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Abstract

Linear systems occur throughout engineering and the sciences, most notably as
differential equations. In many cases the forcing function for the system is unknown,
and interest lies in using noisy observations of the system to infer the forcing, as
well as other unknown parameters. In differential equations, the forcing function is
an unknown function of the independent variables (typically time and space), and
can be modelled as a Gaussian process (GP). In this paper we show how the adjoint
of a linear system can be used to efficiently infer forcing functions modelled as GPs,
using a truncated basis expansion of the GP kernel. We show how exact conjugate
Bayesian inference for the truncated GP can be achieved, in many cases with
substantially lower computation than would be required using MCMC methods.
We demonstrate the approach on systems of both ordinary and partial differential
equations, and show that the basis expansion approach approximates well the true
forcing with a modest number of basis vectors. Finally, we show how to infer point
estimates for the non-linear model parameters, such as the kernel length-scales,
using Bayesian optimisation.

1 Introduction

Linear systems are used as models throughout the sciences and engineering, encompassing a wide
range of both ordinary and partial differential equations (including the heat, wave, Schrodinger’s,
Maxwell’s equations etc), as well as systems of linear algebraic equations (such as eigenvalue
problems). To fix notation, let £ : &/ — V be a linear operator between Banach spaces &/ and V (i.e.,
complete normed spaces, Kreyszig|(1991)) . A prototypical linear system is then of the form

Lu=f, (D

where u € U is the quantity of interest being modelled, and f € V is the forcing function of the
system. Given a fully specified operator £ and forcing function f (and possibly initial and boundary
conditions), solving the system for w is referred to as the forward problem. Typically, this is a
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computationally intensive task. For example, consider modelling air pollution as it moves through the
atmosphere. In this case, £ may be a partial differential operator describing the advection, diffusion,
and reaction of the pollution, and f will be a function describing the source of the pollution at each
location and time. The forward problem refers to computing the concentration, u, given the emission
sources and will usually require the use of numerical integration methods.

In many applications, both the linear operator £ and the forcing f may not be fully specified, and we
may face the statistical task of learning £ and f from noisy observations of u:

z=h(u)+e. (2)

Here, z € R" are the observations, h the observation operator, n the number of observations, and
€ € R™ a zero-mean observation error. This is often referred to as the inverse problem in applied
maths and statistics (Stuart, [2010), or sometimes as a latent force model in machine learning (Alvarez
et al.,|2009). In the air pollution example this would equate to finding the distribution of pollution
sources, f, given a set of concentration measurements z.

We focus on the situation where
1. fis modelled as a Gaussian process (GP) when V is an infinite dimensional Banach space,
or with a Gaussian distribution in the finite dimensional case. E.g., if £ is an ordinary
differential operator with independent variable ¢, then f will be an unknown function of ¢.
2. The observation operator h : { — R"™ is affine. In the finite dimensional case, this implies
h(u) = Hu + ¢ for some constant matrix H and vector ¢, but in the infinite dimensional
case (when U is a space of functions) includes pointwise evaluation of u, i.e. u(x,t) for
some values of z and ¢, and integral and derivative observations of u, e.g. [ u dzdt, ‘é—’; etc.
3. The observation error € has a Gaussian distribution. This assumption can be relaxed for
maximum likelihood (ML) estimation.
The full specification of the statistical model is then

Lu=f, z=h(u)+e
f~GPm(-),k(-,-)), € ~ N, (0,0°1,)

where m and k are the prior mean and covariance (kernel) functions of the GP. Note that the linear
system in Egs. (3) may include initial and boundary conditions for differential operators. Our aim is
to infer f (and possibly u, £, and k) given z either via

* ML estimation, by solving the constrained optimization problem

mfin (z — h(u) " (z — h(u) + a||f]3 st. Lu=f

3)

* Bayesian inference, by computing the posterior distribution

m(f ulz) o< m(zfu)m(ul f)m(f). C)
The prior distribution for f, 7(f), and the regularization parameter, «, play a similar role in the two
approaches. To solve either problem numerically is likely to require many solves of the forward
problem (Eq. [T). For example, for ML we may seek a solution using numerical optimization (e.g.
Arellano Jr et al.| 2007} [Troltzschl 2010), whereas with Bayes, we might use an MCMC scheme (e.g.
Kopacz et al.,[2009; (Cotter et al., 2013} [Sengupta et al., 2016} |Albani et al.,[2021) or a variational
approach (Chappell et al.l [2008)). All of these approaches require multiple solves of the forward
problem. Here we develop an approach to minimize the computational cost of inference.

