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ABSTRACT

Understanding the world from distributed, partial viewpoints is a fundamental
challenge for embodied multi-agent systems. Each agent perceives the environment
through an ego-centric view that is often limited by occlusion and ambiguity. To
study this problem, we introduce the Ego-to-World (E2W) benchmark, which
evaluates vision–language model’s ability to fuse heterogeneous viewpoints across
three tasks: (i) global counting, (ii) relational location reasoning, and (iii) action-
oriented grasping that requires predicting view-specific image coordinates. To
address this setting, we propose CoRL, a two-stage framework that combines
Chain-of-Thought supervised fine-tuning with reinforcement learning using Group-
Relative Policy Optimization. Its core component, the Cross-View Spatial Reward
(CVSR), provides dense task-aligned feedback by linking reasoning steps to visual
evidence, ensuring coherent cross-view entity resolution, and guiding the model
toward correct final predictions. Experiments on E2W show that CoRL consistently
surpasses strong proprietary and open-source baselines on both reasoning and
perception-grounding metrics, while ablations further confirm the necessity of each
CVSR component. Beyond that, CoRL generalizes to external spatial reasoning
benchmarks and enables effective real-world multi-robot manipulation with cal-
ibrated multi-camera rigs, demonstrating cross-view localization and successful
grasp-and-place execution. Together, E2W and CoRL provide a principled founda-
tion for learning world-centric scene understanding from distributed, ego-centric
observations, advancing collaborative embodied AI. Code is available at CORL .

1 INTRODUCTION

Recent advances in Vision–Language Models (VLMs) have catalyzed significant progress in em-
bodied intelligence. By grounding natural language within visual perception, VLMs have enabled a
diverse range of embodied tasks, from instruction following to interactive manipulation. This progress
has spurred extensive research into VLM applications across domains such as robotics (Kang et al.,
2025), navigation (Wang et al., 2025b), and spatial reasoning (Zhou et al., 2025; Yin et al., 2025).
Nevertheless, the majority of existing methodologies are confined to single-view scenarios, where
perception is limited to an ego-centric or a fixed global viewpoint. Such a constraint inherently leads
to incomplete scene understanding and restricted reasoning capabilities.

In many real-world applications, multiple heterogeneous agents—such as cooperative service robots
in domestic environments or Vehicle-to-Everything (V2X) systems in autonomous driving—operate
concurrently. In these settings, multi-agent coordination is not merely beneficial but essential. A
solitary viewpoint is fundamentally susceptible to occlusions and partial observations, whereas inte-
grating complementary perspectives from multiple agents can provide richer contextual understanding.
As illustrated in Figure 1, cross-view compositional reasoning empowers agents to surmount these
limitations and execute spatially grounded actions with high fidelity. However, achieving such
reasoning capabilities is profoundly challenging, as it necessitates the integration of heterogeneous
viewpoints, the resolution of cross-view ambiguities, and the alignment of overlapping observations
to construct a coherent scene representation.
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Task: Grasp the blue block that is farthest from the strawberry and place it on the red block.

Task : Grab the steak and use the camera to photograph it with 4 Embodied Agent.
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Figure 1: An illustration of collaborative spatial reasoning in embodied systems. Reasoning from a
single viewpoint fails due to occlusions or a limited field of view. In contrast, cross-view composi-
tional reasoning integrates multiple perspectives to correctly localize and grasp the target object—the
blue block farthest from the strawberry.

To bridge this critical gap, we investigate the problem of collaborative spatial reasoning in multi-
agent embodied systems. We formalize a novel setting wherein each agent contributes its partial,
ego-centric observations, and the VLM need to integrate these disparate inputs to perform complex
spatial reasoning and perception tasks. To this end, we introduce the Collaborative Spatial Reasoning
Reinforcement Learning (CoRL) framework, which is augmented by a novel Cross-View Spatial
Reward (CVSR). The CVSR is meticulously designed to explicitly incentivize policies that: (i)
consistently localize objects across different viewpoints, (ii) effectively fuse complementary ego-
centric information, and (iii) maximize collective scene coverage. By shaping the learning signal
around these core principles of spatial grounding, CVSR compels the VLM to transcend single-
view perception and develop robust collaborative spatial reasoning abilities. Through systematic
comparisons of alternative training paradigms, we demonstrate that our proposed Supervised Fine-
Tuning (SFT) followed by Reinforcement Learning (RL) pipeline, empowered by CVSR, consistently
achieves state-of-the-art performance on collaborative perception tasks.

In summary, our contributions are threefold:

⋄ We pioneer the formalization of collaborative perception and reasoning with VLMs in multi-agent
embodied systems, and introduce a large-scale dataset specifically tailored for this setting.

⋄ We propose the CoRL framework, featuring the novel Cross-View Spatial Reward (CVSR), which
explicitly incentivizes the fusion of ego-centric views and enhances spatial grounding.

⋄ We empirically validate the effectiveness and generalizability of our approach across diverse
VLMs, showing substantial improvements over strong baselines and robust transfer to external spatial
reasoning benchmarks.

2 RELATED WORK

Embodied Multi-Agent Cooperation. Coordination among multiple agents is a fundamental
challenge in embodied AI. Research in this domain has historically focused on high-level task
allocation Obata et al. (2024); Wang et al. (2024); Liu et al. (2025a) and joint decision-making Zhang
et al. (2023a); Wang et al. (2025a). More recently, the advent of Large Language Models (LLMs)
has catalyzed progress in multi-agent collaboration, enabling sophisticated distributed planning and
communication strategies Bo et al. (2024); Guo et al. (2024); Nasiriany et al. (2024); Zhou et al.
(2023). However, a primary limitation of these LLM-based approaches is their reliance on symbolic
or textual representations, which are detached from the visual world. This detachment restricts
their capacity to handle perceptual ambiguities and perform fine-grained spatial reasoning. While a
few pioneering studies have started to integrate Vision–Language Models (VLMs) into multi-agent
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systems Wang et al. (2025b); Zhang et al. (2024a); Kang et al. (2025), they typically treat each
agent’s viewpoint in isolation or default to single-view reasoning. In stark contrast, our work directly
confronts this limitation by proposing a framework centered on compositional, cross-view reasoning
to achieve deeper and more effective collaboration.

