

000 001 002 003 004 005 DIRECT DOUBLY ROBUST ESTIMATION OF 006 CONDITIONAL QUANTILE CONTRASTS 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Within heterogeneous treatment effect (HTE) analysis, various estimands have been
032 proposed to capture the effect of a treatment conditional on covariates. Recently,
033 the *conditional quantile comparator* (CQC) has emerged as a promising estimand,
034 offering quantile-level summaries akin to the conditional quantile treatment effect
035 (CQTE) while preserving some interpretability of the conditional average treatment
036 effect (CATE). It achieves this by summarising the treated response conditional on
037 both the covariates and the untreated response. Despite these desirable properties,
038 the CQC’s current estimation is limited by the need to first estimate the difference
039 in conditional cumulative distribution functions and then invert it. This inversion
040 obscures the CQC estimate, hampering our ability to both model and interpret it.
041 To address this, we propose the first direct estimator of the CQC, allowing for
042 explicit modelling and parameterisation. This explicit parameterisation enables
043 better interpretation of our estimate while also providing a means to constrain
044 and inform the model. We show, both theoretically and empirically, that our
045 estimation error depends directly on the complexity of the CQC itself, improving
046 upon the existing estimation procedure. Furthermore, it retains the desirable double
047 robustness property with respect to nuisance parameter estimation. We further
048 show our method to outperform existing procedures in estimation accuracy across
049 multiple data scenarios while varying sample size and nuisance error. Finally, we
050 apply it to real-world data from an employment scheme, uncovering a reduced
051 range of potential earnings improvement as participant age increases.
052

053 1 INTRODUCTION

054 As data becomes more and more readily available, the demand for personalised treatments and inter-
055 ventions has increased dramatically. The statistical field addressing this challenge is heterogeneous
056 treatment effect (HTE) analysis in which one aims to learn the effect of a treatment on an outcome
057 or response conditional on key covariates (Hirano and Porter, 2009; Collins and Varmus, 2015;
058 Obermeyer and Emanuel, 2016; Lei and Candès, 2021).

059 A core strategy for the analysis of HTE data is to estimate key estimands that quantify the effectiveness
060 of a treatment given the covariates. The two commonly used estimands are the conditional average
061 treatment effect (CATE) (Abadie and Imbens, 2002; Imbens, 2004; Semenova and Chernozhukov,
062 2021) and the conditional quantile treatment effect (CQTE) (Abadie et al., 2002; Autor et al., 2017;
063 Powell, 2020) which represent the difference in the conditional mean and quantile of the response
064 respectively for the two treatments given the covariates. Both approaches have advantages: the CQTE
065 yields more granular treatment-effect summaries and is less sensitive to extreme values (Firpo, 2007;
066 Bitler et al., 2006), while the CATE provides a more interpretable estimand with stronger estimation
067 guarantees (Kennedy et al., 2023; Kennedy, 2023b; Nie and Wager, 2020).

068 A recently introduced estimand, the conditional quantile comparator (CQC) (Givens et al., 2024),
069 aims to bridge the gap between the CATE and the CQTE. The CQC does this by providing a transport
070 map between the conditional treated and untreated response distributions in a quantile preserving
071 manner. The definition of the CQC more naturally aligns with how treatment effects are discussed as
072 they are often talked about as either improving the response by a fixed amount or scaling the response
073 (e.g. a medicine increased life expectancy by 2 years or by 50%). This scaling can be expressed
074 naturally as a function of response while we would need to transform the input via the conditional
075 cumulative distribution function of the untreated response in order to express it as a function of the
076

054 associated quantile. Therefore in this case the CQC would be able to directly capture this effect
 055 helping better understand the treatment and its efficacy while the CATE and CQTE would likely have
 056 much more complex relationship for the CATE and CQTE. As the CQC shares properties with the
 057 CQTE it also shares its strengths. Namely it is useful in settings where our distribution is heavily
 058 skewed, such as platform use or income, as it allows us to make effective decision on which treatment
 059 is better without being heavily affected by a small number of extreme samples (Firpo, 2007; Belloni
 060 et al., 2017). In relation to this, it can also help with decision making in cases where we want to
 061 evaluate our treatment only for certain response values. For example if we want to evaluate some
 062 employment intervention on income for those on lower incomes (see our example in Section 5.)

063 In summary, this leads to the CQC being able to give information on the relationships between the
 064 treated and untreated distributions at all levels similarly to the CQTE, while having a more direct
 065 interpretation at the response level. The current estimation method for the CQC, introduced in Givens
 066 et al. (2024), involves estimating an intermediate estimand and then inverting this to obtain a CQC
 067 estimate. Despite having some strong theoretical guarantees, this framework does not enable direct
 068 modelling of the CQC itself. This in turn prevents the use of informative parameterisations and
 069 limits our ability to constrain or inform the model structure, such as by enforcing smoothness in
 070 nonparametric settings. This approach also hinders interpretability of the estimate as it can only be
 071 examined via evaluating it at various samples, a procedure which itself can be computationally costly.

072 In this paper, we provide the first direct estimator of the CQC which addresses these limitations.
 073 Crucially, our new approach allows the CQC to be explicitly parameterised. This enables us to
 074 enforce assumptions on the CQC via flexible techniques including linear parameterisation, neural
 075 networks, kernel bandwidth choice in nonparametric settings, and regularisation. This also enhances
 076 interpretability by allowing greater flexibility in model inspection. Finally, because our approach
 077 models the CQC directly, the estimation error depends on the complexity of the CQC itself, rather than
 078 that of an upstream intermediate function. Meanwhile, it retains the doubly robust property, ensuring
 079 accurate estimation of the CQC even when all nuisance parameters are estimated suboptimally.

080 To summarise, in this paper we:

- 081 • Provide the first direct CQC estimation procedure.
- 082 • Provide finite sample bounds on this estimation procedure.
- 083 • Illustrate the robustness of our estimator theoretically, and through numerical experiments.
- 084 • Show it to empirically outperform existing procedures in terms of estimation accuracy along
 085 various axes directly highlighting the advantage given by our explicit parameterisation.
- 086 • Illustrate its interpretability by applying it to real world problems and analysing the results.

089 2 PROBLEM FORMULATION

090 We first introduce the general HTE setting. Let Y, X, A be random variables each representing
 091 information about an individual in our treatment setting. Specifically we take Y (on $\mathcal{Y} \subseteq \mathbb{R}$) to give
 092 their univariate outcome/response; X (on $\mathcal{X} \subseteq \mathbb{R}^d$) to give their covariates of interest e.g. age, height,
 093 etc.; and A (on $\{0, 1\}$) to give their treatment assignment with 1 = Treatment and 0 = Control. Our
 094 overall aim is to understand the effect of treatment, A , on the response, Y , given the covariates, X .

095 We define $Z = (Y, X, A)$ and let $D := \{Z^{(i)}\}_{i=1}^{2n} \equiv \{(Y^{(i)}, X^{(i)}, A^{(i)})\}_{i=1}^{2n}$ for $n \in \mathbb{N}$ denote IID
 096 copies of Z representing our data sample with i indexing each sample/individual and $2n$ used for
 097 notational convenience. We assume that we are in the potential outcome framework so there exists
 098 $Y(1), Y(0)$ representing an individuals response both on and off treatment such that $Y \equiv Y(A)$.
 099 To allow our results to translate back to these potential outcomes we make the no unobserved
 100 confounding assumption given by the identity $(Y(0), Y(1)) \perp\!\!\!\perp A|X$. Crucially this means that
 101 $Y(a)|X = \mathbf{x}$ and $Y|X = \mathbf{x}, A = a$ are identically distributed for $\mathbf{x} \in \mathcal{X}, a \in \{0, 1\}$ (Rubin, 2005).

102 For $n \in \mathbb{N}$, let $[n] := \{1, \dots, n\}$. For a vector $\mathbf{w} \in \mathbb{R}^p$ let w_j to represent the j^{th} component of \mathbf{w}
 103 and let $\|\mathbf{w}\|$ be the Euclidean norm of \mathbf{w} unless otherwise specified. For a function $f : \mathbb{R} \times \mathcal{X} \rightarrow \mathbb{R}$,
 104 we let $\partial_y f(y, \mathbf{x})$ denote the partial derivative $\frac{\partial}{\partial y} f(y, \mathbf{x})$. Finally, as convention, for $a < b$ we take

$$\int_b^a f(x) dx = - \int_a^b f(x) dx = - \int_{[a, b]} f(x) dx.$$
 With this notation and basic treatment effect set-up
 105 introduced, we can now define key estimands used in our framework.

108 **Remark 1.** For simplicity, we will assume that response, Y , is continuous with strictly positive
 109 density when conditioned upon any covariate, X , and treatment, A .
 110

111 2.1 NUISANCE PARAMETERS AND KEY ESTIMANDS

112 We first define various *nuisance parameters*, which are additional distributional objects necessary
 113 for the estimation of our estimand. The three nuisance parameters of interest are the propensity
 114 score, $\pi : \mathcal{X} \rightarrow (0, 1)$, *conditional cumulative distribution function* (CCDF) of $Y|X, A, F_a$, and the
 115 *conditional quantile function* of $Y|X, A, F_a^{-1}$, each defined as

$$\pi(\mathbf{x}) := \mathbb{P}(A = 1|X = \mathbf{x}) \quad (1)$$

$$F_a(y|\mathbf{x}) := \mathbb{P}(Y \leq y|X = \mathbf{x}, A = a), \quad (2)$$

$$F_a^{-1}(\alpha|\mathbf{x}) := \inf\{y \in \mathbb{R} | F_a(y|\mathbf{x}) \geq \alpha\}. \quad (3)$$

120 for all $\mathbf{x} \in \mathcal{X}$ and $a \in \{0, 1\}$ and with π assumed to be continuous and bounded away from $\{0, 1\}$.
 121 The propensity score can be thought of as the probability of an individual being assigned to treatment
 122 given their covariates. Finally we take $p_a(\cdot|\mathbf{x})$ to represent the probability density function (pdf) of
 123 $Y|X = \mathbf{x}, A = a$. We can now introduce the core HTE estimands.