1.1 Contribution

In this paper we show that implementing an adjoint of the linear system can result in much faster
statistical inference. Instead of using numerical approaches to solve either the ML or Bayesian
inference problem, we can do inference for f at the cost of n forward model solves, where n is the
number of data points. In many (but not all) cases, this will incur a substantially lower computational
cost than competing methods, such as MCMC. More specifically, we show that

1. if f depends linearly on parameters ¢, we can estimate g or its distribution analytically, i.e.
without resorting to numerical integration methods;

2. if we model f as a Gaussian process, then by using a truncated basis expansion we can
efficiently infer the posterior distribution for f.



The paper is structured as follows. In the next section we discuss related work before introducing
adjoints in Section We derive the main results in Section [3.2] and in Section [3.3]we show how
linearizing Gaussian processes via a basis expansion reduces inference for GPs in linear systems
to simple linear algebra. Finally, in Section[d] we demonstrate the approach on two linear systems:
ordinary (ODE) and partial differential equations (PDE).

2 Related work

The problem defined by Egs. @ is often referred to as a latent force model (Alvarez et al.| 2009,
2013). [Alvarez et al.| (2009) showed how the posterior distribution (@) can be computed by using the
integral formulation of Lu = f, i.e. u(z) = [ G(z — v) f(v)dv, where G(-) is the Green’s function
associated with the differential operator £. Due to the linearity of the integral transform, placing
a GP prior over f leads to a joint GP over f and w. From this joint GP, the posterior distributions
m(u | f) and 7(u) can be computed in closed for However, in many situations, particularly for
non-trivial differential equation models, the expressions for the covariances are cumbersome and
lead to the use of error functions with complex arguments or functions like the Faddeeva function
that can be numerically unstable to compute. |Guarnizo & Alvarez| (2018) proposed representing f
using random Fourier features (RFFs) to reduce the number of integrations necessary to be solved
analytically. Here, rather than using Green’s functions, we instead use adjoints to write the problem
as a linear model and then use a reduced-rank Gaussian process formulation, leading to numerically
stable and fast approximations to the posterior distribution.

More specifically, estimation of forcing functions in differential equation models has been extensively
studied, for example, in the field of modelling atmospheric advection-diffusion (e.g. |Yee, 2008;
Borysiewicz et al.,|2012; Singh & Ranil 2014} [Rajaonal [2016; |Yeo et al., 2019) with some authors
solving the inverse problem using an adjoint approach in combination with MCMC to compute the
posterior distribution (e.g.|Yee} [2008; Hwang et al., [2019; |[Luhar et al., 2020; |Albani et al., [2021)).
Of particular relevance is[Hwang et al.[|(2019) who use a point source model of pollution, and use
the adjoint to write the backward finite difference approximation, noting that this can be written as a
linear model, where the features are conjugate fields associated with each sensor. MCMC sampling is
still a limiting factor, restricting the extension of the approach to more complex situations such as
time-varying pollution sources.

Other related work includes the stochastic PDE approach of [Lindgren et al.|(2011)), in which the
underlying function v is modelled as a Gauss Markov random field (GMRF), which can then be
formulated as a stochastic partial differential equation. This allows finite element methods to be
used to efficiently compute the posterior distribution for « given z. Similarly, Hartikainen & Sarkka
(2010) exploit the link between GMRFs and dynamical systems to convert inference for u to a form
in which Kalman filtering methods can be used, which scale linearly with n. [Sigrist et al.| (2015)
focus exclusively on the advection diffusion PDE considered in Section 4.2} and use white noise
for the forcing function, f, to create a stochastic PDE model for u. They use a spectral approach,
solving the PDE in the Fourier domain, to develop an efficient algorithm for statistical inference.
Whilst attractive, it is difficult to generalize this approach from white noise models of f to correlated
Gaussian process models. [Jidling et al.|(2017) show how to infer statistical inference for linearly
constrained systems, i.e., where Lu = 0. These approaches all model u, whereas our focus is on
inferring the forcing function f.

