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Abstract

We introduce a dataset comprising commercial001
machine translations, gathered weekly over six002
years across 12 translation directions. Since hu-003
man A/B testing is commonly used, we assume004
commercial systems improve over time, which005
enables us to evaluate machine translation (MT)006
metrics based on their preference for more re-007
cent translations. Our study confirms several008
previous findings in MT metrics research and009
demonstrates the dataset’s value as a testbed010
for metric evaluation.011

1 Introduction012

Automatic metrics for machine translation (MT)013

are typically assessed by measuring their correla-014

tion with or accuracy with respect to human judg-015

ments (Macháček and Bojar, 2013; Mathur et al.,016

2020b; Kocmi et al., 2021). However, human eval-017

uation is resource-intensive and time-consuming,018

and the number of translation systems included in a019

meta-evaluation tends to be relatively small. In this020

study, we explore the use of commercial machine021

translations, collected weekly over a period of 6022

years for 12 translation directions, for the evalu-023

ation of MT metrics. Given the common use of024

human A/B testing (Tang et al., 2010; Caswell and025

Liang, 2020), our base assumption is that commer-026

cial systems show real improvements over time and027

that we can assess metrics as to whether they prefer028

more recent MT outputs. Using our dataset, we029

revisit a number of recent findings in MT metrics030

research, and find that our dataset supports these.031

Freitag et al. (2022, 2023) revealed that neural032

metrics exhibit significantly higher correlation with033

human judgments compared to non-neural ones.034

In our experiments, we analyze metric scores over035

time and evaluate metrics’ ability to accurately rank036

MT systems. Our findings demonstrate that neural037

metrics show a more consistent upward trend, and038

achieve higher accuracy than non-neural metrics.039

Ma et al. (2019) demonstrated that the correla- 040

tion between metrics and human judgments signif- 041

icantly decreased when considering only the top- 042

performing systems. However, the limited number 043

of MT systems (typically 10–15 MT systems per 044

language pair) made it difficult to fully confirm this 045

trend (Mathur et al., 2020a). We revisit this finding 046

using a larger sample and observe that the correla- 047

tion tends to decrease for many language pairs as 048

the quality of evaluated systems improves. 049

High-quality synthetic references were found to 050

produce a stronger correlation between human eval- 051

uations and metrics compared to human-generated 052

references (Freitag et al., 2023). We reexamine 053

the effect of using synthetic references with three 054

language pairs and find that synthetic references 055

can result in comparable correlation. 056

2 Background and Related Work 057

Designed to directly learn human judgments, 058

trained metrics (Rei et al., 2020; Sellam et al., 2020) 059

have exhibited notable advancements in correlat- 060

ing with human judgments compared to non-neural 061

metrics like BLEU (Papineni et al., 2002; Freitag 062

et al., 2021). Recent research (Freitag et al., 2022, 063

2023) reveals that these trained metrics can also 064

generalize to new domains and challenge sets. 065

Ma et al. (2019) assessed the stability of metrics 066

across top-N MT systems, and noticed that the cor- 067

relation between metric and human scores dimin- 068

ished as N decreased. A subsequent investigation 069

(Mathur et al., 2020a) suggested that the decrease 070

might be due to instability of small samples. They 071

employed a rolling window of N systems, moving 072

from the worst to the best systems and found that 073

the correlation is unstable for small samples. Be- 074

sides, due to the limited number of MT systems, 075

they could not determine if metric reliability de- 076

creases as the quality of MT systems improves. 077

In WMT23 Metrics shared task (Freitag et al., 078
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2023), human translations received unexpectedly079