124 **Definition 1** (CATE, CQTE, CQC). *The CATE, CQTE and the CQC of the triple $Z = (Y, X, A)$ are
 125 given by $\tau : \mathcal{X} \rightarrow \mathbb{R}$, $\tau_q : [0, 1] \times \mathcal{X} \rightarrow \mathbb{R}$, and $g^* : \mathcal{Y} \times \mathcal{X} \rightarrow \mathcal{Y}$ respectively with*

$$\tau(\mathbf{x}) := \mathbb{E}[Y|X = \mathbf{x}, A = 1] - \mathbb{E}[Y|X = \mathbf{x}, A = 0],$$

$$\tau_q(\alpha|\mathbf{x}) := F_1^{-1}(\alpha|\mathbf{x}) - F_0^{-1}(\alpha|\mathbf{x}),$$

$$g^*(y_0|\mathbf{x}) := F_1^{-1}\{F_0(y_0|\mathbf{x})|\mathbf{x}\}.$$

131 Both the CATE and the CQTE aim to summarise the effect of the treatment by examining the
 132 difference in the outcome for the treated and untreated patients given specific covariate values. The
 133 CQTE offers added granularity by allowing the effect to be examined at specific quantiles rather than
 134 providing a single summary statistic per covariate value.

135 The CQC is the central focus of our work and differs from previous estimands by instead mapping an
 136 untreated response and covariate value to a treated response value (Givens et al., 2024). Specifically,
 137 it defines a transport map from the distributions of the untreated response to the equivalent quantile
 138 value of the treated response via conditional on the covariates. Previous work has demonstrated the
 139 CQC’s ability to provide granular quantile level summaries of the treatment effect similarly to the
 140 CQTE while framing the input more naturally in terms of an untreated response value as opposed to
 141 a quantile level. The CQC achieves this by providing summaries over multiple quantiles similarly to
 142 the CQTE and in fact has the relation that $\tau_q\{F_0(y_0|\mathbf{x})|\mathbf{x}\} = g(y_0|\mathbf{x}) - y_0$.

143 A key strength of the CQC working specifically in the response space, is that this more naturally
 144 mimics how the impact of a treatment or intervention is often characterised. Specifically the effect
 145 of a treatment is often expressed in terms of either the absolute effect (additive effect) or a scaling
 146 effect on the response itself (multiplicative effect.) If this impact is deterministic, the CQC will
 147 be able to represent these effects in a simple manner either of these effects while the CQTE may
 148 not. Figure 1 provides an example of this when the treatment doubles the response. We plot the
 149 CATE, CQTE and CQC and show that both the CATE and the CQTE contain complex high frequency
 150 changes not present in this treatment effect while the CQC does not. Specifically, the CQC will be
 151 $g^*(y_0|\mathbf{x}) = 2y_0$ regardless of the marginal distributions. This relative simplicity of the CQC not only
 152 improves interpretability but can also lead to more accurate estimation.

153 Optimal estimation of the estimands in Definition 1 has been the focus of much previous work
 154 (Robins et al., 2008; Shalit et al., 2017; Foster and Syrgkanis, 2023; Melnychuk et al., 2025; Sun and
 155 Xia, 2025). To achieve their optimal estimation, it is first necessary to estimate nuisance parameters,
 156 such as the propensity score and conditional cumulative distribution functions (CCDFs) in case
 157 of CQC estimation. Consequently, prior work has focused on developing methods that are robust
 158 to inaccuracies in these nuisance estimates. A notable class of such methods, known as *doubly
 159 robust* methods, can attain the desired overall convergence rate even when all nuisance parameter
 160 estimates converge at slower rates. Doubly robust methods have been introduced for each of the
 161 CATE (Kennedy et al., 2023; Kennedy, 2023b; Nie and Wager, 2020), CQTE (Kallus and Oprescu,
 162 2023), and CQC (Givens et al., 2024). We now introduce the existing doubly robust CQC estimation
 163 method, which serves as a point of comparison for our proposed approach.

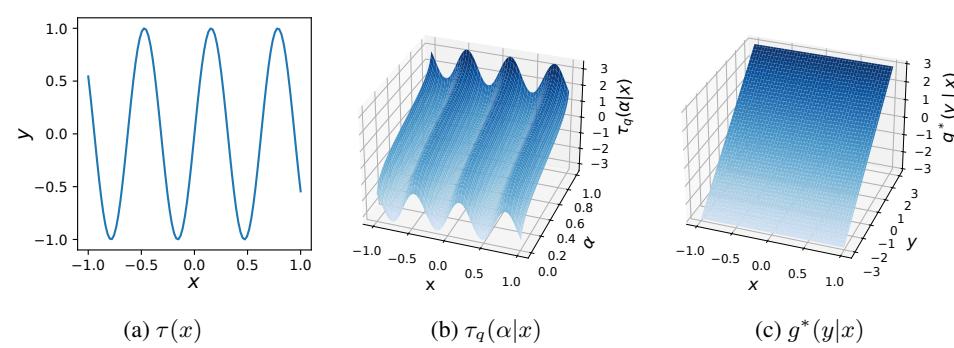


Figure 1: Surface plots for CATE (panel (a)), CQTE (panel (b)), and CQC (panel (c)) where $Y|X = x, A = 0 \sim N(\sin(10x), 1)$, $Y|X, A = 1 \sim N(2\sin(10x), 4)$. We can see that CATE, and CQTE have high-frequency changes in x while the CQC does not depend on x instead simply representing the doubling of the response as $g^*(y|x) = 2y$.

2.2 CURRENT CQC ESTIMATION

In Givens et al. (2024) a CQC estimation method was introduced which involved estimating an intermediary function called the *CCDF contrasting function* defined as

$$h(y_1, y_0, \mathbf{x}) = F_1(y_1|\mathbf{x}) - F_0(y_0|\mathbf{x}).$$

To obtain an estimate of $g^*(y_0|\mathbf{x})$ one would then have to estimate $h(y_1, y_0, \mathbf{x})$ over a large number of y_1 samples, isotonically project, and then choose the y_1 sample which gave h closest to 0. This approach has three main shortcomings:

1. Its lack of explicit form for our CQC estimate, \hat{g} , makes it harder to interpret and constrain.
2. Its estimation quality depends upon the difficulty of estimating h rather than our parameter of interest, g^* .
3. Its evaluation is computationally expensive especially when the estimate of h is expensive to evaluate (see Appendix D.3.3 for further exploration and experimental validation of this).

Remark 2. We view simplicity of the CQC as a more natural and easily satisfied notion than that of the CCDF contrasting function. See Appendix C.1 for further discussion and an illustrative example.

We now introduce our approach which directly estimates the CQC, thereby addressing these issues.

3 THE DIRECT CQC ESTIMATOR

Similarly to the existing approach, we can frame our estimation problem as finding y_1 for a given y_0, \mathbf{x} such that $h(y_1, y_0, \mathbf{x}) = F_1(y_1|\mathbf{x}) - F_0(y_0|\mathbf{x}) = 0$. While we could treat this as a Z-estimation problem, in order to extend this to learning a function over all y_0, \mathbf{x} , it is instead helpful to view it through this lens of M-estimation. To this end, since h is an increasing function of y_1 , any loss function $\bar{\ell}$ satisfying $\partial_{y_1} \bar{\ell}(y_1, y_0, \mathbf{x}) = h(y_1, y_0, \mathbf{x})$ will be minimised at the value of y_1 such that $h(y_1, y_0, \mathbf{x}) = 0$, our desired goal. Using this idea we now introduce our loss in Definition 2, justify it via Equation (4), and demonstrate its direct relation to CQC estimation error in Proposition 1.

Definition 2. For a parameter space $\Theta \subset \mathbb{R}^p$, let $\mathcal{G}_\Theta := \{g_\Theta : \mathcal{Y} \times \mathcal{X} \rightarrow \mathcal{Y} | \Theta \in \Theta\}$ be the set of parameterised CQC estimates. Additionally, for $y_0 \in \mathcal{Y}$, $\mathbf{x} \in \mathcal{X}$, $\Theta \in \Theta$, and Y_0 a RV over \mathcal{Y} , define

$$\begin{aligned} \bar{\ell}(y_1, y_0, \mathbf{x}) &:= \int_{g^*(y_0|\mathbf{x})}^{y_1} h(t, y_0, \mathbf{x}) dt & \ell(\Theta, y_0, \mathbf{x}) &:= \bar{\ell}\{g_\Theta(y_0|\mathbf{x}), y_0, \mathbf{x}\}. \\ L(\Theta) &:= \mathbb{E}[\ell(\Theta, Y_0, \mathbf{x})] & \tilde{\Theta} &:= \operatorname{argmin}_{\Theta \in \Theta} L(\Theta) \end{aligned}$$

In summary, evaluating $\bar{\ell}$ at the CQC estimate, $g_\Theta(y_0|\mathbf{x})$, yields the pointwise loss, $\ell(\Theta, y_0, \mathbf{x})$, whose expectation guides the estimation of Θ . Specifically we then have that

$$g^*(y_0|\mathbf{x}) = \operatorname{argmin}_{y_1} \bar{\ell}(y_1, y_0, \mathbf{x}). \quad (4)$$

This result follows from a simple application of the Fundamental Theorem of Calculus. A detailed proof is provided in Appendix A.1. Now, suppose there exists unique $\theta^* \in \Theta$ such that $g^* = g_{\theta^*}$ and $\text{supp}(Y_0|X = \mathbf{x}) = \mathcal{Y}$ for all $\mathbf{x} \in \mathcal{X}$ then, as θ^* minimises $\bar{\ell}\{g_{\theta}(y_0|\mathbf{x}), y_0, \mathbf{x}\}$ pointwise for all y_0, \mathbf{x} , we have that $\hat{\theta} = \theta^*$ i.e. our minimiser is the true parameter.