3 Methods

We first recap the definition of adjoints, before deriving our main result illustrating how they can be
used to accelerate inference. We then show how using a truncated basis approximation to Gaussian
processes allows us to find the GP posterior distribution without resorting to MCMC methods.

3.1 Adjoints

Recall that £ : U — V is a linear mapping between Banach spaces I/ and V. Let {* and V* denote
the dual spaces of ¢/ and V (Kreyszig, |1991)). We can construct the adjoint to a continuous linear

?For a more detailed explanation of the Green’s function method, please see the supplementary material.



operator L as follows. Let v* € V* and define F' : U/ — Rby F : u +— v*(Lu). Then F' is a bounded
linear functional on U, i.e., F' = u* for some u* € U*. Thus for all v* € V* we’ve associated a
unique u* € U*:

LY v —=u"=0v"oL. 5)
We call £* the adjoint of £, and L£* is itself a bounded linear operator (Estep}|2004). By construction,
we have that for all w € U and v* € V*

(L707)(u) = v* (Lu), (6)

a result known as the bilinear identity. In the case where U/ and V are also real Hilbert spaces
with respect to inner products (-, -); and (-, )y, then we can identify the dual spaces with their
underlying space: by the Riesz representation theorem if v* € V* then there exists v € V such that
v*(-) = (-, v)y. In this case, the bilinear identity reduces to its more familiar form

(Lu,v)y =v"(Lu) = (L") (u) = (u, L )y @)

where we now consider £* : V — U. We only consider real vector spaces here, resulting in a
symmetric inner product.

Generally, the adjoint £* will be the same type of operator as £ (e.g. if £ is a differential operator then
L* will be too), so solving an adjoint system of the form £*v = h will have similar computational
complexity as solving Lu = f. See Estep| (2004) for an introduction to adjoints, and Section [4]for
examples of adjoint systems.

3.2 Benefits of adjoints

How does the development of an adjoint to a linear system help us perform statistical inference for
that system? Consider the situation where uncertainty about the unknown forcing function, f in
Eq. (I), can be characterized by a linear dependence upon unknown parameters ¢. That is, we can

write
M

FO =" amom(). ®)
m=1
In the infinite dimensional case where U and V are spaces of functions on some set X, the ¢,,, will
also be functions on X. In the finite-dimensional case, the ¢,,, will be vectors of fixed length.

In the situation where the observation operator is linear, then we can write the i*" observation as
h;(u) = (h;, u) plus noise, for some h; € U. Consider the n different adjoint systems

Lv; =h;fori=1,...,n.
Then using the bilinear identity (7)) we have that
hi(u) = (hi, u) = (L0, u) = (v, Lu) = (vi, [,

i.e., the i** observation is the inner product between the unknown forcing function f and the solution
of the i*" adjoint system. At first, the introduction of the adjoint doesn’t appear to have helped.
To evaluate the likelihood (or sum of squares) we have gone from needing a single solve of the
forward problem, to requiring the solution to n adjoint systems. The benefit arises if we now use the
assumption of a linear dependence upon the parameters, and linearity of inner products:

M M
hz(u) = <Uia Z Qm¢m> = Z Qm<via ¢m>
m=1 m=1

The complete observation vector z can then be written as

z =

(vi,01) - {v0M)\ /g,
: ' < ) +e=Pg+e )
am

<vn;¢1> <U7L7.¢JVI>

where ¢ € RM is the parameter vector, and ® € R"*M s the matrix of inner products between the n
adjoint solutions and M basis vectors.



This can be recognized as a linear model. Thus, standard results can be used to compute the least
squares/ML and Bayesian estimators. For ML, the minimum of S(q) = (z — h(u))" (2 — h(u))
subject to Lu = f, is obtained at § = (® T ®) '@ 2 with Var(§) = 02(®"®)~! in the case where
the observation errors ¢; are uncorrelated and homoscedastic with variance 2. Standard results can
be used from regularized least squares if we need to regularize q.

In a Bayesian setting, if we assume a priori that g ~ Ny (po, Xo), then the posterior for ¢ given z
(and other parameters) is
q | ZNNJVI(NTMETL) (10)

where
1 1 -1
[y = (2<1>Tz + 251%) , Y, = <2c1>Tc1> + 251) . (11)
g g

See, e.g.,|O’Hagan & Forster| (2004). Note that the solutions of the adjoint equation, v;, are present
in the posterior distribution of ¢ in the matrix .

