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ABSTRACT

We present a new class of structured reinforcement learning policy-architectures,
Implicit Two-Tower (ITT) policies, where the actions are chosen based on the
attention scores of their learnable latent representations with those of the input
states. By explicitly disentangling action from state processing in the policy stack,
our approach allows training and inference on resource constrained devices (e.g.
low memory, low wall-clock time allowance). Our architectures are compati-
ble with both discrete and continuous action spaces. By conducting tests on 15
environments from OpenAI Gym and DeepMind Control Suite, we show that
ITT-architectures outperform their vanilla unstructured implicit counterparts as
well as commonly used explicit policies. We complement our analysis by showing
that ITT, compatible with techniques such as hashing and lazy tower updates, is
particular well-suited for low resource settings.

1 INTRODUCTION & RELATED WORK

We consider the problem of training a policy πθ : S → A, parameterized by learnable θ ∈ RD for a
reinforcement learning (RL) agent (Sutton & Barto (1998); Sutton (1998); Bartlett (2002); Singi et al.
(2023); Zhou et al. (2022); He et al. (2023a); Huang & Wang (2020)). The policy is a potentially
stochastic mapping from the state-space (S) to the action-space (A), either continuous or discrete.
The objective is to maximize the expected total reward R defined as a possibly discounted sum of the
partial rewards ri(si,ai, si+1) for the transition from si ∈ S to si+1 ∈ S via ai ∈ A. The transition
function: T : S×A → S as well as the partial reward function: r : S×A×S → R (both potentially
stochastic) are defined by the environment. Hence, expected total rewards are computed over random
state transitions and action choices. We call the sequence (s0,a0, s1,a1, ..., sT ) of states visited by
the agent intertwined with the actions proposed by πθ, the rollout of an agent.

The most common way of encoding policy mapping πθ is via a neural network taking states as inputs
and explicitly outputting as the activations of the last layer proposed actions or the distributions over
actions to sample from (for stochastic policies). We call such policies explicit. While explicit policies
were successfully applied in several RL scenarios: learning directly from pixels, hierarchical learning,
robot locomotion and more (Schulman et al. (2017); Salimans et al. (2017); Ha & Schmidhuber
(2018); Choromanski et al. (2018); Yu et al. (2021); Jain et al. (2020); Huang & Wang (2022)), recent
evidence shows that the expressiveness of the policy-architecture can be improved if the explicit
model is substituted by an implicit one.

The implicit model (Haarnoja et al. (2017); Florence et al. (2021); Du et al. (2019)) operates by
learning a function Eθ : S × A → R taking as an input a state-action pair and outputting a scalar
value that can be interpreted as an energy Xie et al. (2016); Xu et al. (2022). The optimal action a∗(s)
for a given state s is chosen as a solution to the following energy-minimization problem:

a∗(s) = πθ(s) = argmina∈AEθ(s,a). (1)

Implicit models were recently demonstrated to provide strong performance in the behavioral cloning
(BC) setting (Florence et al. (2021)), outperforming their regular explicit counterparts (e.g. mean
squared error and mixture density BC policies), also for high-dimensional action-spaces and image
inputs. Interestingly, robots with deployed implicit policies were shown to learn sophisticated
behaviours on various manipulation tasks requiring very high precision (Florence et al. (2021)).

New results, showing that the implicit mappings from states to actions given by Eq. 1 are capable
of modeling multi-valued and even discontinuous functions with arbitrary precision (see: Theorem
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1 and 2 in Florence et al. (2021), and Bianchini et al. (2021)) with continuous energy-functions
E modeled by regular neural networks, shed light on that phenomenon. Thus adding the argmin-
operator provides a gateway to extend universal approximation results of regular neural networks to
larger classes of functions, enabling us to approximate with our neural network models classes of
functions that cannot be approximated with regular neural networks (e.g. discontinuous functions).

In the standard implementation of the implicit policies (see for instance: Florence et al. (2021)),
that we will refer to as the implicit one-tower (IOT) policies, the state and action feature vectors
are concatenated and such an input is given to the energy-network. While seemingly natural, this
approach has one crucial weakness - it is prohibitively expensive for large action-spaces. It requires
solving nontrivial optimization argmin-problem at every state-to-state transition without opportunity
to at least partially reuse computations conducted in the past. Indeed, even if the same actions are
probed for different transitions (e.g. when the action-space has moderate cardinality or sampling
heuristics are applied and the same sets of action samples are applied across different state-transitions)
those actions are concatenated with different states leading to different inputs to the energy-function
for different transitions. That is why in practice implicit policies apply sampling techniques with
relatively few samples, affecting the approximation quality of the original argmin-problem.

To address this key limitation, we introduce a new class of implicit policies architectures, called
implicit two-towers (ITTs) (Fig. 1), where action processing is explicitly disentangled from state
processing via the architectural design. The ITT-architecture consists of two towers mapping states
and actions to the same d-dimensional latent space L. The negated energy −E is then defined as
a relatively simple kernel K : Rd × Rd → R acting on the state/action latent representations (e.g.
dot-product or softmax kernel). In Appendix A, we discuss several classes of methods related to the
implicit policies. Our Main Contributions Are:

• We propose a new class of structured reinforcement learning architecture, implicit two-tower
policies. We demonstrate the new architecture achieves substantial computational savings
and allows training and inference on resource constrained devices, while providing stronger
performance than existing implicit policies and their explicit counterparts.

• We demonstrate that our ITT architecture is compatible with fast maximum inner product
search algorithms, achieving additional computational savings and is particularly well-suited
for low resource settings (low memory, low wall-clock time allowance).

• By disentangling action and state processing, ITTs allow for state and action towers to be
updated at different rates and makes it possible to reuse computations conducted for a fixed
set of actions. Thus, we reduce memory needs achieve further computational gains.