low ratings, which prompted an investigation into080

using synthetic references as a potential alternative.081

It was found that high-quality synthetic references082

led to a stronger correlation between human and083

metrics compared to humans references.084

Instead of evaluating metrics through compari-085

son with human judgement, Moghe et al. (2023)086

explored a complementary approach by correlat-087

ing metrics with the outcome of downstream tasks.088

Similarly, our study does not use human judgment089

directly; instead, we evaluate metrics based on their090

preference for newer MT outputs.091

3 Methods092

3.1 Data093

The original corpus contains sentences in English094

from Abstract Meaning Representation (AMR) An-095

notation Release 2.0 (Knight and et al., 2017),096

along with their German, Italian, Spanish, and Chi-097

nese translations developed by Damonte and Cohen098

(2020). This corpus contains 1371 sentences per099

language. The source sentences were mainly drawn100

from content gathered in the news domain.101

Translations are gathered weekly using Google102

Translate from each of the five languages to the103

other four languages. Early experiments revealed104

that for English→Spanish, there was a substantial105

similarity between professional translations and106

those generated by the earliest systems (details in107

Appendix A). Consequently, Spanish was removed108

from further investigation, reducing the number of109

language pairs to 12. As minimal variation was ob-110

served between consecutive weeks, we subsample,111

with consecutive systems being approximately one112

month apart. After removing duplicates (systems113

receiving identical scores across all metrics), we114

retained 56–63 systems per language pair.115

3.2 Metrics116

3.2.1 Surface-level Overlap117

BLEU (Papineni et al., 2002) measures n-grams118

overlap between the translation and its reference.119

We use corpus_bleu in SacreBLEU (Post, 2018).120

chrF (Popović, 2015) assesses the overlap between121

the characters of the translation and the reference.122

We use corpus_chrf in SacreBLEU.123

3.2.2 Embedding based124

BERTScore (Zhang* et al., 2020) derives contex-125

tual embeddings from BERT (Devlin et al., 2019)126

models and computes cosine similarity between 127

embeddings of the translation and the reference. 128

We use the F1 score without TF-IDF weighting. 129

3.2.3 Trained with Human Judgements 130

COMET-20 (Rei et al., 2020) is trained on top 131

of XLM-R (Conneau et al., 2020) using Direct 132

Assessments (DA) from WMT17 to WMT19. We 133

utilize wmt20-comet-da. 134

UniTE (Wan et al., 2022a,b) is capable of evalu- 135

ating translation outputs in source-only, reference- 136

only, and source-reference-combined assessment 137

scenarios. We use unite-mup. 138

COMET-22 (Rei et al., 2022a) is the current de- 139

fault model in COMET and trained on DA from 140

WMT17 to WMT20. We use wmt22-comet-da. 141

COMET-Kiwi (Rei et al., 2022b) is a reference- 142

free metric trained using DA from WMT17 to 143

WMT20, and DA from the MLQE-PE corpus. We 144

use wmt22-cometkiwi-da. 145

MS-COMET-QE-22 (Kocmi et al., 2022) is a 146

reference-free metric, extending COMET by Mi- 147

crosoft Research with proprietary data. 148

4 Results 149

4.1 How do metric scores change over time? 150

While it is reasonable to expect that systems im- 151

prove over time, how metric scores will reflect 152

these improvements remains unclear. To investi- 153

gate this, we visualize how metric scores vary over 154

time for individual language pairs in Appendix B. 155

In general, upward trends are evident for the met- 156

rics across the language pairs. 157

We use Spearman correlation to measure 158

whether the upward trends are consistent. Met- 159

rics with higher correlation are deemed more re- 160

liable, as they better reflect the overall ranking of 161

the systems. As illustrated in Figure 1, COMET- 162

22, UniTE, COMET-20, and COMET-Kiwi con- 163

sistently demonstrate high correlation across the 164

language pairs. Among the remaining four met- 165

rics, we notice low correlations in specific language 166

pairs, like BLEU and chrF in English→German or 167

MS-COMET-22-QE in Italian→English. 168

4.2 How good can the metrics rank 169

incremental systems accurately? 170

In this section, we evaluate metrics in a common 171

scenario (Mathur et al., 2020a): ranking a pair of 172

systems. As we assume newer systems are bet- 173

ter than old ones, accuracy (Kocmi et al., 2021) is 174
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Figure 1: The Spearman correlation measures the relationship between metric score rankings and time rankings for
MT systems. A positive correlation indicates an upward trend, with a higher correlation indicating a stronger trend.
A red star indicates lack of statistical significance (p-value > 0.05).

