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Abstract

This work presents Past as a Guide (PaG), a simple approach for Large Language
Models (LLMs) to improve the coding capabilities by integrating the past history
with interactive and iterative code refinements. To be specific, inspired by hu-
man cognitive processes, the proposed method enables LLMs to utilize previous
programming and debugging experiences to enhance the Python code completion
tasks. The framework facilitates LLMs to iteratively refine the Python code based
on previous execution and debugging results and optimize learning and reasoning
capabilities. The proposed methodology achieved a 92% pass@1 on HumanEval,
demonstrating the potential to advance the field by leveraging retrospection from
past experiences and interactive and iterative refinement processes without external
correctness indicators.

1 Introduction

Large Language Models (LLMs) play a pivotal role in advancing artificial intelligence research,
exhibiting versatility across various applications including coding interfaces and search mechanisms.
This versatility is emphasized by seminal works such as ReAct [21]], SayCan [[1], Toolformer [16],
among others. Concurrently, leveraging code is becoming a substantial medium for improving
task performance, as illustrated by PAL [7]] and Program of Thoughts [5]. Our study, "Past as a
Guide(PaG)," aligns with these advancements, aiming to optimize LLM performance through the
integration of interactive and iterative code refinement from past retrospective guidance.

This mirrors a fundamental trait of human cognition: the intrinsic ability to harness past experiences.
By adeptly employing short-term and long-term memory encoding and retrieval, humans address
complex reasoning tasks, especially in areas like programming. Consider, for instance, the task of
finding the last 100 digits of the n-th Fibonacci number. Often, when confronted with such challenges,
humans draw from their reservoir of past experiences. They recall similar tasks, such as computing
the n-th Fibonacci number, and intuitively gauge the similarities and differences between the old
and new challenges. This process demonstrates a synergy: humans use long-term memory retrieval
to construct retrospections from prior experiences and concurrently engage in short-term iterative
refinements.

We conduct empirical evaluations to assess the performance of LLMs in harnessing retrospections,
leading to a significant achievement of 92% pass@1 at HumanEval. Instead of relying on direct
external feedback on correctness, we utilize the MBPP dataset [2] to construct a long-term memory
for the LLMs. When faced with a problem from HumanEval [4], the model retrieves and leverages
similar problems from its MBPP experiences, effectively boosting its performance. This method,
combining interactive and iterative code refinements informed by past experiences, signifies a pivotal
advancement in LLM capabilities, indicating a promising trajectory for their future evolution.
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Figure 1: Left: Interactive and Iterative Code Refinement showcased through a process of
repeated corrections. Right: Retrieval of the most similar question, aligned with the Current
instruction, sourced from the . By merging these insights, we form retrospections.
The subsequent follows an interactive and iterative Code refinement process,
emphasizing code execution and debugging.

2 Related work

2.1 Code Generation LLMs

There has been a surge of interest in generating code using LLMs. Notable advancements in this
domain include the methodologies proposed by Roziere et al. [15]], Li et al. [11]], Chen et al. [4],
and another separate work by Li [11]]. These research pieces underscore the capability of LLMs to
craft precise and functional code structures. Additionally, innovative techniques have emerged that
harness models like ChatGPT or those that deploy self-instruction paradigms [20]. Such models
are first primed to generate paired datasets of instructions and code, which are subsequently used to
fine-tune the LLMs []. In a similar vein, Zhou et al. leverage external knowledge through
"DocPrompting" by integrating code documentation for code generation. While this approach
underscores the value of external references, our approach uniquely focuses on leveraging the past
experiences of LLMs to improve problem-solving in programming tasks.

2.2 Code Execution LLMs

An alternative but equally compelling line of work exploits code not merely as an output but as a vital
operative tool for LLMs. For instance, the PAL [7] utilizes code execution results embedded within
prompts to boost the model’s proficiency in mathematical and numerical benchmarks. Moreover, the
Binder approach [6] demonstrates that LLMs, when equipped with SQL or Python execution capabil-
ities, manifest a superior comprehension of tabular datasets. Exploring the intersection of robotics
and LLMs, the Code as Policies [12] postulates that LLMs can produce code, serving as operational
policies, to govern robotic actions fulfilling specific instructions. Furthermore, ViperGPT [18]], an
innovative paradigm that synergizes vision foundation models with Python-executable code generated
by GPT to address vision-oriented tasks.
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2.3 Self Improvement