2 IMPLICIT TWO-TOWER POLICIES

2.1 PRELIMINARIES

As described in Section 1, we focus in this paper on the implicit policies πθ : S → A from the
state-space S ⊆ Rs to the action-space A ⊆ Ra, given as follows for the learnable θ ∈ RD:

πθ(s) = argmina∈AEθ(s,a) (2)
Here Eθ : S × A → R is the energy-function, usually encoded by the neural network. In the
standard implicit-policy approach, the one-tower model (IOT), the input to this neural network is
the concatenated state-action vector: input = [s,a]. Solving optimization problem from Eq. 2
directly is usually prohibitively expensive. Thus instead sampling strategies are often used. For
the selected set A∗ = {a1, ...,aN} of sampled actions (usually uniformly at random from A),
the algorithm approximates πθ(s) as: π̂θ(s) = argmina∈A∗Eθ(s,a) or applies derivative-free-
optimization heuristics (see: Florence et al. (2021)). Alternatively, the task is relaxed and instead
of solving the original argmin-problem, the action a ∈ A∗ is sampled from the following softmax-
distribution defined on A∗ (the relaxation allows backpropagating through the action-selection
modules):

P[π̂θ(s) = ai] =
exp(−Eθ(s,ai))∑

a∈A∗ exp(−Eθ(s,a))
(3)

All the aforementioned approaches are inherently linear in the number of sampled actions. Further-
more, sampling is usually conducted at every state-transition. Thus in practice, for computational
efficiency, a small number of samples needs to be used.
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2.2 TWO TOWERS

We propose the implicit two-tower (ITT) model, where the energy is defined as:

Eθ(s,a) = −K(lθ1S (s), lθ2A (a)) (4)

for the state-tower mapping: lθ1S (s) : Rs → L ⊆ Rd and action-tower mapping: lθ2A (a) : Ra →
L ⊆ Rd, parameterized by θ1 ∈ RD1 and θ2 ∈ RD2 respectively (usually encoded by two neural
networks) as well as a fixed kernel function K : Rd ×Rd → R. Here L stands for the common latent
space for states and actions. As in the case of regular implicit policies, action selection is conducted
by solving the argmin-problem or its softmax-sampling relaxation.

A particularly prominent class of kernels that can be applied are those that are increasing functions
of the dot-products of their inputs, i.e. K(x,y) = f(x⊤y) for some f : R → R. Those include
dot-product kernel, where f is an identity function as well as the softmax-kernel, where f(z) def

=
exp(z). For those kernels the corresponding argmax-problems are trivially equivalent and reduce
to the maximum-inner-product (MIP) search Shrivastava & Li (2014); Neyshabur & Srebro (2015);
Sundaram et al. (2013), but the softmax-distributions differ. For a fixed sampled set of actions
A∗ = {a1, ...,aN}, the MIP problem can be solved particularly efficiently as follows:

π̂θ1,θ2(s) = a
argmax

(
l
θ2
A (A∗)l

θ1
S (s)

), (5)

where the ith rows of the matrix lθ2A (A∗) ∈ RN×d is given as lθ2A (ai). Thus brute-force computation
of the action for the given state between two consecutive updates of the action-tower (or: the set
of sampled actions) takes time: O(Nd + TS), where TS is the time needed to compute latent
representation lθ1S (s) of s.

ITTs can in particular apply a rich set of techniques for solving the maximum inner product (MIP)
problem Pham (2021); Shrivastava & Li (2015a;b); Pham (2020), such as LSH-hashing, as well
as algorithms conducting sub-linear softmax-sampling via linearization of the softmax kernel with
random feature trees Choromanski et al. (2021a); Rawat et al. (2019). We discuss details on adapting
MIP techniques in Appendix B. Interestingly, they also produce policies obtaining larger rewards as
compared to their IOT and explicit counterparts, as we demonstrate in Sec. 4 and in Appendix C on
15 environments taken from OpenAI Gym and DeepMind Control Suite.

3 ES-OPTIMIZATION SETUP

We decided to train parameters of our ITT-architectures with the class of Evolutionary Search
(ES, Blackbox) methods (Salimans et al. (2017); Choromanski et al. (2018); Mania et al. (2018);
Choromanski et al. (2019)). Even though ITTs are agnostic to the particular training algorithm, ES-
methods constituted a particularly attractive option. They enabled us to benchmark implicit policies
in the on-policy setting. Furthermore, as simple conceptually and very efficient, they let us focus on
the architectural aspects rather than tedious hyperparameter-tuning. Finally, they work very well also
with non-differentiable or even non-continuous objectives, fitting well the combinatorial-flavor of the
energy optimization problem formulation in ITTs.

Let θ = (θ⊤1 , θ
⊤
2 )

⊤ ∈ RD, where D = D1 + D2 and θi ∈ RDi for i = 1, 2. We are allowed to
query an objective F (·) that measures the expected discount cumulative reward of policy parameters
θ ∈ RD. The objective is commonly used in the RL literature and can be evaluated by running a
trajectory with θ Choromanski et al. (2018); Sutton & Barto (2018); Dou et al. (2022); Zhou et al.
(2023); He et al. (2023c); Huang & Wang (2023). We conducted gradient-based optimization with
the antithetic ES-gradient estimator applying orthogonal samples (see: Choromanski et al. (2018)),
defined as follows:

∇̂AT, ort
M Fσ(θ) :=

1

2σM

M∑
i=1

FAT (i) (6)

where FAT (i) := F (θ + σεi) εi − F (θ − σεi) εi

for the hyper-parameter σ > 0 and where (εi)
M
i=1 have marginal distribution N (0, ID), and (εi)

M
i=1

are conditioned to be pairwise-orthogonal, and M is the number of perturbations we choose. Such an
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ensemble of samples can always be constructed since in all our experiments we have: M ≤ D. To be
more specific, for the DMCS environments we used: M = 500 and for all other: M = D. At each
training epoch, we were updating θ as

θk+1 = θk + η∇̂AT, ort
M Fσ(θ), (7)

where the learning rate η = 0.01 is fixed throughout the experiments. We present in Appendix F
Theoretical Analysis of the antithetic estimator , to shed light on its effectiveness (see Theorem F.4
and Lemma F.6).

4 EXPERIMENTS

For the OpenAI Gym environments, at each transition we were sampling a set of actions
A∗ = {a1, ...,aN} (see Equation 7), and choosing an action according to Equation 5. For the
DMCS environments, A∗ was sampled at each iteration of the ES-optimization (independently for
different ES-workers). For the environments with discrete actions, such as MountainCar-v0, we
choose A∗ = A. For the environments with continuous actions, we set N = 1000 for the OpenAI
Gym environments and N = 10000 for the DMCS environments.

In Table 1, we present final average scores together with their correesponding standard deviations
(over s = 10 different seeeds) for all 15 environments tested in the paper. In Appendix C, we provide
plots showing training curves. ITTs provide the best policies on 12 out of 15 tasks in terms of the
final average score and is second best on the remaining three.

Table 1: We present final average scores over s = 10 random seeds together with their std. The best architecture
is in bold font and the second best is underscored.

