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ABSTRACT

Loss spikes often occur during pre-training of large language models. The spikes
degrade the performance of large language models and sometimes ruin the pre-
training. Since the pre-training needs a vast computational budget, we should
avoid such spikes. Based on the assumption that the loss spike is caused by the
sudden growth of the gradient norm, we explore factors to keep the gradient norm
small through an analysis of the spectral norms of the Jacobian matrices for the
sub-layers. Our findings suggest that stabilizing the pre-training process requires
two conditions: small sub-layers and large shortcut. We conduct various experi-
ments to empirically verify our theoretical analyses. Experimental results demon-
strate that methods satisfying the conditions effectively prevent loss spikes during
pre-training.

1 INTRODUCTION

Figure 1: Training loss values of Trans-
formers, whose dimensions and the num-
ber of layers are the same as the
1.7 billion parameters configuration in
Narayanan et al. (2021). In Vanilla, some
spikes occur at the beginning of the train-
ing, and its loss value exploded at about
13000 steps.

Large language models (LLMs) have been fundamen-
tal assets for various applications (Brown et al., 2020;
Chowdhery et al., 2022; Touvron et al., 2023). In-
creasing the number of parameters in (neural) lan-
guage models and the number of training data usu-
ally leads to better LLMs (Kaplan et al., 2020). Conse-
quently, pre-training requires a vast budget, and thus,
minimizing the risk of failure of the pre-training is a
paramount concern.

Despite their widespread use as the foundational ar-
chitecture for LLMs, a comprehensive theoretical un-
derstanding of Transformers (Vaswani et al., 2017) has
not yet been achieved. One of the crucial unresolved
questions is the reason for the frequent occurrence of
pre-training failures in Transformer-based LLMs due
to spikes in loss values (loss spike) that can lead to
catastrophic divergence (Chowdhery et al., 2022) as il-
lustrated in Vanilla in Figure 1. While several empiri-
cal strategies have been proposed to mitigate this prob-
lem (Chowdhery et al., 2022; Le Scao et al., 2022; Zeng et al., 2023), the absence of theoretical jus-
tification for these methods casts unclear on their generalizability to other situations, such as varying
sizes of model parameters.

In this research, we provide theoretical analyses focusing on the loss spike problem during LLM
pre-training. We identify the upper bound of the gradient norms for the Transformer-based LLMs
through analyses on the spectral norms of the Jacobian matrices for the sub-layers. If the upper
bound is large, the gradients may spike suddenly, and we assume that this phenomenon causes the
loss spike. Then, we indicate that the upper bound is large in the typical setting, such as the widely
used implementation, Megatron-LM (Shoeybi et al., 2020), and thus, the loss spike is likely to occur.
In addition, to make the upper bound sufficiently small, we introduce two conditions: (1) initializing
the parameters of sub-layers with a small value and (2) making the standard deviation of each em-
bedding close to 1. The former condition can be satisfied by the widely used initialization method for
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LLMs (Shoeybi et al., 2020; Le Scao et al., 2022; Biderman et al., 2023). On the other hand, the lat-
ter condition was satisfied in the original Transformer by scaling embeddings (Vaswani et al., 2017),
but such scaling is missing from recent implementations. To sum up, through theoretical analyses,
we re-evaluate several previous techniques in terms of the stabilization of LLM pre-training.

Building on our theoretical analysis, we further substantiate our claims through a series of empiri-
cal experiments, which provides a clear distinction between effective and ineffective methods over
different training scenarios. Our results demonstrate that methods satisfying the conditions avoid
the occurrence of loss and gradient spikes. In contrast, methods that fail to meet these conditions
remain susceptible to gradient spikes, even when previously recommended as empirical solutions of
the loss spike problem. Furthermore, we demonstrate that a method satisfying the conditions enables
LLMs to be pre-trained with a comparatively larger learning rate, leading to superior performance
outcomes.

2 PRELIMINARY

2.1 PRE-LN TRANSFORMER

This paper mainly focuses on the neural architecture used in the GPT series (Radford et al., 2018;
2019; Brown et al., 2020). They use the Pre-LN Transformer (Xiong et al., 2020), which is the
de facto standard architecture in recent implementations of Transformers because the training with
the architecture is more stable than the original Transformer architecture when we stack many lay-
ers (Xiong et al., 2020; Liu et al., 2020; Takase et al., 2023). Let x ∈ Rd be an input of a layer of
the Transformer, where d denotes the dimension of the layer. The layer outputs y with the following
equations:

y = x′ + FFN(LN(x′)), (1)

x′ = x+Attn(LN(x)), (2)

where LN is the layer normalization function1. We call the first terms in Equations (1) and (2), i.e., x
and x′, shortcut. In addition, the feed-forward network (FFN) and multi-head self-attention (Attn)
are defined as follows2:

FFN(x) = W2(F(W1 x)), (3)
Attn(x) = WO(concat(head1(x), ..., headh(x))), (4)

headi(x) = softmax

(
(WQi x)

T(WKi X)√
dhead

)
(WV i X)T, (5)

where F is an activation function, concat concatenates input vectors, softmax applies the softmax
function to an input vector, and W1 ∈ Rdffn×d, W2 ∈ Rd×dffn , WQi ∈ Rdhead×d, WKi ∈ Rdhead×d,
WV i ∈ Rdhead×d, and WO ∈ Rd×d are parameter matrices, and dffn and dhead are the internal
dimensions of FFN and multi-head self-attention sub-layers, respectively. In addition, we pack the
sequence of input vectors into a matrix as X ∈ Rd×L, where L is the input sequence length, to
compute the self-attention.

2.2 GRADIENTS OF PRE-LN TRANSFORMERS

Let L be the loss function of the N layered Pre-LN Transformer and Jn be the Jacobian matrix of
the n-th layer. We can calculate the gradient of L using the relations in Equations (1) and (2) as:

∂L
∂x1

=
∂L
∂yN

N−1∏
n=1

Jn =
∂L
∂yN

N−1∏
n=1

(
∂yn
∂x′

n

∂x′
n

∂xn

)
, where Jn =

∂yn
∂xn

=
∂yn
∂x′

n

∂x′
n

∂xn
. (6)

1We discuss the difference from the architecture using Root Mean Square layer normalization (RM-
SNorm) (Zhang & Sennrich, 2019) instead of LN in Appendix D, and the original Transformer architecture,
i.e., Post-LN Transformer in Appendix J.

2To simplify equations, we omit bias terms.
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Using the submultiplicativity of the spectral norm, i.e., ∥AB∥2 ≤ ∥A∥2∥B∥2, and Equation (6), we
can derive an upper bound of the norm of the gradient of L as:∥∥∥∥ ∂L

∂x1

∥∥∥∥
2

=

∥∥∥∥ ∂L
∂yN

N−1∏
n=1

∂yn
∂x′

n

∂x′
n

∂xn

∥∥∥∥
2

≤
∥∥∥∥ ∂L
∂yN

∥∥∥∥
2

N−1∏
n=1

∥∥∥∥ ∂yn∂x′
n

∥∥∥∥
2

∥∥∥∥∂x′
n

∂xn

∥∥∥∥
2

. (7)

Thus, we can estimate the upper bound of the gradient norm of L by analyzing the spectral norms of
the Jacobian matrices for the FFN layer and the self-attention layer, namely, ∥ ∂yn

∂x′
n
∥2 and ∥∂x

′
n

∂xn
∥2.