All Into EN From EN Into DE Into IT Into ZH
COMET-22 73.9 66.6 71.6 76.4 79.4 72.6
COMET-Kiwi 73.4 72.1 73.9 74.8 75.3 71.4
UniTE 73.2 66.5 73.7 77.1 75.0 73.9
COMET-20 72.5 66.1 74.6 74.3 74.0 74.9
chrF 71.4 74.5 57.8 60.4 76.5 74.6
MS-COMET-22-QE 69.9 57.4 68.1 68.8 73.9 78.6
BLEU 68.2 71.7 57.3 56.3 68.9 76.4
BERTScore 68.0 65.4 62.2 68.8 69.0 68.6

Table 1: Accuracy for ranking system pairs. Column “All” shows the results for all system pairs. Each following
column evaluates accuracy over a subset of systems. Rows are sorted by the accuracy over all system pairs.

adopted as follows. For each system pair, we calcu-175

late the difference of the metric scores (metric∆)176

and the difference in time (time∆). Accuracy for177

a specific metric is calculated as the ratio of rank178

agreements between metric and time deltas to the179

total number of comparisons:180

Accuracy =
|sign(metric∆) = sign(time∆) |

|all system pairs|
181

Since the systems span from 2018 to 2024, those182

separated by a substantial time interval might ex-183

hibit considerable quality gaps, potentially result-184

ing in an overestimate of metric reliability (Mathur185

et al., 2020a). Consequently, we only pair systems186

with a gap of less than a year. Even within such a187

timeframe, substantial improvements in quality are188

possible (Caswell and Liang, 2020).189

Table 1 shows that trained metrics generally out-190

perform non-trained metrics. For all system pairs,191

COMET-22 achieves the highest accuracy, fol- 192

lowed by COMET-Kiwi. In contrast, MS-COMET- 193

QE-22 struggles to attain high accuracy except for 194

into Chinese. Among surface-level metrics, chrF 195

outperforms BLEU, reflecting results in previous 196

studies (Kocmi et al., 2021), and achieves the high- 197

est accuracy for into English. We also examine 198

performance for individual language pairs. Trained 199

metrics exhibit high accuracy, yet no single metric 200

excels across all pairs. More details in AppendixC. 201

4.3 Does the reliability of metrics depend on 202

the quality of the systems evaluated? 203

As mentioned in Section 2, metric reliability may 204

decline as the quality of evaluated systems im- 205

proves (Ma et al., 2019). However, the limited num- 206

ber of MT systems made it difficult to fully confirm 207

this trend (Mathur et al., 2020a). We revisit this 208
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Figure 2: Accuracy over a rolling window of 36 systems. The x axis shows the index of the starting system, and
systems are sorted by time.

Figure 3: Accuracy across three language pairs using either human or synthetic references. The two reference-free
metrics are not included as they will not be influenced by reference.