To further aid in the interpretation and justification of the loss function in Definition 2, including in cases where \mathcal{G}_{θ} does not contain the true CQC, we will provide various bounds on the loss function in Proposition 1. We do this via three different avenues, each requiring *separate* assumptions on the distribution of our treated response with varying levels of generality. While these bounds are helpful and illustrative, our loss is still justified even when none of these bounds hold.

Proposition 1. *For any $y \in \mathcal{Y}$, $\mathbf{x} \in \mathcal{X}$, and $\theta \in \Theta$ we have the following upper bound on the loss:*

$$\ell(\theta, y_0, \mathbf{x}) \leq |g_{\theta}(y_0|\mathbf{x}) - g^*(y_0|\mathbf{x})| |F_1\{g_{\theta}(y_0|\mathbf{x})|\mathbf{x}\} - F_1\{g^*(y_0|\mathbf{x})|\mathbf{x}\}|.$$

Under various conditions we have the following three lower bounds on the loss:

(a) *Suppose that $p_1(y|\mathbf{x}) \leq \xi_1$ for all y, \mathbf{x} , then*

$$(F_1\{g_{\theta}(y_0|\mathbf{x})|\mathbf{x}\} - F_1\{g^*(y_0|\mathbf{x})|\mathbf{x}\})^2 \leq 2\xi_1 \ell(\theta, y_0, \mathbf{x}).$$

(b) *Suppose that $p_1(y|\mathbf{x}) \geq \xi_2$ for all y, \mathbf{x} , then $\xi_2\{g_{\theta}(y_0|\mathbf{x}) - g^*(y_0|\mathbf{x})\}^2 \leq 2\ell(\theta, y_0, \mathbf{x})$.*

(c) *Suppose that $p_1(y|\mathbf{x})$ is an decreasing function of y , then*

$$|g_{\theta}(y_0|\mathbf{x}) - g^*(y_0|\mathbf{x})| |F_1\{g_{\theta}(y_0|\mathbf{x})|\mathbf{x}\} - F_1\{g^*(y_0|\mathbf{x})|\mathbf{x}\}| \leq 2\ell(\theta, y_0, \mathbf{x}).$$

The proof is given in Appendix A.1.1.

Error terms involving both $|g_{\theta}(y_0|\mathbf{x}) - g^*(y_0|\mathbf{x})|$ and $|F_1\{g_{\theta}(y_0|\mathbf{x})|\mathbf{x}\} - F_0\{g^*(y_0|\mathbf{x})|\mathbf{x}\}|$ are natural as the first represents the error on our estimator while the second is the error of our estimator when mapped on to probability space. The assumption in (a) covers many common distributions with densities bounded above. The assumption in (b) applies to many bounded-support distributions such as the Beta. The final case is less common but holds for some distributions, e.g., the exponential, and has been studied in density estimation (Birge, 1989).

3.1 OUR ESTIMATOR

While the above results justify our loss ℓ in Definition 2, they do not give us any approach to evaluate or even approximate it. To achieve this we return back to the derivative of $\bar{\ell}$ (also given in Definition 2) with which we initially motivated our approach. To this end, with $\mathbf{z} := (y, \mathbf{x}, a)$, define

$$\zeta_{\text{dr}}(\theta, y_0, \mathbf{z}) := \nabla_{\theta} g_{\theta}(y_0|\mathbf{x}) \left(\frac{a}{\pi(\mathbf{x})} \{1\{y \leq g_{\theta}(y_0|\mathbf{x})\} - F_1(g_{\theta}(y_0|\mathbf{x})|\mathbf{x})\} - \right. \quad (5)$$

$$\left. \frac{1-a}{1-\pi(\mathbf{x})} \{1\{y \leq y_0\} - F_0(y_0|\mathbf{x})\} + F_1(y_1|\mathbf{x}) - F_0(y_0|\mathbf{x}) \right)$$

$$J(\theta) := \mathbb{E}[\zeta_{\text{dr}}(\theta, Y_0, Z)]. \quad (6)$$

We then have the following proposition.

Proposition 2. *For $y_0 \in \mathcal{Y}$, $\mathbf{x} \in \mathcal{X}$, and $\theta \in \Theta$ we have that*

$$\mathbb{E}[\zeta_{\text{dr}}(\theta, y_0, Z)|X = \mathbf{x}] = \nabla_{\theta} \ell(\theta, y_0, \mathbf{x}) \text{ and } J(\theta) = \nabla_{\theta} L(\theta).$$

The proof can be found in Appendix A.1.

Remark 3. *While an inverse probability weighting approach could instead be used to approximate $\nabla_{\theta} \ell$, this form of ζ provides the desirable double robustness property, as we will demonstrate later.*

Remark 4. *While this only gives us a gradient of a loss function rather than the loss function itself we discuss how an estimate of the loss itself can be derived via 1D quadrature for validation and hyper parameter selection purposes in Appendix B.2.*

This result allows us to use ζ_{dr} and samples from Z to perform gradient descent on the sample version of $L(\theta)$. In practice, we do not have access to F_a, π and so will replace these with estimates

given by $\widehat{F}_a, \widehat{\pi}$. We use $\widehat{\zeta}_{\text{dr}}$ to represent the version of ζ_{dr} with F_a, π replaced by $\widehat{F}_a, \widehat{\pi}$. With data, $D = \{Z^{(i)}\}_{i=1}^n$, and testing points $\{Y_0^{(i)}\}$, we define our Monte-Carlo estimate of the gradient to be

$$\hat{J}_{\text{dr}}(\boldsymbol{\theta}, \{(Y_0^{(i)}, Z^{(i)})\}_{i=1}^n) := \frac{1}{n} \sum_{i=1}^n \widehat{\zeta}_{\text{dr}}(\boldsymbol{\theta}, Y_0^{(i)}, Z^{(i)}). \quad (7)$$

This finally allows us to define our estimation procedure which is presented in Algorithm 1.

Algorithm 1 Doubly robust, direct CQC estimation algorithm

Require: $D = \{Z^{(i)}\}_{i=1}^{2n}, \mathcal{G}_{\boldsymbol{\theta}}, \boldsymbol{\theta}^{(0)}, T \in \mathbb{N}, \mu > 0$

- 1: Define $\mathcal{I} := \{1, \dots, n\}$, $\mathcal{J} := \{n+1, \dots, 2n\}$ and split D into $D_{\mathcal{I}} := \{Z^{(i)}\}_{i \in \mathcal{I}}, D_{\mathcal{J}} := \{Z^{(j)}\}_{j \in \mathcal{J}}$.
- 2: Use $D_{\mathcal{I}}$ to estimate $\widehat{\pi}, \widehat{F}_0, \widehat{F}_1$
- 3: Set $\boldsymbol{\theta} = \boldsymbol{\theta}_0$.
- 4: **for** $t = 1$ **to** T **do**
- 5: For $i \in \mathcal{J}$ sample $Y_0^{(i)}$ (potentially dependent upon $X^{(i)}$). See Remark 6 for more detail.
- 6: Obtain our Monte-Carlo estimate $J(\boldsymbol{\theta}^{(t)})$ given by $\hat{J}_{\text{dr}}(\boldsymbol{\theta}, \{(Y_0^{(i)}, Z^{(i)})\}_{i \in \mathcal{J}})$ in (7).
- 7: Update $\boldsymbol{\theta}$ by $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \mu \hat{J}(\boldsymbol{\theta}^{(t)})$.
- 8: **end for**
- 9: **return** $\boldsymbol{\theta}^{(T)}$.

Remark 5. In practice, we can replace step 7 of Algorithm 1 with any exclusively gradient-based (stochastic or otherwise) optimisation procedure such as Adam (Kingma and Ba, 2015).

Remark 6. We can choose our distribution over Y_0 relatively flexibly as this simply defines the test points for our CQC function (similarly to choosing the quantile level α in CQTE estimation). We commonly take $Y_0 \sim Y|A = 0$ with $Y_0 \perp Z$ by simply choosing random untreated responses for each sample. Thus testing our CQC at typical Y_0 values. An experiment testing this choice is given in Appendix D.5.

Due to its more direct nature, this estimation procedure solves all three problems of the previous inversion approach discussed in Section 2.2. Crucially, its explicit parameterisation of the CQC allows us to inform and constrain our model, as well as making our model more interpretable and significantly faster to sample from. In addition, since the estimation procedure operates directly on $g_{\boldsymbol{\theta}}$, we might naturally suspect its accuracy to depend upon the complexity of the underlying CQC. We might also hope it retains the double-robustness property present in the previous approach. Below, we show that both of these properties hold.