2.3 MOTIVATION TO SUPPRESS THE UPPER BOUND

In our preliminary experiments, when the gradient norms grow suddenly during LLM pre-training,
we observe that the loss spike problem is likely to occur. Thus, we assume that we can prevent the
loss spike problem by maintaining the gradient norm small. To prevent the growth of the gradient
norm, we explore the way to suppress the upper bound described by Equation (7). To suppress the
upper bound, we analyze the Jacobian matrices to find a factor to control the upper bound in the
following sections, and then, provide two conditions: small sub-layers and large shortcut. We
verify our assumption and theoretical analyses through experiments on LLM pre-training.

3 ANALYSES ON GRADIENTS OF SUB-LAYERS

For the theoretical analyses in this section, we employ the following assumption:
Assumption 1. Let x and x′ be the input and intermediate vectors of each layer. Moreover, let W∗
denote the model parameter matrix in each layer. We assume that x, x′, and W∗ for all layers follow
a normal distribution with a mean of 0, i.e., µ = 0.

This assumption is valid when we initialize parameters with the normal distribution, the number of
heads in Equation (4) is 1, and F is an identity function. Empirically, the outputs of each sub-layer
are close to the normal distribution as illustrated in Appendix F.

3.1 JACOBIAN MATRIX OF FFN

Based on Equation (1), ∥ ∂yn

∂x′
n
∥2 in Equation (7) can be rewritten as:∥∥∥∥ ∂y

∂x′

∥∥∥∥
2

=

∥∥∥∥∂(x′ + FFN(LN(x′)))

∂x′

∥∥∥∥
2

=

∥∥∥∥I + ∂(FFN(LN(x′)))

∂x′

∥∥∥∥
2

. (8)

We can then derive an upper bound of ∥ ∂yn

∂x′
n
∥2 by applying the subadditivity, i.e., ∥A + B∥2 ≤

∥A∥2 + ∥B∥2, and submultiplicativity properties of the spectral norm as follows:∥∥∥∥ ∂y

∂x′

∥∥∥∥
2

≤ 1 +

∥∥∥∥∂FFN(LN(x′))

∂LN(x′)

∥∥∥∥
2

∥∥∥∥∂LN(x′)

∂x′

∥∥∥∥
2

. (9)

The right-hand side of this inequality indicates that we can estimate the upper bound of ∥ ∂y
∂x′ ∥2 by

separately computing the spectral norms of Jacobian matrices for FFN and LN.

Regarding the FFN part, we assume that the activation functionF is an identity function3 to simplify
the discussion. Under this assumption, the following equation holds:∥∥∥∥∂FFN(LN(x′))

∂LN(x′)

∥∥∥∥
2

= ∥W2W1∥2. (10)

Therefore, we can straightforwardly derive the relation ∥W2W1∥2 ≤ ∥W1∥2∥W2∥2 from the sub-
multiplicativity of the spectral norm. Furthermore, let σ1 and σ2 be the standard deviations of
W1 and W2, respectively. From Assumption 1, the spectral norms of W1 and W2 are obtained by
their standard deviations and dimensions (Vershynin, 2018), i.e., ∥W1∥2 ≈ σ1(

√
d +
√
dffn) and

3Appendix G discusses the case where we use the ReLU, SiLU, and SwiGLU as the activation functions,
which leads to the same conclusion.
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∥W2∥2 ≈ σ2(
√
d +
√
dffn). Finally, we can express an upper bound of the spectral norms of the

Jacobian matrices for FFN as the following inequality:∥∥∥∥∂FFN(LN(x′))

∂LN(x′)

∥∥∥∥
2

≤ σ1σ2(
√
d+

√
dffn)

2, (11)

where the right-hand side has the relation σ1σ2(
√
d+
√
dffn)

2 ≈ ∥W1∥2∥W2∥2.

Next, regarding the LN part, the Jacobian matrix of LN can be written as:

∂LN(x′)

∂x′ =

√
d

∥x′∥2

(
I − x′x′⊤

∥x′∥22

)
=

√
d

σx′
√
d

(
I − x′x′⊤

σ2
x′d

)
=

1

σx′

(
I − zz⊤

d

)
. (12)

The leftmost equation appears in the proof by Xiong et al. (2020). The second equation uses ∥x′∥2 =

σx′
√
d, which can be obtained based on Assumption 1. The last equation is derived from the well-

known formula of z = (x′ − µx′)/σx′ , which converts a normal distribution, x′, to the standard
normal distribution z, where µx′ = 0 in Assumption 1.

We consider the variance (var) of each element in the matrix zz⊤. Since zizi follows X 2 with 1
degree of freedom, and zizj(i ̸= j) is the multiplication of two independent values following the
standard normal distribution, the variances are as follows:

var(zizj) =

{
1 if i ̸= j

2 otherwise
. (13)

Equation (13) indicates that zz⊤

d ≈ 0 in LLMs due to d ≫ 1. Therefore, the spectral norm of the
Jacobian matrix of LN can be written as:∥∥∥∥∂LN(x′)

∂x′

∥∥∥∥ =
1

σx′
, where

∂LN(x′)

∂x′ =
1

σx′
I. (14)

Finally, Equation (9) can be rewritten by substituting Equations (11) and (14) as:∥∥∥∥ ∂y

∂x′

∥∥∥∥
2

≤ 1 +
σ1σ2

σx′
Cffn, (15)

where Cffn = (
√
d+
√
dffn)

2 for the simplification.

According to the discussion in Section 2.3 and Equation (15), the standard deviations, σ1 and σ2,
of W1 and W2, respectively, should be sufficiently small, and the standard deviation, σx′ , of the
shortcut, x′, should satisfy σ1σ2 ≪ σx′ in order to keep the upper bound small.

3.2 JACOBIAN MATRIX OF SELF-ATTENTION

Similar to FFN, we can rewrite ∥∂x
′

∂x ∥2 in Equation (7) by using Equation (2) as:∥∥∥∥∂x′

∂x

∥∥∥∥
2

=

∥∥∥∥∂(x+Attn(LN(x)))

∂x

∥∥∥∥
2

=

∥∥∥∥I + ∂(Attn(LN(x)))

∂x

∥∥∥∥
2

. (16)

We can then derive an upper bound of ∥∂x
′

∂x ∥2 by applying the subadditivity and submultiplicativity
of the spectral norm, namely:∥∥∥∥∂x′

∂x

∥∥∥∥
2

≤ 1 +

∥∥∥∥∂Attn(LN(x))

∂LN(x)

∥∥∥∥
2

∥∥∥∥∂LN(x)

∂x

∥∥∥∥
2

. (17)

Therefore, to estimate the upper bound of ∥∂x
′

∂x ∥2, we compute the spectral norms of the Jacobian
matrices for Attn and LN.

Let Z(·) = concat(head1(·), ..., headh(·))) and let JZ be the Jacobian of the Z(·)4, we can rewrite
the spectral norm of the Jacobian matrix of Attn as:∥∥∥∥∂Attn(LN(x))

∂LN(x)

∥∥∥∥
2

=

∥∥∥∥∂WOZ(LN(x))

∂Z(LN(x))

∂Z(LN(x))

∂LN(x)

∥∥∥∥
2

= ∥WOJ
Z∥2. (18)

4We discuss the detail of JZ in Appendix I.
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Therefore, we can straightforwardly derive the relation ∥WOJ
Z∥2 ≤ ∥WO∥2∥JZ∥2 from the sub-

multiplicativity of the spectral norm.