Environment ITT IOT Explicit
Swimmer-v2 344.13± 5.18 75.54± 88.05 347.67 ± 5.74
LunarLanderContinuous-v2 157.38 ± 71.81 −72.72± 26.98 62.85± 176.36
Hopper-v2 2670.37 ± 225.53 1036.52± 29.16 1060.89± 40.71
HalfCheetah-v2 2866.02 ± 416.81 2696.29± 274.51 1845.64± 441.96
Walker2d-v2 1897.87± 498.86 2909.85 ± 621.45 1346.93± 906.33
CartPole-v1 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00
MountainCar-v0 -133.50 ± 27.10 −200.00± 0.00 −143.40± 37.12
Acrobot-v1 −82.60± 11.93 -82.00 ± 8.54 −92.10± 21.41
MountainCarContinuous-v0 89.17 ± 8.97 25.96± 53.61 52.34± 42.74
InvertedPendulumBulletEnv-v0 1000.00 ± 0.00 27.10± 12.70 1000.00 ± 0.00
DMCS:Swimmer6 988.26 ± 10.11 984.88± 28.05 767.44± 120.22
DMCS:Swimmer15 995.81 ± 7.02 990.68± 0.001 935.99± 48.69
DMCS:FishSwim 652.21 ± 152.07 331.73± 8.42 470.66± 0.004

Wall-clock Time. Table 2 shows that for environments with lower dimensional action space (with
the corresponding smaller sizes of policy-architectures) all three architectures perform similarly
speed-wise. However for more complicated environments ITTs train much faster than IOTs (26%
training time reduction for Hopper-v2, 45% for HalfCheetah-v2 and 39% for Walker2d-v2). We
provide further analysis on computational savings in Appendix C.

Table 2: Comparison of wall-clock times (in hours on 24 CPUs) for different policy-architectures.
"LunarLanderC-v2“ here stands for LunarLanderContinuous-v2

Environment ITT IOT Explicit # iter
Swimmer-v2 0.17 0.18 0.11 500
LunarLanderC-v2 0.06 0.06 0.08 500
Hopper-v2 2.49 3.36 2.42 4000
HalfCheetah-v2 12.94 23.61 9.95 4000
Walker2d-v2 16.88 27.49 13.41 4000

ITT with Random Feature Trees (ITT-RFT). Random feature mechanisms are shown to provide
substantial computational gains with little sacrifice in performanceChoromanski et al. (2023) (see
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Appendix B for details on how to use random feature trees with our ITT). Table 3 shows ITT-RFT
substantially reduced the amount of samples required to reach given reward thresholds.

Table 3: We present the number of timesteps needed to reach given reward thresholds set by previous works
(Salimans et al., 2017; Schulman et al., 2015). The results were averaged over 6 random seeds. “ES” stands for
the results of explicit policies provided by (Salimans et al., 2017). “ITT-RFT timesteps” stands for ITT with
random feature tree.

Environment Reward threshold ITT ITT-RFT ES TRPO
Swimmer-v1 128.25 1.07e+06 0.82e+06 1.39e+06 4.59e+06
Hopper-v1 877.45 0.69e+05 0.67e+05 3.83e+05 7.29e+05
Walker2d-v1 957.68 3.16e+05 4.84e+05 6.43e+05 1.55e+06

ITT with Signed Random Projections (ITT-SRP). ITTs can be used with popular signed random
projection techniques to further reduce sample complexity and wall-clock time. (see Appendix B for
details). We take N = 2c action samples per timestep. We observe that when the number of samples
required gets large, ITT-SRP trains much faster than IOTs (for HalfCheetah-v1 92% training time
reduction for c = 14, 89% for c = 13, 81% for c = 12). Furthermore, IOT wall-clock time grows
exponentially in the parameter c, and ITT-SRP wall-clock time only grows linearly in the parameter c.
We also conducted paired t-tests showing that the wall-clock time savings of ITT-SRP is statistically
significant at a 95% confidence level.

Above results on ITT-RFT and ITT-SRP showcase that ITT architecture is compatible with different
fast maximum inner product search algorithms, allows training and inference on resource constrained
devices (low memory, low wall-clock time allowance).

Table 4: Comparison of the wall-clock time (in minutes) for ITT-SRP and IOT. We require N = 2c actions
samples at each timestep. Each experiment was run for 100 epochs, and each epoch has 1,000 timesteps. We
also provide p-values from paired t-tests, showing ITT-SRP wall-clock time savings are statistically significant.

Environment Choice of c # samples / timestep ITT-SRP IOT p-value
HalfCheetah-v1 10 1024 15.15 30.71 2.62e-19
HalfCheetah-v1 11 2028 17.68 57.50 1.81e-20
HalfCheetah-v1 12 4096 20.02 104.51 8.37e-20
HalfCheetah-v1 13 8192 24.17 218.33 4.19e-21
HalfCheetah-v1 14 16384 31.67 421.67 8.72e-22
Walker2d-v1 10 1024 19.71 39.73 7.24e-15
Walker2d-v1 11 2048 20.42 62.52 6.18e-16
Walker2d-v1 12 4096 22.02 106.67 4.72e-17
Walker2d-v1 13 8192 24.77 203.34 4.34e-21
Walker2d-v1 14 16384 29.82 386.67 1.99e-22

ITT-lazy: we update the action tower every 5 iterations. We show in Appendix C that ITT-lazy
variant achieves performance comparable to that of regular ITT while achieves further wall-clock
time savings, making ITT particularly well-suited for low-resource settings.

5 CONCLUSION

We presented in this paper a new model for the architectures of the implicit policies, called the
Implicit Two-Tower (ITT) model. ITTs provide substantial computational benefits over their regular
Implicit One-Tower (IOT) counterparts, yet at the same time they lead to more accurate models (also
as compared to the explicit policies). They are also compatible with various hashing techniques
providing additional computational gains, especially if very large sets of sampled actions are needed.
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A BACKGROUND

Q-learning: Q-learning methods (Gaskett et al. (1999); Watkins & Dayan (1992); van Hasselt
et al. (2016); Kalashnikov et al. (2018); He et al. (2023b); Huang et al. (2023)), that are prominent
examples of the off-policy RL algorithms, can be thought of as instantiations of the implicit policies
techniques. The Q-function can be interpreted as the negated energy and it has a very special
semantics: Q(s,a) stands for the total reward obtained by an agent applying action a in state s and
then following optimal policy. Consequently, the training of the (neural network) approximation Q̂ of
Q leverages the fact that Q is a fixed point of the so-called Bellman operator (Bellman (1954); Song
et al. (2019)). Furthermore, learning the Q-function is an off-policy process and the argmin-defined
policy is applied only after Q-learning is completed. The setting considered in this paper is more
general - the energy E lacks the semantics of the negated Q-function which enables us to bypass the
separate off-policy training of E. The algorithms presented in this paper are in fact on-policy.