Spatial Understanding. Spatial understanding—the ability to parse intricate geometric configura-
tions, spatial layouts, and object interrelations from diverse visual inputs—is critical for intelligent
systems across a wide range of domains, from geometric problem-solving Gao et al. (2023); Shi et al.
(2024); Zhang et al. (2024b) to embodied robotics Hu et al. (2023); Ji et al. (2025). To bolster the
spatial reasoning capabilities of VLMs, recent works have explored increasingly advanced training
methodologies. Techniques such as multi-stage supervision with Chain-of-Thought (CoT) prompt-
ing Xu et al. (2024); Wei et al. (2022) and reinforcement learning (RL) with carefully engineered
reward mechanisms Guo et al. (2025) have yielded significant gains. Subsequent research has further
underscored the importance of highly tailored reward designs for complex visual reasoning tasks Liu
et al. (2025b;c); Tan et al. (2025). Building upon this line of inquiry, our work addresses the distinct
and even more complex challenge of multi-agent spatial understanding. Here, the central problem is
to synthesize a globally coherent and semantically consistent scene representation from fragmented,
ego-centric observations. This necessitates not only unifying disparate multi-view visual data but also
enforcing strong and robust spatial consistency across multiple, partially overlapping perspectives.

Reinforcement Learning for Visual Reasoning. Reinforcement Learning (RL) has emerged as a
powerful and versatile paradigm for training intelligent agents that reason from high-dimensional
visual data. Moving beyond the static nature of supervised pretraining, RL enables models to learn
through direct and interactive environmental engagement, optimizing their policies via reward-driven
feedback Liu et al. (2025b); Tan et al. (2025); Sarch et al. (2025); Chen et al. (2025). Foundational
applications in perception-driven tasks, such as navigation Zhu et al. (2017) and manipulation Zhou
et al. (2025); Kang et al. (2025), have demonstrated RL’s strong efficacy in tightly coupling perception
and action. More recently, the field has progressed toward structured reward designs for multi-modal
reasoning, incorporating mechanisms like CoT guidance Zhang et al. (2024c) or geometric consistency
constraints Jiang & Lu (2024) to further enhance embodied decision-making performance. Despite
these advances, the predominant focus of RL-based visual reasoning has remained on single-agent,
single-image settings, leaving multi-view reasoning largely underexplored. Our framework extends
this paradigm to the multi-agent, multi-view context, introducing a novel and unified reward structure
designed explicitly to foster collaborative spatial reasoning.

3 EGO-TO-WORLD TASK

To systematically evaluate collaborative spatial reasoning, we introduce the Ego-to-World Benchmark
(E2W-Bench), which operationalizes a multi-agent, multi-view paradigm. As shown in Figure 2,
multiple robotic agents capture partial ego-centric observations of a shared 3D environment. The
central challenge for a Vision–Language Model is to integrate these fragmented perspectives into
a coherent global scene representation and to answer natural-language queries or perform action-
oriented predictions. E2W-Bench consists of two categories of tasks: spatial reasoning QA (E2W-1,
E2W-2) and perception for grasping (E2W-3). Further dataset details are provided in Appendix C.

E2W-1 (Counting). This task evaluates the ability to aggregate object instances across overlapping
views and output an accurate global count.

E2W-2 (Location Reasoning). Here the model must infer spatial relations among objects that never
co-occur in a single view, requiring cross-view reasoning to answer correctly in natural language.

E2W-3 (Grasping). Unlike the QA tasks, E2W-3 requires action-oriented predictions. The model
must translate a language command involving spatial relations into precise 2D coordinates within spe-
cific agent’s viewpoint, thereby linking compositional reasoning to downstream robotic manipulation.

Together, these tasks provide a comprehensive benchmark that jointly evaluates high-level symbolic
reasoning, fine-grained visual grounding, and embodied spatial referring across diverse scenarios. By
explicitly linking abstract reasoning to actionable predictions, E2W-Bench offers a rigorous testbed
for multi-view understanding and real-world transfer.

3
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(a). Source Data Distribution (b). Data Level Distribution
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Task

refine

Figure 2: Overview of the Ego-to-World (E2W) Benchmark. Top: Multiple agents (Robot A,
B, C) each provide partial ego-centric views of a shared scene. The vision language model trained
with our CoRL framework integrate these complementary perspectives to solve three tasks: Counting
(E2W-1), Location Reasoning (E2W-2), and Grasping (E2W-3). Bottom: The benchmark combines
diverse real and simulated data and organizes them into varying complexity levels.

4 METHODS

4.1 OVERVIEW

We present CoRL (Collaborative Spatial Reasoning Reinforcement Learning), a framework that
equips Vision–Language Models (VLMs) with collaborative perception and reasoning capabilities
in multi-agent embodied settings. A central VLM aggregates and reasons over partial, ego-centric
observations streamed by multiple agents, producing task-specific outputs under a unified interface.
The overall architecture is shown in Figure 3.

4.2 PROBLEM FORMULATION

Consider a shared environment E populated by N embodied agents A = {a1, . . . , aN}. At a given
time, each agent ai observes an ego-centric RGB image Ii ∈ RH×W×3. All agents receive a common
natural-language query Q. A central VLM implements a policy πθ parameterized by θ that consumes
the multi-view input and the query to produce a prediction

ŷ = πθ

(
{Ii}Ni=1, Q

)
, (1)

where ŷ is either a textual response (for counting and relational reasoning) or a pair of image-plane
coordinates (for grasping).