3.3 Inference of Gaussian forcing functions

We now consider the case where the forcing function is given a Gaussian process prior distribution:

where m(-) and k(-,-) are the prior mean and covariance functions respectively (Rasmussen &
Williams, 2006). Our approach is to use a reduced-rank representation of the GP, as in Eq. (8], derived
by truncating an expansion for & of the form

k(xz,2') = Z G (1) P (). (13)
m=1

There are many possible choices for the basis vectors ¢;(-), including the Karhunen-Loéve (KL)
(Deheuvels & Martynov, 2008), Laplacian (Solin & Sarkkal 2020; |Coveney et al., |2020; Borovitskiy:
et al., 2020), and random Fourier feature (RFF) (Rahimi et al., 2007) expansions. The Karhunen
Loeve basis is formed by finding the spectral expansion of the integral operator defined in Mercer’s
theorem:

T0(w) = [ ) f(al)a

In the case where dim(x) is small (such as the ODE example below), the eigenfunctions of T},
are easy to compute either analytically (Rasmussen & Williams|, 2006, Section 4.3.2, p116) or
numerically (Greengard & O’Neil, 2021). Using the eigenfunctions of T}, gives the L?-optimal
approximation (Kosambil, 2016)), but the eigenfunctions can be difficult to compute even in three
dimensions. A simpler approach that extends easily to higher dimensional problems, is to use RFFs
(Rahimi et al.,2007). This relies upon Bochner’s theorem, which can be used to express stationary
kernels k(z,z") := k(z — 2’) as the Fourier transform of a positive measure p

k(x —2') = /exp(—iw(x —2'))dp(w).

If we use an isotropic exponentiated quadratic (EQ) kernel &, then the measure p corresponds to a
multivariate Gaussian, and [Rahimi et al.| (2007) give expressions for the Fourier feature basis vectors
that can be used to approximate the Gaussian process:

/ 2 1 NT / 27—2 1 T
k(x—2")=r71 exp(—ﬁ(x—a:) (x—12") = onx)= ﬁcos(xwmx—l-bm) (14)

where wy,, ~ N(0,1) and by, ~ U(0, 27). Substituting this ¢,, into equation[8|allows us to write
the forcing function f as a truncated Gaussian process with an EQ kernel (as such the true Gaussian
process is never calculated). The extension to anisotropic kernels is straight-forward.

Although the RFF expansion will require more basis vectors (a larger M) than the KL expansion to
achieve the same accuracy, the computational complexity of our adjoint approach is dominated by the
number of adjoint solves, not the number of features (which only affects the cost of computing the
relatively low-cost Eq.[T3), and so including more terms has a minor effect on overall computational
cost.



3.4 Time complexity of Algorithm 1

Let GG be the number of grid elements, n the number of observations, and M the number of features.
There are five stages in our algorithm:

Solving the n adjoint systems, which requires O(Gn) operations.

Computing each basis vector, ¢, over the grid for each feature requires O(G M) operations.
Computing the matrix ®, requires O(GMn) operations.

Finding ® " ® requires O(n.M?) operations.

A e

Finally solving the matrix inverse will require O(M?) operations.

This results in an algorithm that scales linearly in the number of data points, n. Empirically, for the
problems we’ve experimented with, we found computing ¢ over the large grid was the most time
consuming step. The overall time complexity is O(GMn) + O(nM?) + O(M?3), but note that the
constants associated with each term are important in most problems.