Energy-based Models: Implicit policies can be viewed as special instantiations of energy-based
models (EBMs) (see: LeCun et al. (2006); Song & Kingma (2021) for a comprehensive introduction to
EBMs). Several impactful ML architectures have been recently reinterpreted as EBMs. Those include
Transformers Vaswani et al. (2017) with their attention modules resembling modern associative
memory units (the latter being flagship examples of EBMs Ramsauer et al. (2021) implementing
differentiable dictionaries via exponential energies). We mention Transformers here on purpose.
In ITTs the energy is the dot product of latent action and negated latent state. Thus, ITTs can
be interpreted as learning the cross-attention between the state and action-spaces with actions
corresponding to keys and states to queries.
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Figure 1: The conceptual description of the Implicit Two-Tower (ITT) stack. The (orange) state-tower and
(green) action-tower map states s and actions a into their corresponding latent representations lS(s), lA(a) ∈ Rd.
The latent space L can be itself partitioned into subregions, for instance via hashing mechanisms, for the
sublinear approximate state-action match. This potential partitioning would need to be periodically updated
in the training process, but in principle could be frozen in inference (if a fixed set of sampled actions is
being applied). The energy-function is defined via a simple kernel K : Rd × Rd → R acting on the latent
representations. Symbol H refers to the hash space.
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B FAST MAXIMUM INNER PRODUCT & BEYOND

B.1 SIGNED RANDOM PROJECTIONS

The formulation from Equation 5 is amenable to the hashing-based relaxation. In this setting set A∗

is partitioned into nonempty subsets: A∗
1, ...,A∗

p based on the hash-map: h : Rd → Zm, where Z
is the set of all integers (a given subset of the partitioning contains actions from A∗ with the same
vector-value of the hash-map). Hashing techniques (e.g. locality-sensitive hashing) are applied on the
regular basis to speed up nearest neighbor search (NNS). The MIP-formulation at first glance does
not look like the NNS, but can be easily transformed to the NNS-formulation (see: Pham (2020)),
leading in our case to the new definitions of the latent embeddings corresponding to actions and
states:

l̃θ2A (a) =

[
(lθ2A (a))⊤,

√
C2 − ∥lθ2A (a)∥22

]⊤
l̃θ1S (s) = [(lθ1S (s))⊤, 0]⊤,

(8)

where C stands for the upper bound on the length of the original latent action-representation (e.g.
C = maxa∈A∗ ∥lθ2A (a)∥2). If the nonlinearity g : R → R used in the last layer of the action-tower
satisfies: |g(x)| ≤ B for some finite B > 0, then one can take: C = B

√
d.

Note that the re-formulation from Equation 8 preserves dot-products, i.e. we trivially have:

(l̃θ2A (a))⊤ l̃θ1S (s) = (lθ2A (a))⊤lθ1S (s), (9)

but it has a critical advantage over the previous one - the latent representations of actions have now
exactly the same length L = C. Thus the original MIP problem becomes the NNS with the angular
distance. To approximate the angular distance, we will apply the Signed Random Projection (SRP)
method. The method relies on the linearization of the angular kernel via random feature (RF) map
mechanism Choromanski et al. (2017). The angular kernel Kang : Rd × Rd → R is defined as:

Kang(x,y) = 1− 2θx,y
π

, (10)

where θx,y is an angle between x and y. The key observation is that Kang can be rewritten as:

Kang(x,y) = E
[
ϕ(x)⊤ϕ(y)

]
for ϕ(z) def

=
1√
m
(sgn(ω⊤

1 z), ..., sgn(ω
⊤
mz))⊤,

(11)

where ω1, ..., ωm
iid∼ N (0, Id). Thus each latent state/action representation can be mapped into the

hashed space {−1,+1}m ⊆ Zm via the mapping: z h→ (sgn(ω⊤
1 z), ..., sgn(ω

⊤
mz))⊤ and in that new

space the search can occur based on the Hamming-distance from the hash-buckets corresponding to
actions. The computational gains are coming from the fact that during that search, for a given input
state s, lots of these buckets (and thus also corresponding sets of sampled actions) will not need to be
exercised at all. In our implementation, we construct ω1, ..., ωm such that their marginal distributions
are still Gaussian (thus unbiasedness of the angular kernel estimation is maintained), yet they form a
block-orthogonal ensemble. This provides additional variance reduction for any number m of RFs
(see: Choromanski et al. (2017)). The ITT-pipeline applying SRPs is schematically presented in Fig.
2

B.2 RANDOM FEATURE TREES

Let us assume that kernel K can be linearized as follows: K(x,y) = E[ϕ(x)⊤ϕ(y)] for some
(potentially randomized) mapping ϕ. Denote by ψ the positive random feature map mechanism
(FAVOR+) from Choromanski et al. (2021b) for linearizing the softmax-kernel (i.e.: exp(x⊤y) =
E[ψ(x)⊤ψ(y)]). Without loss of generality, we will assume that the size of the sampled actions set
A∗ satisfies: |A∗| = 2k for some k ∈ N. We construct a binary tree T with nodes corresponding
to the subsets of A∗. In the root we put the entire set A∗. The set of actions in each non-leaf node
is split into two equal-size parts (uniformly at random) and those are assigned to its two children.
Leaves of the tree correspond to singleton-sets of actions.
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Action assignment for a given state s is conducted via the binary search in T starting at its root.
Whenever the algorithm reaches the leaf, its corresponding action is assigned to the input state s.
Assume that the algorithm reached non-leaf node v of T . Denote its children as: vl and vr and the
corresponding action-sets as A∗

vl
and A∗

vr
respectively. For the ITT architecture, the following is true:

Lemma B.1.

P[π̂θ(s) ∈ A∗
vl
|π̂θ(s) ∈ A∗

vl
∪ A∗

vr ]

=
ψ(ϕ(lθ1S (s)))⊤ξ(vl)

ψ(ϕ(lθ1S (s)))⊤ (ξ(vl) + ξ(vr))
,

where ξ(v) def
=
∑

a∈A∗
v
ψ(ϕ(lθ2A (a))).

The proof is relegated to the appendix. We conclude that in order to decide whether to choose vl or
vr, the algorithm just needs to sample from the binary distribution with: pl = a

a+b , pr = b
a+b , where

a = ψ(ϕ(lθ1S (s)))⊤ξ(vl), b = ψ(ϕ(lθ1S (s)))⊤ξ(vr). Thus if ξ(v) is computed for every node, this
sampling can be conducted in time constant in N .