Training is cast as maximizing the expected task reward over a dataset D of instances ({Ii}, Q, y)
with ground-truth label y:

max
θ

E({Ii},Q,y)∼D
[
R(ŷ, y)

]
. (2)

The reward function R evaluates the quality of ŷ against y and is central to our method; its design is
detailed in Section 4.4.

4.3 CORL TRAINING PIPELINE

CoRL is trained in two stages: supervised fine-tuning for initialization, followed by reinforcement
learning for policy refinement.

4
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Figure 3: CoRL framework. The model is first initialized via supervised fine-tuning (SFT) on
Chain-of-Thought annotations, then refined with reinforcement learning (RL). During RL, the policy
is optimized with an format reward and the Cross-View Spatial Reward (CVSR), which supplies
dense feedback on cross-view fusion and spatial consistency, guiding robust collaborative reasoning.

Supervised Fine-Tuning. We initialize πθ with SFT on CoT-augmented data. Each training tuple
is (x, q, r, a), where x denotes the multi-view inputs, q is the query, r is the intermediate reasoning
trace, and a is the final answer. Let y = [r, a] be the concatenated target sequence. The SFT objective
is the usual next-token log-likelihood:

LSFT = −E(x,q,r,a)∼D

|y|∑
t=1

log πθ

(
yt | x, q, y<t

)
. (3)

This yields an initial policy πSFT (denoted π0) that provides a strong starting point for RL.

Reinforcement Learning Fine-Tuning. After SFT initialization, we further optimize the policy
with Group Relative Policy Optimization (GRPO). GRPO improves stability and sample efficiency
by normalizing rewards within each sampled group of candidate responses, thereby computing
group-relative advantages that reduce variance and sharpen credit assignment.

Concretely, for an input u = (x, q), we draw G candidate responses {yj}Gj=1 from the current policy
πθ and score each with a reward Rj (Section 4.4). GRPO computes the empirical mean R̄ and
standard deviation σR of the rewards and defines a standardized advantage for each candidate:

Aj =
Rj − R̄

σR
. (4)

This group-relative normalization emphasizes responses that outperform their peers, rather than
absolute reward magnitude, and thus stabilizes training.

To update the policy, we first define the probability ratio between the current policy πθ and the
reference policy π0 from SFT:

rj(θ) =
πθ(yj | u)
π0(yj | u)

. (5)

The core of the GRPO objective is a clipped surrogate function, which constrains the policy update
step size. This objective is defined as:

LCLIP(θ) = Eu

[
G∑

j=1

min
(
rj(θ)Aj , clip

(
rj(θ), 1− ϵ, 1 + ϵ

)
Aj

)]
, (6)

where ϵ is a hyperparameter that defines the clipping range.

The final policy parameters are updated by maximizing the full GRPO objective, which incorporates
a KL divergence penalty to further regulate the policy update:

J (θ) = LCLIP(θ)− βDKL

(
πθ(· | u) ∥π0(· | u)

)
, (7)

5
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where π0 is the SFT-initialized reference policy and β > 0 regulates the trust region enforced by the
KL regularizer. This formulation allows CoRL to directly optimize spatial reasoning rewards while
preserving stability and sample efficiency, fully leveraging the group-relative advantage mechanism
within a robust PPO-style optimization framework.

4.4 CROSS-VIEW SPATIAL REWARD (CVSR) DESIGN

The total reward combines an output-format component with a cross-view spatial component:

R = λ1 Rformat + λ2 RCVSR, λ1, λ2 > 0. (8)

Output-Format Reward Rformat. To ensure interpretability and reliable parsing, the model re-
ceives a binary reward for structural correctness. Specifically, the intermediate reasoning must be
enclosed in <think>...</think> tags and the final answer must appear in a designated box;
success yields Rformat = 1, otherwise 0. This encourages the model to articulate a reasoning trace
prior to committing to an answer.

Cross-View Spatial Reward RCVSR. CVSR delivers dense feedback targeted at collaborative
spatial reasoning. It aggregates three components:

RCVSR = wground Rground + woverlap Roverlap + wans Rans, (9)

with nonnegative weights wground, woverlap, wans.

(i) Grounding reward Rground. To align reasoning with visual evidence, the model is prompted to
emit bounding boxes for key objects referenced in its chain of thought. Let B̂ = {b̂i}mi=1 be predicted
boxes and B∗ = {b∗j}nj=1 ground-truth boxes. We compute an optimal bipartite matching σ via the
Hungarian algorithm that maximizes total IoU, and define

Rground =
1

|σ|

|σ|∑
i=1

IoU
(
b̂i, b

∗
σ(i)

)
, (10)

which provides a dense localization signal.

(ii) Overlap accuracy Roverlap. To incentivize cross-view entity resolution, the model must report the
number of unique object instances that appear in more than one view, denoted n̂overlap. Comparing
to the ground truth n∗

overlap yields

Roverlap = I
[
n̂overlap = n∗

overlap

]
, (11)

encouraging the model to distinguish redundant from complementary observations before global
aggregation.

(iii) Answer correctness Rans. This term evaluates task completion and is defined per task type. For
counting and location reasoning (textual outputs),

RQA
ans = I[ŷ = y] . (12)

For grasping (coordinate output ŷ = (û, v̂) with ground truth y = (u, v)), we use a distance-shaped
reward

Rgrasp
ans = max

(
0, 1− ∥ŷ−y∥2

dmax

)
, (13)

where dmax is a normalization radius. While Rground and Roverlap shape intermediate spatial
reasoning, Rans enforces correctness of the final output.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines and Protocol. We compare CoRL with (i) proprietary VLMs: GPT-5 OpenAI (2025),
Gemini-2.5-Pro Comanici et al. (2025), and Doubao-Seed-1.6 Seed (2025); (ii) open-source

6
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Table 1: Performance on the Ego2World-Bench (E2W-Bench). This table groups tasks into
Reasoning and Perception categories, with top two performances highlighted and rows alternately
colored. Highlighting: Top performance (bold) and second best performance (underlined).