4 Experiments

4.1 Ordinary differential equation (ODE)

Consider the non-homogeneous linear ODE:

d?u du
— — = f(t 15
P2 g +Prgy +pou f(@t) (15)
on the domain [0, T'] with initial conditions «(0) = «/(0) = 0. The right hand side, f(t), is the
unknown forcing function that we wish to estimate, and pg, p1, p2 are parameters in the linear operator.
We model f as a zero-mean GP with an EQ kernel (Eq.[T4).We assume observations are obtained as
noisy averages over short time windows:

ti+At 1
hi(u) = —u(t)dt = (u, h; 16
= [ g = (o (16)

where h; is the indicator function ﬁi(t) = I, +,+a4(t). This includes direct measurements of u(t;)

if we set h;(t) = 6(t — t;), the Dirac delta function. To generate synthetic data, we simulate a
realization f from the GP model, solve Eq. for u(t), and then simulate n observations from
Eq. withT =1, ps = 0.5,p1 = 1,pp = 5, At = % t; = %, adding zero-mean Gaussian
noise with standard deviation o = 0.1. For simplicity, we solve the ODE with a simple forward
Euler approximation, but higher order schemes can and should be used in real applications. We
approximate the GP using Eq. , using 200 RFFs generated using Eq. with A = 1/0.6 and

72 = 4. The linear operator in this case is

Lu = d—2+ iJr
U= p2dt2 pldt Po | u.

To derive the adjoint operator we use the bilinear identity (Eq.[7), and integrate by parts twice:

T T T
(Lu,v) = / (Lu)vdt = / (p2ii + p1i + pou)vdt = / (p2¥ — P10 + v)udt = (u, L V)
0 0 0

when v(T") = v(T) = 0. So the adjoint of L is

L & d +
v= — —D1— v.
b2 dr2 b1 dt Po
Note that rather than an initial condition, the adjoint has a final condition: to solve the system we

have to integrate backwards in time from ¢t = T"to ¢ = 0. See Algorithm ]

Fig. [I] shows the effects of the number of training points n and the number of features M on the
posterior distribution of the forcing function. As expected, more data results in a more confident



Algorithm 1 Computing the posterior distribution of ¢

fori=1...ndo _

Solve adjoint system L£*v; = h; with appropriate final and boundary conditions.
end for
form=1...Mdo

Sample an RFF basis vector ¢,,, using Eq. (T4).

fori=1...ndo

Compute [(I)]im = <Ui7 ¢m>

end for
end for
Compute the posterior distribution for ¢ using Eqs. (I0) and (TT).

output, f(t)
output, f(t)

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Input, t Input, t Input, t

Figure 1: Posterior distribution for the unknown forcing function (with 95% credibility interval). True
forcing in red. The number of training points and features are, (left) n = 10 and M = 100; (middle)
n = 100 and M = 10; (right) n = 100 and M = 100. The overconfident and wrong posterior when
M = 10 is a consequence of the model being heavily misspecified.

posterior. Note though the danger of using too few features: with M = 10 the approximation of f has
limited expressive power and cannot capture the true form of f, i.e., the model is heavily misspecified.
This can result in the uncertainty collapsing upon the most likely, but wrong, value. This can be
difficult to spot, so users should check the sensitivity of the posterior with respect to M (which can
be done with no additional forward solves).

In the supplementary material we provide a comparison between the adjoint method, the Green’s
function methods as in|Alvarez et al.| (2009) and |Guarnizo & Alvarez|(2018)), and a vanilla Gaussian
process when applied to this ODE problem.

4.2 Partial differential equation (PDE)

We now demonstrate the approach on a PDE in which there are two spatial variables, z € X C R?,
and time, ¢ € [0,T] C R, so that the solution v = u(x, t) is a function of three independent variables.
We consider the advection-diffusion equation

0

8—7:+p1-vu—v-(p2vu):fin/¥x[o,T] (17)
with initial and boundary conditions u(z,0) = 0 for z € X and V,u = 0 for z € 0X. Here,
the unknown forcing function f = f(z,t) is a function of space and time, and we model it as a
zero-mean Gaussian process, f(z,t) ~ GP(0,k((z,t), (z/,t')) with EQ kernel k (Eq.[14). We use
an RFF approximation to k with random weights w,, ~ N5(0, ) and b, ~ U (0, 27).

Observations are assumed to arise from sensors which take an average of u(x, t) over a small spatial
and temporal window R; x 7; C X x [0, T]:

1 : ) :
Zi:<u,ibi>+6i with ;Li: IR:[7:l 1f$€7.?,2 and¢ € T
0 otherwise.

The adjoint of the linear operator Lu = %? +p1.Vu—V - (p2Vu) is

L = —% —p1.Vo =V - (p2Vo).