The total time of assigning the action to the input state is O(log(N)) (rather than linear) in the
number of sampled actions (but linear in the number of random features). In practice, the actions
do not need to be stored explicitly in the tree and in fact even the tree-structure does not need to be
stored explicitly. We call the above tree the Random Feature Tree (or RFT) (see also: Choromanski
et al. (2021a); Rawat et al. (2019)).

Lazy Action-tower Ppdates: Both considered data structures: SRP- and RFT-based hashes need to
be updated every time the parameters of the action-tower are updated, but provide desired speedups
between consecutive updates (if the sets of chosen sampled actions do not change). Fortunately, in
the ITT-model, the frequency of updates of the action-tower can be completely disentangled from the
one for the state-tower. In particular, the action-tower can be updated much less frequently or with
frequency decaying in time.
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Figure 2: Pictorial description of the Signed Random Projections (SRP) LSH-hashing mechanism that can be
applied in the ITT-model, in particular when larger sets of sampled actions are needed. Left: Explanation of
the SRP-mechanism. SRP relies on the fact that the probability that sgn(ω⊤x)sgn(ω⊤y) < 0 is the same as
the probability that the projection ω⊥ of ω ∼ N (0, Id) into the subspace spanned by {x,y} forms angle < π

2
with one of {x,y} and > π

2
with the other one (vector ω⊥ inside one of the blue regions). That probability is

proportional to θx,y since ω⊥ is also Gaussian Right: The latent representation of the state is hashed via the
projections onto a random hyperplane spanned by the Gaussian vectors ωi. The hash’s entries are determined
based on the angle θi formed with vectors ωi (+1 for θi < π

2
and −1 for θi > π

2
). Action hash-buckets are

sorted by the Hamming distance from the state’s hash and the search is conducted in that order (red arrows).
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C ADDITIONAL EXPERIMENTAL DETAILS

C.1 NEURAL NETWORK SPECIFICATIONS AND HYPER-PARAMETER TUNING

Hyperparameter Tuning Tables 5 illustrate fine-tuned hyper-parameter σ, which controls the
exploration in ES-optimization. For each policy-architecture (ITT, IOT, and explicit) and for each
environment, we choose the value of σ ∈ [0.1, 0.5, 1] that provide the highest final average score at
the end of the horizon. Similarly, we choose the number of neural network layer in [1, 2, 3, 4, 5, 6]
that provide the highest final average score at the end of the horizon. For fair comparison, we ensure
the number of trainable parameters of ITTs is upper-bounded by that of IOTs and explicit variants.

Environment ITT IOT Explicit
Swimmer-v2 1 1 1
LunarLanderContinuous-v2 1 1 1
Hopper-v2 1 1 1
HalfCheetah-v2 1 1 0.5
Walker2d-v2 0.5 0.5 0.5
CartPole-v1 1 1 1
MountainCar-v0 1 1 1
Acrobot-v1 1 1 1
MountainCarContinuous-v0 1 1 1
InvertedPendulumBulletEnv-v0 1 1 1
DMCS:FishSwim 0.1 0.1 0.1
DMCS:Swimmer6 0.1 0.1 0.1
DMCS:Swimmer15 0.1 0.1 0.1
DMCS:HopperStand 0.1 0.1 0.1
DMCS:WalkerWalk 0.1 0.1 0.1

Table 5: Fine-tuned hyper-parameter σ, used in ES gradient estimator calculations (Equation 6) for
different environments and different policy-architectures.

Environment ITT IOT Explicit
Swimmer-v2 20 22 20
LunarLanderContinuous-v2 20 22 20
Hopper-v2 42 45 42
HalfCheetah-v2 282 288 282
Walker2d-v2 246 252 246
CartPole-v1 6 7 6
MountainCar-v0 4 5 4
Acrobot-v1 8 9 8
MountainCarContinuous-v0 3 4 3
InvertedPendulumBulletEnv-v0 12 13 12
DMCS:FishSwim 2180 2200 2180
DMCS:Swimmer6 2200 2220 2200
DMCS:Swimmer15 3100 3120 3100
DMCS:HopperStand 1980 2000 1980
DMCS:WalkerWalk 2200 2220 2200

Table 6: The dimensionality of the learnable θ ∈ RD for different environments and different
policy-architectures.

Neural Network Specifications Tables 6–7 illustrate the dimension of the learnable θ ∈ RD and the
number of layers in neural networks respectively. The dimensionality of the latent state and action
vector as well as the dimensionalities of the hidden layers are set to the dimensionality of the action
vector for the OpenAI Gym environments and are equal to 20 for the DMCS environments. We do
not use bias terms. We apply Relu activation for all the hidden layers and linear activation on the
output layers, with one exception: for the Swimmer-v2 environment, we use linear activation in all
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Figure 3: Comparison of vanilla ITT and ITT with Signed Random Projection for fast MIP. We plot average
curves obtained from 10 seeds, and we present the 90th percentile and the 10th percentile as shadowed regions.
We present results on additional tasks in Appendix C.2.

layers and for all the methods (because in this environment only, using linear activation in all layers
improves the performance of the baselines).

Environment ITT state tower ITT action tower IOT Explicit
Swimmer-v2 1 1 2 2
LunarLanderContinuous-v2 1 1 2 2
Hopper-v2 1 1 2 2
HalfCheetah-v2 4 2 6 6
Walker2d-v2 3 2 5 5
CartPole-v1 2 1 3 3
MountainCar-v0 2 1 3 3
Acrobot-v1 2 1 3 3
MountainCarContinuous-v0 1 1 2 2
InvertedPendulumBulletEnv-v0 1 1 2 2
DMCS:FishSwim 3 1 5 5
DMCS:Swimmer6 3 1 5 5
DMCS:Swimmer15 3 1 5 5
DMCS:HopperStand 3 1 5 5
DMCS:WalkerWalk 3 1 5 5

Table 7: The number of layers of the neural networks encoding different architectures for different
environments.

C.2 ITT-SRP RESULTS

Figure 3 shows the comparison of the regular ITTs with ITTs applying SRPs. The random projection
vectors ω1, ..., ωm have marginal distribution N (0, Id) and are conditioned to be orthogonal. The
orthogonality is obtained via the Gram-Schmidt orthogonalization of the iid samples (see: Choro-
manski et al. (2017)). When m is small, to avoid having too many or too few actions in each action
hash-bucket, we calculate bi = median({ω⊤

i l̃
θ1
A (aj)}Nj=1) for each projection vector ωi, and map

the action to the hashed space using z
h→ (sgn(ω⊤

1 z − b1), ..., sgn(ω
⊤
mz − bm))⊤. The number of

projection vectors used are m = 6 for HalfCheetah-v2, and m = 3 for all other environments.
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Figure 4: Comparison of vanilla ITT and ITT with lazy action-tower updates, where actions-towers are updated
once every 5 iterations. We plot average curves obtained from s = 10 seeds, and present the 90th percentile and
the 10th percentile using shadowed regions.