Let σO be the standard deviation of WO. The relation ∥WO∥2 ≈ σO(2
√
d) is derived from Assump-

tion 1. We assign this value to Equation (18) and obtain the following inequality:∥∥∥∥∂Attn(LN(x))∂LN(x)

∥∥∥∥
2

≤ σO(2
√
d)∥JZ∥2. (19)

Therefore, we can rewrite Equation (17) by substituting Equations (14) and (19) as follows:∥∥∥∥∂x′

∂x

∥∥∥∥
2

≤ 1 +
σO

σx
CAttn, (20)

where CAttn = (2
√
d)∥JZ∥2 for the simplification.

Thus, similar to the discussion at the end of Section 3.1, the standard deviation, σO, of WO should
be small and the standard deviation, σx, of the shortcut, x, should satisfy σO ≪ σx in order to keep
the upper bound small.

4 CONDITIONS TO AVOID SPIKES

Based on the discussions in Section 3, we have to pay attention to values of σ1, σ2, σO, and the
standard deviation of the shortcut to stabilize the pre-training of LLMs. To make σ1, σ2, and σO

small, we have to initialize the corresponding parameters with a small value. Let us consider the
actual settings in detail. The widely used initialization method for LLMs (Shoeybi et al., 2020;
Le Scao et al., 2022; Biderman et al., 2023), initializes all parameters with a normal distribution

N (0, σ2) where σ =
√

2
5d (Nguyen & Salazar, 2019), and then scales W2 and WO to small values

based on the number of layers:
√

1
2N where N is the number of layers5. In this situation, σ1, σ2,

and σO are sufficiently small values.

However, in this situation, the standard deviation of the shortcut is also too small. For example, at

shallow layers, the standard deviation is close to
√

2
5d because the embedding matrix is also initial-

ized by N (0, σ2) where σ =
√

2
5d . Therefore, to increase the standard deviation of the shortcut,

we make the standard deviation of each embedding close to 16. To achieve this, we introduce two
kinds of modification: “Scaled Embed” and “Embed LN”7. The Scaled Embed scales embeddings
with an appropriate value. For example, we multiply embeddings by

√
d, which was used in the

original Transformer paper (Vaswani et al., 2017)8, and then the standard deviations of embeddings

become
√

2
5 . The Embed LN applies the LN to embeddings. In fact, Le Scao et al. (2022) reported

that the Embed LN strategy prevents loss spikes empirically. These two methods are presented as
verification examples rather than proposed methods, and alternative approaches could be employed
if the conditions are met.

To demonstrate the actual values of the upper bound described in Equation (15), we take the model
with 1.7 billion parameters as an example. In addition to the widely used initialization for LLMs
(Vanilla) and the above two modifications: Scaled Embed and Embed LN, we compare Xavier

5Biderman et al. (2023) also scaled W2 and WO to small values in the initialization, but they used the

strategy introduced by Wang & Komatsuzaki (2021) instead of scaling with
√

1
2N

. However, its property is

the same essentially because they initialize W2 and WO with σ = 2

N
√
d

which becomes small based on the
number of layers.

6Based on Equations (15) and (20), the upper bound becomes small as the standard deviation of the shortcut
increases. However, a too large value degrades the performance empirically as described in Appendix E.

7We can satisfy the condition by initializing embeddings with the normal distribution N (0, σ2) where
σ = 1, but we do not adopt this strategy in this study because we use the same initialization method in our
experiments.

8Although the original Transformer paper introduced this operation, recent implementations ignore this.
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Figure 2: The actual upper bound described in Equation (15) for each Transformer layer at the
beginning of the LLM pre-training. Because it is difficult to estimate the strict values for σx at all
layers, we obtain the empirical values by using some inputs, and assign them to Equation (15).

Init, which initializes all parameters with the Xavier initialization (Glorot & Bengio, 2010), as the
situation where we do not scale W2 and WO based on the number of layers. Figure 2 shows the
values of Equation (15) for each layer at the beginning of the pre-training. This figure indicates that
the methods without suppressing the upper bound, i.e., Xavier Init and Vanilla, rapidly increase the
values especially in shallow layers. In contrast, Scaled Embed and Embed LN keep small values.
In summary, to make the upper bound of the gradient norms small for the stabilization of the LLM
pre-training, we have to satisfy two conditions: (1) small sub-layers; initializing the parameters
of sub-layers with a small value and (2) large shortcut; making the standard deviation of each
embedding close to 1.

5 MAIN EXPERIMENTS

Table 1: Relations between each method in experiments
and two conditions to control the upper bound of gradi-
ent norms. We conduct experiments for Xavier Init and
Xavier Init + Scaled Embed in Appendix B.
Method Small sub-layers Large shortcut
Xavier Init - -
Vanilla ✓ -
Embed Detach ✓ -
Embed LN ✓ ✓
Scaled Embed ✓ ✓
Xavier Init + Scaled Embed - ✓

We verify the empirical effectiveness of
our theoretical analyses. In detail, we
demonstrate that controlling the upper
bound of the gradient norms also pre-
vents loss and gradient spikes. To as-
sess efficacy in the real situation, we
focus on the methods initialized with
the widely used method (Shoeybi et al.,
2020; Le Scao et al., 2022) in main ex-
periments9.

5.1 DATASETS

We used C4 (Raffel et al., 2020) that consists of clean English texts extracted from Common Crawl10

as our LLM pre-training corpus. We also used the separated part of C4 as our validation data.
We used GPT-2 vocabulary (Radford et al., 2019) that contains Byte Pair Encoding (BPE) subword
units (Sennrich et al., 2016) as our vocabulary. To evaluate each method, we computed perplexity
on WikiText (Merity et al., 2017) and LAMBADA (Paperno et al., 2016) datasets.

5.2 MODEL CONFIGURATIONS

As described in Section 2, we used the Pre-LN Transformer architecture. We set the number of
layers N = 24, and varied d to adjust the total number of parameters to 350 million (350M) and 1.7
billion (1.7B). We set the learning rate (lr) 5.0 × 10−4. Section 6.1 shows experiments in varying
the learning rate. Appendix A describes more details on the experimental configuration.

9The Xavier initialization, which does not satisfy the small sub-layers condition as shown in Table 1, is not
widely used for LLMs in recent years. Appendix B shows that the performance of Xavier initialization is worse
and fails to avoid spikes.

10https://commoncrawl.org/
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(a) 350M parameters. (b) 1.7B parameters.

Figure 3: Loss curves of each method in validation data.

(a) 350M parameters. (b) 1.7B parameters.

Figure 4: Gradient norms of each method during the training.

We compared the following methods. We put ✓ before the method name if the method satisfies
both conditions to suppress the upper bound. Moreover, Table 1 summarizes whether each method
satisfies each condition.

Vanilla This is the standard configuration for the LLM pre-training. Since this configuration does
not suppress the upper bound of the gradient norms, the loss spike is likely to occur.

Embed Detach Zeng et al. (2023) used the shrink embedding gradient technique (Ding et al.,
2021) to stabilize their LLM pre-training. This method shrinks gradients on the embedding layer by
detaching a part of embeddings from the computational graph as follows:

Embed← γEmbed + (1− γ)Detach(Embed), (21)

where γ is a hyper-parameter and Detach detaches an input from the computational graph. We
assign 0.1 to γ as in Zeng et al. (2023). Zeng et al. (2023) indicated that this method empirically
prevents the loss spike. However, this method does not satisfy the condition on large shortcut, and
thus, we show that this method does not completely solve the loss spike.

✓Embed LN Dettmers et al. (2022) and Le Scao et al. (2022) reported that applying the LN to the
embedding layer stabilizes their LLM pre-training. As described in Section 4, this method satisfies
the conditions to control the upper bound of the gradient norms.