Various studies have highlighted innovative approaches to enhance the programming performance of
Language Learning Models (LLMs). For instance, Haluptzok et al. [8] demonstrated that crafting
programming puzzles and validating solutions collaboratively can produce verified synthetic data.
When LLMs are fine-tuned with this data, there’s a marked improvement in their programming
capabilities. On a different tangent, "Reflexion," as developed by Shinn et al. [17], grants agents
dynamic memory and the ability for self-reflection to improve reasoning abilities. Although Reflexion
employs a form of external memory, its application is constrained to scenarios involving identical
instruction sets. This methodology, while effective for repeated tasks, may not generalize well to
varied problems that share conceptual similarities but differ in specifics, as is common in real-world
applications. Consequently, in our comparative analysis, Reflexion is not categorized as using external
memory in a broad sense, which we reserve for systems that leverage past insights dynamically
across distinct but conceptually related problems. In the realm of mathematics, Zhou et al. [22]]
emphasize that prompts focused on verification, combined with voting techniques, can notably
enhance GPT-4’s performance in math-related benchmarks. Another intriguing approach is presented
by Madaan et al. [[14], wherein the model iteratively refines its outputs leveraging self-generated
feedback. "Voyager" by Wang et al. [19] conceptualizes code as a skill. It recalls and incorporates
skills acquired from prior tasks, thus sharpening its proficiency in abstractions. In contrast to the
above methodologies that often rely on external rewards or feedback, our proposed PaG utilizes
generated codes to rectify errors discerned from prior retrospections. Notably, our method constructs
these retrospections solely based on its own execution results, without the need for any external input
or feedback.

Table 1: Comparison of LLM Enhancement Methodologies. *As discussed in [10], we do not
classify receiving right or wrong feedback from an oracle evaluator as oracle feedback; instead, we
utilize tools to obtain intrinsic feedback.

Iterative Self Correction Dynamic External Memory Use* No Oracle Feedback+

Voyager X

Self-refine [14] X

Reflexion [17] X X
PaG (Ours)

*Dynamic External Memory Use is considered here as the ability to apply learned insights across varied but
conceptually related problems. Reflexion’s memory use is limited to identical instructions. fIn the context of
oracle feedback, we refer to the use of explicit right/wrong evaluation from an oracle. Our approach utilizes
intrinsic feedback mechanisms as delineated in [[10]].

3 Method

3.1 Interactive and Iterative Code Refinements

Overview: Consider an instruction [ presented in natural language. To achieve the desired outcome
based on this instruction, we utilize a policy, denoted as 7. This policy, in the context of our work, is
embodied by a Large Language Model (LLM) denoted as LLM. The policy 7 produces a verbal action
A which, in essence, is textual content. When the content of A contains a code segment, it can be
systematically parsed and executed. The outcome of this execution is subsequently appended to A.
Engaging in this process iteratively allows for the comprehensive completion of the task at hand. To
explicate further, the action A is comprised of a set, such that:

A = {(text, code, execution_result)} x # of trials

Here, each element of the set A represents a trial, constituting the text, the parsed code, and the result
of executing that code, whose collective enumeration accomplishes the instructed task.

Implementations: For our experiment, we employ the GPT4 API. It has been observed that several
popular LLM APIs, such as ChatGPT and GPT4, exhibit constraints when tasked with code generation.
Primarily, many extant LLM models are trained with safety mechanisms to prevent potential harm,
as discussed by Bai et al. (2022) [3]. Consequently, when requests are made for operations like
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fetching data from ’yfinance’ or image manipulation tasks, these models might assert their inability
to execute them. Contrarily, they are indeed capable of producing the correct code snippets necessary
for task completion. To circumvent this limitation, we delineated the model’s role and its execution
capabilities within the SYSTEM_PROMPT section of ChatGPT. A comprehensive version of this prompt
can be found in Appendix [A] Then, We utilized Python’s regex functionality to extract and filter
out code blocks. If a code segment is detected, it is executed using a Jupyter Notebook client.
Subsequently, the resultant output from the code segment is assimilated into the GPT4 trajectories.

