in different groups are far away. Let
xi ∈ Rd be the embedding of data point i, k the number of clusters, and mij the binary membership variable
indicating if data point i belongs to cluster j. K-means seeks to find (mij)1≤i≤n,1≤j≤K that minimize the
total intra-cluster distortion:

k∑
j=1

n∑
i=1

mijd(xi, cj), (1)

with cj is the centroid of cluster j, chosen to minimize
∑n

i=1 mijd(xi, cj), and d is the squared L2 distance.
Note that with this choice of distance, cj has a closed form. It is the mean of all points in cluster j. As
previously discussed, k-means can be employed to rebalance an uncurated dataset. One starts by dividing
the dataset into multiple clusters, and taking a fixed number of images from each cluster to form a new
dataset. This approach is effective only if each concept takes roughly the same number of clusters. However,
it is not trivial to guarantee this condition in practice. Dominant concepts often occupy substantially more
clusters than less frequent ones. For example, when applying k-means on a web-based image data pool, we
observe that 300 out of 10,000 clusters represent “website” (see Sec. 4.2.2 and Fig. 4 for more details.).

This phenomenon is explained by looking at the objective function in Eq. (1). When a dominant concept is
represented by many data points, grouping all of them in a single cluster would result in a large intra-cluster
distortion. It is preferable to break this concept into multiple smaller clusters to substantially reduce the
objective, and compensate for the increase in the number of clusters by grouping small, rare concepts with
a slight increase in objective. As such, k-means tends to break large dominant visual concepts into multiple
clusters. In order to illustrate this, we can consider a toy example in R with k = 3 and a dataset consisting
of 5000 points equally spaced in [0.9, 1.1], 2 points at x = 2 and 2 points at x = 3. Intuitively, one would
choose 3 centroids at 1, 2 and 3, resulting in a distortion of 16.7. K-means would however break the first
cluster of 5000 points in two and select centroids at 0.95, 1.05 and 2.5 to obtain a smaller distortion of 6.0.

Results from Zador (1982; 1964) provide another explanation to the phenomenon. It turns out that in d-
dimension, the k-means centroids asymptotically follow the distribution with density proportional to pd/(d+2).
See Gray & Neuhoff (1998) for a historical perspective and Fig. 2 for a 1-D simulation illustrating this
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property. In high dimension, the distribution of k-means centroids thus depends on, and stays close to, the
data distribution P . It means that k-means forms significantly more clusters in higher-density areas in the
embedding space, which correspond to dominant concepts. As a consequence, it is impossible to rebalance
datasets with a simple k-means. We will see in Sec. 4.2.2 that this is also the limitation of other clustering
techniques such as Agglomerative Clustering (Defays, 1977; Sibson, 1973).

We can encourage k-means to form large clusters, and consequently fewer clusters in dense areas, by using
another distortion function d(x, y) = ∥x − y∥s with s > 2 (see Fig. 2). This choice of distortion keeps the
cluster assignment unchanged since the closest centroid to a point according to d or L2 is the same. It is
thus compatible with the semantic distance approximated by L2. However, these new distortion functions
down-weight points closer to the centroids. Having many of these points in a cluster does not substantially
increase the intra-cluster distortion, reducing the impact of the cluster size. In the extreme case when s→∞,
the objective only takes into account the furthest data points from the centroid in each cluster and entirely
ignores the cluster size. A drawback is that the computation of a cluster’s centroid given its members is
no longer trivial. It can be done approximately with stochastic gradient descent, but the computation is
expensive in a large-scale setting. As shown next, we can obtain the same effect with a simple successive
application of the original k-means algorithm.

3.3 Rebalancing datasets with hierarchical k-means

As stated above, the centroids of k-means clusters follow a distribution Q with un-normalized density p
d

d+2 ,
which stays close to the data distribution P in high dimension. However, we observe that Q moves closer to
U than to the data distribution P . This is shown by the lemma below.

Lemma 1 Let P be the probability distribution with density function p, t a scalar in (0, 1), Q the probability
distribution with density q = 1

Z pt where Z =
∫

pt, and U the uniform probability distribution over the support
Ω of P with density u = 1

vol(Ω)1Ω. The following inequality holds:

DKL(Q||U) ≤ DKL(P ||U), (2)

where DKL denotes Kullback-Leibler divergence. Furthermore, equality happens if and only if P = U .

We can prove this lemma with some simple transformations, and using the non-negativity of DKL(P ||Q)
and DKL(Q||P ). Expanding DKL(Q||U) as

∫
q log q + log vol(Ω) and DKL(P ||U) as

∫
p log p + log vol(Ω), we

observe that Eq. (2) is equivalent to
∫

q log q ≤
∫

p log p. Thanks to the non-negativity of DKL(Q||P ), we
have

∫
q log q ≥

∫
q log p. Expand

∫
q log q as t

∫
q log p− log Z and replace this into the previous inequality,

we have
∫

q log p ≤ − log Z
1−t , and consequently

∫
q log q = t

∫
q log p − log Z ≤ − log Z

1−t (*). Similarly, we
can expand

∫
p log p as 1

t

∫
p log q + 1

t log Z and combine with the non-negativity of DKL(P ||Q) to have∫
p log p ≥ − log Z

1−t (**). We deduce
∫

q log q ≤
∫

p log p by combining (*) and (**). The equality happens if
and only if p = q, which means p is constant, or equivalently P = U .

We therefore propose to apply successively k-means to the data, in a hierarchy, to approximate U . In this
process, we apply k-means T times, the t-th k-means groups the set Ct−1 of the centroids of the (t − 1)-th
k-means into kt clusters. The first k-means is computed on the raw data. We call this process hierarchical k-
means since it constructs a tree structure over the data where original data points are leaves, and inner nodes
at level t represent the centroids, and equivalently the clusters, obtained with the t-th k-means. The root
is an imaginary point connecting nodes at level T . Based on the result from Zador (1982), asymptotically,
the centroids of the T -th k-means follow the distribution with un-normalized density p(d/(d+2))T . This
distribution converges to U when T →∞.

In the above process, the number of input data points for k-means decreases exponentially after each applica-
tion, which limits the number of times it can be applied. We overcome this issue with resampling-clustering,
or simply resampling, steps at each level. Given clusters at level t, resampling-clustering involves first select-
ing rt points closest to the centroid from each cluster to form a subset R of Ct−1. We choose rt small so that
points in R roughly follow the distribution of the centroids, which is closer to U than the distribution of Ct−1,
as shown by Lemma 1. We then apply k-means on R instead of Ct−1 to find new nt centroids. Finally, we

8



Published in Transactions on Machine Learning Research (08/2024)

Algorithm 1: Hierarchical k-means with resampling algorithm.
Input: Data X ∈ Rn×d, number of levels T , number of clusters per level (kt)1≤t≤T , number of

resamplings m, number of points resampled per cluster (rt)1≤t≤T .

Result: A hierarchy of clusters on data: centroids (Ct)1≤t≤T and clusters ((L(i)
t )1≤i≤kt)1≤t≤T .