Model
Reasoning (Acc.) Perception (Score)

E2W-1 E2W-2(S) E2W-2(R) Avg. E2W-3(S) E2W-3(R) Avg.

Closed Source Models
GPT-5 42.5 48.5 72.5 54.50 50.43 12.02 31.23

Doubao-Seed-1.6 35.0 40.0 46.0 40.33 16.60 5.26 10.93

Gemini-2.5-Pro 32.5 42.5 50.0 41.67 35.98 10.15 23.07

Open Source Models
GLM-4.5v 34.5 29.0 56.0 39.83 2.78 0.84 1.81

SpaceQwen-3B 21.5 6.0 60.0 29.17 16.15 5.07 10.61

LLaMA-3.2-11b-
vision-instruct

16.5 12.5 17.5 15.50 7.78 3.38 5.58

Qwen2.5VL-3B 22.0 15.5 58.0 31.83 24.08 7.48 15.78

Qwen2.5VL-7B 17.0 17.0 64.5 32.83 28.83 5.78 17.31

Qwen2.5VL-32B 21.5 28.0 37.0 28.83 31.25 9.16 20.21

CoRL Variants
SFT-3B 47.0 63.0 84.0 64.67 93.00 42.06 67.53

RL-ZERO-3B 23.0 39.5 83.5 48.67 50.63 8.02 29.33

CoRL-3B 59.0 75.5 86.0 73.50 96.30 41.82 69.06

SFT-7B 44.5 88.0 84.5 72.33 90.99 40.76 65.88

RL-ZERO-7B 16.0 56.0 82.5 51.50 92.60 11.65 52.13

CoRL-7B 61.0 97.0 90.0 82.67 95.69 44.32 70.01

VLMs: GLM-4.5V Team et al. (2025), Qwen2.5-VL-32B Bai et al. (2025), LLaMA-3.2-11b-vision-
instruct Dubey et al. (2024), SpaceQwen-3B Yang et al. (2025); and (iii) our model variants on
Qwen2.5-VL-Instruct Bai et al. (2025) backbones (3B/7B): SFT-only, RL-from-scratch (RL-ZERO).
All CoRL variants are trained on the E2W training set. All models are evaluated under the same
prompts and input aggregation protocol. Complete training details, including hyperparameter settings
and code, are available in our repository.

Evaluation Benchmarks and Metrics. We conduct our primary evaluation on the proposed
E2W-Bench, which comprises the Counting, Location Reasoning, and Grasping tasks detailed
in Section 3. For the QA-based tasks (Counting and Location Reasoning), we report exact match
accuracy. For Grasping, we report a normalized score from 0 to 100, calculated based on the
Euclidean distance between the predicted and ground-truth coordinates, consistent with the task’s
reward function defined in our methodology. To further assess the generalization capabilities of our
approach, we also report performance on the external Where2Place dataset, a standard testbed for
spatial reasoning. A detailed description of dataset statistics, implementation specifics, and evaluation
protocols is provided in the Appendix C.

5.2 MAIN RESULTS ON E2W-BENCH

Our main findings on the E2W-Bench are summarized in Table 1. The results show a clear perfor-
mance hierarchy across the different model categories. In a zero-shot setting, proprietary models
like GPT-5 establish the strongest baseline, significantly outperforming open-source VLMs, which
generally struggle with the benchmark’s complex multi-view demands. Our CoRL variants, which
are fine-tuned on E2W-Bench training set, demonstrate the efficacy of our proposed training pipeline.

7
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Table 2: Ablation of CVSR Components. Re-
sults of CoRL-7B on E2W-Bench.

Setting E2W-1 E2W-2-Sim E2W-3-Sim

CoRL (CVSR) 61.0 97.0 95.69

– w/o Rans 10.5 15.5 40.32
– w/o Rground 50.5 90.5 74.32
– w/o Roverlap 56.5 90.0 84.31
– w/o Rformat 58.5 93.0 89.31
– SFT-only 44.5 88.0 90.99

Table 3: Single-view vs. Multi-view Inputs.
Performance on E2W-Bench.

Setting E2W-1 E2W-2-Sim

7B Backbone
Single-view 34.0 54.0
Multi-view 61.0 97.0

3B Backbone
Single-view 36.5 51.5
Multi-view 59.0 75.5

The SFT-only models establish a very strong performance level, while the full CoRL (SFT+RL)
framework consistently achieves the highest scores across both 3B and 7B model scales. Notably, the
RL-from-scratch ablation performs poorly, underscoring the necessity of a supervised warm-up phase
to stabilize optimization and provide a reliable initialization. This observation further highlights
the complementary nature of SFT and RL, where supervised fine-tuning imparts essential reasoning
priors and reinforcement learning subsequently refines them toward task-specific objectives.

A deeper analysis across task categories reveals distinct performance patterns. On the Reasoning
tasks (E2W-1 and E2W-2), which require aggregating abstract information across views, the largest
models show some inherent capability. However, the RL stage of our CoRL framework provides a
crucial advantage, refining the model’s ability to resolve cross-view ambiguities and synthesize a
coherent global state, as evidenced by the superior scores of CoRL models. The most pronounced
gap emerges in the Perception Grounding task (E2W-3). Here, nearly all zero-shot models fail to
produce reliable coordinates, exposing a weakness in fine-grained spatial grounding. In contrast,
our SFT and CoRL models excel—thanks to explicit supervision in our dataset and, for CoRL, the
targeted policy optimization from CVSR’s grounding and consistency rewards, which shape the
model toward physically precise and reliable outputs.