✓Scaled Embed This method multiplies embeddings by
√
d. As described in Section 4, this

method satisfies the requirements to control the upper bound of the gradient norms.

5.3 RESULTS

Figure 3 shows the loss values of each method in validation data. Figure 4 shows the gradient norms
of each method. These figures indicate that Vanilla and Embed Detach faced loss and gradient
spikes. In contrast, Embed LN and Scaled Embed did not face spikes. These results correspond

7
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to our theoretical analyses described in Sections 3 and 4. Thus, only methods that make the upper
bound of the gradient norm small have successfully avoided spikes in LLM pre-training.

In comparison between 350M and 1.7B parameters, spikes occurred more frequently in 1.7B param-

eters. Because we initialize embeddings with N (0, σ2) where σ =
√

2
5d , the standard deviations

of embeddings become small as d gets larger in Vanilla and Embed Detach. This means that the
upper bounds described by Equations (15) and (20) become large as d gets larger because σx and
σ′
x are nearly equal to the standard deviation of an input embedding in shallow layers. Therefore,

if we increase d without any technique to control the upper bound of the gradient norms, a model
becomes more unstable. This result corresponds to the previous study reports (Le Scao et al., 2022;
Chowdhery et al., 2022; Zeng et al., 2023) that their model became more unstable as they increased
the number of parameters.

Table 2: Perplexities of each
method.
Model WikiText ↓ LAMBADA ↓

350M parameters
Vanilla 30.03 24.73
Embed Detach 30.69 26.93
Embed LN 29.85 25.03
Scaled Embed 29.86 24.37

1.7B parameters
Vanilla 22.58 15.22
Embed Detach 22.00 13.88
Embed LN 21.29 13.00
Scaled Embed 21.29 12.53

Table 2 shows the perplexities of each method on WikiText
and LAMBADA. This table shows that Embed LN and Scaled
Embed achieved comparable performance. This result implies
that methods have no significant difference from each other
in their performance if each method prevents loss and gradi-
ent spikes. In contrast, the perplexities of Vanilla and Embed
Detach are worse except for Vanilla with 350M parameters in
LAMBADA, and the difference in the performance is larger in
a large amount of parameters. This result implies that address-
ing spikes has a more serious influence on the performance as
the parameter size gets larger. We discuss this matter in more
detail in Section 6.1.

6 DISCUSSIONS ON OTHER CONFIGURATIONS

In this section, we conduct experiments on other configurations to describe connections with previ-
ous study reports.

6.1 VARYING LEARNING RATE

Le Scao et al. (2022) reported that the stable method, such as Embed LN, was worse than Vanilla.
However, in Section 5, the stable methods, Scaled Embed and Embed LN, achieved better per-
formance than Vanilla in the 1.7B parameter configuration. We suppose that the difference in the
learning rate causes this gap in findings. In this section, we tried to train Vanilla and Scaled Embed
with larger and smaller learning rates: lr = 1.0× 10−3 and 1.0× 10−4 respectively.

Figure 5 shows loss values of each configuration in validation data. As shown in this figure, the
larger the learning rate we used, the more frequent the spikes occurred in Vanilla. In particular, in
lr = 1.0 × 10−3, the training of Vanilla with 1.7B parameters failed because its gradient exploded.
In contrast, Scaled Embed stabilized the training, and thus, its loss values consistently decreased.

Table 3 shows the perplexities of each configuration in evaluation data. This table indicates that
Vanilla with 350M parameters achieved better performance in lr = 1.0 × 10−4 that is the situation
where its training did not face any spike. This result corresponds to the report of Le Scao et al.
(2022). Thus, we suppose that they conducted the comparison with a too-small learning rate to
stabilize Vanilla. In contrast, the stable methods are more effective in training with a large learning
rate, as shown in Figure 5 and Table 3. Therefore, if Le Scao et al. (2022) used a relatively large
learning rate in their experiments, their stable method could achieve better performance.

6.2 VARYING SEQUENCE LENGTH

Li et al. (2022) indicated that it is better to train with a short sequence at the early stage to stabilize
the LLM pre-training. They justified their method based on the curriculum learning strategy. On the
other hand, in this section, we provide the theoretical justification to their method in terms of the
standard deviation of the shortcut.
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(a) 350M with lr = 1.0× 10−3. (b) 350M with lr = 5.0× 10−4. (c) 350M with lr = 1.0× 10−4.

(d) 1.7B with lr = 1.0× 10−3. (e) 1.7B with lr = 5.0× 10−4. (f) 1.7B with lr = 1.0× 10−4.

Figure 5: Loss values of each method with 350M and 1.7B parameters when we vary a learning rate.

Table 3: Perplexities of each method with 350M and 1.7B parameters when we vary a learning rate.
WikiText ↓ LAMBADA ↓

Model lr 1.0× 10−3 lr 5.0× 10−4 lr 1.0× 10−4 lr 1.0× 10−3 lr 5.0× 10−4 lr 1.0× 10−4

350M parameters
Vanilla 29.96 30.35 34.51 25.12 24.73 32.49
Scaled Embed 28.09 29.86 35.66 22.03 24.37 37.14

1.7B parameters
Vanilla N/A 22.58 23.54 N/A 15.22 16.17
Scaled Embed 20.95 21.29 23.78 12.26 12.53 15.39

Figure 6: Loss curves of Vanilla with
350M parameters in validation data when
we vary the input sequence length. We ad-
just the batch size to use the same number
of tokens for the training of each model.

As described in Section 2.1, Transformers add the out-
put of each sub-layer to the shortcut. Since the stan-
dard deviation of the self-attention layer tends to de-
crease with the length of an input sequence especially
at the early stage11, a long sequence tends to keep the
standard deviation of the shortcut small. Therefore, the
long sequence makes the pre-training of Vanilla more
unstable.

We conducted experiments with varying the length of
the input sequence L from 128 to 2048. To use the
same number of tokens to update parameters, we ad-
justed the batch size. Figure 6 shows loss values of
Vanilla with each L configuration in the validation
data. This figure shows that spikes occurred only in
the large L, i.e., 1024 and 2048. Moreover, the spikes
are more likely to occur at the early stage of the pre-
training. Therefore, using a short sequence stabilizes
the training at the early stage, as reported in Li et al. (2022).

7 RELATED WORK

Stability To stabilize trainings of Transformer-based neural language models, there have been
various discussions on the architecture (Xiong et al., 2020; Liu et al., 2020; Takase et al., 2023;

11See Appendix H for details.
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Zeng et al., 2023; Zhai et al., 2023), initialization method (Nguyen & Salazar, 2019; Zhang et al.,
2019; Huang et al., 2020; Wang et al., 2022), training strategy (Zhang et al., 2022; Li et al., 2022),
and loss function (Chowdhery et al., 2022; Wortsman et al., 2023).

Xiong et al. (2020) theoretically analyzed gradient scales of each part in Transformers, and indi-
cated that the Pre-LN Transformer is more stable than the Post-LN Transformer, that is the original
Transformer architecture (Vaswani et al., 2017). Since the Pre-LN Transformer is more stable than
the Post-LN Transformer theoretically and empirically, recent studies mainly have used the Pre-LN
Transformer to construct an LLM. We also assume using the Pre-LN Transformer in the analysis on
the training dynamics in this paper.