10 10 4
8 2
6

| Blo
4
5 -2
0 -4
0 2 4 6 8 100 2 4 6 8 10°0 2 4 6 8 10

Ground truth Four sensors 16 Sensors

Figure 2: Spatial maps of the forcing function at a single slice: f(x,5). Left shows ground truth,
middle shows the posterior mean with 4 sensors, right shows the posterior mean using 16 sensors.

Table 1: Posterior mean and standard deviation of the ¢ parameters estimated by MCMC and the
adjoint method.

q1 q2 g3 g4 g5
MCMC -3.62(0.02) -0.64 (0.01) 1.68(0.01) -0.09 (0.01) 4.31(0.02)
Adjoint  -3.62 (0.02) -0.64 (0.01) 1.68(0.01) -0.09 (0.01) 4.31(0.02)

Our adjoint-aided approach then requires the solution of
L*v; = h; in X x [0,T] fori=1,...,n.
The final and boundary conditions on the adjoint system are
vi(x,T)=0forxz € X, and pv;(z,t)+ p2Vou(z,t) =0forz € 0 andt € [0,T].
For details of the adjoint derivation see the supplementary material and [Estep| (2004).

Inference then proceeds as before. After solving the n adjoint systems, we compute the inner product
of these solutions with the RFF basis vectors to form the matrix ¢ (Eq.[9). We can then use Eq. (T)
to compute the posterior with minimal additional computational cost.

Data was simulated on the spatial domain X = [0, 10]? for ¢ € [0, 10] by first randomly generating
a forcing function f(z,t) (generated from a GP using an EQ kernel with A = 2, 72 = 2), and then
solving the forward problem (Eq. to find u(x,t) using PDE parameters p; = (0.4,0.4) and
p2 = 0.01. We generate n observations using sensors that record averages over short time windows
equally spaced across the domain [0, 10] at the locations shown in Fig. [3| Zero-mean Gaussian
distributed noise is added to the true sensor readings with standard deviation o = 0.05 (note that this
is relatively small compared to the signal, which can often create problems for sampling methods).
We then use Algorithm I]to calculate the posterior distribution for ¢, hence giving the posterior for
f. By sampling forcing functions from this posterior and simulating forward, we can evaluate the
posterior predictive accuracy of the model.

To validate the posterior estimates from the adjoint method, we also used MCMC to compute the
posterior distribution for the PDE model using just M = 10 RFFs. Table[I] shows the posterior
mean and variance of the first 5 ¢ parameters determined using both methods, which can be seen
to be in close agreement. Fig.[7]in the supplementary material shows the trace plots. We used a
batch-update random-walk Metropolis-Hastings (MH) sampler, which failed to converge (after an
hour of computation) when using a larger number of features. Even with M = 10, we still required
10,000s of forward model evaluations to reach convergence (whereas in comparison, the adjoint
method required just 75 forward model solves in this case).

To illustrate the effects of sensor density, observations were generated for five time windows using
arrays of 4 and 16 sensors at the locations shown in Fig. El i.e., a total of either n = 20 or n = 80
observations. The ground truth forcing and inference results (with A/ = 200) are shown in Fig.[2] As
expected, more sensors results in improved estimates. Fig. [3] shows the posterior standard deviation
for f in the 4 and 16 sensor cases. Here advection occurs parallel to the y = « line as p; = (0.4,0.4)
(i.e., as if there is wind blowing from the south west). We can see that standard deviation is smallest
upwind of the sensors, with more uncertainty downwind, as expected.

To investigate the effects of varying feature and sensor numbers we performed a posterior predictive
check using held-out data and used Monte Carlo estimation to calculate the posterior predictive mean
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Figure 3: Posterior standard deviation for the examples shown in Fig.[2| The left image is for the case
where 4 sensors are used, and the right for 16 sensors. Sensor locations are shown as white crosses.

Table 2: The median MSE as a function of number of sensors and RFFs. The ground truth was
generated using a GP with A\ = 2, 72 = 2 and PDE parameters p; = (0.01,0.01), p; = 0.01. The
MH algorithm did not converge after 20,000 iterations for 50 or more RFFs. The numbers brackets
are the 95% confidence intervals computed from 10 repeated experiments (for the adjoint approach)
and 5 (for MH).