3.2 ACCURACY RESULTS

As we intend to use gradient descent for our minimisation, a natural question is when is this procedure guaranteed to converge and at what rate does this convergence occur. We now make some restrictions on our model architecture which allow us to achieve this.

Assumption 1. For all $y_0 \in \mathcal{Y}, \mathbf{x} \in \mathcal{X}, \boldsymbol{\theta} \in \Theta$:

- (a) $a < \widehat{\pi}(\mathbf{x}) < 1 - a$ for some $a > 0$.
- (b) $g_{\boldsymbol{\theta}}$ is of the form $g_{\boldsymbol{\theta}}(y_0|\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{f}(y_0, \mathbf{x})$ for some feature function $\mathbf{f} : \mathcal{Y} \times \mathcal{X} \rightarrow \mathbb{R}^p$.
- (c) $\|\mathbf{f}(y_0, \mathbf{x})\| \leq \rho$ for some $\rho > 0$.

Assumption 1(a) assumes that we can bound our estimated propensity away from $\{0, 1\}$, this is a common assumption within HTE literature and is not very restrictive due to the true propensity already being assumed to be bounded away from $\{0, 1\}$. Assumption 1(b) enforces convexity of our loss function w.r.t. $\boldsymbol{\theta}$ and bears similarity to the linear smoother framework used in Kallus and Oprescu (2023); Kennedy (2023a). Importantly, this assumption does not confine us to linear CQC functional estimates as the form of \mathbf{f} can be chosen freely, enabling the use of kernel methods via random Fourier features (Avron et al., 2017; Liu et al., 2022; Rahimi and Recht, 2007) and other general architectures. Assumption 1(c) is required in order to control the rate at which our CQC estimate changes with respect to our parameter $\boldsymbol{\theta}$.

324 **Theorem 3.** Let $\tilde{\theta}$ be the minimiser of our population loss as given in Definition 2. Suppose that
 325 Assumption 1 holds and that $\|\tilde{\theta}\| \leq B$ for some $B > 0$. For $t \in [n]$, define $\theta^{(t)}$ inductively by
 326 $\theta^{(1)} = \mathbf{0}$, $\theta^{(t+\frac{1}{2})} = \theta^{(t)} - \mu_t v^{(t)}$, and $\theta^{(t+1)} = \operatorname{argmin}_{\theta: \|\theta\| \leq B} \|\theta - \theta^{(t+\frac{1}{2})}\|$, with, $\mu_t = \frac{Bc}{2\rho\sqrt{n}}$,
 327 and $v^{(t)} := \hat{\zeta}(\theta^{(t)}, Y_0^{(t)}, Z^{(t)})$. Finally, define our parameter estimate as $\hat{\theta} = \frac{1}{n} \sum_{t=1}^n \theta^{(t)}$. Then, if
 328 $\hat{\pi}, \hat{F}_a$ are independent of $\left\{ \left(Y_0^{(t)}, Z^{(t)} \right) \right\}_{t=1}^n$, we have that
 329

$$331 \mathbb{E}[L(\hat{\theta}) - L(\tilde{\theta})] \leq C_1 \left(1/\sqrt{n} + \varepsilon(\hat{\pi}, \hat{F}_0, \hat{F}_1) \right) \quad \text{with} \quad (8)$$

$$333 \varepsilon(\hat{\pi}, \hat{F}_0, \hat{F}_1) := \sqrt{\mathbb{E} \left[\left(\pi(X) - \hat{\pi}(X) \right)^2 \right] \mathbb{E} \left[\sup_{y_0 \in \mathcal{Y}, a \in \{0,1\}} \left(F_a(y_0|X) - \hat{F}_a(y_0|X) \right)^2 \right]} \quad (9)$$

336 where C_1 is a constant depending upon, B, c, ρ . Suppose further that the assumption in Proposition
 337 1(b) holds and that $\mathbb{E}[\mathbf{f}(Y_0, X) \mathbf{f}(Y_0, X)^\top] \geq \eta_2$. If we instead take $\mu_t = \frac{1}{\xi_2 \eta_2 n}$ then we have that
 338

$$339 \mathbb{E}[L(\hat{\theta}) - L(\tilde{\theta})] \leq C_2 \left(\log(n)/n + \varepsilon(\hat{\pi}, \hat{F}_0, \hat{F}_1) \right) \quad (10)$$

340 where C_2 is a constant depending upon, $B, c, \rho, \xi_2, \eta_2$.

341 The proof is provided in Appendix A.2. An additional result giving high probability bounds of the
 342 same rate as (8) is given by Proposition 11 in Appendix A.2.4. The requirement for the nuisance
 343 parameter estimates to be independent of the data used for fitting the CQC motivates the sample-
 344 splitting procedure in Algorithm 1. One could instead use a cross-fitting approach after sample-
 345 splitting and average the two CQC estimates which would lead to comparable theoretical results.

346 Regarding the result, first we see that in both (8) & (10) we have *double robustness*. This is because
 347 both of the nuisance parameter estimators can converge *slower* than the leading term in the error
 348 while not affecting the overall convergence rate due to said errors multiplying. This is similar to other
 349 doubly robust approaches which have been presented for the CATE (Kennedy, 2023b), CQTE (Kallus
 350 and Oprescu, 2023), and CQC (Givens et al., 2024) which all also derive their robustness results via a
 351 product of errors over the nuisance parameters. For the second result our requirement on the nuisance
 352 parameter estimation is stronger however as we need to obtain $\log(n)/n$ convergence on the product
 353 of the nuisance parameter estimates.

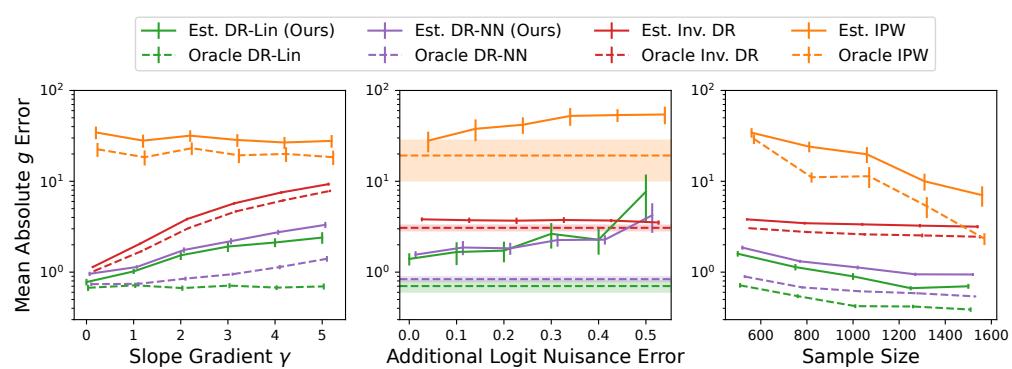
354 We also note that when our density is bounded below as in the second result, if $\tilde{\theta} = \theta^*$ where
 355 $g_{\theta^*} = g^*$, we have (using Proposition 1) that $\mathbb{E}[\{g_{\tilde{\theta}}(Y_0|X) - g^*(Y_0|X)\}^2] \leq \mathbb{E}[L(\hat{\theta}) - L(\tilde{\theta})]$.
 356 Hence if the nuisance term converges at the same rate as the leading term we get a convergence
 357 rate on the root mean square error (RMSE) of our CQC estimate of order $1/\sqrt{n}$ which is desirable.
 358 Furthermore from Assumption 1 (c) this gives convergence of $\hat{\theta}$ to $\tilde{\theta}$ of $1/\sqrt{n}$ as well.

361 4 SIMULATED RESULTS

362 We now illustrate the advantages of our approach by comparing it to two alternatives across mul-
 363 tiple dimensions. First, we evaluate it against the previously proposed inverting CQC estimation
 364 method from Givens et al. (2024) (labelled "Inv. DR") to highlight the benefits of our direct CQC
 365 parameterisation. Second, we compare it to an inverse probability weighting (IPW) variant of our
 366 method, where ζ_{dr} is replaced by its IPW counterpart (labelled "IPW"; see Appendix B.1 for details),
 367 to demonstrate the gains from our double robustness. For each method we present an oracle version
 368 which uses the exact nuisance parameters (F_a, π) and an estimated version that uses their estimated
 369 equivalents. Further details can be found in Appendix C.2. Further comparisons to the S-Learner
 370 approach, where \hat{F}_0, \hat{F}_1 are used to directly produce our CQC estimate are given in Appendix D.

371 Throughout each experiment, we take $X \sim N(0, I_d)$ for $d = 10$, $Y|X = \mathbf{x}, A = a \sim N(\sin(\pi \mathbf{v}^\top \mathbf{x}) +$
 372 $a\gamma \mathbf{v}^\top \mathbf{x}, 1)$ and $\pi(\mathbf{x}) = \sigma(\mathbf{v}^\top \mathbf{x})$ where \mathbf{v} is a random vector in \mathbb{R}^d with $\|\mathbf{v}\| = \sqrt{d}$, σ is the sigmoid
 373 function, and $\gamma > 0$ can be varied. The sine term represents complexity in the marginal distributions
 374 as this an oscillating nonlinear change in the distribution. We thus have that the CCDFs contain the
 375 oscillating sine dependency over \mathbf{x} while the CQC itself does not, simply being $g^*(y_0|\mathbf{x}) = \gamma \mathbf{v}^\top \mathbf{x}$.