1 for t = 1 to T do
2 if t = 1 then I← X else I← Ct−1 ▷ Get input I of level t
3 Ct ← kmeans(I, kt) ▷ Find centroids Ct with k-means
4 Lt ← assign(I, Ct) ▷ Assign clusters (L(i)

t )1≤i≤nt
with k-means

5 # resampling-clustering
6 for s = 1 to m do
7 R←

⋃kt

i=1 resample(L(i)
t , rt) ▷ Sample rt points from each cluster

8 Ct ← kmeans(R, kt) ▷ Find centroids based on resampled set
9 Lt ← assign(I, Ct) ▷ Assign clusters to entire input set of level t

10 end
11 end

form a new clustering of Ct−1 by assigning points to these new centroids. Since the distribution of points in
R is closer to U than that of points in Ct−1, we expect the distribution of the new centroids to be closer to U
than the distribution of the previous ones. In contrary to simple hierarchical k-means, resampling-clustering
does not reduce the set of input points for the next k-means, so we can repeatedly apply this process to get
closer to U . We use hierarchical k-means with resampling in our pipeline, as summarized in Algorithm 1.

Sampling from hierarchical k-means. As discussed above, the centroids in the highest level of hierar-
chical clustering distribute uniformly over the data support. One can build a balanced subset of the data
pool by uniformly sampling a fixed number of leaves (data points) from corresponding sub-trees of the cen-
troids. With small sub-trees with fewer leaves than needed, we take all the leaves without over-sampling.
We name this sampling strategy as flat sampling. Most often, we have a target size for the subset. In this
case, we find the number of points to sample from each sub-tree such that the obtained subset’s size best
approximates the target. Concretely, given the target size N and the cluster sizes sj(1 ≤ j ≤ k), we find the
integer n that minimizes |N −

∑k
j=1 min(n, sj)| with binary search in the interval [0, N ].

Instead of sampling directly from the highest-level sub-trees, we propose another strategy that samples
hierarchically in a top-down manner. Given the number of points to sample from a sub-tree of level T ,
we compute the number of points to sample from its own sub-trees with the binary search above, and
repeat this process down to level 1. Once we have these numbers for all clusters in level 1, we sample from
them to form the balanced subset. This strategy, named hierarchical sampling, guarantees a balance among
concepts represented by the sub-trees at the highest levels (such as animal, vehicle, sport, etc.) and among
sub-concepts represented by internal nodes in lower levels (such as dog, spider, airplane, scooter, football,
vovinam, etc.). We consider several ways to sample data points from clusters of level 1 including sampling
random points (“r”), or points that are closest (“c”) or furthest (“f”) from their centroids. We compare the
flat and hierarchical sampling, as well as “r”, “c” and “f” sampling methods in Sec. 4.2.2.

Choice of numbers of clusters. Our analysis does not give rise to a method for choosing optimal
numbers of clusters in different levels of hierarchical k-means. Intuitively, with the dataset’s tree structure
represented by the clustering, inner nodes in the low levels represent sub- or small concepts while those in
higher levels represent concepts or large concepts. With this interpretation, it is reasonable to have larger
clusters in lower levels (sub-concepts can contain many images) and smaller clusters in higher levels (large
concepts contain several smaller concepts). Our choices of number of clusters are guided by this intuition
and convenience. For example, for a 4-level hierarchical clustering on a dataset of 743M data points, we
choose k = 10M, 500k, 50k, 10k for the four levels, which results in clusters with average size of 70, 50, 10
and 5 clusters from the first to the fourth level respectively.
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4 Experiments

We empirically study the proposed algorithm in several setups. We start with controlled experiments on
simulated data to provide an interpretable analysis of our algorithm. Next, we perform extensive experiments
by training a state-of-the-art self-supervised learning method (DINOv2 (Oquab et al., 2023)) on datasets
meticulously curated from web images. Finally, we show the generality of the approach by applying the
same algorithm to two other domains: the curation of text data for training large language models and the
curation of satellite imagery for training a canopy height prediction model.

4.1 Experiments on simulated data

We first illustrate the effect of hierarchical k-means on simulated data in the 2-D plane. We sample 9000
points from a mixture of 3 Gaussians and the uniform distribution, bounded by the square Ω = [−3, 3] ×
[−3, 3]. We fit 300 clusters over this set with several configurations of hierarchical k-means (1, 2, 3 levels with
or without resampling). We also try k-means with other distortion functions ||x−y||s with s ∈ {4, 64, 256}, as
well as other clustering methods such as DBSCAN (Ester et al., 1996) or Agglomerative Clustering (Defays,
1977). Using kernel density estimation, we estimate the density of the distributions of centroids obtained with
these methods. We visualize the centroids along with the Voronoi diagram of clusters in Fig 3a. The figure
shows that k-means, equivalent to 1-level hierarchical k-means without resampling, produces significantly
more clusters in higher-density areas. The clusters are spread more evenly over the square when we use
hierarchical k-means with more levels. Our 3-level hierarchical k-means with resampling yields clusters
that spread almost uniformly over the support, evidenced by the almost flat density. We also observe that
increasing larger exponent s of the distortion function of k-means results in flatter density, similar to the
effect of hierarchical k-means, but a too large value of s leads to numerical instability. Additionally, it can
be observed that Agglomerative Clustering has the same limitations as k-means while DBSCAN also fails to
produce uniformly distributed clusters.

Quantitatively, we compute the Kullback-Leibler (KL) divergence between the estimated kernel density and
the uniform distribution U over the data support Ω. The results are shown in Fig. 3b. We observe that the
distribution of centroids obtained with hierarchical k-means gets closer to U when adding more levels and
resampling steps. The KL divergence of hierarchical k-means with three levels and resampling is close to
the lower bound given by the KL divergence between the kernel density estimated on 300 random points in
Ω and U . The KL divergence corresponding to k-means approaches this lower bound when the exponent s
increases but it stays above that of hierarchical k-means even with s as large as 256. These results confirm
our analysis in Sec. 3.

4.2 Self-supervised learning on web-based images

4.2.1 Training data, implementation details, and evaluations

We apply our curation algorithm to a pool of web-based images. It is assembled by following links from
<img> tags in web pages of a publicly available repository of crawled web data. We filter out URLs that point
to unsafe or restricted domains and do not download images from them. Next, post-processing including
de-duplication based on PCA hash, discarding images whose smallest size is smaller than 112px or greater
than 512px, filtering for NSFW contents, and removing identifiable faces are applied to the downloaded
images to remove harmful contents and preserve privacy. After these steps, we obtain an initial set of 1.2
billion unique images. Then, we remove near-duplicate images within this set or with respect to the test sets
of the evaluations considered below with the copy detection pipeline of Pizzi et al. (2022). This results in a
final data pool of 743 millions unique images.