5.3 ABLATION STUDIES

To validate our design choices, we conduct a series of ablation studies. We first analyze the contribu-
tion of each component within our CVSR design, and then investigate the performance gap between
reasoning from distributed ego-centric views versus a single, privileged global view. These studies
provide a deeper understanding of how individual reward signals and viewpoint configurations jointly
influence the emergence of robust cross-view reasoning.

Impact of CVSR Components. We ablate each component of the Cross-View Spatial Reward
(CVSR) to assess its individual contribution (Table 2). Removing the answer correctness reward
(Rans) causes a catastrophic drop in E2W-1 accuracy from 61.0% to 10.5%, showing that intermediate
shaping signals alone cannot ensure correct final solutions. Eliminating the grounding reward (Rground)
reduces E2W-3-Sim by over 21 points, confirming its role in aligning symbolic reasoning with precise
object locations. Dropping the overlap reward (Roverlap) weakens counting and relational reasoning
by impairing cross-view object consistency. Finally, the format reward (Rformat) provides smaller
but meaningful gains by enforcing structured outputs and stabilizing optimization. Together these
results show that only the full CVSR—balancing correctness, grounding, consistency, and structural
integrity—can robustly guide multi-view reasoning and embodied performance.

Multi-View Fusion vs. Global View Perception. We next investigate a critical trade-off: is it
better to process multiple, high-resolution ego-centric views or a single, downsampled global view
under a fixed image token budget? Table 3 shows that the multi-view configuration consistently
outperforms the global view. For instance, on E2W-2-Sim, our multi-view approach achieves 97.0%
accuracy, significantly surpassing the global view’s 85.5%. This result suggests that for complex
spatial reasoning, preserving high-resolution local details is more critical than having a complete
but coarse global context. While downsampling makes the global view computationally tractable,
it degrades crucial information about small objects and fine-grained spatial relations. Our CoRL
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Table 4: Where2Place Results

Model Score ↑
SpaceLLaVA 11.8
RoboPoint 46.8
Molmo-7B 45.0

CoRL-7B (Ours) 50.9

Table 5: Real-World Robot Evaluation: Success Rates (%)

Tasks with collaborative spatial reasoning RoboPoint Ours

Grasp the blue block that is farthest from the
strawberry and place it on the red block 0.00 65.00

Pick up the carambola that is aligned with the
banana and place it on the red block 0.00 30.00

Cross-View Spatial Reasoning: Grasp the blue block that is farthest from the strawberry and place it on top of the red block.

Reason & Pick the blue block Place the blue block on top of the red block

Figure 4: Illustrative demonstrations of CoRL-7B in real-world evaluation.

framework, in contrast, demonstrates its ability to effectively fuse detailed partial views to achieve
superior performance, highlighting the primacy of information density over contextual completeness
within a fixed computational budget.

5.4 EXTERNAL BENCHMARK: WHERE2PLACE.

We further test single-image spatial grounding on Where2Place (Yuan et al., 2024), which evaluates
fine-grained point prediction from a single RGB view (Table 4). CoRL-7B attains 50.9 points,
outperforming RoboPoint (46.8) and Molmo-7B (45.0). This shows that cross-view training with
CVSR not only benefits multi-view reasoning but also strengthens single-image pointing ability.

5.5 REAL-WORLD EVALUATION

We validate the effectiveness of CoRL-7B through real-world experiments, where two Franka
Research 3 arms are mounted on a Realman mobile base, each equipped with an Intel RealSense
D435 RGB-D camera with calibrated extrinsics. The multi-view observations are fused to support
spatial localization and grasping, while CoRL-7B predicts target positions for manipulation.

As shown in Table 5, CoRL achieves strong performance across different tasks, with success rates
of 65% on the blue block picking task and 30% on the carambola alignment task, significantly
outperforming the RoboPoint baseline (0% on both tasks). These results highlight the robustness of
our method in handling visual ambiguity, such as occlusions and distractors with similar colors.

Qualitative rollouts in Figure 4 further illustrate CoRL’s reasoning capability. The robot successfully
infers the correct target object across multiple views, picks it up despite clutter and distractors, and
places it accurately at the instructed location. Together, the quantitative and qualitative evaluations
confirm that CoRL is effective for real-world manipulation, demonstrating reliable reasoning ability.

6 CONCLUSION

In this work, we addressed the challenge of collaborative spatial reasoning across distributed ego-
centric views. We proposed CoRL, a two-stage SFT→RL framework that fine-tunes Vision–Language
Models (VLMs) with a novel Cross-View Spatial Reward (CVSR) to encourage multi-view fusion
and precise spatial grounding. Extensive experiments on the newly introduced E2W-Bench show
that CoRL consistently surpasses strong proprietary and open-source baselines. This performance
gain derives from the synergy of SFT, which establishes a strong initial policy, and CVSR-guided RL,
which reinforces cross-view consistency and grounding. By coupling a challenging benchmark with
a principled training methodology, CoRL charts a path toward multi-agent embodied systems capable
of constructing coherent world models from partial and distributed perception.

9
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ETHICS STATEMENT

This work makes use of the publicly available Ego4D Grauman et al. (2022)dataset and the ManiSkill3
simulation platform Tao et al. (2024). The dataset was collected and released in accordance with
ethical research practices, and all experiments conducted in simulation do not involve human or
animal subjects. Our study focuses on improving the capabilities of vision-language models, and
we do not foresee any direct ethical concerns, including issues of privacy, safety, or fairness. We
believe the potential benefits of advancing embodied AI research outweigh the minimal risks, and no
conflicts of interest or ethical violations are associated with this work.

REPRODICIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our work. All code related to
data preprocessing, model training, and evaluation will be released, and the trained models will be
hosted on Hugging Face for public access. During the review process, we will provide an anonymous
link to the complete implementation and resources. The processed data used in our experiments
will also be made available to facilitate replication. Furthermore, detailed experimental settings,
including hyperparameters, training schedules, and environment configurations, are documented in
the appendix and supplementary materials. Together, these efforts are intended to enable independent
researchers to fully reproduce and verify our results.
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Supplementary Material

A USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language model (GPT-5) as an assistive tool in two ways: (1) for writing assistance,
including language editing and improving the clarity of the manuscript, and (2) for technical support
during code environment setup and debugging, particularly when resolving environment-related
errors. The model was not used for generating research ideas, designing methodologies, conducting
experiments, or analyzing results. All outputs from the LLM were manually verified by the authors,
and final decisions regarding both the research content and the manuscript were made by the authors.
The authors take full responsibility for the entirety of this work.

B PROBLEM SETUP & NOTATION

In this section, we formally define the problem setup and introduce the notation used throughout the
paper. We focus on the collaborative spatial reasoning task within multi-agent embodied systems,
where multiple agents contribute to the construction of a shared understanding of a scene from partial
observations.

B.1 PROBLEM SETUP

We consider a system of N agents, each represented by an individual agent ai for i ∈ {1, . . . , N}.
Each agent ai perceives the environment through a limited, ego-centric viewpoint, denoted by Vi.
The environment E is a spatial scene consisting of various objects, denoted by O = {o1, o2, . . . , oM},
where M is the total number of objects in the scene. Each object oj has associated properties, such
as position, orientation, and object class, which we denote by pj = (xj , yj , zj), rj = (θj , ϕj), and
cj respectively.

The goal of the system is to enable the agents to collaboratively reason about the scene, including
the localization of objects, the spatial relationships between objects, and the execution of spatially
grounded actions. To achieve this, each agent ai shares its ego-centric observation Vi with a central
Vision–Language Model (VLM), which integrates the individual observations to build a global
understanding of the scene.

The task is formalized as a spatial reasoning problem, where the agents must complete a set of
spatial tasks, such as object localization, relationship inference, and action planning, by collectively
reasoning over their partial observations. Specifically, we aim to develop a system where the agents’
observations are integrated effectively to:

• Localize objects across different viewpoints.

• Infer spatial relationships between objects.

• Plan and execute actions based on a shared understanding of the scene.

B.2 NOTATION

We define the following notation used in this paper:

• A: Set of agents, where A = {a1, a2, . . . , aN}, and each agent ai has its own ego-centric
observation Vi.

• O: Set of objects in the scene, O = {o1, o2, . . . , oM}.

• Vi: Ego-centric observation of agent ai, containing visual and linguistic information relevant
to the agent’s current view of the scene.

• pj : Position of object oj , represented as a 3D vector (xj , yj , zj).

• rj : Orientation of object oj , represented by angles (θj , ϕj).

• cj : Class of object oj , which can be one of a predefined set of object categories.
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• yi: The set of actions available to agent ai, such as move, grasp, or navigate.

• Ri: Reward function for agent ai, which quantifies the success of the agent’s actions with
respect to the spatial reasoning task.

• Q: A central Vision–Language Model (VLM) that integrates all ego-centric observations to
form a global understanding of the scene.

• s: The global scene state, which is a combination of the individual observations from all
agents.

B.3 TASK DEFINITION

We define the collaborative spatial reasoning task as a sequential decision-making process where
each agent must select an action from the set Ai based on its perception Vi and the shared scene
information. The goal is to maximize the collective performance across all agents, measured by a
global reward function that takes into account the accuracy of object localization, the correct inference
of spatial relationships, and the successful execution of grounded actions.

The multi-agent system operates under the assumption of partial observability, meaning that each
agent only has access to a limited subset of the scene and must rely on the collaboration of other
agents to complete the task. The system must overcome the challenges of occlusions, incomplete
observations, and ambiguous spatial relationships to successfully execute actions in a dynamic
environment.

B.4 ASSUMPTIONS

The following assumptions are made for the proposed problem setup:

• Each agent has access to an ego-centric camera or sensor that provides partial observations
of the scene.

• Agents can communicate with each other to share observations and jointly reason about the
spatial layout of the environment.

• The central VLM has access to all agent observations and coordinates the integration of
these inputs for collaborative reasoning.

• The agents’ actions are executed in discrete time steps, and the environment responds to
each action with a new state.

C E2W BENCHMARK DETAILS

In this section, we provide detailed information about the E2W benchmark, which consists of both
simulated and real-world data. The dataset includes over 100k simulated samples and more than
6k real-world samples. The benchmark is organized into three tasks, each with a distinct focus on
collaborative spatial reasoning. Below, we describe the structure and data distribution for each task.

C.1 DATASET OVERVIEW

The E2W benchmark consists of the following components:

• Simulated Data: A total of over 100k samples were collected from simulations, which
provide a diverse set of scenes and spatial configurations for training and evaluation.

• Real-World Data: Over 6k samples were gathered from real-world environments, capturing
the complexity of physical spaces and sensor noise that is typical in practical scenarios.

C.2 TASK BREAKDOWN

The E2W benchmark includes three distinct tasks designed to evaluate different aspects of collabora-
tive spatial reasoning:
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• Task 1 (Counting Task): This task focuses on the ability of the agents to count the number
of objects within a scene. It is solely based on the simulated data, as real-world data for this
task was not available.

• Task 2 (Object Localization): This task evaluates the agents’ ability to localize objects
within the scene. Both simulated and real-world data are used, with the real-world data
providing additional complexity due to sensor noise and occlusions.

• Task 3 (Spatial Relationship Inference): In this task, agents are required to infer spatial
relationships between objects (e.g., proximity, occlusion). Like Task 2, this task uses both
simulated and real-world data.