376 We test two distinct models for the CQC. The first, "DR-Lin", is a correctly specified linear model
 377 where we take $g_{\theta}(y_0|\mathbf{x}) = (\theta_{sc}^\top \mathbf{x} + \theta_{sc,0})(y_0) + (\theta_{sh}^\top \mathbf{x} + \theta_{sh,0})$ so that θ_{sc}, θ_{sh} represent the scaled



(a) Varying CQC slope steepness w.r.t. x with sample size 500. (b) Varying nuisance parameter error with sample size 500 and $\gamma = 2$. (c) Varying sample size with $\gamma = 2$

Figure 2: Mean absolute error of CQC estimate for various methods with 95% C.I.s over 100 runs.

and shift components of the CQC respectively. The second, ‘‘DR-NN’’ is a full connected Neural Network (NN) with ReLU activations and 2 hidden layers each of width 20.

We fit the propensity score via logistic regression and the CCDFs using kernel CCDF estimation in order to effectively model the sine terms. For each of the following experiments, 100 runs are repeated and mean absolute error of our CQC estimate alongside 95% confidence intervals are presented. Code to reproduce all experiments is provided in the Supplementary Materials. Further experiments with different distributional settings are given in Appendix D.1 and experiments exploring sensitivity of performance to hyperparameters are given in Appendix D.3.

4.1 INCREASING STEEPNESS OF THE CQC

For the first experiment we increase γ to increase the slope of the CQC. As our current approach is able to model the CQC directly as a linear function, it should be minimally affected by the increase in slope while methods which cannot model this linearity will struggle. Figure 2a shows that our directly parameterised approach (Est. DR-Lin) does indeed perform stronger especially at larger slopes. We see that our NN approach also performs comparably to the linear model. While our estimated versions (Est. DR-Lin/NN) are somewhat worse than their oracle counterparts, they still outperform the oracle inverting method.

4.2 INCREASING THE ERROR OF NUISANCE PARAMETERS

We further investigate how errors in nuisance parameter estimation affect our estimator’s accuracy. To do this, we add increasing levels of biased, random noise to the logits of the original nuisance parameter estimates. Results are shown in Figure 2b. We observe that both parameterisations of our method (Est. DR-Lin, Est. DR-NN) perform strongest with the linear model performing marginally better. We also see that the inverting approach (Est. Inv. DR) performs well under increasing nuisance parameter error. Interestingly, the inverting estimator appears somewhat less sensitive to this error than our approach. Nonetheless, our gradient-based approaches (Est. DR-Lin/NN) perform comparably or better across almost all levels of added noise. Additional experiments estimating each nuisance parameter separately is given in Appendix D.4.

4.3 INCREASING SAMPLE SIZE

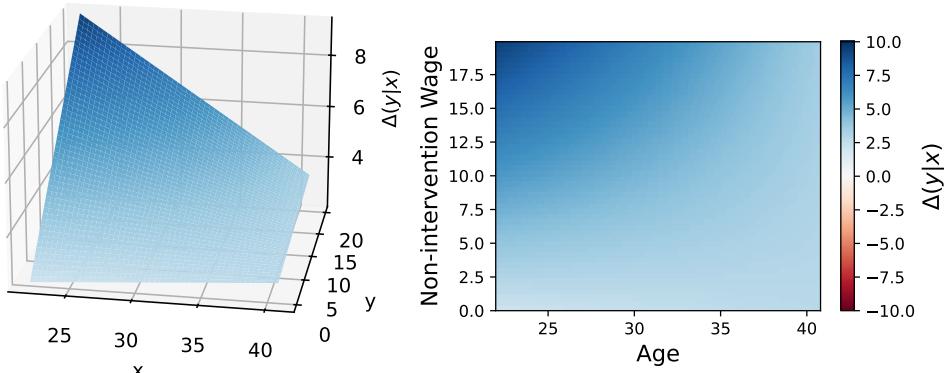
Finally we plot the error of these estimation procedures over various sample sizes which can be found in Figure 2c. We can see that, once again, our approach performs best, achieving the lowest mean error across all sample sizes and demonstrating consistent improvement as sample size increases.

To summarise, across all our results we see that our approach is the strongest for both a linear and NN based CQC model with substantial gains over the existing inverting approach especially when the slope of the CQC is larger. We see that the linear CQC model is marginally stronger than the NN model throughout which we would expect due to it encompassing the true CQC while being a simpler model. Overall, these results are promising as they suggest that not only is our approach strong, but it maintains much of this strength even when we do not know the explicit parametric form of the CQC.

432 5 REAL WORLD SETTING

434 We also apply our results to real world data to demonstrate their interpretability. Here we look at an
 435 employment example which has been studied in multiple heterogeneous treatment effect examples
 436 (Autor and Houseman, 2010; Autor et al., 2017; Powell, 2020; Givens et al., 2024). Here, the
 437 intervention ($A = 1$) corresponds to enrolment in an employment programme, and the outcome (Y)
 438 represents total earnings in a two-year period in thousands of dollars.

439 For our estimation, we use the linear CQC model described in Section 4. We then subtract y_0 from
 440 $\hat{g} = g_{\hat{\theta}}$, to estimate $\Delta(y_0|x) := g^*(y_0|x) - y_0$. This enables easier interpretation as positive and
 441 negative values of Δ are associated with benefit and detriment of the intervention respectively.



455 Figure 3: Surface and heat plot of $\Delta^*(y|x)$ for our employment data with $X = \text{Age}$, $Y = \text{Income}$.

456
 457
 458 Figure 3 shows this estimate for various values of (y, x) . From these results we see an interesting
 459 pattern. Across all ages, the intervention had the most impact for those with high non-intervention
 460 earnings. The change in wage improvement as a function of non-intervention wages seems to decrease
 461 as age increases however. In other words for younger participants, the distribution of wages seems
 462 to multiplicatively scale while for older participants, the impact of treatment seems to be better
 463 represented by a more uniform shift. We examine the parameters of our estimate directly in Appendix
 464 D.6. Another example examining the effect of a treatment on colon cancer remission is presented in
 465 Appendix D.7 where we use a neural network (NN) to model a nonlinear CQC function.

466 6 LIMITATIONS AND FUTURE WORK

467 One limitation of our approach is that while our direct estimator performs best overall, there is
 468 evidence to suggest it is practically more sensitive to nuisance parameter estimation error than the
 469 existing inversion based estimation approach. This is somewhat mirrored in Theorem 3, where our
 470 double robustness is with respect to error on our loss function rather than directly on error of the
 471 CQC. Future work could investigate these two properties and their relationship more thoroughly, with
 472 the potential to improve upon them further.

473 Additionally, while our estimator is direct in terms of exclusively estimating our estimand of interest,
 474 it does not have the form of estimating the estimand through a conditional expectation as is common
 475 for other estimators (e.g. Kennedy (2023b); Kallus and Oprescu (2023).) Such an estimator then has
 476 the advantage of being estimable by various non-parametric procedures for conditional expectation
 477 estimation while also being estimable parametrically via least squares. It also has the advantage
 478 of giving accuracy results directly in terms of the estimand of interest which we are only able to
 479 do under certain settings. As such, a future direction would be to explore whether a doubly robust
 480 estimator of this form could be produced for the CQC.

481 Finally, while our current convergence results apply to a good number of parametric and nonparametric
 482 CQC models, later work could expand these results to CQC estimates which are not linear with
 483 respect to their parameters, such as NNs (Shi et al., 2019) or Bayesian additive regression trees (Hill,
 484 2011; Green and Kern, 2012; Künzel et al., 2019).

486 **7 CONCLUSION**

487

488 To conclude, we have proposed the first direct estimation procedure for the CQC, an estimand which
 489 aims to bridge the gap between the CATE and the CQTE. We have demonstrated the efficacy of
 490 this new estimation procedure both theoretically and empirically, showing it to outperform existing
 491 approaches. Furthermore, we have highlighted its ability to allow for direct parameterisation of the
 492 CQC and demonstrated its benefit in terms of both empirical performance and interpretability in
 493 real-world scenarios. Overall, this represents an improvement over existing CQC methods, further
 494 enhancing the utility and real-world applicability of this emerging treatment effect estimand.

495

496 **REFERENCES**

497

498 Abadie, A., Angrist, J., and Imbens, G. (2002). Instrumental variables estimates of the effect of
 499 subsidized training on the quantiles of trainee earnings. *Econometrica*, 70(1):91–117.

500 Abadie, A. and Imbens, G. W. (2002). Simple and bias-corrected matching estimators for average
 501 treatment effects. Working Paper 283, National Bureau of Economic Research. Series: Technical
 502 working paper series.

503 Autor, D. H. and Houseman, S. N. (2010). Do temporary-help jobs improve labor market outcomes
 504 for low-skilled workers? Evidence from "Work First". *American Economic Journal: Applied
 505 Economics*, 2(3):96–128.

506 Autor, D. H., Houseman, S. N., and Kerr, S. P. (2017). The effect of work first job placements on the
 507 distribution of earnings: An instrumental variable quantile regression approach. *Journal of Labor
 508 Economics*, 35(1):149–190.

509 Avron, H., Kapralov, M., Musco, C., Musco, C., Velingker, A., and Zandieh, A. (2017). Random
 510 Fourier features for kernel ridge regression: Approximation bounds and statistical guarantees. In
 511 Precup, D. and Teh, Y. W., editors, *Proceedings of the 34th International Conference on Machine
 512 Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 253–262. PMLR.

513 Belloni, A., Chernozhukov, V., Fernández-Val, I., and Hansen, C. (2017). Program Evaluation and
 514 Causal Inference with High-dimensional Data. *Econometrica*, 85(1):233–298. Publisher: [Wiley,
 515 The Econometric Society].