We train a ViT-L with DINOv21 on ImageNet1k (Russakovsky et al., 2015) and use it as our base feature
extractor. In order to run k-means and k-means++ initialization at a large scale, we implement a distributed
GPU-supported version of this algorithm in PyTorch (Paszke et al., 2019). Our main run involves a 4-level
hierarchical k-means on this image pool with 10M, 500k, 50k and 10k clusters in the first, second, third and

1https://github.com/facebookresearch/dinov2
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data k-means k-means, s=4 k-means, s=64 k-means, s=256
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Figure 3: A visualization of clusters obtained with different clustering methods on simulated 2-dimensional
data. (a) Voronoi diagrams and KDEs computed on the 2-D simulated data and the centroids of clusters
obtained with k-means, DBSCAN (Ester et al., 1996), Agglomerative clustering (Sibson, 1973) and several
variants of hierarchical k-means. For hierarchical k-means, centroids spread more uniformly with more
levels and resampling steps. (b) Estimated Kullback-Leibler divergence between the uniform distribution on
Ω = [−3, 3]× [−3, 3] and the KDEs computed from the centroids.

fourth levels. Since the first level k-means is computationally heavy, for the sake of efficiency, we apply the
resampling technique described in Sec. 3.3 10 times on the top three levels only, with the number of points
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(rt) sampled from each cluster being half the average cluster size in each level. To form curated datasets
from the hierarchical clustering, by default we use the hierarchical sampling technique presented in Sec. 3.3
with a typical target size of 100M images. To compare different pre-train datasets, we train a DINOv2-
reg (Oquab et al., 2023; Darcet et al., 2024) with ViT-g for 625k iterations. For efficiency, we perform all
our ablation studies with a ViT-L. We use the original training recipe from DINOv2 (Oquab et al., 2023) in
all our experiments, except for a smaller learning rate of 5 × 10−5 for ViT-g. Please refer to this work for
the full set of hyper-parameters. We evaluate features pre-trained on different datasets on a wide-range of
downstream benchmarks with linear probing, without fine-tuning.

• ImageNet classification: We report top-1 accuracy on k-nn and linear classification on the 1000 classes
of ImageNet. Apart from the standard validation set, we also consider alternative test sets ImageNet-
V2 (Recht et al., 2019) and ImageNet-ReaL (Beyer et al., 2020). These test sets have been considered
before to avoid overfitting the standard validation set.

• Out-of-distribution ImageNet test sets: We report the top-1 accuracy of the linear classifier trained on
ImageNet described above, on ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al.,
2021a), ImageNet-Sketch (Wang et al., 2019) and ObjectNet (Barbu et al., 2019). ImageNet-A contains
hard examples that are incorrectly classified by trained ResNets (He et al., 2016). ImageNet-R consists
of images of ImageNet categories with changes in image style, blurriness, geographical location, camera
operation, etc. ImageNet-Sketch includes sketches of ImageNet classes. ObjectNet shows ImageNet
objects in new viewpoints and background. These test sets are used evaluate the robustness of pre-trained
features on different domains.

• Long-tailed benchmarks: We report the classification top-1 accuracy on iNaturalist2018 (Van Horn et al.,
2018) and iNaturalist2021 (Van Horn et al., 2021). These datasets contain images of fine-grained natural
categories such as birds, insects, plants, etc. They exhibit a highly imbalanced distribution of images
among categories, presenting a challenging task.

• Retrieval: We evaluate pre-trained features on instance-level recognition of landmarks in the Oxford and
Paris datasets (Philbin et al., 2007; 2008). We use the revised version of Radenović et al. (2018). We
rank images based on their features’ cosine similarity to the query and report the mean average precision
computed based on the ranking.

• Fine-grained classification: Following Chen et al. (2020), we report top-1 classification on 12 small bench-
marks. These include Aircraft (Maji et al., 2013), Caltech (Fei-Fei et al., 2004), Cars (Krause et al., 2013),
CIFAR (Krizhevsky & Hinton, 2009), CUB (Berg et al., 2014), DTD (Cimpoi et al., 2014), Flowers (Nils-
back & Zisserman, 2008), Food (Bossard et al., 2014), Pets (Parkhi et al., 2012), SUN (Xiao et al., 2010)
and Pascal VOC (Everingham et al., 2015).

• Dense prediction: We consider three semantic segmentation benchmarks including ADE20K (Zhou et al.,
2017), Cityscapes (Cordts et al., 2016) and Pascal VOC (Everingham et al., 2015), and three depth
estimation benchmarks including KITTI (Geiger et al., 2013), NYU (Silberman et al., 2012) and SUN-
RGBD (Song et al., 2015). We report mIoU metric on semantic segmentation and RMSE metric on
depth estimation. All results were obtained by training linear heads on top of frozen patch-level features,
following the process described in DINOv2 (Oquab et al., 2023). For depth estimation, we use the
concatenation of 4 layers from the backbone, while we only use the last layer for semantic segmentation.

4.2.2 Ablation Study

We start by empirically investigating the properties of different variants of hierarchical k-means. First, we
inspect the distribution of clusters they yield (Fig. 4). Second, we compare the performance of features
trained on datasets curated with them (Tab. 3). We name curated datasets after the number of levels of the
clustering from which they are generated and the intra-cluster sampling strategy. A curated dataset formed
by sampling from a hierarchical clustering that has T levels with “r”, “c” and “f” methods are named “Tr”,
“Tc” and “Tf” respectively. We additionally append suffixes to indicate that flat sampling is employed instead
of hierarchical sampling (see Sec. 3.3), that k-means is initialized randomly instead of with k-means++, or
to explicitly specify the number of clusters in the highest level, the number of resampling steps or the type of
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the base embeddings when necessary. Unless mentioned otherwise, all hierarchical k-means runs have 10,000
clusters in the highest level and ten resampling steps in all levels except the first one.

0 10 20 300

100

200

300

# 
clu

st
er

s

k-means

0 10 20 300

100

200

300
2-level

0 10 20 300

100

200

300
3-level

0 10 20 300

100

200

300
4-level

0 10 20 30
class size (M)

0.00
0.25
0.50
0.75
1.00

av
g.

 c
lu

s. 
siz

e 
(M

)

0 10 20 30
class size (M)

0.00
0.25
0.50
0.75
1.00

0 10 20 30
class size (M)

0.00
0.25
0.50
0.75
1.00

0 10 20 30
class size (M)

0.00
0.25
0.50
0.75
1.00

Figure 4: An investigation on the distribution of clusters of web-based images over the classes of ImageNet.
The clusters are obtained with variants of hierarchical k-means on our data pool. For each clustering, we
first assign clusters to ImageNet classes with k-nn, then estimate for each class their size, the number and
the average size of the corresponding clusters. We show the classes’ size against the number of corresponding
clusters in the first row, and against the average cluster size in the second row. The straight lines that best
fit the scatter points are shown in yellow. We observe that k-means tends to break down larger classes into
more small clusters while hierarchical k-means with multiple levels forms fewer but larger clusters for large
classes. This way, it distributes the clusters more equally among classes, regardless of their size, and enables
sampling more balanced dataset from the data pool.

Does hierarchical k-means lead to more balanced clusterings? In Sec. 3 and 4.1, we provide
a theoretical argument and simulations showing that our hierarchical k-means algorithm leads to better-
balanced clusterings. Here, we investigate whether this applies to real-world data, such as our large image
data pool. As discussed in Sec. 3.2, strong unbalance manifests in dominant concepts (for example, “website”)
being split into many small clusters. We study how the 1000 classes of ImageNet (Deng et al., 2009) relate
to our clusters. We associate each cluster with one of the ImageNet categories and inspect the number of
clusters and the average size of clusters representing that category.

We consider k-means and hierarchical k-means with two, three, and four levels and 10 resampling steps in
each level. They result in four clusterings with 10,000 clusters at the highest level. We assign the clusters
produced by each method to the ImageNet classes with k-nn, using the cluster centroids. We present a
scatter plot of two quantities for each clustering as a function of total class size. These two quantities are
the number of clusters associated with each class and the average size of the cluster for that class. We show
the scatter plots in Fig 4. We see that k-means produces clusters of relatively constant size and that larger
classes are broken down into more clusters. In contrast, hierarchical k-means with more levels can form
larger clusters for large classes, leading to more equally distributed clusters among classes.