To stabilize the LLM pre-training, Le Scao et al. (2022) applied the layer normalization to the em-
bedding layer. Zeng et al. (2023) used shrink embedding gradient technique (Ding et al., 2021). In
this study, we theoretically proved that the layer normalization to the embedding layer controls the
upper bound of the gradient norms of sub-layers when we use the widely used initialization method
for LLMs (Nguyen & Salazar, 2019; Shoeybi et al., 2020), and thus, it stabilizes the pre-training.

For the initialization methods, Nguyen & Salazar (2019) proposed a strategy to initialize parameters
of Transformers with small values to stabilize their training. Zhang et al. (2019) and Huang et al.
(2020) indicated that we can remove layer normalizations in Transformers if we use their proposed
initialization methods. Wang et al. (2022) adjusted initial parameter scales based on the number
of layers to stabilize the Post-LN Transformer. In this study, we indicated that the widely used
initialization method (Shoeybi et al., 2020), which makes parameters small, is necessary to stabilize
the LLM pre-training. Moreover, we proved that we can prevent the loss spike problem by making
the standard deviation of embeddings close to 1.

Efficiency As shown in Table 3, our modification enables the pre-training with a relatively larger
learning rate, and can achieve better performance. Thus, this study can be regarded as on the ef-
ficiency of LLM pre-training because our modification can construct a better LLM with a given
budget. Strubell et al. (2019) and Schwartz et al. (2019) reported that recent neural methods require
substantial computational costs, and thus, they argued that we have to explore a cost-efficient ap-
proach. Rajbhandari et al. (2020) proposed ZeRO that reduces memory redundancies during the
multi GPU training without increasing communication volume. Dao et al. (2022) focused on GPU
memory reads/writes, and proposed FlashAttention that accelerates the speed of attention mecha-
nisms in Transformers. To reduce the number of computations in the attention mechanism, Shazeer
(2019) proposed the multi-query attention that shares one key and value across all of the attention
heads in each layer. Takase & Kiyono (2023) explored several parameter sharing strategies, and
indicated that parameter sharing across some layers can achieve comparable performance to the
vanilla model with a small number of parameters. Moreover, several studies have explored a better
construction way with a limited budget (Izsak et al., 2021; Takase & Kiyono, 2021). We believe that
we can take advantage of their findings to make our LLMs more efficient.

8 CONCLUSION

This paper explored why large language models (LLMs) sometimes experience loss spikes during
pre-training. To provide evidence, we specifically focused on the gradients of sub-layers. We in-
troduced an upper bound for the gradient norms through an analysis of the spectral norms of the
Jacobian matrices for the sub-layers. We then theoretically identified two conditions for avoiding
loss spikes: small sub-layers and large shortcut. To meet these conditions, we show that using
the widely adopted initialization method for LLMs can make the sub-layer parameters small, and
that embedding scaling or incorporating layer normalization into the embedding layer can make the
standard deviation of each embedding close to 1, resulting in large shortcut. Experimental results
indicated that methods satisfying these conditions avoid loss spikes. Furthermore, these methods al-
low for training with a relatively larger learning rate, leading to improved performance. We hope our
theoretical analyses and empirical findings will help avoid wasting valuable time and computational
budgets during LLM construction.

Ethics Statement To stabilize the LLM pre-training, this paper provides theoretical analyses om
the spectral norms of the Jacobian matrices for sub-layers to estimate the upper bound of the gradient
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norm ofL. This paper focuses on only the stability of LLM pre-training, and thus, we have to address
other issues of LLMs such as hallucinations to use the LLM in a real application.

Reproducibility Statement We do not aim to propose a novel method in this paper, but we mainly
focus on theoretical analyses on the spectral norms of the Jacobian matrices to find the factor to
stabilize the pre-training of LLMs. We justify our theoretical analyses through experiments with
various situations. To activate our modification, we add only several lines to a widely used imple-
mentation, i.e., Megatron-LM12. Therefore, we believe that it is easy to reproduce our experimental
results. However, because it is difficult to conclude that our provided conditions completely solve
the instability during pre-training of LLMs, it is better to combine other techniques to stabilize the
pre-training such as an auxiliary loss described by Chowdhery et al. (2022) to make the pre-training
more stable in an actual pre-training situation.
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Table 4: Hyper-parameters used in our experiments on the LLM pre-training.
Name 350M 1.7B 13B
Precision float16 float16 float16
Layer num 24 24 40
Hidden dim size 1024 2304 5120
FFN dim size 4096 9216 20480
Attention heads 16 24 40
Dropout rate 0.1 0.1 0.1
Sequence length 2048 2048 2048
Batch size 528 528 1024
The number of updates 35000 35000 50000
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.95
Gradient clipping 1.0 1.0 1.0
lr decay style cosine cosine cosine
lr warmup fraction 0.05 0.05 0.05
Weight decay 0.01 0.01 0.01

Table 5: Perplexities of each method.
Model WikiText ↓ LAMBADA ↓

350M parameters
Xavier Init 33.92 34.72
Xavier Init + Scaled Embed 30.50 26.55
Scaled Embed 29.86 24.37

1.7B parameters
Xavier Init 30.10 29.29
Xavier Init + Scaled Embed 23.16 15.49
Scaled Embed 21.29 12.53

A HYPER-PARAMETERS

Table 4 shows that hyper-parameters used in our experiments on LLMs. In addition to experiments
described in Section 5, this table also indicates the hyper-parameters of the model with 13B param-
eters that we evaluated in Appendix C.

B METHODS WITHOUT SMALL SUB-LAYERS

Since we applied the widely used initialization method for LLMs in experiments in Section 5, all
methods satisfy the condition on the small sub-layers. In this section, we empirically investigate
the property of the method that violates the condition. We compare the Transformer initialized by
the Xavier initialization (Glorot & Bengio, 2010) (Xavier Init), and the combination of Xavier Init
and Scaled Embed (Xavier Init + Scaled Embed) with Scaled Embed. As described in Table 1,
Xavier Init violates both conditions, and Xavier Init + Scaled Embed satisfies the only large shortcut
condition. In the same manner as in Section 5, we trained models of 350M and 1.7B parameters
with lr = 5.0× 10−4. We also used the hyper-parameters described in Table 4.

Figure 7 shows loss curves in validation data for 350M and 1.7B parameters in each method, and
Figure 8 shows their gradient norms. These figures show that Xavier Init and Xavier Init + Scaled
Embed faced loss and gradient spikes. In particular, the spikes appeared more frequently in Xavier
Init, which violates both conditions, in comparison with Xavier Init + Scaled Embed. In contrast,
Scaled Embed, which satisfies both conditions, avoided the gradient spike and prevented the loss
spike problem. These results indicate that we have to satisfy both conditions: small sub-layers
and large shortcut to prevent the loss spike problem. Moreover, Table 5 shows perplexities of each
configuration in evaluation data. This table indicates that Scaled Embed achieved better performance
than Xavier Init and Xavier Init + Scaled Embed that faced some spikes.
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(a) 350M parameters.
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(b) 1.7B parameters.

Figure 7: Loss curves of each method in validation data for the comparison to methods without
small sub-layers.
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(a) 350M parameters.
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Figure 8: Gradient norms of each method during the training for the comparison to methods without
small sub-layers.

(a) lr = 3.0× 10−4 . (b) lr = 1.0× 10−4.

Figure 9: Loss values of each method with 13B parameters when we use two learning rates: lr =
3.0× 10−4 and 1.0× 10−4

Table 6: Perplexities of each method with 13B parameters when we use two learning rates: lr =
3.0× 10−4 and 1.0× 10−4.