3.2 Exploring stage

Memory Curation: In the exploration stage, each run of an LLM produces a tuple, denoted by ¢, and
is mathematically represented as:

t = (USER_INSTRUCTION, ASSISTANT_ANSWER)

This tuple, ¢, is then appended to a memory store, symbolized as M, in accordance with the following
relation:

M — MU {t}

Here, M acts as a repository embodying the aggregate experiences or memories of the LLM. Each
element within M is a unique tuple comprising a user instruction and the corresponding assistant
response. The incorporation of new tuples into M signifies the LLM’s process of updating its
knowledge base, learning, and adapting through each run. For the purpose of this paper, we leverage
the initial subset of MBPP [2], consisting of the first 470 examples, to formulate the M

3.3 Past as a Guide

PaG concentrates on utilizing experienced memories M to proficiently formulate an action, A,
capable of fulfilling a provided instruction, I. This method unfolds systematically through several
interconnected steps.

Initially, an instruction, I, instigates a search within our structured memory store M. To
facilitate this, we calculate embeddings for I and each instruction in M using OpenAl’s
text-embedding-ada-002 model and employ cosine similarity as the metric to quantify resem-
blance between the instruction embeddings, thereby extracting the most analogous instruction from

M.

Igimilar = argmax Similarity (I, I") 1)
I'em

When a similar instruction is identified, we use its corresponding action trajectories, A, together with
the original instruction, I, to query the LLM. This query is designed to derive retrospections, denoted
as R. It emphasizes the extraction and application of knowledge from past experiences to the present
context.

R = LLM (“How can prior experience "Agmin:" be applied to solve "I"?”) 2)

After the acquisition of retrospections, R, they are seamlessly integrated as a prefix to the ini-
tial instruction, I, enriching the instruction base to generate the refined action, A, targeting the
accomplishment of the outlined task in the initial instruction.

A=LLM(R + 1) S

PaG utilizes knowledge from previous interactions stored in M. This knowledge helps refine the
model’s responses to new instructions, placing retrospection of past experiences in the context of new
situations. As a result, the model becomes more effective in completing tasks.

For a more detailed, practical illustration of our method refer to Appendix
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4 Code Completion Experiments

Task: The task is derived from HumanEval [4], where the objective is to complete a provided Python
code skeleton. This task presented a natural language description along with an incomplete Python
code snippet. The completed code is then verified for correctness by executing the associated test
code, which either yields a pass or fail outcome based on the code’s accuracy and efficacy. The
primary goal is to successfully fulfill the requirements delineated in the natural language description
by augmenting the Python skeleton to create a functional and correct code piece.

Results: In our experiments, we assess the effectiveness of our proposed methods against baseline
models. The following table 2. 2] summarizes the performances of the different approaches:

Method % Pass@ 1
GPT-4 67.00
GPT-4 + Interactive and Iterative Code Refinement (max 6 tries) 84.15
GPT-4 + Interactive and Iterative Code Refinement (max 12 tries) 90.85
Reflexion [L7]] 91.00

GPT-4 + Interactive and Iterative Code Refinement (max 12 tries) + PaG 92.07
Table 2: Performance comparison of different methods, with our method highlighted.

PaG achieved state-of-the-art performance, a commendable feat realized without relying on external
correctness feedback from the test code. Our approach uniquely combines retrospective guidance from
past experiences with an interactive and iterative code refinements loop driven by code execution. This
emphasizes the dual strengths of our method: harnessing past experiences for informed guidance and
using interactive refinements for precision. Both factors collectively enhance the model’s performance,
showcasing the potential of integrating experienced knowledge with dynamic refinements without the
need for external correctness indicators.

The actions generated by the Large Language Model, denoted as A, include numerous code blocks,
each undergoing multiple trials. Every block within A is subjected to a comprehensive examination
against corresponding test cases. However, due to the possibility of discrepancies arising during
intermediate executions of the solution function, an erroneous ’fail’ flag may be prompted even if
the final solution is accurate. To counteract this, we employ a refinement procedure, using regular
expressions to meticulously filter and eliminate all print and assert statements within the generated
code blocks. Any cases initially identified as failures undergo a re-assessment phase, wherein the
accurate code block is extracted from the ensemble within .4 and subjected to a secondary evaluation.