Influence of the number of levels in hierarchical k-means. We show in Sec. 3 that hierarchical k-
means with more levels results in better balanced curated datasets, and argue that this benefits self-supervised
feature learning. We empirically validate this by comparing the performance of datasets “1r”, “2r”, “3r”
and “4r” in Tab. 3a. They are curated respectively from clusterings obtained with single-, two-, three- and
four-level hierarchical k-means, which has 1, 11, 21 and 31 k-means applications. We observe that adding
more levels in hierarchical k-means generally leads to better performance on down stream benchmarks. The
biggest jump is observed when going from 1 level, which is equivalent to vanilla k-means, to 2 levels with
significant improvements on all benchmarks. Notably, large gains are observed in robustness, long-tailed,
retrieval benchmarks. Going to 3 levels leads to further gains in long-tailed and retrieval tasks. Adding
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Table 3: Performance on down-stream tasks of features trained on datasets curated with different variants
of our proposed hierarchical k-means. Datasets are named after the number of clustering levels and the
sampling method within clusters, with suffixes indicating additional details in clustering configuration. All
pre-training is done with ViT-L architecture. Best results are in bold, second bests are underlined. See text
for more details.

(a) Influence of numbers of levels of hierarchical k-means.

dataset imagenet ood long-tailed retrieval
knn val in-A sketch inat18 inat21 oxf-H

raw 73.6 82.8 46.9 54.0 65.9 73.8 14.3
1r 76.6 83.9 58.0 57.0 70.1 77.7 16.3
2r 78.7 84.5 65.4 60.0 73.8 80.8 24.7
3r 78.7 84.5 64.7 60.1 76.2 82.3 29.7
4r 79.6 84.7 66.4 60.5 75.7 82.3 32.1

(b) Influence of the sampling method.

dataset imagenet ood long-tailed retrieval
knn val in-A sketch inat18 inat21 oxf-H

4r-flat 78.9 84.4 64.6 59.2 74.6 81.5 18.3
4c 79.4 84.7 64.3 59.4 75.1 81.6 29.2
4f 75.6 83.4 54.3 53.5 68.4 76.4 16.4
4r 79.6 84.7 66.4 60.5 75.7 82.3 32.1

(c) Influence of k-means initialization method.

dataset imagenet ood long-tailed retrieval
knn val in-A sketch inat18 inat21 oxf-H

4r-- 74.0 83.0 47.7 53.9 69.0 76.5 25.4
4r 79.6 84.7 66.4 60.5 75.7 82.3 32.1

(d) Sensitivity to number of clusters.

dataset imagenet ood long-tailed retrieval
knn val in-A sketch inat18 inat21 oxf-H

4r-20k 80.0 84.8 65.3 60.2 76.7 82.7 31.3
4r 79.6 84.7 66.4 60.5 75.7 82.3 32.1

(e) Sensitivity to number of resampling steps.

dataset imagenet ood long-tailed retrieval
knn val in-A sketch inat18 inat21 oxf-H

4r-0 77.0 84.4 63.3 59.0 74.0 80.9 26.2
4r-100 80.0 84.8 66.4 59.8 76.0 82.4 30.7
4r 79.6 84.7 66.4 60.5 75.7 82.3 32.1

(f) Influence of the base embeddings.

dataset imagenet ood long-tailed retrieval
knn val in-A sketch inat18 inat21 oxf-H

4r-raw 71.5 82.2 39.6 51.7 63.0 72.0 28.4
4r-in22k 79.2 84.9 69.1 61.7 76.5 82.5 30.1
4r 79.6 84.7 66.4 60.5 75.7 82.3 32.1

another level leads to small gains on all benchmarks except a small drop in iNaturalist2018. These results
confirm the merit of our proposed hierarchical k-means curation method in a practical setting.

Influence of sampling strategy. We discuss in Sec. 3.3 two sampling strategies, the baseline flat sampling
and our proposed hierarchical sampling, for forming curated datasets from a hierarchical clustering. We
compare their effect in Tab. 3b (“4r” vs. “4r-flat”). It can be seen that the former outperforms the latter
in all benchmarks, highlighting the importance of the balance between concepts at all levels, not just the
highest one. We also compare the “r”, “c” and “f” sampling methods in hierarchical sampling through the
down-stream performance of features trained on “4r”, “4c” and “4f” respectively. It can be observed that
random sampling works best, outperforming the others on most benchmarks. It is closely followed by “c”
sampling while “f” sampling is far behind. This is likely due to the fact that “f” sampling returns data points
that are close to the cluster boundaries which are not guaranteed to spread uniformly in the data support.
Also, “r” sampling yields a more diverse set of points than “c” sampling.

k-means++ vs. random initialization. k-means clustering is known to be sensitive to the centroids
initialization. Randomly selecting data points as initial centroids (random) is simple and inexpensive, thus
often used in large scale. It could however result in arbitrarily bad clustering with respect to the objec-
tive function (Arthur & Vassilvitskii, 2007). In our context, applying random initialization on uncurated
datasets could result in important imbalance between visual concepts. On the other hand, k-means++
initialization (Arthur & Vassilvitskii, 2007) is known to produce more diverse clusters. It also has an ap-
proximate guarantee of optimality that enables our analysis based on the optimal solution of k-means in
Sec. 3.3. We compare in our experiments the impact of these two initialization techniques (‘4r’ vs. ‘4r--’)
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on the pre-trained feature performance in Tab. 3c. We implement a distributed GPU-supported version of
both techniques in PyTorch (Paszke et al., 2019). It can be seen that on all benchmarks, k-means++ results
in features that perform significantly better than those obtained in a pipeline with random initialization for
k-means. The former leads to features that are more robust in out-of-domain and long-tailed data, evidenced
by large gains on ImageNet-A (+18.7), ImageNet-Sketch (+6.6), iNaturalist2018 (+6.7) and iNaturalist2021
(+5.8). These results stress the importance of an appropriate initialization for k-means, even in large scale.
We initialize k-means with k-means++ by default in our experiments.

Sensitivity to number of clusters. As discussed in Sec. 3.3, our choices of number of clusters are
guided by simplicity and the intuition that higher-level clusters should have smaller size than lower-level
ones. Apart from our default clustering with k = 10M, 500k, 50k and 10k which results in the dataset “4r”,
we run another 4-level hierarchical k-means with k = 20M , 800k, 80k and 20k. This clustering results in the
dataset “4r-20k”. It is observed in Tab. 3d that the two datasets leads to similar performance on average.
Features pre-trained on “4r-20k” yield significantly better results on ImageNet k-nn and iNaturalist while
those trained on“4r” perform better on ImageNet-A and Oxford retrieval. The better results with “4r-20k”
on iNaturalist are likely due to the fact that more clusters in hierarchical k-means leads to finer, and better
partition of the dataset. However, it should be noted that it also comes with a higher computational cost.

Sensitivity to number of resampling steps. We show in Sec. 3.3 and Fig. 3 that resampling steps
allows more k-means applications, leading to more uniformly spread clusters over the data support. We
assess its influence by comparing in Tab. 3e “4r” with “4r-0”, a dataset curated from a clustering built
without resampling, and “4r-100”, a dataset curated from a clustering built with 100 resampling steps in
levels 3 and 4. Note that we have 10 resampling steps per level in our default clustering that produces “4r”.
We observe that without resampling, the performance drops significantly on all benchmarks, stressing its
importance. With more resampling steps, the performance further improves slightly on most benchmarks
but on average, using 10 or 100 resampling steps yields comparable results.