C.3 ITT WITH LAZY ACTION UPDATES

Table 8 shows the wall-clock time (in minutes on 30 CPU cores on Google Cloud Compute) for
regular ITT and ITT with lazy action updates (18% training time reduction for HalfCheetah-v2, 9%
for Walker2d-v2, 24% for Hopper-v2). Each experiment was run for 100 epochs, and each epoch
has 1,000 timesteps. We require 1,000 action samples in each timestep. We conducted paired t-tests
on wall-clock times between regular ITT and ITT (lazy). The null hypothesis is that there is no
difference between the mean of the wall-clock time. The results show that p-values (for all tasks) are
below 0.05, and thus we reject the null hypothesis. We conclude that the wall-clock time savings of
ITT (lazy) is statistically significant at a 95% confidence level.

Environment regular ITT ITT (lazy) Paired t-test p-value
HalfCheetah-v2 25.22 20.67 3.31e-8
Walker2d-v2 27.78 25.16 3.19e-2
Hopper-v2 3.19 2.44 2.61e-3

Table 8: Comparison of the wall-clock time (in minutes) for regular ITT and ITT with lazy action updates.
Each experiment was run for 100 epochs, and each epoch has 1,000 timesteps. We also provide p-values from
paired t-tests, showing ITT (lazy) wall-clock time savings are statistically significant at a 95% confidence
level (all p-values presented are below 0.05).

D ABLATION STUDIES

D.1 PERFORMANCE AGAINST THE NUMBER OF NEURONS

We present ablation study results on ITT, using different network architectures. The results suggest
that ITT consistently outperforms baselines, even when we significantly reduce the number of neurons
in the network. In Table 9, we present the number of timesteps to reach given reward thresholds set
by previous works(Salimans et al., 2017; Schulman et al., 2015). In Table 10, we provide the number
of neurons in the network. In the tables, ITT-1 and ITT-2 stand for variants of ITT with the number
of neurons significantly reduced. Notice that ITT-1 has less neurons than ITT, and ITT-2 has less
neurons than ITT-1. We observe that the performance of ITT degrades slightly when the number of
neurons in the network is decreased.

Environment Reward threshold ITT ITT-1 ITT-2 ES TRPO
Swimmer-v1 128.25 1.07e+06 1.14e+06 1.30e+06 1.39e+06 4.59e+06
Hopper-v1 877.45 0.69e+05 1.34e+05 1.66e+05 3.83e+05 7.29e+05
Walker2d-v1 957.68 3.16e+05 3.30e+05 3.35e+05 6.43e+05 1.55e+06

Table 9: We present the number of timesteps needed to reach given reward thresholds set by previous works
(Salimans et al., 2017; Schulman et al., 2015). The results were averaged over 6 random seeds. “ES” stands for
the results of explicit policies provided by (Salimans et al., 2017). “ITT-1” and “ITT-2” stand for variants of ITT
with the number of neurons significantly reduced.
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Environment ITT ITT-1 ITT-2
Swimmer-v1 20 18 14
Hopper-v1 42 32 28
Walker2d-v1 246 210 175

Table 10: The dimensionality of the learnable θ ∈ RD for different environments.

D.2 USE REGULAR ITT IN TRAINING AND ITT-SRP IN INFERENCE

ITT-SRPs can be applied in both training and/or inference. For higher accuracy, one can train with
the regular ITT and run inference with ITT-SRP. In Table 11, we present the results for using regular
ITT in training and using ITT-SRP in inference. The results show that doing so achieves slightly
higher reward than using ITT-SRP in both training and inference.

Training ITT ITT ITT-SRP
Inference ITT ITT-SRP ITT-SRP # iter
Swimmer-v2 344.13 ± 5.18 341.38± 7.93 333.84± 7.26 500
LunarLanderC-v2 157.38 ± 71.81 154.41± 71.01 149.15± 69.27 500
Hopper-v2 1007.95 ± 3.66 999.12± 11.39 1000.54± 7.74 500
HalfCheetah-v2 2866.02 ± 416.81 2690.64± 139.05 2565.74± 143.15 4000

Table 11: We present final average scores over s = 5 random seeds together with their std. The best
architecture is in bold font and the second best is underscored. The “LunarLanderC-v2’ stands for the
LunarLanderContinuous-v2 environment.

E PAIRED T-TEST RESULTS

To demonstrate that ITT achieves higher scores than IOT and explicit policies, we provide paired
t-test results as evidence of statistical significance.

In Table 12, we present p-values from paired t-tests of final scores of different methods.

ITT vs IOT: ITT achieves significantly higher scores than IOT on all tasks except Walker2d-v2, where
ITT is the second best among the three architectures. The p-values (ITT & IOT paired t-test) are
below 0.05 for all tasks except Half-Cheetah-v2. Thus, the null hypothesis (no difference between
the means of IOT and ITT final score) is rejected given significance level 0.05. We conclude that
there is statistically significant difference between the means of final returns of ITT and IOT.

ITT vs Explicit: ITT achieves significantly higher scores than explicit policies on more difficult tasks
(Hopper-v2, HalfCheetah-v2, Walker2d-v2). The p-values (ITT & IOT paired t-test) are below 0.05
for Hopper-v2 and HalfCheetah-v2. Thus, the null hypothesis (no difference between the means
of IOT and ITT final score) is rejected given significance level 0.05. We conclude that there is
statistically significant difference between the means of final returns of ITT and explicit policies on
Hopper-v2 and HalfCheetah-v2, which are the more difficult tasks.

For simpler tasks, we also look at the number of iterations needed to achieve given reward thresholds.
The reward thresholds are set at the 90% of final average return achieved by IOT.

In Table 13, we present p-values from paired t-tests of the number of iterations needed.

ITT vs IOT: for most environments, the p-values are below 0.05. Thus, the null hypothesis (no
difference between the means of IOT and ITT number of iterations to reach given reward threshold)
is rejected given significance level 0.05. We conclude that there is statistically significant difference
between the number of iterations needed to reach given reward thresholds.