WikiText ↓ LAMBADA ↓
Model lr = 3.0× 10−4 lr = 1.0× 10−4 lr = 3.0× 10−4 lr = 1.0× 10−4

Vanilla N/A 15.12 N/A 6.50
Scaled Embed 14.47 15.25 5.97 6.53

C PRE-TRAINING OF THE MODEL WITH 13B PARAMETERS

We conducted pre-trainings of models with 13B parameters to indicate that our modification can
stabilize a model with many more parameters than the ones discussed in Section 5. To make this
experiment close to a realistic situation, as shown in Table 4, we increased the batch size and the
number of updates, and decreased the Adam β2. In particular, for Adam β2, most studies have
used 0.95 to stabilize their pre-trainings (Brown et al., 2020; Zhang et al., 2022; Zeng et al., 2023;
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(a) Loss curves in validation data. (b) Gradient norms.

Figure 10: Loss values and gradient norms of Vanilla and RMSNorm.

Biderman et al., 2023; Touvron et al., 2023), and thus, we also used 0.95 in this experiment. We tried
two learning rates: 3.0× 10−4, which is the same value in Touvron et al. (2023), and 1.0× 10−4.

Figure 9 shows the loss values of each configuration in validation data. As shown in (a) of this
figure, the loss value of Vanilla rose from approximately 10000 steps in lr = 3.0 × 10−4. Then,
the gradient of this model became too large to continue its pre-training. In contrast, the loss value
of Scaled Embed consistently decreased. This result indicates that Scaled Embed stabilized the pre-
training. We emphasize that the pre-training of Vanilla is essentially unstable even if we use the
widely used Adam β2 value, 0.95, which is known as the technique to stabilize the pre-training, and
our modification is also effective for the stabilization in this realistic situation.

Table 6 shows the perplexities of each configuration in evaluation data. This table indicates that we
can achieve better performance when we use a larger learning rate in the same as in Section 6.1. In
addition, the perplexities of Scaled Embed were comparable to ones of Vanilla when we used the
small learning rate: lr = 1.0× 10−4. These results imply that our modification has no considerable
risk in pre-training. Thus, we have to satisfy large shortcut in addition to small sub-layers to stabilize
the pre-trainings of LLMs.

D RMSNORM

Some recent LLMs use the RMSNorm (Zhang & Sennrich, 2019) instead of the LN in their Trans-
formers (Touvron et al., 2023). We discuss such an architecture in this section. In the same as LN
discussed in Section 3.1, we can obtain the Jacobian matrix of the RMSNorm with the following
equation: ∥∥∥∥∂RMSNorm(x)

∂x

∥∥∥∥
2

=
1

σx
I (22)

Thus, the upper bound of the gradient norm is the same in LN if we use RMSNorm.

Figure 10 shows the loss values and gradient norms of the Vanilla configuration in Section 5 and the
one using RMSNorms instead of LNs (“RMSNorm” in figures) with 350M parameters. We trained
them with lr = 5.0 × 10−4 as in Section 513. As shown in these figures, RMSNorm faced loss and
gradient spikes in a similar location to the ones of Vanilla. These empirical results also indicate that
the RMSNorms have the same problem as LNs regarding the instability.

E SCALING EMBEDDINGS WITH LARGER VALUE

Equations (15) and (20) indicate that we can stabilize the LLM pre-training by adjusting the standard
deviation of the shortcut to a large value. In fact, our experimental results show that we can stabilize
the LLM pre-training by making the standard deviation of each embedding close to 1. To investigate
how about a larger value, we conducted experiments with making the standard deviation of each
embedding close to 5 and 50.

13We tried to train them with lr = 1.0× 10−3 but RMSNorm exploded.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000 30000 35000
Train step

2.50

2.75

3.00

3.25

3.50

3.75

Va
lid

 lo
ss

Scaled Embed
5 times Scaled Embed
50 times Scaled Embed

(a) 350M parameters.
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(b) 1.7B parameters.

Figure 11: Loss curves in validation data when we scale the standard deviation of embeddings with
larger than 1.
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(b) self-attention of 1.7B parame-
ters.
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(c) self-attention of 13B parameters.
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(d) FFN of 350M parameters.
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(e) FFN of 1.7B parameters.
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(f) FFN of 13B parameters.

Figure 12: Output distributions of each sub-layer.

Figure 11 shows loss curves in validation data for 350M and 1.7B parameters in each situation. This
figure indicates that although all settings prevented the loss spike problem, the larger standard devi-
ation than 1 degraded the performance. Therefore, it is unnecessary to scale the standard deviation
of each embedding with a larger value than 1 to prevent the performance degradation.

F DISTRIBUTIONS OF SUB-LAYER OUTPUTS

Figure 12 shows output distributions of each sub-layer for each layer at the initialization. This figure
indicates that each sub-layer output is close to the normal distribution in various configurations.
Therefore, the assumption in this study, which is that the vector x at each layer follows the normal
distribution, is reasonable.

G DISCUSSION ON VARIOUS ACTIVATION FUNCTIONS IN FFN

G.1 RELU

We consider the case where we use the ReLU function asF instead of the identity function. Because
we assume that parameters and the input vector at each layer follow the normal distribution, the
internal layer also follows the normal distribution. Therefore, each element of the FFN internal
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layer is a negative value with half probability. In this case, we can regard that the ReLU function
cuts the elements of the internal layer by half. Thus, we replace W1 ∈ Rdffn×d and W2 ∈ Rd×dffn

with W1 ∈ R
dffn
2 ×d and W2 ∈ Rd× dffn

2 in the discussion in Section 3.1 when we use the ReLU
function as F .

G.2 SILU

We consider the case where we use the SiLU function as F . The definition of the SiLU function is
as follows:

SiLU(x) = x ◦ Sigmoid(x) (23)

where Sigmoid is the sigmoid function.

∂SiLU(x)

∂x
= Sigmoid(x) + x ◦ ∂Sigmoid(x)

∂x
= Sigmoid(x) + x ◦ Sigmoid(x) ◦ (1− Sigmoid(x))

= Sigmoid(x) ◦ (1 + x ◦ (1− Sigmoid(x))) (24)

Let D = diag
(

∂SiLU(W1x)
∂W1x

)
∈ Rdffn×dffn . Then, we obtain the Jacobian of the FFN as follows:

∂FFN(LN(x′))

∂LN(x′)
= W2DW1 (25)

Therefore, ∥∥∥∥∂FFN(LN(x′))

∂LN(x′)

∥∥∥∥
2

≤ ∥W2∥2∥D∥2∥W1∥2 (26)

The spectral norm of the diagonal matrix D is the maximum absolute value of its diagonal elements:

∥D∥2 = max
i

∥∥∥∥∂SiLU(xi)

∂xi

∥∥∥∥ (27)

Moreover, we find that its maximum occurs at x ≈ 2.4 and is approximately 1.1, and thus, ∥D∥2 ≤
1.1. Because ∥W1∥2 ≈ σ1(

√
d+
√
dffn) and ∥W2∥2 ≈ σ2(

√
d+
√
dffn), we can express the upper

bound as the following inequality:∥∥∥∥∂FFN(LN(x′))

∂LN(x′)

∥∥∥∥
2

≤ 1.1(σ1σ2(
√
d+

√
dffn)

2) (28)

Finally, Equation (9) can be rewritten as:∥∥∥∥ ∂y

∂x′

∥∥∥∥
2

≤ 1 + 1.1

(
σ1σ2

σx′
Cffn

)
(29)