issue using a larger sample of MT systems. Follow-209

ing the approach of Mathur et al. (2020a), we imple-210

ment a rolling window of N systems, transitioning211

from the earliest to the most recent ones. Using ac-212

curacy as explained in Section 4.2, we conduct tests213

with N varying from 24 to 40. Figure 2 illustrates214

the results for N = 36, representing the identified215

scenarios. Different metrics display varying trends.216

For instance, in English→German, trained metrics217

show an upward trend, while surface-level metrics218

show a downward trend. A downward trend is most219

common, with each metric showing a clear decline220

across 7 or more language pairs. However, we221

also observe upward or relatively flat trends in the222

remaining language pairs.223

4.4 How will synthetic references impact the224

metrics’ judgement?225

We generate synthetic references for three lan-226

guage pairs using another commercial MT system,227

DeepL, and examine their impact on metric eval-228

uation. As depicted in Figure 3, we observe that229

for English→German, all metrics achieve a higher 230

accuracy, while for the remaining language pairs, 231

there are some drops. Overall, synthetic references 232

lead to a comparable accuracy for the three lan- 233

guage pairs we investigate. 234

5 Conclusion 235

We evaluated metrics based on their preference for 236

newer translations, confirming many prior findings 237

on MT metrics. Our dataset, covering 12 language 238

pairs with at least 56 systems each, surpasses previ- 239

ous datasets that typically included only 3 pairs 240

with around 15 systems each, providing larger- 241

scale evidence for debated questions such as the 242

relationship between MT quality and metric relia- 243

bility. Additionally, the systems are incremental (a 244

baseline compared to improvements developed by 245

the same group), reflecting the most common use 246

case of the metrics. We encourage the use of our 247

dataset for future investigations into MT metrics or 248

the development of MT quality over time. 249
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Limitations250

Our study bases on the assumption that newer sys-251

tems outperform older ones. Although this is a252

reasonable belief, it might not always be true.253

Recently, LLM-based evaluators have demon-254

strated great performance in evaluating MT sys-255

tems. However, we have not included any LLM-256

based evaluators in this study because it would be257

costly to experiment with our extensive dataset.258
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Appendices 433

A Metric scores for English → Spanish translations 434

Figure 4 displays the scores of four different metrics for English→Spanish translations in our early 435

experiments. Early systems achieved nearly perfect metric scores, whereas later systems displayed 436

markedly lower scores. Upon closer examination of the human translations, we noticed roughly 25% of 437

them are identical to that of the early systems.

(a) BLEU (b) chrF

(c) BERTScore (d) COMET-22

Figure 4: The metric scores for English→Spanish translations. While the earliest system achieved nearly perfect
scores, subsequent systems showed a notable decline.

438

B Metric scores over time 439

Figure 5 illustrates the findings regarding the change of metric scores over time. Generally, upward trends 440

are evident for the metrics across language pairs. Furthermore, these trends sometimes appear as step-like 441

progressions. Based on a visual inspection of the results, we have some interesting findings as follows: 442

1. Although there have been concerns that MT systems were optimized for BLEU, given its longstanding 443

status as the primary evaluation metric, our findings suggest that the upward trends of BLEU are less 444

consistent compared to other metrics. This observation might provide implicit evidence that BLEU 445

is not solely used during system development. 446

2. The trajectories of BLEU and chrF exhibit a high degree of similarity, as do the trajectories of 447
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COMET-20, COMET-22, COMET-Kiwi, and UniTE. In contrast, BERTScore and MS-COMET-22-448

QE follow distinct trajectories of their own. These similarities and discrepancies reflect the inherent449

properties of these metrics. BLEU and chrF both rely on measuring surface-level overlap, while450

BERTScore is unique in its reliance on contextual embeddings. As for the trained metrics, although451

they are all trained in a similar manner, MS-COMET-22-QE was trained using entirely different data.452

3. In certain language pairs, the trajectories of certain metrics may experience a downturn. For instance,453

noticeable troughs are observed for BLEU and chrF in English→German, Italian→German, and454

English→Italian; for BERTScore in English→German, German→Italian, and English→Italian; and455

for MS-COMET-22-QE in Italian→English, Italian→German, and Chinese→English. On the other456

hand, the trajectories of the remaining metrics may occasionally exhibit bumps but do not show clear457

troughs.458

Figure 5: Metric scores over time.
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Figure 5: Metric scores over time.
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Figure 5: Metric scores over time.
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C Accuracy across the language pairs 459

Figure 6: Accuracy for ranking system pairs across individual language pairs.
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