516 Birge, L. (1989). The Grenader Estimator: A Nonasymptotic Approach. *The Annals of Statistics*,
 517 17(4).

518 Bitler, M. P., Gelbach, J. B., and Hoynes, H. W. (2006). What mean impacts miss: Distributional
 519 effects of welfare reform experiments. *American Economic Review*, 96(4):988–1012.

520 Collins, F. S. and Varmus, H. (2015). A new initiative on precision medicine. *The New England
 521 journal of medicine*, 372(9):793–795. Place: United States.

522 Firpo, S. (2007). Efficient semiparametric estimation of quantile treatment effects. *Econometrica :
 523 journal of the Econometric Society*, 75(1):259–276.

524 Foster, D. J. and Syrgkanis, V. (2023). Orthogonal statistical learning. arXiv: 1901.09036 [math.ST].

525 Givens, J., Reeve, H. W. J., Liu, S., and Reluga, K. (2024). Conditional outcome equivalence: a
 526 quantile alternative to CATE. In Globerson, A., Mackey, L., Belgrave, D., Fan, A., Paquet, U.,
 527 Tomczak, J., and Zhang, C., editors, *Advances in neural information processing systems*, volume 37,
 528 pages 102634–102671. Curran Associates, Inc.

529 Green, D. P. and Kern, H. L. (2012). Modeling heterogeneous treatment effects in survey experiments
 530 with bayesian additive regression trees. *Public Opinion Quarterly*, 76(3):491–511. tex.eprint:
 531 <https://academic.oup.com/poq/article-pdf/76/3/491/5350131/nfs036.pdf>.

532 Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. *Journal of Computational
 533 and Graphical Statistics*, 20(1):217–240.

534 Hirano, K. and Porter, J. R. (2009). Asymptotics for statistical treatment rules. *Econometrica*,
 535 77(5):1683–1701. Publisher: [Wiley, The Econometric Society].

540 Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: a
 541 review. *The Review of Economics and Statistics*, 86(1):4–29.
 542

543 Kallus, N. and Oprescu, M. (2023). Robust and agnostic learning of conditional distributional
 544 treatment effects. In Ruiz, F., Dy, J., and van de Meent, J.-W., editors, *Proceedings of the 26th*
 545 *international conference on artificial intelligence and statistics*, volume 206 of *Proceedings of*
 546 *machine learning research*, pages 6037–6060. PMLR.

547 Kennedy, E. H. (2023a). Semiparametric doubly robust targeted double machine learning: A review.
 548

549 Kennedy, E. H. (2023b). Towards optimal doubly robust estimation of heterogeneous causal effects.
 550 *Electronic Journal of Statistics*, 17(2):3008 – 3049. Institute of Mathematical Statistics and
 551 Bernoulli Society.

552 Kennedy, E. H., Balakrishnan, S., Robins, J. M., and Wasserman, L. (2023). Minimax rates for
 553 heterogeneous causal effect estimation.
 554

555 Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y. and
 556 LeCun, Y., editors, *3rd international conference on learning representations, ICLR 2015, san diego,*
 557 *CA, USA, may 7-9, 2015, conference track proceedings*. tex.bibsource: dblp computer science
 558 bibliography, <https://dblp.org> tex.timestamp: Thu, 25 Jul 2019 14:25:37 +0200.

559 Künzel, S. R., Sekhon, J. S., Bickel, P. J., and Bin Yu (2019). Metalearners for estimating heteroge-
 560 neous treatment effects using machine learning. *Proceedings of the National Academy of Sciences*,
 561 116(10):4156–4165.
 562

563 Laurie, J. A., Moertel, C. G., Fleming, T. R., Wieand, H. S., Leigh, J. E., Rubin, J., McCormack,
 564 G. W., Gerstner, J. B., Krook, J. E., and Malliard, J. (1989). Surgical adjuvant therapy of large-
 565 bowel carcinoma: an evaluation of levamisole and the combination of levamisole and fluorouracil.
 566 The North Central Cancer Treatment Group and the Mayo Clinic. *Journal of clinical oncology*,
 567 7(10):1447–1456. Place: United States.

568 Lei, L. and Candès, E. J. (2021). Conformal inference of counterfactuals and individual treatment
 569 effects. *Journal of the Royal Statistical Society, Series B*, 83(5):911–938.
 570

571 Liu, F., Huang, X., Chen, Y., and Suykens, J. A. K. (2022). Random features for kernel approximation:
 572 A survey on algorithms, theory, and beyond. *IEEE Transactions on Pattern Analysis and Machine*
 573 *Intelligence*, 44(10):7128–7148.

574 Melnychuk, V., Frauen, D., Schweisthal, J., and Feuerriegel, S. (2025). Orthogonal representation
 575 learning for estimating causal quantities. arXiv: 2502.04274 [cs.LG].
 576

577 Nie, X. and Wager, S. (2020). Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika*,
 578 108(2):299–319.
 579

580 Obermeyer, Z. and Emanuel, E. J. (2016). Predicting the Future - Big Data, Machine Learning, and
 581 Clinical Medicine. *The New England journal of medicine*, 375(13):1216–1219. Place: United
 582 States.

583 Powell, D. (2020). Quantile Treatment Effects in the Presence of Covariates. *The Review of Economics*
 584 *and Statistics*, 102(5):994–1005.
 585

586 Rahimi, A. and Recht, B. (2007). Random Fourier features for kernel ridge regression: Approximation
 587 bounds and statistical guarantees. In *Advances in Neural Information Processing Sys- tems (NIPS)*,
 588 volume 20. Curran Associates, Inc.

589 Robins, J., Li, L., Tchetgen, E., and van der Vaart, A. (2008). Higher order influence functions and
 590 minimax estimation of nonlinear functionals. In *Probability and statistics: essays in honor of*
 591 *David A. Freedman*, Inst. Math. Stat. Collect., pages 335–421. Inst. Math. Statist. Number: 2.
 592

593 Rubin, D. B. (2005). Causal inference using potential outcomes. *Journal of the American Statistical*
 594 *Association*, 100(469):322–331.

594 Semenova, V. and Chernozhukov, V. (2021). Debiased machine learning of conditional average
595 treatment effects and other causal functions. *The Econometrics Journal*, 24(2):264–289.
596

597 Shalev-Shwartz, S. and Ben-David, S. (2014). Stochastic Gradient Descent. In *Understanding
598 Machine Learning: From Theory to Algorithms*, pages 150–166. Cambridge University Press.
599

600 Shalit, U., Johansson, F. D., and Sontag, D. (2017). Estimating individual treatment effect: gener-
601 alization bounds and algorithms. In Precup, D. and Teh, Y. W., editors, *Proceedings of the 34th
602 international conference on machine learning*, volume 70 of *Proceedings of machine learning
603 research*, pages 3076–3085. PMLR.
604

605 Shi, C., Blei, D., and Veitch, V. (2019). Adapting neural networks for the estimation of treatment
606 effects. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., and Garnett, R.,
607 editors, *Advances in neural information processing systems*, volume 32. Curran Associates, Inc.
608

609 Sun, J. and Xia, Y. (2025). Minimax rate-optimal inference for individualized quantile treatment
610 effects in high-dimensional models. arXiv: 2503.18523 [math.ST].
611

612 Wainwright, M. J. (2019). Basic tail and concentration bounds. In *High-dimensional statistics: a
613 non-asymptotic viewpoint*, Cambridge series in statistical and probabilistic mathematics, pages
614 21–57. Cambridge University Press, Cambridge.
615

616 **A ADDITIONAL THEORY AND PROOFS**

618 **A.1 LOSS JUSTIFICATION PROOFS**

619 *Proof of equation (4).* As a reminder the identity of interest is

621
$$g^*(y_0|\mathbf{x}) = \operatorname{argmin}_{y_1} \bar{\ell}(y_1, y_0, \mathbf{x}).$$

622

623 First define the intermediary loss function
624

625 By the fundamental theorem of calculus we have that $\partial_{y_1} \bar{\ell}(y_1, y_0, \mathbf{x}) = h(y_1, y_0, \mathbf{x})$. Therefore, as
626 $\partial_{y_1} \bar{\ell}(y_1, y_0, \mathbf{x})$ is increasing in y_1 for any \mathbf{x}, y_0 , we have that
627

$$\begin{aligned} 628 \quad y_1 = \operatorname{argmin}_{y'_1} \bar{\ell}(y'_1, y_0, \mathbf{x}) &\iff \partial_{y_1} \bar{\ell}(y_1, y_0, \mathbf{x}) = 0 \\ 629 \quad &\iff F_1(y_1|\mathbf{x}) - F_0(y_0|\mathbf{x}) = 0 \\ 630 \quad &\iff F_1(y_1|\mathbf{x}) = F_0(y_0|\mathbf{x}). \end{aligned}$$

633 Hence by definition of g^* , we have that
634

$$635 \quad g^*(y_0|\mathbf{x}) = \operatorname{argmin}_{y_1} \bar{\ell}(y_1, y_0|\mathbf{x}).$$

637 \square

638
639 *Proof of Proposition 2.* Firstly define $\bar{\zeta}(y_1, y_0|\mathbf{x})$ by
640

$$\begin{aligned} 642 \quad \bar{\zeta} &:= \frac{a}{\pi(\mathbf{x})} \{ \mathbb{1}\{y \leq g_{\theta}(y_0|\mathbf{x})\} - F_1(g_{\theta}(y_0|\mathbf{x})|\mathbf{x}) \} - \frac{1-a}{1-\pi(\mathbf{x})} \{ \mathbb{1}\{y \leq y_0\} - F_0(y_0|\mathbf{x}) \} \\ 643 \quad &+ F_1(y_1|\mathbf{x}) - F_0(y_0|\mathbf{x}). \end{aligned}$$