G.3 SWIGLU

We consider the case where we use the SwiGLU function as F . When we use the SwiGLU function,
the FFN layer is expressed as follows:

FFN(x) = W2(Swish(W1x) ◦ (V x)) (30)

where V ∈ Rdffn×d, and V follows a normal distributionN (0, σ2
V ). Then, we compute the Jacobian

of the FFN(x) as follows:

∂FFN(x)

∂x
=

∂FFN(x)

∂W1x

∂W1x

∂x
+

∂FFN(x)

∂V x

∂V x

∂x
(31)

∂FFN(x)

∂W1x
= W2

(
diag(V x) ◦ diag

(
∂Swish(W1x)

∂W1x

))
(32)

∂FFN(x)

∂V x
= W2(diag(Swish(W1x))) (33)
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Therefore, we can rewrite Equation (31) as follows:

∂FFN(x)

∂x
= W2

(
diag(V x) ◦ diag

(
∂Swish(W1x)

∂W1x

))
W1 +W2(diag(Swish(W1x)))V (34)

Let J1 = W2

(
diag(V x) ◦ diag

(
∂Swish(W1x)

∂W1x

))
W1 and J2 = W2(diag(Swish(W1x)))V ,

∂FFN(x)
∂x = J1 + J2. We can derive the upper bound of

∥∥∂FFN(x)
∂x

∥∥
2

as follows:∥∥∥∥∂FFN(x)

∂x

∥∥∥∥
2

≤ ∥J1∥2 + ∥J2∥2 (35)

For ∥J1∥2, we have:

∥J1∥2 ≤ ∥W2∥2∥diag(V x)∥2
∥∥∥∥diag(∂Swish(W1x)

∂W1x

)∥∥∥∥
2

∥W1∥2 (36)

Each element of V x is a sum of d independent random variables with variance σ2
xσ

2
V , and thus,

var(V x) = dσ2
xσ

2
V . Therefore, from the expected maximum of dffn Gaussian random variables,

∥diag(V x)∥2 ≤ σxσV

√
2 d log dffn (37)

The derivation of the Swish function is bounded by 1.1 in the same manner as the SiLU function:∥∥∥∥∂Swish(W1x)

∂W1x

∥∥∥∥
2

≤ 1.1 (38)

The spectral norms of W1 and W2 can be obtained ∥W1∥2 ≈ σ1(
√
d +
√
dffn) and ∥W2∥2 ≈

σ2(
√
d +
√
dffn) as described in Section 3.1. We can obtain the upper bound of ∥J1∥2 with these

equations:

∥J1∥2 ≤ 1.1σxσV σ1σ2(
√
d+

√
dffn)

2
√

2 d log dffn (39)

For ∥J2∥2, we have:

∥J2∥2 ≤ ∥W2∥2∥(diag(Swish(W1x)))∥2∥V ∥2 (40)

Due to |Swish(W1x)| ≤ |W1x| and var(W1x) = dσ2
xσ

2
1 , we can obtain:

∥(diag(Swish(W1x)))∥2 ≤ σxσ1

√
2 d log dffn (41)

Therefore,

∥J2∥2 ≤ σxσV σ1σ2(
√
d+

√
dffn)

2
√

2 d log dffn (42)

Based on these equations, we can derive the upper bound as follows:∥∥∥∥∂FFN(x)

∂x

∥∥∥∥
2

≤ ∥J1∥2 + ∥J2∥2

= 2.1 σxσV σ1σ2(
√
d+

√
dffn)

2
√

2 d log dffn

= σxσV σ1σ2Cswiglu (43)

where Cswiglu includes 2.1 (
√
d+
√
dffn)

2
√
2 d log dffn for the simplification.

Finally, we consider the actual Transformer layer that includes layer normalization and residual
connection: ∥∥∥∥ ∂y

∂x′

∥∥∥∥
2

≤ 1 +
σV σ1σ2

σx′
Cswiglu (44)

We note that σx in Equation (43) is equal to 1 in the actual Transformer layer because we apply the
layer normalization to the input of the FFN layer.
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H RELATION BETWEEN INPUT LENGTH AND THE STANDARD DEVIATION OF
SELF-ATTENTION

We explain that the standard deviation of the self-attention layer becomes small as the input length
is long. Because we assume that parameters and the input vector at each layer follow the normal
distribution, the expectation of each element of (WQi x)

T(WKi X) is 0. Therefore, the expectation
after the softmax function is 1

L where L is the length of the input sequence. Thus, the long input
sequence decreases the standard deviation of the self-attention layer.

To simplify, we consider the case where the number of self-attention heads is 1. In this case, we can
obtain the variance of each calculation with the following equation.

var(WO(x)) = var(WO)var(x) d (45)
var(WV (x)) = var(WV)var(x) d (46)

where var represents the variance of the matrix/vector. Thus, the variance of the self-attention layer,
var(Attn(x)), is as follows:

var(Attn(x)) = var(WO) d

L∑ var(WV)var(x) d

L2
(47)

=
var(WO)var(WV)var(x)d

2

L
(48)

I DETAILS ON JACOBIAN MATRIX OF SELF-ATTENTION

We can represent concat(head1(x), ..., headh(x)) with the summation of the matrix multiplications
as follows:

concat(head1(x), ..., headh(x)) =

h∑
i=1

headiWi (49)

where Wi ∈ Rdhead×d whose corresponding element is 1 and the others are 0. Let J i be the Jacobian
of the headi(x), we can represent JZ in Section 3.2 as follows:

JZ =

h∑
i=1

J iWi (50)

In addition, the self-attention consists of the interaction among inputs and outputs of each position
in the sequence. Thus, we add indices to Jacobians to represent the positions of the input and output.
Let xj be the input of the position j, and zik be the i-th head of the output position k, and J i

kj =
∂zi

k

∂xj
.

Because JZ can be regarded as the Jacobian of the input of the position j, we can convert Equation
(51) into the following Equation:

JZ =

L∑
k=1

h∑
i=1

J i
kjWi (51)

where L is the length of the input and output sequences. Therefore, we compute J i
kj to obtain JZ

in Section 3.2.

We can obtain a head of the output position k, i.e., zk, as follows14

zk =

L∑
l=1

Aklvl (52)

where Akl is the l-th element of the attention vector, softmax
(

(WQ xk)
T(WK X)√

dhead

)
and vl is WV xl.

Therefore, to obtain Jkj , we differentiate zk with respect to xj as:

Jkj =
∂zk
∂xj

=

L∑
l=1

(
∂Akl

∂xj
vl

T +Akl
∂vl
∂xj

)
(53)

14To simplify the equations, we omit the index i to represent i-th head from the head and parameters.
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∂vl
∂xj

= WV δlj (54)

δlj =

{
1 if l = j

0 otherwise
(55)

Thus,

∂zk
∂xj

=

L∑
l=1

(
∂Akl

∂xj
vl

T

)
+AkjWV (56)

Here, we assume that the attention vector is uniform. In this assumption, since Akj = 1
L , we can

obtain the spectral norm of the second term for Equation (56) as ∥AkjWV ∥2 ≈ σV

L (
√
d+
√
dhead),

where σV is the standard deviation of WV . To calculate the first term, we compute ∂Akl

∂xj
.