ITT vs Explicit: we do not include explicit in this comparison, because their performance are close on
simpler tasks. For more difficult tasks (Hopper-v2, HalfCheetah-v2, Walker2d-v2), Explicit cannot
even reach 80% of final average return of ITT.
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ITT & IOT ITT & Explicit ITT IOT Explicit
Environment p-value p-value return return Return
Swimmer-v2 7.09e-6 2.65e-1 344.13 75.54 347.67
LunarLanderContinuous-v2 9.73e-6 1.90e-1 157.38 -72.72 62.85
Hopper-v2 8.05e-9 5.68e-9 2670.37 1036.52 1060.89
HalfCheetah-v2 1.69e-1 2.48e-4 2866.02 2696.29 1845.64
Walker2d-v2 2.89e-3 1.63e-1 1897.87 2909.85 1346.93
MountainCar-v0 4.28e-05 5.27e-1 -113.50 -200 -143.40
MountainCarContinuous-v0 4.08e-3 4.38e-2 89.17 25.96 52.34
InvertedPendulumBulletEnv-v0 2.86e-18 N/A 1000.00 27.10 1000.00

Table 12: We present p-values from paired t-tests of returns of different methods. We underline
results that are statistically significant, at a 95% confidence level. The p-values are presented in three
significant figures. We also provide final average returns. The best architecture is in bold font.

ITT & IOT ITT IOT Reward
Environment p-value # iter # iter Threshold
Swimmer-v2 2.96e-05 10.80 420.10 67.98
LunarLanderContinuous-v2 2.02e-07 12.20 386.80 -65.44
MountainCar-v0 1.52e-07 733.80 2000.00 -180.0
MountainCarContinuous-v0 6.38e-2 75.80 125.00 23.36
InvertedPendulumBulletEnv-v0 1.12e-07 9.50 112.10 24.39

Table 13: We present p-values from paired t-tests of the number of iterations used by each method
to achieve given reward threshold. We underline results that are statistically significant, at a 95%
confidence level. The p-values are presented in three significant figures. The reward thresholds are
set at the 90% of final average return achieved by IOT.

F THEORETICAL RESULTS

F.1 PROOF OF RESULTS IN IN SECTION 2

Proof of Lemma B.1.

P[π̂θ(s) ∈ A∗
vl
|π̂θ(s) ∈ A∗

vl
∪ A∗

vr ]

=

∑
a∈A∗

vl

exp(−Eθ(s,a))∑
a∈A∗

vl
∪A∗

vr
exp(−E(s,a))

=

∑
a∈A∗

vl

exp
{
K
(
lθ1S (s), lθ2A (a)

)}
∑

a∈A∗
vl

∪A∗
vr

exp
{
K
(
lθ1S (s), lθ2A (a)

)}
≈

∑
a∈A∗

vl

exp
(
ϕ(lθ1S (s))⊤ϕ(lθ2A (a))

)
∑

a∈A∗
vl

∪A∗
vr

exp
(
ϕ(lθ1S (s))⊤ϕ(lθ2A (a))

)
≈

ψ(ϕ(lθ1S (s)))⊤
∑

a∈A∗
vl

ψ(ϕ(lθ2A (a)))

ψ(ϕ(lθ1S (s)))⊤
∑

a∈A∗
vl

∪A∗
vr
ψ(ϕ(lθ2A (a)))

=
ψ(ϕ(lθ1S (s)))⊤ξ(vl)

ψ(ϕ(lθ1S (s)))⊤ (ξ(vl) + ξ(vr))
, (12)

F.2 PROOF OF RESULTS IN SECTION 3

We start with introducing notations that help us simplify the proofs.
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Definition F.1 (AT and FD ES-gradient estimator). The antithetic ES-gradient estimator and the
forward finite difference ES-gradient estimator applying orthogonal samples are defined as

∇̂AT, ort
M Fσ(θ) :=

1

2σM

M∑
i=1

FAT (i) where FAT (i) := F (θ + σεi) εi − F (θ − σεi) εi (13)

∇̂FD, ort
M Fσ(θ) :=

1

σM

M∑
i=1

FFD(i) where FFD(i) := F (θ + σεi) εi − F (θ) εi, (14)

where (εi)
M
i=1 have marginal distribution N (0, ID), and (εi)

M
i=1 are conditioned to be pairwise-

orthogonal.
Definition F.2 (Gaussian smoothing). The Gaussian smoothing of F (x) is defined as

Fσ(θ) =
1

κ

∫
F (θ + σε)e−

1
2 ||ε||

2
2dε , where κ = (2π)d/2, (15)

and its gradient is

∇Fσ(θ) =
1

σκ

∫
F (θ + σε)e−

1
2 ||ε||

2
2εdε. (16)

Assumption F.3. Assume F (·) is quadratic. Under this assumption, the gradient ∇F (θ) and the
Hessian ∇2F (θ) exist for any θ ∈ RD, and

F (θ + σϵ) = F (θ) + σ∇F (θ)⊤ϵ+ σ2

2
ε⊤∇2F (θ)ε.

Theorem F.4. Suppose Assumption F.3 holds. The mean squared error of the AT ES-gradient
estimator applying orthogonal samples is

MSE
(
∇̂AT,ort

M Fσ(θ)
)
:= E

[∥∥∥∇̂AT,ort
N Fσ(θ)−∇Fσ(θ)

∥∥∥2
2

]
=

1

M
E
[∥∥∥(∇F (θ)⊤ε)ε∥∥∥2

2

]
− ∥∇Fσ(θ)∥22 .

The mean squared error of the FD ES-gradient estimator applying orthogonal samples is

MSE
(
∇̂FD,ort

N Fσ(θ)
)
:= E

[∥∥∥∇̂FD,ort
N Fσ(θ)−∇Fσ(θ)

∥∥∥2
2

]
=

1

M
E

[∥∥∥∥(∇F (θ)⊤ε+ σ2

2
ε⊤∇2F (θ)ε)ε

∥∥∥∥2
2

]
− ∥∇Fσ(θ)∥22 .

Remark F.5. Theorem F.4 can be extended to general functions F (·). Classical results on Gaussian
smoothing gradient estimators, which motivate the use of ES-gradient estimators, require the objective
to be twice continuously differentiable Nesterov & Spokoiny (2017). Their error bound results rely
on second order Taylor expansion. Our results for quadratic objectives can be generalized to non-
quadratic functions, by imposing twice continuously differentiable assumptions as in Nesterov &
Spokoiny (2017) and taking a second order Taylor expansion of a general function, after which we
bound the residual terms using the smoothness assumption. One may also take higher order Taylor
polynomials of F (·) and bound the residual terms under suitable regularity conditions.