5 Conclusion and Limitation

This work has developed a methodology that, akin to human learning, utilizes prior experiences
and retrospection to enhance performance from the initiation phase through the reasoning stages,
employing a multi-attempt code interpreter. Our proposed method, PaG, integrates past experiences
with current instructions to craft retrospections. Further, it employs interactive and iterative code
refinements through execution. By drawing on past lessons, PaG attained a 92% performance on
the HumanEval benchmark. However, the current scope of this methodology is largely confined to
programming-centric tasks, similar to those in HumanEval, presenting a limitation in its applicability
to more language-intensive tasks. As a prospective avenue for future research, the exploration of
incorporating online learning to augment retrospections is promising, potentially allowing models to
mirror the continual learning and adaptability inherent in human cognition and addressing a broader
array of tasks with increased efficacy and precision.
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23 A Code Interpreter System Prompt

SYSTEM_PROMPT

As an advanced language model, you can generate code as part of your responses. To make
the code more noticeable and easier to read, please encapsulate it within triple backticks. For
instance, if you’re providing Python code, wrap it as follows:

I print ('hellow world')
Wrapped code block will automatically be executed and appended to the prompt.
I hellow world

After presenting the results from the code, you will provide a useful explanation or interpreta-
tion of the output to further aid your understanding. Additionally, when generating plots or
figures,

You’ll save them to a specified path, like ./tmp/plot.png so that they can be viewed. After
saving the plot, I'll use the following markdown syntax to display the image at the end of the
response:

I '[plot]('./tmp/plot.png"')

You are using a Jupyter Notebook currently.
This approach allows me to visually present data and findings.
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233 B Retrospections Example Trajectory

Retrospections

From Previous Similar Questions:

The largest_number function sorts a list of digits in descending order and joins them to
form the largest possible number. However, this is not directly applicable to the rolling_max
problem.

Application to the Question:

The rolling_max function requires maintaining a rolling maximum value as we traverse
through the list. This is different from the largest_number function which sorts the entire
list first. For rolling_max, we need to keep track of the maximum value found so far
and update it as we encounter larger numbers in the list. The output list should contain the
maximum value found at each point in the input list. The largest_number function does
not provide a useful trajectory for solving this problem.

239

Write a Python script to solve the following problem:

| from typing import List, Tuple

3 def rolling_max (numbers: List[int]) -> List[int]:

4 # From a given list of integers, generate a list

5 # of rolling maximum element found until given moment
6 # in the sequence.

7 >>> rolling _max([1, 2, 3, 2, 3, 4, 2])

8 [1, 2, 3, 3, 3, 4, 4]

Ensure the solution is verified by printing the expected output.
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Here is the Python script that solves the problem:

I from typing import List

3 def rolling_max (numbers: List[int]) -> List[int]:

4 max_so_far = numbers [0]
5 result = []

6 for num in numbers:

7 if num > max_so_far:
8 max_so_far = num

9 result.append(max_so_far)

10 return result

11

2 print(rolling_max([1, 2, 3, 2, 3, 4, 2]1))

RESULT
[1, 2, 3, 3, 3, 4, 4]

Additional Test Cases for Verification:

I print(rolling _max([1])) # Single element

2 print (rolling _max ([6, 5, 5, 5])) # All elements are the same

3 print (rolling_max([9, 8, 7, 6, 5, 4, 3, 2, 1])) # Descending
order

4 print(rolling _max([])) # Empty list

RESULT

(1]

[5, 5, 5, 5]

[9, 9,9, 9,9, 9,9, 9, 9]

Error: IndexError: list index out of range

Error Resolution and Final Implementation:

The function fails when the input list is empty, as the code tries to access the first element
without prior existence verification. A conditional return for empty lists has been added to
address this.

1 from typing import List

3 def rolling_max (numbers: List[int]) -> List[int]:

4 if not numbers:

5 return []

6 max_so_far = numbers [0]

7 result = []

8 for num in numbers:

9 if num > max_so_far:

0 max_so_far = num
result.append(max_so_far)

3

4 # Re-verification with the adjusted implementation

1
11
12 return result
1
1
15 print (rolling max ([])) # Empty list

RESULT
]

The corrected implementation now successfully handles all edge cases, producing accurate
results consistently.
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