644 So that $\zeta(\theta, y_0, \mathbf{x}) = \{\nabla_{\theta} g_{\theta}(y_0|\mathbf{x})\} \bar{\zeta}(g_{\theta}(y_0|\mathbf{x}), y_0, \mathbf{x})$. By the chain rule we have that
645 $\nabla_{\theta}(\theta, y_0, \mathbf{x}) = \nabla_{\theta} g_{\theta}(y_0|\mathbf{x}) \partial_{g_{\theta}(y_0|\mathbf{x})} \cdot \ell(g_{\theta}(y_0|\mathbf{x}), y_0|\mathbf{x})$.
646

648 Hence all that is left to show is that $\mathbb{E}[\bar{\zeta}(y_1, y_0, Z)|X = \mathbf{x}] \partial_{y_1} \bar{\ell}(y_1, y_0|\mathbf{x})$. To this end we can use
 649 the tower property to get that
 650

$$\begin{aligned}
 651 \mathbb{E}[\bar{\zeta}_{\text{dr}}(y_1, y_0, Z)|X = \mathbf{x}] &= \mathbb{E}\left[\frac{A}{\pi(\mathbf{x})} \underbrace{\{\mathbb{E}[\mathbf{1}\{Y \leq y_1\}|X, A = 1] - F_1(y_1|\mathbf{x})\}}_{=0}\right] \\
 652 &\quad - \mathbb{E}\left[\frac{1 - A}{1 - \pi(\mathbf{x})} \underbrace{\{\mathbb{E}[\mathbf{1}\{Y \leq y_0\}|X, A = 0] - F_0(y_0|\mathbf{x})\}}_{=0}\right] \\
 653 &\quad + F_1(y_1|\mathbf{x}) - F_0(y_0|\mathbf{x}) \\
 654 &= F_1(y_1|\mathbf{x}) - F_0(y_0|\mathbf{x}) \\
 655 &= \partial_{y_1} \bar{\ell}(y_1, y_0, \mathbf{x}).
 \end{aligned}$$

□

662 A.1.1 LOSS BOUND PROOFS

663 We now provide the proof for our result bounding the loss in various circumstances. First however
 664 we provide a proposition with various upper and lower bounds on integrals which will inform our
 665 upper and lower bounds on the loss.
 666

667 **Proposition 4.** *Let $F : \mathcal{Y} \rightarrow \mathbb{R}$ be an arbitrary increasing function with $F(a) = 0$, $F(b) = \beta$ for
 668 $a < b \in \mathcal{Y}$. Also define $f(y) = \partial_y F(y)$ and $I = \int_a^b F(y)dy$. We then have that*

- 669 1. $I \leq |\beta| |b - a|$.
- 670 2. *If $f(y) \geq \eta$ for all $y \in [a, b]$, $I \geq \frac{\eta}{2}(b - a)^2$.*
- 671 3. *If $f(y) \leq \xi$ for all $y \in [a, b]$, $I \geq (2\xi)^{-1}\beta^2$.*
- 672 4. *If $f(y)$ is increasing on $[a, b]$ then $I \geq \frac{1}{2} |\beta| |b - a|$.*

673 As a convention we allow for the possibility that $a > b$ and take $[a, b]$ in this case to mean $[b, a]$.

674 *Proof.* All results are proved under the case $a \leq b$. The results for the case $a > b$ follow an identical
 675 argument with signs and equalities reversed. The first result follows directly from the fact that
 676 $F(y) \leq F(b)$ for all $y \in [a, b]$.

677 For the second result we have that

$$\begin{aligned}
 678 F(y) &= \int_a^y f(s)ds + F(a) \\
 679 &= \int_a^y f(s)ds \\
 680 &\geq (y - a)\eta.
 \end{aligned}$$

681 Therefore

$$\begin{aligned}
 682 I &\geq \int_a^b (y - a)\eta dy \\
 683 &= \frac{\eta}{2}(b - a)^2.
 \end{aligned}$$

684 For the third result define $\tilde{F} : [a, b] \rightarrow \mathcal{Y}$ by

$$\tilde{F}(y) = \begin{cases} 0 & \text{if } y \in [a, b - \beta/\xi], \\ \xi y - \xi b + \beta & \text{if } y \in (b - \beta/\xi, b]. \end{cases}$$

685 Then \tilde{F} is, non-negative, continuous and increasing with $F(b) = \beta$ and maximum gradient ξ .
 686 Furthermore we claim that \tilde{F} lower bounds any other functions with this property which also has
 687 continuous derivative.

This is trivially true for $y \in [a, b - \beta/\xi]$. Otherwise suppose there exists function G satisfying all these assumptions excluding the gradient bound with $G(y) < \tilde{F}(y)$ for some $y \in (b - \beta/\xi, b]$. Then we have that $\frac{G(b) - G(y)}{b - y} < \xi$, hence by the mean value theorem we must have that $\partial_y G(y') < \xi$ for some y' in $[y, b]$. Thus by the contrapositive, \tilde{F} is the minimal function satisfying all these conditions on $(b - \beta/\xi, b]$.

As such we can now get the following bound on I

$$\begin{aligned} I &\geq \int_a^b \tilde{F}(y) dy \\ &= \int_{b-\beta/\xi}^b \xi y - \xi b + \beta dy = \beta^2/\xi. \end{aligned}$$

For the final result note that $f(y)$ increasing implies that $F(y)$ is convex. Therefore we have that

$$\begin{aligned} I &= \int_a^b F(y) dy \\ &\geq \int_a^b F(a) + \left(\frac{y-a}{b-a} (F(b) - F(a)) \right) dy \\ &\leq \int_a^b \frac{y-a}{b-a} \beta dy = \frac{1}{2} |\beta| |b-a|. \end{aligned}$$

□

Proof of Proposition 1. For notational convenience we introduce the function $h : \mathcal{Y} \times \mathcal{Y} \times \mathcal{X} \rightarrow [-1, 1]$ given by

$$h(y_1, y_0, \mathbf{x}) := F_1(y_1 | \mathbf{x}) - F_0(y_0 | \mathbf{x})$$

so that $\bar{\ell}(y_1, y_0, \mathbf{x}) := \int_{g^*(y_0 | \mathbf{x})}^{y_1} h(t, y_0, \mathbf{x}) dt$. Remember that $\ell(\boldsymbol{\theta}, y_0, \mathbf{x}) = \bar{\ell}(g_{\boldsymbol{\theta}}(y_0 | \mathbf{x}), y_0, \mathbf{x})$. We can then notice that $h(y_1, y_0, \mathbf{x})$ satisfies the conditions of Proposition 4 as a function of y_1 with $a = g^*(y_0, \mathbf{x})$ and $b = g_{\boldsymbol{\theta}}(y_0 | \mathbf{x})$ and $\beta = F_1(g_{\boldsymbol{\theta}}(y_0 | \mathbf{x}) | \mathbf{x}) - F_0(y_0 | \mathbf{x})$.

Furthermore $\partial_{y_1} \bar{\ell}(y_1, y_0, \mathbf{x}) = p_1(y_1 | \mathbf{x})$. Therefore the assumptions in Proposition 1(a)-(c) correspond to the assumptions in results 2-4 of Proposition 4.

Therefore we can simply directly apply each result of Proposition 4 prove our required results. □

A.2 ESTIMATION ACCURACY THEORY AND PROOFS

A.2.1 CONVEX CONVERGENCE

Lemma 5. *Let $L(\boldsymbol{\theta})$ be a convex function and define $\tilde{\boldsymbol{\theta}} = \operatorname{argmin}_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$ with $\|\tilde{\boldsymbol{\theta}}\| \leq B$ for some $B > 0$. Define $\boldsymbol{\theta}^{(1)} = \mathbf{0}$ and inductively take*

$$\boldsymbol{\theta}^{(t+\frac{1}{2})} = \boldsymbol{\theta}^{(t)} - \eta v^{(t)} \quad \boldsymbol{\theta}^{(t+1)} = \operatorname{argmin}_{\boldsymbol{\theta}: \|\boldsymbol{\theta}\| \leq B} \|\boldsymbol{\theta} - \boldsymbol{\theta}^{(t+\frac{1}{2})}\|$$

with $\eta = \frac{B}{\tilde{\rho}\sqrt{n}}$ and v_1, \dots, v_n a sequence of RVs with $\|v^{(t)}\| \leq \tilde{\rho}$. Finally, take our parameter estimate to be $\hat{\boldsymbol{\theta}} = \frac{1}{n} \sum_{t=1}^n \boldsymbol{\theta}^{(t)}$.

Then we have that

$$L(\hat{\boldsymbol{\theta}}) - L(\tilde{\boldsymbol{\theta}}) \leq \frac{B\tilde{\rho}}{\sqrt{n}} - \frac{1}{n} \sum_{t=1}^n \langle \boldsymbol{\theta}^{(t)} - \tilde{\boldsymbol{\theta}}, \varepsilon^{(t)} \rangle$$

where $\varepsilon^{(t)} := v^{(t)} - \nabla_{\boldsymbol{\theta}^{(t)}} L(\boldsymbol{\theta}^{(t)})$.