C.3 DATASET SPLITS

For each task, we carefully curated the dataset as follows:

• Test Set: For each task, we selected 200 high-quality samples to form the test set, ensuring
that it covers a wide range of challenging scenarios.

• Cold-Start Set (COT): We prepared a cold-start set consisting of 1000 samples, which is
used to initialize the model before training. This set includes diverse configurations that
enable the agents to begin learning without prior knowledge of the environment.

• Training Set: The remaining samples were used for training, with 90k samples from
the simulated data contributing to the training set. The real-world data (6k samples) was
integrated into the training set, but it is more sparsely used compared to the simulated data,
ensuring a balance between generalizability and real-world applicability.

C.4 SUMMARY OF DATASET DISTRIBUTION

Task Simulated Data Real-World Data Total Data
Task 1 (Counting) 30k 0 30k

Task 2 (Localization) 35k 40k 75k
Task 3 (Inference) 35k 40k 75k

Table 6: E2W Benchmark Dataset Distribution for Each Task

C.5 DATA QUALITY AND SELECTION CRITERIA

Each task in the benchmark was carefully designed to cover a range of real-world challenges in
collaborative spatial reasoning. To ensure high data quality, we followed strict selection criteria for
both simulated and real-world data:

• The simulated data was generated using a variety of scene configurations, object types, and
spatial relationships to create a comprehensive and diverse training set.

• For the real-world data, we selected scenarios with clear object localization, minimal
occlusions, and representative spatial relationships to maximize the relevance of the data for
evaluating real-world performance.

• We prioritized edge cases and challenging scenarios for the test sets, ensuring that they push
the limits of the agents’ reasoning abilities and provide meaningful benchmarks for model
performance.

C.6 DATA COLLECTION

Simulation Data All task data are collected in a high-fidelity simulation environment built upon
RoboFactory Qin et al. (2025) and ManiSkill3 Tao et al. (2024), which provide diverse scenes
like RoboCasa Nasiriany et al. (2024), articulated objects, and multi-agent configurations. We
curate over 15,000 multi-agent samples across dozens of spatial layouts, each scene populated
with a rich combination of manipulable objects under varied configurations. For every instance,
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synchronized global and egocentric camera views are recorded to support collaborative reasoning.
Ground-truth annotations, including object counts, spatial relations, and manipulation-relevant
attributes, are automatically derived from simulator metadata and physics engines, followed by human
verification to ensure semantic consistency. This pipeline ensures that the resulting dataset captures
the complementary demands of multi-view spatial reasoning, ranging from global aggregation to
relational understanding and action grounding.

Real-World Data To complement simulation environments with naturalistic observations, we
leverage the Ego4D dataset Grauman et al. (2022), a massive-scale egocentric video corpus spanning
74 worldwide locations across 9 countries, with over 3,670 hours of daily-life recordings. Ego4D
offers unconstrained visual contexts that reflect the challenges of embodied perception in realistic
human environments. For data preparation, we first extract video frames at uniform intervals to obtain
temporally diverse samples. We then apply strong vision backbones, including Region Attention
Masking (RAM) Zhang et al. (2023b) for object-level proposals and DINO Caron et al. (2021) for
robust feature alignment, to automatically annotate object instances and spatial relations. Through this
pipeline, we curate two subsets aligned with our benchmarks: E2W-2-Real (relational reasoning) and
E2W-3-Real (grasping-oriented perception), each containing approximately 30k samples, yielding
a total of 60k real-world instances. This large-scale collection bridges the gap between simulation
and reality by introducing natural visual noise, diverse object appearances, and unconstrained scene
dynamics.

D METHOD DETAILS (CORL)

In this section, we provide a detailed description of the proposed Collaborative Spatial Reasoning
Reinforcement Learning (CoRL) framework. We outline the training objective, pipeline, and key
components of the approach, which enable effective multi-agent collaborative spatial reasoning.

D.1 TRAINING OBJECTIVE & PIPELINE

The training objective for our proposed CoRL framework is designed to guide the agents towards
improving their collaborative spatial reasoning capabilities. The main goal is to maximize the agents’
ability to effectively integrate their partial, ego-centric observations and reason about the global spatial
scene. To achieve this, we combine reinforcement learning (RL) with a novel Cross-View Spatial
Reward (CVSR) function, which shapes the learning process by encouraging the agents to perform
tasks that require accurate spatial localization, object relationships inference, and collaborative
decision-making.

D.1.1 REINFORCEMENT LEARNING SETUP

We adopt a reinforcement learning setup, where each agent interacts with its environment and receives
feedback in the form of a reward signal. The environment consists of a spatial scene with multiple
agents, and each agent’s objective is to complete a set of spatial reasoning tasks, such as object
localization and relationship inference.

Each agent ai receives a partial observation Vi of the scene, which includes both visual and linguistic
information. Based on this observation, the agent selects an action ai(t) from a predefined set of
actions yi. The agent’s action affects the state of the environment, and the environment responds
by providing a new state and a corresponding reward ri(t), which is calculated by the Cross-View
Spatial Reward (CVSR) function.

The overall training objective is to maximize the expected cumulative reward for each agent:

J(θ) = E

[
T∑

t=0

γtri(t)

]

where T is the total number of time steps in the task, γ is the discount factor, and ri(t) is the reward
signal at time step t.
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D.2 HYPERPARAMETERS FOR REWARD AND CVSR

In our CoRL framework, we define several hyperparameters for the reward function and Cross-View
Spatial Reward (CVSR) that guide the agents’ training process. These weights are carefully tuned to
balance the different components of the task, ensuring that the agents effectively learn to perform
spatial reasoning across multiple agents and viewpoints.