Influence of the base embeddings. We conduct our main experiments with embeddings extracted from
a ViT-L trained with DINOv2 (Oquab et al., 2023) on ImageNet1k. In order to investigate the influence of
the embeddings, we also train a ViT-L with DINOv2 on ImageNet22k (Russakovsky et al., 2015) or our raw
data pool. We then run our curation pipeline on our raw data pool with these embeddings, resulting in two
new datasets “4r-raw” and “4r-in22k”. It can be seen in Tab. 3f that the quality of curated datasets, as shown
by the performance of features pre-trained on them, depends strongly on the type of embeddings used in the
curation pipeline. Using embeddings pre-trained on the raw data pool leads to poor performance compared
to embeddings pre-trained on ImageNet1k or ImageNet22k. This is likely due to the imbalanced nature
of the raw data pool which leads to embeddings that are biased toward the head concepts. The distance
induced by these embeddings is distorted to distinguish better samples from a few head concepts while
discerning less correctly the tail concepts. Since distance between embeddings is used to define the concepts
in hierarchical k-means, such a bad distance function leads to unsatisfactory curation results. Finally,
embeddings pre-trained on ImangeNet22k lead to better performance than those trained on ImageNet1k on
most benchmarks. We choose embeddings pre-trained on ImageNet1k to limit the presence of manual work
in our pipeline.

Comparisons to the base feature extractor We compare features trained on our curated dataset “4r”
and the features produced by the base extractor in Tab. 4. We observe that the model trained on “4r”
performs worse than the base extractor on k-nn classification on ImageNet. This is not surprising since
the base extractor is trained on ImageNet, thus learns to differentiate better ImageNet classes. In contrary,
training features on our curated dataset leads to better performance on all other benchmarks, with large
gaps on out-of-distribution, long-tailed and retrieval benchmarks.

4.2.3 Comparisons to other datasets.

We compare the quality of features trained on our automatically curated dataset “4r”, the manually curated
datasets ImageNet1k and ImageNet22k, ImageNet1k-ret – a 100M-images dataset formed by retrieving near-
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Table 4: Performance of features trained on our curated dataset and those produced by the base feature
extractor on common benchmarks

dataset imagenet ood long-tailed retrieval
knn val in-A sketch inat18 inat21 oxf-H

base 81.3 83.0 38.8 34.7 64.1 71.6 14.9
4r 79.6 84.7 66.4 60.5 75.7 82.3 32.1

Table 5: Comparisons to features pre-trained on raw and manually curated datasets on downstream tasks.
In all experiments, ViT-g model with DINOv2-reg (Darcet et al., 2024) is used to obtain SSL features, and
we evaluate them on the benchmarks without fine-tuning. The terms “man.” and “ret.” signify manual and
retrieval-based curation respectively. Best numbers are in bold, second bests are underlined.

(a) Performance on classification (accuracy) and retrieval benchmarks (mAP).

dataset curation imagenet out-of-distribution long-tailed retrieval fine
grainedknn val V2 ReaL in-A in-R sketch objnet inat18 inat21 oxf-H par-H

IN1k man. 72.0 77.7 65.5 83.6 21.7 34.8 24.7 34.2 42.2 54.2 11.6 36.9 78.1
IN22k man. 83.0 85.9 77.6 89.4 74.0 68.9 55.9 62.9 81.5 86.0 32.8 68.6 91.2
IN1k-ret man. + ret. 83.4 86.1 78.6 89.6 75.3 79.1 62.5 65.1 75.3 82.4 24.8 65.7 90.7
raw ✗ 78.0 85.0 75.9 88.7 65.8 74.2 59.9 67.1 72.2 79.6 35.8 75.6 89.7
4r ours 81.5 85.7 78.0 89.2 75.4 79.0 64.1 69.3 80.6 85.5 33.2 79.5 90.9

(b) Performance on semantic segmentation (mIoU) and depth estimation (RMSE) benchmarks.

dataset curation
dense prediction

segmentation depth ↓
ade20k voc cityscapes avg kitti nyu sun-rgbd avg

IN1k man. 0.398 0.799 0.656 0.618 2.905 0.417 0.472 1.265
IN22k man. 0.481 0.830 0.688 0.666 2.642 0.329 0.369 1.113
IN1k-ret man. + ret. 0.468 0.823 0.687 0.659 2.703 0.319 0.371 1.131
raw ✗ 0.500 0.837 0.701 0.679 2.556 0.312 0.361 1.076
4r ours 0.489 0.828 0.695 0.671 2.560 0.335 0.371 1.089

(c) Evaluation on the fairness of pre-trained features.

dataset curation
fairness

income bucket regions
low medium high rel. gap (%) africa asia americas europe rel. gap (%)

IN1k man. 48.6 68.3 79.1 38.6 55.4 66.3 72.9 80.0 30.8
IN22k man. 65.1 82.6 89.4 27.2 72.1 80.3 86.6 89.2 19.2
IN1k-ret man. + ret. 64.6 81.9 89.5 27.8 71.2 79.9 85.7 89.4 20.4
raw ✗ 65.4 82.8 89.8 27.2 72.3 80.7 86.2 89.8 19.5
4r ours 66.7 82.9 89.7 25.6 72.7 81.3 86.5 89.0 18.3

est neighbors of ImageNet1k images in our data pool, and the raw data pool in Tab. 5. Architecture ViT-g
is used in all these experiments.

Comparisons on classification and retrieval benchmarks. We show the performance of the pre-
trained features on ImageNet, out-of-distribution, long-tailed, retrieval and fine-grained benchmarks in
Tab. 5a. On all benchmarks, except for Oxford retrieval (Radenović et al., 2018), features trained on our
curated dataset “4r” significantly outperform those trained on the raw data pool. The gap is notably large
on out-of-distribution and long-tailed benchmarks, showing that our curation method leads to more robust
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features. On standard ImageNet and fine-grained benchmarks, curation also yields significant improvement,
confirming its merit. Finally, although the raw data pool leads to better performance than the curated
dataset on Oxford retrieval, the latter produces better features on Paris retrieval benchmark.

Compared to features trained on ImageNet22k, features trained on “4r” perform slightly worse on ImageNet
k-nn but the two are on par on other validation sets (val, V2 and ReaL). This is significant because Ima-
geNet22k contains ImageNet1k and is curated with significant human effort while our dataset is obtained
with an automatic pipeline. On iNaturalist (Van Horn et al., 2018) and fine-grained benchmarks, Ima-
geNet22k still leads to slightly better performance, but on out-of-distribution and retrieval benchmarks “4r”
results in much better results, with large gaps in ImageNet-R (Hendrycks & Dietterich, 2019), ImageNet-
Sketch (Hendrycks et al., 2021a), ObjectNet (Barbu et al., 2019) and Paris retrieval (Radenović et al., 2018).
This demonstrates that SSL training on our curated dataset produces features that are more robust.

Among the pre-training datasets, ImageNet1k-ret yields the best performing features on ImageNet1k clas-
sification, but this is unsurprising since this dataset is centered around ImageNet. This skewness toward
Imagenet hinders the features’ ability to generalize to other domains. Indeed, significant performance gaps
are observed on ImageNet-Sketch, ObjectNet, iNaturalist, Oxford and Paris compared to features trained on
“4r”. These results highlight the limitation on generalizability of retrieval-based curation methods. Finally,
we observe that ImageNet1k leads to poor results on all benchmarks. It is likely due to its small size with
respect to a high-capacity model as ViT-g. This confirms again the need for large SSL pre-training datasets.

