
AI605: Deep Learning for NLP

Spring 2020

Homework #1

March 23, Due on April 1(Wed), 11:59pm (in Classum)

1. Written (45 points)

Suppose we have a center word c and a contextual window surrounding c. We shall refer to
words that lie in this contextual window as ‘outside words’ o. The goal of the skip-gram word2vec
algorithm is to accurately learn the probability distribution P (O | C). Given a particular word o
and a particular word c, we want to calculate P (O = o | C = c), which is the probability that word
o is and ‘outside’ word for c, i.e., the probability that o falls within the contextual window of c.
In word2vec, the conditional probability distribution is given by taking vector dot-products and
applying the softmax function as

P (O = o | C = c) =
exp

(
uT
o vc

)∑
w∈Vocabulary exp (uT

wvc)
(1)

Here, uo is the ‘outside’ vector representing the outside word o, and vc is the ‘center’ vector
representing the center word c. To contain these parameters, we have two matrices, U and V . The
columns of U are all the ’outside’ vectors uw. The columns of V are all of the ‘center’ vectors vw.
Both U and V contain a vector for every w ∈ Vocabulary . Recall from lectures that, for a single
pair of words c and o, the loss is given by

Jnaive-softmax (vc, o, U) = − logP (O = o | C = c) (2)

Another way to view this loss is the cross-entropy between the true distribution y and the predicted
distribution ŷ. Here, both y and ŷ are vectors with the length equal to the number of words in
the vocabulary. Furthermore, the kth entry in these vectors indicates the conditional probability of
the kth word being an outside word for the given c. The true empirical distribution y is a one-hot
vector with 1 for the true outside word o, and 0 everywhere else. The predicted distribution ŷ is
the probability distribution P (O | C = c) given by our model in Equation (1).

(a) (5 points) Show that the naive-softmax loss given in Equation (2) is the same as the cross-
entropy loss between y and ŷ; i.e., show that

−
∑

w∈Vocabulary

yw log (ŷw) = − log (ŷo) (3)

Your answer should be written in just one line.

(b) (5 points) Compute the partial derivative of Jnaive-softmax (vc, o, U) with respect to vc. Please
write your answer in terms of y, ŷ, and U .

(c) (5 points) From this derivation, we can obtain

∂

∂vc
logP (O = o | C = c) =

(
uo − Ep(w|c)uw

)
(4)

Give an intuitive explanation about the meaning of this gradient term when using it to update
vc.

(d) (optional, 5 points) Suppose we use just a single vector for each word, i.e., ui = vi, for
i = 1, ..., V , where V is the vocabulary size. Would it make the derivation of the gradient in
(b) easier or more difficult? Justify your answer, possibly by giving some high-level insights.

(e) (5 points) Compute the partial derivatives of Jnaive-softmax(vc, o, U) with respect to each of
the ’outside’ word vectors, uw’s. There will be two cases: when w = o, the true ’outside’ word
vector, and w 6= o, for all other words. Please write your answer in terms of y, ŷ, and vc.

(f) (5 points) The sigmoid function is given by

σ (x) =
1

1 + e−x
=

ex

ex + 1
(5)

Please compute the derivative of σ (x) with respect to x, where x is a scalar. Hint: you may
want to write your answer in terms of σ (x).

1



(g) (5 points) Now we shall consider the Negative Sampling loss, which is an alternative to the
Naive Softmax loss. Assume that K negative samples (words) are drawn from the vocabulary.
For simplicity of notation we shall refer to them as w1, . . . , wK and their outside vectors as
u1, . . . ,uK . Note that o /∈ {w1, . . . , wK} . For a center word c and an outside word o, the
negative sampling loss function is given by:

Jneg-sample (vc, o, U) = − log
(
σ
(
uT
o vc

))
−

K∑
k=1

log
(
σ
(
−uT

k vc

))
(6)

for a sample w1, . . . , wk where σ (· ) is the sigmoid function.

Please repeat parts (b) and (e), computing the partial derivatives of Jneg-sample with respect
to vc, with respect to uo, and with respect to negative sample uk. Please write your answers
in terms of the vectors uo, vc, and uk, where k ∈ [1,K] . After you’ve done this, describe with
one sentence why this loss function is much more efficient to compute than the naive-softmax
loss. Note, you should be able to use your solution to part (d) to help to compute the necessary
gradients here.