Sensors Features

10 50 100 200 300 500
1 3.42(2.82,4.39) 3.27 (3.13,3.38) 324 (3.10,3.37)  3.27(3.17,3.44) 324 (3.12,3.36)  3.27(3.17,3.35)
4 7.12(1.57,28.81)  2.39(2.06,2.62) 2.41(2.13,2.60)  2.45(2.32,257) 2.50(2.41,2.69)  2.53(2.32,2.60)
9 2.38 (1.41,4.40) 2.12 (1.48,3.98) 1.70 (1.49,2.07) 1.48 (1.40,1.72) 1.47 (1.32,1.61) 1.45 (1.40,1.50)
16 1.73 (1.23,3.28) 3.99(2.32,10.90)  2.18(1.72,3.54) 1.3 (1.02,1.68) 1.12 (0.98,1.37) 1.12 (1.02,1.21)

25 1.35 (1.19,3.09) 8.93(4.92,39.86)  4.36 (2.53,8.20) 1.86 (1.43,2.75) 1.35 (1.07,1.81) 1.05 (0.89,1.45)
25 (MH)  3.27(1.73,6.12) - -

squared error (MSE). Table [2] gives the MSE as the number of sensors and RFFs vary. As both
increase, so does the accuracy of our estimates. In general, the accuracy depends upon a variety of
factors, including the PDE parameters (ratio of diffusion to advection), kernel parameters (decreasing
lengthscale makes the problem more challenging), and sensor locations. The speed and efficiency of
the proposed adjoint-aided approach allows us to investigate these effects in a way that would not be
possible if we were using MCMC (as each estimate of the posterior requires tens of thousands of
simulator evaluations, rather than just the n evaluations required for the adjoint-aided approach).

Although not our focus here, we note that we can infer the remaining parameters p (PDE) and (72, \)
(GP hyperparameters) in a variety of ways. For example, using Bayesian optimization we can find
the maximum likelihood estimates of these parameters with relatively minimal computational cost.
See the supplementary material for details and examples.

In the supplementary material we include some examples of the effect of varying the Gaussian process
lengthscale on inference quality, an example in which we apply our method to an advection diffusion
problem using the Roundhill II dataset (Cramer & Record), [1957) and apply our method to shift
operators (a non-differential linear operator).

4.3 Real time cost analysis

We compared the run time of the adjoint method to a basic MH MCMC algorithm (recorded on
a laptop with 16GB RAM and an Intel i7-1065G7 CPU @ 1.50 GHz). Exact inference of the
posterior of f in the ODE model using the adjoint method on a 100 element temporal grid with 100
observations using 100 RFFs took 569 £ 72.5 ms. This is approximately the time it took to perform
a single iteration of the MH algorithm. Inference of the posterior of f in the PDE model using the
adjoint method on a 50 x 30 x 30 spatiotemporal grid with 100 observations using 100 RFFs took
3.32 £ 0.18 s. In this time we were able to run 11+£2 iterations of the MH algorithm.

The Metropolis Hastings algorithm is comparatively inefficient due to the matrix multiplication
required to compute the forcing function f from a given ¢ using the basis vectors (see equation [g).
In the adjoint method this only needs to be calculated once, but is required at each step of the MH
algorithm.



Whilst more sophisticated MCMC implementations will achieve faster convergence than random walk
samplers, any MCMC algorithm will require 10,000s of forward model evaluations to approximate
the same posterior the adjoint method can compute exactlyﬂ in a fraction of the time.

5 Discussion

This work was motivated by the problem of inferring the distribution of spatially and temporally
varying sources of pollution across a city from noisy observations using a model of the pollution’s
atmospheric transport. Estimating the pollution concentration and its sources can help local authorities
reduce the population’s exposure, and to motivate policy interventions. Linear systems such as this,
are typical of the type of challenge faced throughout the sciences and engineering, and still pose
computational challenges that make principled statistical inference almost intractable, or if they are
tractable, the computational cost (e.g. of using MCMC) is such that only a limited range of models
and situations can be analysed. In this paper we developed an approach that results in conjugate
Bayesian inference of an unknown GP forcing function, with a computational cost that scales linearly
with the number of observations, n. As n increases, the approach may eventually require more
computation than competitor methods such as MCMC (which in theory has cost independent of n),
but given that MCMC typically requires 10°> — 106 iterations even for low-dimensional problem
there is still a large range of problems for which an adjoint may be beneficial. In our PDE example,
the adjoint-aided approach required orders of magnitude fewer PDE solves than MCMC. We should
note that a key limitation of our approach is that it only applies to linear systems and cannot be used
to determine forcing functions for non-linear systems such as the Navier-Stokes equations.