Since we have orthogonal samples, we have the following Lemma.
Lemma F.6. Assume M ≤ D, we have

MSE
(
∇̂AT,ort

M Fσ(θ)
)
=
D + 2

M
||∇F (θ)||22 − ∥∇Fσ(θ)∥22

MSE
(
∇̂FD,ort

M Fσ(θ)
)
=
D + 2

M
||∇F (θ)||22 +

(D + 4)σ4

4M
||∇2F (θ)||2F

+
(D + 2)σ4

M

(
D∑
i=1

∇2F (θ)
2

ii

)
− ∥∇Fσ(θ)∥22 ,
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and therefor

MSE
(
∇̂FD,ort

M Fσ(θ)
)
−MSE

(
∇̂AT,ort

M Fσ(θ)
)

=
(D + 4)σ4

4M
||∇2F (θ)||2F +

(D + 2)σ4

M

(
D∑
i=1

∇2F (θ)
2

ii

)
.

The proofs of Theorem F.4 and Lemma F.6 are at the end of Section F.
Remark F.7. Suppose Assumption F.3 holds. We observe that evaluating ∇̂AT,ort

M Fσ(θ) requires
2M queries of F (·) and evaluating ∇̂FD,ort

M Fσ(θ) requires only M+1 queries of F (·). Consequently,
FD-gradient estimator is preferred when σ4||∇2F (θ)||2F ≪ ||∇F (θ)||22, and AT-gradient estimator is
preferred when σ4||∇2F (θ)||2F ≫ ||∇F (θ)||22, which is highly likely when σ is large.

proof of Theorem F.4. AT ES-gradient estimator.

MSE
(
∇̂AT,ort

N Fσ(θ)
)
= E

∥∥∥∥∥ 1

M

M∑
i=1

FAT (i) −∇Fσ(θ)

∥∥∥∥∥
2

2


=E

∥∥∥∥∥ 1

M

M∑
i=1

FAT (i)

∥∥∥∥∥
2

2

− ∥∇Fσ(θ)∥22

The first term is

E

∥∥∥∥∥ 1

M

M∑
i=1

FAT (i)

∥∥∥∥∥
2

2

 =
1

M2

 M∑
i=1

E
[∥∥∥FAT (i)

∥∥∥2
2

]
+
∑
i ̸=j

E
[〈
FAT (i), FAT (j)

〉]
=

1

M2

(
M∑
i=1

E
[∥∥∥FAT (i)

∥∥∥2
2

])
=

1

M2

(
M∑
i=1

E

[∥∥∥∥ 1

2σ
(F (θ + σεi)εi − F (θ − σεi)εi)

∥∥∥∥2
2

])

=
1

M
E

[∥∥∥∥ 1

2σ
(F (θ + σϵ)ϵ− F (θ − σϵ)ϵ)

∥∥∥∥2
2

]
=

1

M
E
[∥∥∥(∇F (θ)⊤ε)ε∥∥∥2

2

]
,

where the second equality is by orthogonality of εi; the fourth equality is because εiare i.i.d.; the last
equality is by Assumption F.3.

FD ES-gradient estimator. For simplicity of presentation, we abbreviate the first few steps, which
are the same as that of the AT ES-gradient estimator.

1

M2

(
M∑
i=1

E
[∥∥∥FFD(i)

∥∥∥2
2

])
=

1

M2

(
M∑
i=1

E

[∥∥∥∥ 1σ (F (θ + σεi)εi − F (θ)εi)

∥∥∥∥2
2

])

=
1

M
E

[∥∥∥∥ 1σ (F (θ + σϵ)ϵ− F (θ)ϵ)

∥∥∥∥2
2

]
=

1

M
E

[∥∥∥∥ε(∇F (θ)⊤ε+ σ2

2
ε⊤∇2F (θ)ε)

∥∥∥∥2
2

]
,

where the second equality is because εi are i.i.d., and the third equality is by Assumption F.3.

Proof of Lemma F.6. AT ES-gradient estimator.

E
[∥∥∥(∇F (θ)⊤ε)ε∥∥∥2

2

]
=
∑
i,j,k

∇F (θ)i∇F (θ)jE
[
εiεjε

2
k

]
=
∑
i,k

∇F (θ)2iE
[
ε2i ε

2
k

]
=

D∑
i=1

∇F (θ)2iE
[
ε4i
]
+

D∑
i=1

∇F (θ)2i
∑
k ̸=i

E
[
ε2i ε

2
k

]
= (D + 2)||∇F (θ)||22,
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where the second equality is because odd moments of Gaussian r.v.s are zero. By Theorem F.4, we
have

MSE
(
∇̂AT,ort

M Fσ(θ)
)
:= E

[∥∥∥∇̂AT,ort
N Fσ(θ)−∇Fσ(θ)

∥∥∥2
2

]
=

1

M
E
[∥∥∥(∇F (θ)⊤ε)ε∥∥∥2

2

]
− ∥∇Fσ(θ)∥22 =

D + 2

M
||∇F (θ)||22 − ∥∇Fσ(θ)∥22 .

FD ES-gradient estimator.

E

[∥∥∥∥ε(∇F (θ)⊤ε+ σ2

2
ε⊤∇2F (θ)ε)

∥∥∥∥2
2

]

=E
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 D∑

i=1

∇F (θ)iεi +
σ2

2
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i=1

D∑
j=1

εi∇2F (θ)ijεj

 ε
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2

2


=E

 D∑
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ε2k

 D∑
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σ2

2

D∑
i=1

D∑
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∇2F (θ)ijεj
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=
∑
i,j,k

∇F (θ)i∇F (θ)jE
[
εiεjε

2
k

]
+
∑
i,j,k,l

E
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ε2k∇F (θ)iεiσ

2εjεl∇2F (θ)jl

]
+
∑
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E
[
ε2k
σ4

4
ε2i ε

2
j∇2F (θ)

2

ij

]
,

The second term above equals zero, because the odd moments of Gaussian random variables are zero
(in a degree 5 polynomial of Gaussian r.v.s, one term must be raised to an odd power); the first term
equals (D + 2)||∇F (θ)||22 by the same argument as for the AT ES-gradient estimator; the third term
is ∑

i,j,k

E
[
ε2k
σ4

4
ε2i ε

2
j∇2F (θ)

2

ij

]
=
σ4

4

(
15
∑
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)
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+
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4
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∑
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ij +
σ4

4
3
∑
j

∑
i ̸=j

∇2F (θ)
2

ij +
σ4

4
(D − 2)

∑
i

∑
j ̸=i

∇2F (θ)
2

ij


=
(D + 4)σ4

4
∥∇2F (θ)∥2F +

(8 + 4D)σ4

4

D∑
i=1

∇2F (θ)
2

ii,

where in the first equality, the five terms correspond to i = j = k, i = j ̸= k, i = k ̸= j, j = k ̸= i
and distinct i, j, k respectively.
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