∂Akl

∂xj
= Akl

(
∂Skl

∂xj
−

L∑
m=1

Akm
∂Skm

∂xj

)
(57)

∂Skl

∂xj
=

1√
dhead

(
WT

QWKxlδkj +WT
KWQxkδlj

)
(58)

Let Dl be WT
QWKxl and Ek be WT

KWQxk. Then,

∂Skl

∂xj
=

1√
dhead

(Dlδkj + Ekδlj) (59)

Therefore,

∂Akl

∂xj
=

Akl√
dhead

(
(Dlδkj + Ekδlj)−

L∑
m=1

Akm(Dmδkj + Ekδmj)

)
(60)

=
Akl√
dhead

(
δljEk −AkjEk + δkj

(
Dl −

L∑
m=1

AkmDm

))
(61)

We assign Equation (61) to the first term of Equation (56) and use the assumption Akj =
1
L :

L∑
l=1

(
∂Akl

∂xj
vl

T

)
=

L∑
l=1

(
Akl√
dhead

(
δljEk −AkjEk + δkj

(
Dl −

L∑
m=1

AkmDm

)
vl

T

))
(62)

=
1

L
√
dhead

L∑
l=1

(
δljEk −

1

L
Ek + δkj

(
Dl −
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L
Dm

)
vl

T
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=
1

L
√
dhead

(
L∑

l=1

(
(δljEk + δkjDl) vl

T
)
+
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− 1

L
Ek −
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1
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Dm

)
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T
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(64)

=
1

L
√
dhead

(
Ekvj

T +

L∑
l=1

(
δkjDlvl

T
)
−

(
Ek +

L∑
m=1

Dm

)
vl

T

)
(65)

=
1

L
√
dhead

(
Ekvj

T − Ekvl
T + δkj

L∑
l=1

(
Dlvl

T
)
−

(
L∑

m=1

Dm

)
vl

T

)
(66)

Based on the assumption that parameters and the vector at each layer follow the normal distri-
bution, we assume that the mean of Dl, Ek, and vl is 0, and thus, we can obtain their norms
from their variances. In addition, we assume that the standard deviation of WQ, WK and WV

is σ. Then, var(Dl) = var(Ek) = ddheadσ
4, var(

∑L
l Dl) = Lddheadσ

4, and var(vl) = dσ2.
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Thus, ∥Ekv
T
j ∥2 ≈ ∥Ekv

T
l ∥2 ≈ σ3

√
d3d2head, ∥

∑L
l=1(Dlv

T
l )∥2 ≈ ∥(

∑L
m=1 Dm)vTl ∥2 ≈

σ3
√
Ld3d2head. Therefore,∥∥∥∥∥
L∑

l=1

(
∂Akl

∂xj
vl

T

)∥∥∥∥∥
2

≤ 1

L
√
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T
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2
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∥∥∥Ekvl

T
∥∥∥
2
+ δkj
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T
) ∥∥∥∥∥

2

+

∥∥∥∥∥
(

L∑
m=1

Dm

)
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T

∥∥∥∥∥
2

)
(67)

≈ 1

L
√
dhead

(
2σ3
√
d3d2head + (δkj + 1)σ3

√
Ld3d2head

)
(68)

=
1√
L

(
δkj + 1 +

2√
L

)
σ3
√

d3dhead (69)

Based on this Equation, we can compute the upper bound of ∥Jkj∥2:

∥Jkj∥2 =

∥∥∥∥∥
L∑

l=1

(
∂Akl

∂xj
vl

T

)
+AkjWV

∥∥∥∥∥
2

≤

∥∥∥∥∥
L∑
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(
∂Akl

∂xj
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2

+ ∥AkjWV ∥2 (70)

≤ 1√
L

(
δkj + 1 +

2√
L

)
σ3
√

d3dhead +
σ

L
(
√
d+

√
dhead) (71)

Moreover, we can compute the upper bound of ∥JZ∥2 from Equation (51) as follows:

∥JZ∥2 =

∥∥∥∥ L∑
k=1

h∑
i=1

J i
kjWi

∥∥∥∥
2

(72)

≤
L∑
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h∑
i=1

∥J i
kj∥2∥Wi∥2 (73)

≈ h

(
1√
L

(
1 + L+

2L√
L

)
σ3
√

d3dhead +
Lσ

L
(
√
d+

√
dhead)

)
(74)

= h

((√
L+ 2 +

1√
L

)
σ3
√
d3dhead + σ(

√
d+

√
dhead)

)
(75)

J COMPARISON WITH POST-LN TRANSFORMER

As described in Section 2.1, recent studies use the Pre-LN Transformer architecture to construct their
LLMs because the architecture is more stable. In contrast, some recent studies reported that the Post-
LN Transformer, which is the original architecture, can achieve better performance than the Pre-LN
if we address the instability issue in the Post-LN, i.e., the vanishing gradient problem (Liu et al.,
2020; Takase et al., 2023; Wang et al., 2022). We discuss whether the Pre-LN Transformer entirely
underperforms the Post-LN. We conducted experiments on machine translation experiments because
previous studies mainly focused on them.

We followed the experimental settings in Takase et al. (2023). Table 7 shows the details of hyper-
parameters. We used the WMT English-to-German training dataset (Vaswani et al., 2017; Ott et al.,
2018), and evaluated each model in newstest2010-2016. We used the encoder-decoder architec-
ture proposed by Peitz et al. (2019). To stabilize the Post-LN Transformer, we applied Deep-
Net (Wang et al., 2022) and B2T connection (Takase et al., 2023). We compared them to Scaled
Embed, that is, the Pre-LN Transformer with the stabilizing techniques described in this paper.

Table 8 shows the averaged BLEU scores among newstest2010-2016. For
the BLEU score calculation, we used SacreBLEU (Post, 2018) to ob-
tain compatible scores (Marie et al., 2021). The signature of SacreBLEU is

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 7: Hyper-parameters used in the comparison with Post-LN Transformer.
Name Value
Precision float16
Layer num 18
Hidden dim size 512
FFN dim size 2048
Attention heads 8
Dropout rate 0.5
Word dropout rate 0.1
Max tokens 7168
Adam β1 0.9
Adam β2 0.98
Gradient clipping 0.1
lr decay style inverse square root
Warmup step 4000
Weight decay 0

Table 8: Averaged BLEU scores among newstest2010-2016.
Model 2010 2011 2012 2013 2014 2015 2016 Average ↑

lr = 1.0× 10−3

DeepNet 24.65 22.30 22.87 26.51 27.29 29.77 34.87 26.89
B2T connection 24.46 22.42 22.85 26.51 27.46 29.91 34.65 26.89
Scaled Embed 24.32 22.21 22.40 26.38 26.89 29.98 34.53 26.67

lr = 3.0× 10−3

DeepNet N/A N/A
B2T connection N/A N/A
Scaled Embed 24.52 22.23 22.86 26.54 27.35 29.90 35.16 26.94

BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.0. As shown
in this table, we used two learning rates: lr = 1.0 × 10−3 and 3.0 × 10−3. For lr = 1.0 × 10−3,
DeepNet and B2T connection outperformed Scaled Embed. Thus, the Post-LN Transformer-based
methods achieved better performance than the Pre-LN Transformer-based method. This result
corresponds to reports in previous studies (Liu et al., 2020; Wang et al., 2022; Takase et al., 2023).

On the other hand, for lr = 3.0× 10−3, Scaled Embed achieved better performance than the others
with lr = 1.0×10−3, and the training of the others failed due to the exploding gradients. This result
indicates that the Pre-LN Transformer-based method can achieve better performance if we use a
large learning rate. Therefore, the Pre-LN Transformer (with the stabilizing techniques) is more
stable than the Post-LN Transformer-based method, and thus, it can achieve better performance
when we use a large learning rate that is too large to train the Post-LN Transformers.
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