We only briefly touched upon the problem of estimating the operator’s non-linear parameters p
(e.g., advection and diffusion rates) and the GP hyperparameters. Adjoint sensitivity methods (see,
e.g. Bradley, A. M., 2010; [Margossian, 2019} 'Yashchuk, [2020) can be used to estimate gradients
of the log-likelihood with respect to the non-linear parameters in a numerically stable alternative
to automatic-differentiation frameworks (such as TensorFlow), which can be unstable when back
propagating through long iterative loops. Access to gradient information allows inference of the
additional parameters to be performed efficiently within the preferred statistical paradigm (e.g.
maximum likelihood using Bayesian optimization - see the supplementary information; Hamiltonian
Monte Carlo (Neal, |2011)); or a variational autoencoder (Kingma & Welling|, |2014) framework etc.).

Finally, there are many ways in which this approach may be accelerated, for example, by the use
of intelligent numerical solvers that reuse solution trajectories and adaptive step size solvers, multi-
fidelity methods that use varying grid sizes, and stochastic approaches which use only a subset of the
data at each stage. The core computational tasks in our approach (solving the adjoint systems) are
embarrassingly parallelisable, enabling easy deployment on HPC facilities if required.

Software: The algorithm has been implemented (for both the ODE and PDE problems) in a Python
module available at https://github.com/SheffieldML/advectionGP. The repository also contains Jupyter
notebooks that are used to produce the figures and tables in this paper.
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Checklist

1. For all authors...

(a)

(b)

(c)

(d)

Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The two main claims in the abstract and introduction
are (a) The application of the adjoint approach, which is described in[3|(b) The benefits
over, for example MCMC: Comparisons are made with MCMC. For example, Table/I]
and the relative times the two approaches took are discussed in Section[4.2]

Did you describe the limitations of your work? [Yes] In the introduction (Section [1|we
emphasise the approach is only for linear systems. In the discussion (Section P) we
raised the main issues around computational complexity.

Did you discuss any potential negative societal impacts of your work? [Yes] At the
start of Section [5| we briefly consider that, because this approach could improve source
attribution it might be used by a city authority to motivate policy interventions that are
discriminatory.

Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a)
(d)

Did you state the full set of assumptions of all theoretical results? [Yes] The three point
list in the introduction (Section|l) states the assumptions made.

Did you include complete proofs of all theoretical results? [Yes] We step through the
derivation of the inference approach in Section 3}

3. If you ran experiments...

(a)

(b)

(©)

(d)

Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We will link, in
the discussion, to the github repository from where the python module can be installed
and where jupyter notebooks (that made the figures etc) can be downloaded. The link
has been temporarily redacted to avoid breaking the double-blind review process.

Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The datasets were synthetic, but the hyperparameters, kernels, etc
that were used to both generate them and model them were recorded in the paper. For
example Section [.2]records the noise scale (¢ = 0.05), the kernel hyperparameters
(A = 2,72 = 2), the number of RFFs (M = 200) and the advection and diffusion
parameters.

Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] Although the actual inference is deterministic, a
stochastic aspect is caused by the sampling of the RFFs. Table [2| report the 95%
confidence intervals over the multiple runs.

Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Section@] includes detailed
runtime analysis of the adjoint approach and MCMC iterations.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(@)

(b)
(c)
(d)
(e)

If your work uses existing assets, did you cite the creators? [Yes] The algorithm as
implemented does not require auto-differentiation, and the MCMC implementation
does not use a library. The only tool we use is GPyOpt, which we cite.

Did you mention the license of the assets? [Yes] We included this information with the
reference in the bibliography.

Did you include any new assets either in the supplemental material or as a URL? [Yes]
We link to our code in the discussion.

Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] No data was used from people.

Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Only synethetic data was used in this paper.

5. If you used crowdsourcing or conducted research with human subjects...
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(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We didn’t use crowdsourced data or human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] We didn’t use crowdsourced data or
human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We didn’t use crowdsourced data or human
subjects.
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