D.2.1 CVSR COMPONENTS WEIGHTS

The Cross-View Spatial Reward (CVSR) function is designed to guide agents in overcoming chal-
lenges like occlusions, incomplete observations, and the need for integration across multiple view-
points. The CVSR reward is composed of three components:

ri(t) = wans · Lans + wloc · Lloc + wfusion · Lfusion

where the components are:

• wans = 0.7: The weight for Answering (the ability to correctly complete the task based on
spatial reasoning). This is the most important component, as it directly measures the success
of the agent in solving the task.

• wloc = 0.1: The weight for Localization (the ability to accurately localize objects in the
scene). While important, this is a lower priority in comparison to answering tasks, as it is a
fundamental skill that supports other reasoning tasks.

• wfusion = 0.2: The weight for Fusion of Observations (the integration of ego-centric
views). This component ensures the agents combine their partial observations to build a
more complete understanding of the environment, and is essential for collaborative spatial
reasoning.

These weights are chosen to emphasize the importance of answering correctly, while still ensuring
that localization and fusion of observations are effectively learned.

D.2.2 TRAINING PIPELINE

The training pipeline for the CoRL framework follows a two-phase process: Supervised Fine-Tuning
(SFT) followed by Reinforcement Learning (RL). The pipeline is as follows:

• Phase 1: Supervised Fine-Tuning (SFT): In this phase, the agents are first pre-trained
using supervised learning. The goal is to initialize the model with basic spatial reasoning
skills, using labeled data from the training set. The agents learn to perform tasks such as
object localization and relationship inference based on ground truth labels.

• Phase 2: Reinforcement Learning (RL): After the initial fine-tuning, the agents enter
the RL phase, where they learn to improve their performance through interactions with the
environment. The CVSR function is used to guide the agents’ actions and refine their spatial
reasoning capabilities. During this phase, agents iteratively adjust their policies to maximize
the cumulative reward.

The overall training process is summarized in Algorithm 1.

E REAL-WORLD ROBOTIC EVALUATION

We implement our real-world evaluation on manipulation platform equipped with two Franka Re-
search 3 arms and a Realman mobile base. Each arm is paired with an Intel RealSense D435 RGB-D
camera beside the robotic arm, and all cameras are extrinsically calibrated to a common base frame.

In the open-loop execution mode, CoRL-7B processes synchronized multi-view RGB images and
predicts the 2D target location for the instructed action. The 2D coordinates are first fed into
SAM2 Ravi et al. (2024) to generate a segmentation mask, which filters the target object’s point cloud
from the RGB-D stream of the D435. The extracted point cloud is then passed to AnyGrasp Fang et al.
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Algorithm 1 CoRL Training Pipeline

1: Input: Initial model parameters θ, training dataset D, CVSR weights w1, w2, w3

2: Phase 1: Supervised Fine-Tuning
3: for each agent ai in A do
4: Initialize agent policy πi using labeled data from D
5: Fine-tune agent using supervised learning
6: end for
7: Phase 2: Reinforcement Learning
8: for each agent ai in A do
9: Initialize RL agent with fine-tuned policy πi

10: for each episode in E do
11: Collect observations Vi from environment
12: Select action ai(t) using πi

13: Execute action and receive reward ri(t) from CVSR
14: Update policy πi using RL algorithm
15: end for
16: end for

(2023), which predicts a feasible grasp pose in the camera coordinate frame. Using the pre-calibrated
camera extrinsics, the grasp pose is transformed into the coordinate system of the selected robotic
arm. Then, we use the Deoxys library Zhu et al. (2022) to interact with the Franka Control Interface.

For placement, CoRL-7B outputs a 2D placement location, which is converted into 3D coordinates
using the depth data. This 3D point is similarly transformed into the robot’s coordinate frame, and
the arm follows an open-loop trajectory to release the object at the designated position.

This setup allows directly connect vision–language inference with physical manipulation through
SAM2-based segmentation and AnyGrasp-based grasp synthesis, without closed-loop corrections. It
highlights the model’s ability to produce actionable spatial predictions from multi-view observations.

F LIMITATIONS & FUTURE WORK

We acknowledge several limitations that offer promising avenues for future research. First, the current
CoRL framework relies on a centralized VLM that processes all ego-centric views simultaneously.
While effective for a small number of agents, its scalability to scenarios involving a large fleet of
agents warrants further investigation into more efficient, perhaps hierarchical or message-passing-
based, fusion strategies. Second, our experiments primarily focus on quasi-static scenes. Extending
the framework to highly dynamic environments where agents and objects are in concurrent motion
would require incorporating temporal reasoning and is a significant future challenge.

This work opens several exciting directions. Future research could explore decentralized architectures
where agents learn to communicate condensed, relevant information rather than sharing raw visual
data. Another compelling avenue is the extension of CoRL to long-horizon, multi-step collaborative
tasks, moving beyond single-step perception and grasping towards complex manipulation and naviga-
tion. Ultimately, we believe our findings provide a robust foundation and a principled methodology
for developing the next generation of collaborative embodied AI.

F.1 DISCUSSION

Implications. Our comprehensive experiments convey a clear, overarching message: while model
scale and pretraining provide a foundation, they are insufficient for mastering the complexities of
collaborative embodied reasoning. The success of our SFT→RL pipeline highlights a crucial insight:
robust spatial intelligence emerges from a structured curriculum that first bootstraps foundational,
in-domain knowledge (via SFT) and then refines nuanced, collaborative behaviors through targeted
reward shaping (via our CVSR). The reinforcement learning stage proves essential for teaching
the model not just what the right answer is, but how to systematically derive it by grounding its
reasoning in visual evidence and maintaining cross-view consistency. Furthermore, our ablation on
input modality reveals a non-obvious trade-off between information density and contextual breadth,
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suggesting that under fixed computational budgets, multiple high-resolution local views can be more
valuable than a single, coarse global one.

F.2 ADDITIONAL IMPLEMENTATION DETAILS

For detailed code and further information, please visit our repository: CORL Repository
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