(h) (15 points) Suppose the center word is c = wt and the context window is [wt−w, . . . , wt−1, wt,
wt+1, . . . , wt+m], where m is the context window size. Recall that for the skip-gram version
of word2vec, the total loss for the context window is written as

J skip-gram (vc, wt−w, . . . , wt+m, U) =
∑

−m≤j≤m,j 6=0

J (vc, wt+j , U) (7)

Here, J (vc, wt+j , U) represents an arbitrary loss term for the center word c = wt and outside
word wt+j . J (vc, wt+j , U) could be Jnaive-softmax (vc, wt+j , U) or Jneg-sample (vc, wt+j , U),
depending on your implementation.

Write down three partial derivatives:

i. ∂J skip-gram (vc, wt−w, . . . , wt+m, U) /∂U

ii. ∂J skip-gram (vc, wt−w, . . . , wt+m, U) /∂vc

iii. ∂J skip-gram (vc, wt−w, . . . , wt+m, U) /∂vw when w 6= c

Write your answers in terms of ∂J (vc, wt+j , U) /∂U and ∂J (vc, wt+j , U) /∂vc. This is very
simple - each solution should be written in just one line.

2. Coding: Implementing word2vec (50 points)

In this part, you will pre-process sentences and train the word2vec model with your own word vectors
with stochastic gradient descent. Before you begin, first run the following commands within the
assignment directory in order to create the appropriate conda virtual environment. This guarantees
that you have all the necessary packages to complete the assignment.

conda env create -f env.yml

conda activate assn1

Once you are done with the assignment, you can deactivate this environment by running:

conda deactivate

You can also install required dependencies by pip3 installation. Your python version should be
upper than 3.6.

pip3 install -r requirements.txt

For each of the methods you need to implement, we included approximately how many lines of
code our solution has in the code comments. These numbers are included to guide you. You don’t
have to stick to them. Satisfying this given code length will be challenging but try to achieve it.
However, apart from your code lengths, your script should be efficient. If your code is fast enough,
you will get bonus scores on the implementation part.

� (3 points) We will start by preprocessing sentences of Multi30k dataset. All sentences are
stored in sentences.txt files and preprocessing functions are defined in dataset.py file.
Since the dataset is divided into sentence level, you first separate them into word level. This
preprocessing is called as tokenizing. Complete the function tokenize in dataset.py. Please
refer to the comments in the file for detailed description. When you are done, test your
implementation by running python dataset.py.

2



� (5 points) Since our implementation works with numbers, you should convert separated words
into unique numbers. To achieve this, you need functions that maps words to their numbers and
vice versa. Implement vocab builder that creates these functions from the given sentences.
Each vocabulary must have a unique number. In addition to mapper functions, you need to
change words with too few frequencies to <UNK> tokens to prevent overfitting. Also, since
the frequency of each word is required for negative sampling, this should also be implemented
here.

� (2 points) In order to train skipgram model, you need a function that extracts a center word
and its outside words from each sentence. Implement skipgram function that generates a
center word and list of its outside words when the sentence and the location of the center word
are given.

Now run dataset.py to check whether your database works well. It will show a sampled center
word index, outside word indices and negative indices. When you are done with the database, let’s
go to word2vec.py.

� (10 points) Implement naive softmax losses that calculate the näıve softmax losses between
a center word’s embedding and an outside word’s embedding. When using GPU, it is efficient
to perform a large calculation at once, so batching is used generally. In addition, using a large
batch size reduces the variance of samples in SGD, making training process more effective and
accurate. To practice this, let’s calculate batch-sized losses of skipgram at once. <PAD>
tokens are appended for batching if the number of outside words is less than 2 * window size.
However, these arbitarily inserted <PAD> tokens have no meaning so should NOT be included
in the loss calculation. When you are done, test your implementation by running python

word2vec.py.

� (10 points) Implement neg sampling loss to calculate the negative sampling loss. As same
with naive softmax loss, all inputs are batched.

When you are done with word2vec.py, now you are ready to train word2vec.

� (10 points) In the run.py, you can select naive softmax loss or negative sampling loss for
training. After you run the run.py, the script will finish and a visualization for your word
vectors will appear. It would be saved as word vectors.png in your project directory. Include
the plot in your homework write up. Briefy explain in at most three sentences what you see
in the each plot. Also compare the two methods and choose a better one, and describe why
you thought so.

� (10 points) If your code is fast enough, you will get extra performance points. We will check
out with our own GPUs. You could get this bonus scores unless your code is too slow.

3. Submission Instructions

Run the collect submission.sh script or manually zip the python files, png files, and word2vec.pth
to produce your assign1.zip file. Then, upload following files to following Classum link:https:
//tinyurl.com/kaistnlp2020.

(a) assign1 [student name] [student number].zip

(b) The report named ‘report1 [student name] [student number].pdf’. It should contain your
solutions about written problems and the implementation report.

3