In order to assess the sensitivity of the performance on downstream tasks to different sampled curated
datasets, we have generated two other “4r” datasets and run the evaluation pipeline on them. We compute the
standard deviation of the performance on the benchmarks and observe that most benchmarks are relatively
insensitive to the hierarchical sampling process. The standard deviation of the performance is smaller than
0.1 on ImageNet knn and linear classification, smaller than 0.3 on alternative ImageNet test sets (V2, ReaL
and OOD benchmarks), smaller than 1.0 on long-tailed benchmarks (0.9 on iNaturalist2018 and 0.5 on
iNaturalit2021) and smaller than 0.2 on fine-grained benchmarks. These numbers are significantly smaller
than the performance gap between “4r” and “raw” on the corresponding benchmarks. The only exceptions
are retrieval benchmarks which turn out to be very noisy with the standard deviation of the performance is
4.5 and 4.9 on Oxford and Paris datasets respectively.

Dense prediction tasks. We present the performance of pre-trained features on semantic segmentation
and depth estimation in Tab. 5b. It can be seen that the raw data pool yields slightly better performance
than the curated dataset. This is likely due to the distribution of our data pool. When looking at the
image clusters, we observe that among the largest 50 clusters, there are 9 clusters depicting “bedroom”,
“indoor scene” or “building” concepts which are relevant in benchmarks such as ADE20K (Zhou et al.,
2017), NYU (Silberman et al., 2012) or SUN-RGBD (Song et al., 2015). These clusters contain more than
35 millions images in total, taking up 5% of our data pool. With hierarchical sampling, around only 600
thousands of them are retained in the curated dataset, which corresponds to only 0.6% of its size. As a result,
features trained on the raw data pool represent better the above concepts and obtain better performance
on these benchmarks. It is however noteworthy that the performance drop caused by curation here is
very small compared to the gains achieved in other benchmarks. We also observe that on average, “4r”
leads to significantly better results than manually or retrieval-based curated datasets. Finally, similar to
other benchmarks, the features’ performance on these dense tasks are fairly insensitive to the hierarchical
sampling process, with standard deviation of 0.002 and 0.006 observed for the performance of “4r” on
semantic segmentation and depth estimation respectively.

Fairness across geographic regions. Following Goyal et al. (2022b) and Oquab et al. (2023), we evaluate
features fairness on Dollar Street dataset (De Vries et al., 2019). This dataset contains images depicting
various objects from 289 households from 54 countries. The model is trained to recognise 94 visually varying
concepts among households based on their income level and geographical regions. Results in Tab. 5c show
that features pre-trained on large datasets yield a narrower gap among income levels and regions compared
to those pre-trained on ImageNet1k. Training on our curated dataset also leads to smaller gap than training
on the manually curated ImageNet22k, the retrieval-based curated dataset and the raw data pool. However,
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Figure 5: Hierarchy of clusters obtained when applying our proposed hierarchical k-means on web-based
images. We show here clusters in levels 1, 2 and 3 representing food, motorbike and bedroom concepts. Red
rectangles show clusters in level 1 with 2 representative images.

Table 6: Performance on common large language models benchmarks of models trained on raw and curated
CCNet datasets. On all datasets, we train a 7B-parameters model for an equivalent of 210B seen tokens.
We see that on both CCNET variants, our curation method leads to improved performance.

dataset arc-c hellaswag nq tqa piqa siqa
ccnet-1 37.6 51.4 27.5 53.1 75.3 42.9
curated ccnet-1 40.8 52.7 28.0 54.1 76.1 43.3
ccnet-2 35.5 51.9 19.1 41.3 76.6 42.1
curated ccnet-2 40.1 53.1 22.5 43.7 78.2 42.5

the relative gap among income levels (25.6%) and regions (18.3%) is still significant. This is possibly due
to the limitation of our data pool. Performing curation on a much larger and more diverse raw data pool
would potentially lead to better fairness in SSL features.

4.2.4 Qualitative evaluation of our curation method

We illustrate in Fig. 5 a sample from the hierarchy of concepts obtained on the web-based images pool. We
show three clusters in level 3 that represent food, motorbike and bedroom concepts. Red rectangles represent
clusters in level 1, each of which is illustrated with two representative images. It can be seen that the clusters
are coherent. Clusters in lower levels represent finer concepts such as sub-category of objects (desert or main
dish for food), style of objects (beds with different styles), background (motorbike at the sea or by the lake),
viewpoint (front view or back view of motorbikes) or illumination (dark or light). The balance of these
concepts and sub-concepts in curated datasets is important, as shown in the experiments above.

4.3 Application to other domains

The method presented in this paper is general and agnostic to the downstream task at hand. We can
apply our algorithm as long as we can compute good features for the raw training data. In this section, we
demonstrate the robustness of our approach by successfully applying the same method to two other tasks.
First, we study the training of large language models on large-scale web-based text corpora. Second, we
investigate data curation for training representations of satellite images.

4.3.1 Large Language Model Training

It has been repeatedly shown that large language models (LLMs) require a large amount of data for training.
For example, we see a continuous improvement when training models on more tokens (see Llama 1 &
2 (Touvron et al., 2023)). Hoffmann et al. (2022) shows that using more tokens significantly improves the
model’s quality, irrespective of the parameter count. However, the data quality plays an essential and ill-

18



Published in Transactions on Machine Learning Research (08/2024)

studied role. The first installment of Llama (Touvron et al., 2023) was trained on a mix of datasets, some
of which are high-quality datasets from narrow domains while most of the training data was a variant of
CCNET (Wenzek et al., 2019), a heuristic Wikipedia-based curation applied to text from Common Crawl.
We investigate the effectiveness of our automatic method for curating LLM pre-training data.

To this end, we apply our curation pipeline to two text pools based on Common Crawl. The first data
pool (“ccnet-1”) is obtained by following Touvron et al. (2023), which employs the pipeline of Wenzek et al.
(2019) followed by a Wikipedia-based filter. This dataset of 641M documents has already been curated, so
the data distribution is skewed towards Wikipedia. We obtain our second data pool (“ccnet-2”) by running
the same pipeline, without the Wikipedia-based filtering from LLaMa and the Language Model filtering
stage from Wenzek et al. (2019). Doing so keeps the original data distribution closer to the raw Common
Crawl than Wikipedia. This dataset is more “raw” than “ccnet-1” and has 789M documents.

We use the all-mpnet-base-v2 model from SBERT (Reimers & Gurevych, 2019) to represent documents.
We apply 3-level hierarchical k-means with 10M, 500k and 50k clusters in the three levels respectively, and
sample 200M documents to form curated datasets on both data pools. On each data pool and curated
dataset, we train a language model with 7B parameters on a schedule for 210B tokens following Touvron
et al. (2023). After training the model, we evaluate it on several tasks. We consider benchmarks including
0-shot evaluation on common sense reasoning tasks such as PIQA (Bisk et al., 2020), SIQA (Sap et al.,
2019), Arc-challenge (Clark et al., 2018) and Hellaswag (Zellers et al., 2019), as well as 5-shot evaluation on
world knowledge tasks such as NQ (Kwiatkowski et al., 2019) and TrivialQA (Joshi et al., 2017). We report
the accuracy metric on common sense reasoning benchmarks, while on world knowledge tasks, we report
exact match metric. The downstream performance on these benchmarks are shown in Tab. 6.

It can be seen that our curation method significantly improves performance on all benchmarks, both for
ccnet-1 and ccnet-2, with large gains on the Arc-challenge and NQ datasets. It is noteworthy that our
automatic curation pipeline manages to improve a data pool that was already curated. Indeed, “ccnet-
1” was filtered to discard documents that would fall too far away from the Wikipedia distribution. This
consistent improvement over ccnet-1 is likely due to a better balance of concepts brought by our method, an
aspect often overlooked in current data pipelines.

4.3.2 Applications to satellite images

Tolan et al. (2023) presents an interesting application of self-supervised learning to the problem of tree
canopy height estimation from satellite imagery. This work aims to build a high-accuracy map of tree height
at a global scale. Such maps are helpful to monitor forest growth more efficiently and transparently. They
propose a two-step approach. First, a backbone is trained using DINOv2 (Oquab et al., 2023) on a large-scale
dataset of satellite images. Then, a supervised decoder is trained on top of it using smaller, high-quality
annotated data. They use a pre-training dataset of 18 million 256×256 patches of satellite imagery of about
0.5-meter resolution. The images were sampled in areas where height measurements were available from the
GEDI satellite, mainly selected from samples containing vegetation. The decoder is borrowed from Dense
Prediction Transformer (Ranftl et al., 2021). It is trained using satellite images paired with ground truth
canopy height maps from the NEON (National Ecological Observatory Network (NEON), 2022) dataset.
This data covers several US regions. The canopy height estimator is then evaluated on four test sets. They
include the NEON test set, which contains images from sites not present in the decoder’s training data, the
California Brande dataset (Brande, 2021), the Sao Paulo dataset (dos Santos et al., 2019), which contains
much higher trees than those in NEON, and the Aerial NEON test set which contain images acquired by
drones instead of satellites.

Table 7: Performance of Tolan et al. (2023) on canopy height benchmarks when using backbones pre-trained
on raw or curated dataset of satellite images.

dataset neon ca brande sao paulo aerial neon avg
MAE ↓ r2 MAE ↓ r2 MAE ↓ r2 MAE ↓ r2 MAE ↓ r2

raw 3.1 0.54 0.6 0.76 5.2 0.41 3.3 0.34 3.0 0.51
curated 2.9 0.64 0.6 0.79 5.0 0.47 3.1 0.53 2.9 0.61
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For our experiments, we build a raw pool of 18 million images in a similar manner to Tolan et al. (2023). On
this data pool, we apply a 3-level hierarchical k-means with 500k, 50k and 10k clusters in the first, second
and third level. We then sample a curated dataset of 9 million images. We use DINOv2-reg ViT-L (Darcet
et al., 2024) embeddings trained on the raw data pool to represent the images. We then train a DINOv2-reg
ViT-L on both the curated dataset and the raw data pool, and evaluate the canopy height estimators trained
with these two backbones. We follow the same evaluation protocol as Tolan et al. (2023) and report the
Mean Average Error (MAE) and block R2 (r2) metrics on the test sets. We summarize the results in Tab. 7.
Training the backbone of our curated dataset leads to significant improvements on all benchmarks, with a
relative improvement of 20% in the r2 metric on average. The difference in r2 is the largest on the aerial
neon test set, which is the most out-of-distribution set - the imaging technology is different (airborne versus
satellite). Our results demonstrate the potential of our curation pipeline to improve learning systems in
domains where large-scale, high-quality curated datasets are rare or unavailable.

5 Conclusions

We have presented an automatic data curation pipeline that produces large, diverse, and balanced training
datasets for self-supervised feature learning. Our method involves a successive application of k-means clus-
tering on raw datasets, coupled with resampling-clustering steps that improve the distribution of k-means
centroids. This procedure results in clusters that spread more uniformly among concepts. Through exten-
sive experiments, we have demonstrated that our pipeline enables the learning of effective features in three
different data domains including web-based images, satellite imagery, and text. Our pipeline leads to more
robust features than those trained on manually curated datasets when applied to web-based images. These
features also perform well in a broader range of tasks than those trained on datasets curated using retrieval.

Although our curated datasets yield significantly better features than raw datasets or ImageNet1k, they are
still slightly outperformed by ImageNet22k on certain benchmarks such as ImageNet-1k, fine-grained classifi-
cation datasets, and iNaturalist. However, it is noteworthy that ImageNet22k was curated with significantly
more human effort than ImageNet1k. These evaluation datasets are very correlated with the ImageNet
benchmark, which has influenced computer vision benchmarking for more than a decade. Moreover, our
curated dataset still bests it on the critical robustness tests (ImageNet Adversarial, Rendition, and Sketch).

Our method leads to models that perform significantly better than those trained on raw data for text and
satellite images. These results confirm the importance of data curation for self-supervised feature learning
and the merit of our approach. Applying hierarchical k-means is not confined to the self-supervised learning
context. It should be considered in place of vanilla k-means in tasks necessitating diverse and representative
data sets, such as active learning or data pruning. Future work would point in this direction.

Limitations. First, our work proposes three desired properties of pre-training datasets. However, other
factors are not taken into account. This includes subjective and hard-to-estimate factors such as the quality
of individual data points. Second, in our experiments on web-based images, we still rely on features pre-
trained using SSL on a manually assembled dataset (ImageNet-1k). Further investigations are necessary to
remove this manual component from our pipeline. Finally, leveraging drastically larger image pools would
further improve our performance. We leave this scaling exercise for future work.

Statement of Broader Impact. Automated dataset construction generally poses the risk of reinforcing
biases and breaching privacy. In our work, we mitigate these concerns with several safety measures. For
instance, we used strong models to detect and blur all human faces in our web-based image data pool.
Furthermore, our work aims to alleviate the bias due to over-representing some concepts in random internet
images, leading to better fairness in downstream tasks (Tab. 5c). At the same time, practitioners could tailor
parametric curation methods for specific goals. If fairness evaluations such as those in Sec. 4.2.3 are set up,
one can monitor the downstream performance along with fairness indicators to choose optimal data. The
end user creating the dataset should probe for fairness issues.

Acknowledgements

We would like to thank the M2C2 team at Meta FAIR for preparing the web-based image data pool.

20



Published in Transactions on Machine Learning Research (08/2024)

References
Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic

superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2012.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

David Arthur and Sergei Vassilvitskii. K-means++ the advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, 2007.

Yuki M. Asano, Christian Rupprecht, Andrew Zisserman, and Andrea Vedaldi. Pass: An imagenet re-
placement for self-supervised pretraining without humans. NeurIPS Track on Datasets and Benchmarks,
2021.

Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous clustering
and representation learning. In ICLR, 2020.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep batch
active learning by diverse, uncertain gradient lower bounds. In Proceedings of the International Conference
on Learning Representations (ICLR), 2020.

Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand
Joulin, Michael Rabbat, and Nicolas Ballas. Masked siamese networks for label-efficient learning. In ECCV,
2022.

Shekoofeh Azizi, Basil Mustafa, Fiona Ryan, Zachary Beaver, Jan Freyberg, Jonathan Deaton, Aaron Loh,
Alan Karthikesalingam, Simon Kornblith, Ting Chen, Vivek Natarajan, and Mohammad Norouzi. Big
self-supervised models advance medical image classification, 2021.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenen-
baum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits of object
recognition models. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization for
self-supervised learning. In ICLR, 2022.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model. Advances in
neural information processing systems, 13, 2000.

Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L Alexander, David W Jacobs, and Peter N Belhumeur.
Birdsnap: Large-scale fine-grained visual categorization of birds. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2011–2018, 2014.

Lucas Beyer, Olivier J. Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are we done
with imagenet? CoRR, abs/2006.07159, 2020. URL https://arxiv.org/abs/2006.07159.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense
in natural language. In Proceedings of the AAAI conference on artificial intelligence, pp. 7432–7439, 2020.

Piotr Bojanowski and Armand Joulin. Unsupervised learning by predicting noise. In ICML, 2017.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative components
with random forests. In European Conference on Computer Vision, 2014.

K. Brande. 3d fuel structure in relation to prescribed fire, ca 2020. national center for airborne laser mapping
(ncalm). distributed by opentopography., 2021. URL https://doi.org/10.5069/G9C53J18. Accessed:
2023-02-15.

21

https://arxiv.org/abs/2006.07159
https://doi.org/10.5069/G9C53J18


Published in Transactions on Machine Learning Research (08/2024)

C.-A. Brust, C. Kading, and J. Denzler. Active learning for deep object detection. In Proceedings of
the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISIGRAPP), 2019.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised
learning of visual features. In ECCV, 2018.

Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Armand Joulin. Unsupervised pre-training of image
features on non-curated data. In ICCV, 2019.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsuper-
vised learning of visual features by contrasting cluster assignments. In NeurIPS, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

Richard J Chen, Tong Ding, Ming Y Lu, Drew FK Williamson, Guillaume Jaume, Andrew H Song, Bowen
Chen, Andrew Zhang, Daniel Shao, Muhammad Shaban, et al. Towards a general-purpose foundation
model for computational pathology. Nature Medicine, 30(3):850–862, 2024.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In ICML, 2020.

Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(8):790–799, 1995.

Jiwoong Choi, Ismail Elezi, Hyuk-Jae Lee, Clement Farabet, and Jose M. Alvarez. Active learning for deep
object detection via probabilistic modeling. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In
Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understand-
ing. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3213–3223,
2016.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need registers.
In The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=2dnO3LLiJ1.

Terrance De Vries, Ishan Misra, Changhan Wang, and Laurens Van der Maaten. Does object recognition
work for everyone? In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops, pp. 52–59, 2019.

D. Defays. An efficient algorithm for a complete link method. The Computer Journal, 20(4):364–366, 01
1977.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision
transformers to 22 billion parameters. In International Conference on Machine Learning, pp. 7480–7512.
PMLR, 2023.

22

https://openreview.net/forum?id=2dnO3LLiJ1
https://openreview.net/forum?id=2dnO3LLiJ1


Published in Transactions on Machine Learning Research (08/2024)

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, 2019.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by context
prediction. In ICCV, 2015.

M.N. dos Santos, M.M. Keller, and D.C. Morton. Lidar surveys over selected forest research sites, brazilian
amazon, 2008-2018. ornl daac, oak ridge, tennessee, usa., 2019. URL https://daac.ornl.gov/CMS/
guides/LiDAR_Forest_Inventory_Brazil.html.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin A. Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with convolutional neural networks. CoRR, abs/1406.6909, 2014. URL
http://arxiv.org/abs/1406.6909.

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman. With a
little help from my friends: Nearest-neighbor contrastive learning of visual representations. arXiv preprint
arXiv:2104.14548, 2021.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Knowledge Discovery and Data Mining, pp. 226–231.
AAAI Press, 1996.

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal
visual object classes challenge: A retrospective. International Journal of Computer Vision, 111(1):98–136,
January 2015.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training examples:
An incremental bayesian approach tested on 101 object categories. In 2004 conference on computer vision
and pattern recognition workshop, pp. 178–178. IEEE, 2004.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: discovering the long tail via
influence estimation. In Proceedings of the 34th International Conference on Neural Information Processing
Systems (NeurIPS), 2020.

Yonatan Geifman and Ran El-Yaniv. Deep active learning over the long tail, 2017.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and benchmarking self-supervised
visual representation learning. In ICCV, 2019.

Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min Xu, Pengchao Wang, Vivek Pai, Mannat Singh,
Vitaliy Liptchinsky, Ishan Misra, Armand Joulin, et al. Self-supervised pretraining of visual features in
the wild. preprint arXiv:2103.01988, 2021.

Priya Goyal, Quentin Duval, Isaac Seessel, Mathilde Caron, Mannat Singh, Ishan Misra, Levent Sagun,
Armand Joulin, and Piotr Bojanowski. Vision models are more robust and fair when pretrained on
uncurated images without supervision. arXiv preprint arXiv:2202.08360, 2022a.

Priya Goyal, Adriana Romero Soriano, Caner Hazirbas, Levent Sagun, and Nicolas Usunier. Fairness in-
dicators for systematic assessments of visual feature extractors. In 2022 ACM Conference on Fairness,
Accountability, and Transparency, pp. 70–88, 2022b.

23

https://daac.ornl.gov/CMS/guides/LiDAR_Forest_Inventory_Brazil.html
https://daac.ornl.gov/CMS/guides/LiDAR_Forest_Inventory_Brazil.html
http://arxiv.org/abs/1406.6909


Published in Transactions on Machine Learning Research (08/2024)

Édouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomáš Mikolov. Learning word
vectors for 157 languages. In Proceedings of the Eleventh International Conference on Language Resources
and Evaluation (LREC 2018), 2018.

R.M. Gray and D.L. Neuhoff. Quantization. IEEE Transactions on Information Theory, 44(6):2325–2383,
1998. doi: 10.1109/18.720541.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray
Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent: A new approach to self-
supervised learning. In NeurIPS, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In CVPR, 2020.

Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, SM Ali Eslami, and Aaron
Van Den Oord. Data-efficient image recognition with contrastive predictive coding. In Proceedings of the
37th International Conference on Machine Learning, pp. 4182–4192, 2020.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. In International Conference on Learning Representations, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-
of-distribution generalization. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial ex-
amples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15262–15271, 2021b.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556, 2022.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Improving bag-of-features for large scale image search.
International Journal of Computer Vision, 87(3):316–336, 2010.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly super-
vised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–128, 2011.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained catego-
rization. In 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney,
Australia, 2013.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
Report 0, University of Toronto, Toronto, Ontario, 2009.

24



Published in Transactions on Machine Learning Research (08/2024)

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a benchmark for
question answering research. Transactions of the Association for Computational Linguistics, 7:453–466,
2019.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing
natural scene categories. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pp. 2169–2178, 2006.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné,
Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-parameter open-access
multilingual language model. arXiv preprint arXiv:2211.05100, 2023.

Yann LeCun. A path towards autonomous machine intelligence. OpenReview, 2022.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X. Yu. Large-scale long-
tailed recognition in an open world. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X. Yu. Open long-tailed
recognition in a dynamic world. TPAMI, 2022.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137,
1982.

Jiawei Ma, Po-Yao Huang, Saining Xie, Shang-Wen Li, Luke Zettlemoyer, Shih-Fu Chang, Wen-Tau Yih,
and Hu Xu. Mode: Clip data experts via clustering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024.

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of aircraft.
Technical report, Oxford University, 2013.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent neural
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