756 *Proof of Lemma 5.* Define $\nabla^{(t)} := \nabla_{\theta^{(t)}} L(\theta^{(t)})$ so that $\mathbb{E}[v^{(t)}|\theta^{(t)}] = \nabla^{(t)} + \varepsilon^{(t)}$ where $\nabla^{(t)}$
 757 represents the unbiased gradient estimate and $\varepsilon^{(t)}$ represents the bias.
 758

759 From Shalev-Shwartz and Ben-David (2014) section 14.4.1 we have that

$$760 \quad \mathbb{E} \left[\frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, v^{(t)} \rangle \right] \leq \frac{B\tilde{\rho}}{\sqrt{n}} \\ 761 \\ 762$$

763 Additionally we have
 764

$$765 \quad L(\hat{\theta}) - L(\theta^*) \leq \frac{1}{n} \sum_{t=1}^n L(\theta^{(t)}) - L(\theta^*) \quad \text{by Jensen's inequality.} \\ 766 \\ 767 \\ 768 \quad \leq \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, \nabla^{(t)} \rangle \quad \text{by convexity of } L \text{ and definition of } \nabla^{(t)} \\ 769 \\ 770 \\ 771 \quad = \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, v^{(t)} \rangle - \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, \varepsilon^{(t)} \rangle \\ 772 \\ 773 \\ 774 \quad \leq \frac{B\tilde{\rho}}{\sqrt{n}} - \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, \varepsilon^{(t)} \rangle \quad \text{from our prior result} \\ 775 \\ 776 \\ 777 \quad \square$$

778 **Lemma 6.** Suppose that assumption 1 holds. For arbitrary fixed $\theta \in \Theta$, Define
 779 $\varepsilon = \zeta(\theta, Y_0, Z) - \nabla_{\theta} L(\theta)$

780 Then we have that

$$781 \quad \|\mathbb{E}[\varepsilon]\| \leq \frac{2\rho}{c} \sqrt{\mathbb{E} \left[\left| \pi(X) - \hat{\pi}(X) \right|^2 \right] \mathbb{E} \left[\sup_{\substack{y_0 \in \mathcal{Y}, \\ a \in \{0,1\}}} \left| F_a(y_0|X) - \hat{F}_a(y_0|X) \right|^2 \right]}.$$

782 *Proof.* To do this first define

$$783 \quad \hat{b}(\theta, Y_0, X) := \mathbb{E}[\hat{\zeta}(\theta, Y_0, Z) - \zeta(\theta, Y_0, Z)|X, Y_0, \theta]$$

784 To bound $\hat{b}(\theta, Y_0, Z)$ firstly have that

$$785 \quad \mathbb{E}[\mathbb{1}\{Y \leq y\}\mathbb{1}\{A = a\}|X] = \mathbb{E}[\mathbb{1}\{Y \leq y\}|A = a]\mathbb{P}(A = a|X) \\ 786 \\ 787 \quad = F_a(y|X)\mathbb{P}(A = a|X).$$

788 We can then use the fact that $\mathbb{P}(A = 1|X) = \pi(X)$ to get

$$789 \quad \mathbb{E}[\hat{\zeta}(\theta, Y_0, Z)|\theta, Y_0, X] = \nabla_{\theta} g_{\theta}(Y_0|X) \left\{ \begin{aligned} & \left(\frac{\pi(X)}{\hat{\pi}(X)} \right) \left(F_1\{g_{\theta}(Y_0|X)|X\} - \hat{F}_1\{g(Y_0|X)|X\} \right) \\ & - \frac{1 - \pi(X)}{1 - \hat{\pi}(X)} \left(F_0\{y_0|X\} - \hat{F}_0\{Y_0|X\} \right) \\ & + \hat{F}_1\{g_{\theta}(Y_0|X)|X\} - \hat{F}_0(Y_0|X) \end{aligned} \right\}.$$

800 Hence

$$801 \quad \hat{b}(\theta, Y_0, X) = \nabla_{\theta} g_{\theta}(Y_0|X) \left\{ \begin{aligned} & \left(\frac{\pi(X)}{\hat{\pi}(X)} - 1 \right) \left(F_1\{g_{\theta}(Y_0|X)|X\} - \hat{F}_1\{g_{\theta}(Y_0|X)|X\} \right) \\ & - \left(\frac{1 - \pi(X)}{1 - \hat{\pi}(X)} - 1 \right) \left(F_0(Y_0|X) - \hat{F}_0(Y_0|X) \right) \end{aligned} \right\}.$$

Now by the tower property and linearity of expectation, we have that $\mathbb{E}[\varepsilon] = \mathbb{E}[\hat{b}(\boldsymbol{\theta}, Y_0, X)|\boldsymbol{\theta}]$. In turn we then get

$$\|\mathbb{E}[\varepsilon]\| \leq \mathbb{E} \left[\left\| \hat{b}(\boldsymbol{\theta}^{(t)}, Y_0, X) \right\| |\boldsymbol{\theta}^{(t)} \right] \quad \text{by Jensen's inequality.}$$

Now using our bound on \mathbf{f} in assumption 1, we get that $\|\nabla_{\boldsymbol{\theta}} \mathbf{f}(y_0, \mathbf{x})\| \leq \rho$ for all y, \mathbf{x} . Additionally using our bound on $\hat{\pi}$ we get that

$$\left| \frac{1 - \pi(\mathbf{x})}{1 - \hat{\pi}(\mathbf{x})} - 1 \right| = \left| \frac{\pi(\mathbf{x})}{\hat{\pi}(\mathbf{x})} - 1 \right| \leq \frac{|\pi(\mathbf{x}) - \hat{\pi}(\mathbf{x})|}{c}$$

Combining these we get

$$\begin{aligned} \mathbb{E}[\|\varepsilon\|] &\leq \frac{\rho}{c} \mathbb{E} \left[\left| (\pi(X) - \hat{\pi}(X)) \right| \right. \\ &\quad \left. \left(F_1\{g_{\boldsymbol{\theta}}(Y_0|X)|X\} - \hat{F}_1\{g_{\boldsymbol{\theta}}(Y_0|X)|X\} + F_0(Y_0|X) - \hat{F}_0(Y_0|X) \right) \right] \\ &\leq \frac{2\rho}{c} \sqrt{\mathbb{E} \left[\left| \pi(X) - \hat{\pi}(X) \right|^2 \right] \mathbb{E} \left[\sup_{\substack{y_0 \in \mathcal{Y}, \\ a \in \{0,1\}}} \left| F_a(y_0|X) - \hat{F}_a(y_0|X) \right|^2 \right]}. \end{aligned}$$

□

Proposition 7. Suppose that assumption 1 holds and that $\|\tilde{\boldsymbol{\theta}}\| \leq B$ for some $B > 0$. For $t \in [n]$, define $\boldsymbol{\theta}^{(t)}$ inductively by

$$\boldsymbol{\theta}^{(t+\frac{1}{2})} = \boldsymbol{\theta}^{(t)} - \mu_t v^{(t)} \quad \boldsymbol{\theta}^{(t+1)} = \operatorname{argmin}_{\boldsymbol{\theta}: \|\boldsymbol{\theta}\| \leq B} \|\boldsymbol{\theta} - \boldsymbol{\theta}^{(t+\frac{1}{2})}\|$$

with $\boldsymbol{\theta}^{(1)} = \mathbf{0}$, $\mu_t = \frac{Bc}{2\rho\sqrt{n}}$, and $v^{(t)} := \hat{\zeta}(\boldsymbol{\theta}^{(t)}, Y_0^{(t)}, Z^{(t)})$. Finally, define the parameter estimate as $\hat{\boldsymbol{\theta}} = \frac{1}{n} \sum_{t=1}^n \boldsymbol{\theta}^{(t)}$. Then, if $\hat{\pi}, \hat{F}_a$ are independent of $\{(Y_0^{(t)}, Z^{(t)})\}_{t=1}^n$, we have that

$$\mathbb{E}[L(\hat{\boldsymbol{\theta}}) - L(\tilde{\boldsymbol{\theta}})] \leq C_1 \left(\frac{1}{\sqrt{n}} + \sqrt{\mathbb{E} \left[(\pi(X) - \hat{\pi}(X))^2 \right] \mathbb{E} \left[\sup_{y_0, a} (F_a(y_0|X) - \hat{F}_a(y_0|X))^2 \right]} \right) \quad (11)$$

where $C_1 = 4B\rho/c$.

Proof. First note that

$$\begin{aligned} \mathbb{E}[\zeta(\boldsymbol{\theta}^{(t)}, Y_0^{(t)}, Z^{(t)})|\boldsymbol{\theta}^{(t)}] &= \nabla_{\boldsymbol{\theta}} \mathbf{f}(\boldsymbol{\theta}^{(t)}) \\ &= \mathbb{E} \left[\nabla_{\boldsymbol{\theta}^{(t)}} g_{\boldsymbol{\theta}^{(t)}}(Y_0|X) (F_1\{g_{\boldsymbol{\theta}^{(t)}}(Y_0|X)|X\} - F_0(Y_0|X)) |\boldsymbol{\theta}^{(t)} \right]. \end{aligned}$$

We now aim to show that we are in the scenario of Lemma 5 with

$$\varepsilon^{(t)} = \hat{\zeta}(\boldsymbol{\theta}^{(t)}, Y_0^{(t)}, Z^{(t)}) - \mathbb{E}[\zeta(\boldsymbol{\theta}^{(t)}, Y_0, Z)|\boldsymbol{\theta}^{(t)}].$$

First we show that under Assumption 1(b), $L(\boldsymbol{\theta})$ is convex as a function of $\boldsymbol{\theta}$.

To this end we note that $\bar{\ell}(y_1, y_0, \mathbf{x})$ is convex w.r.t. y_1 as, by construction,

$$\partial_{y_1} \bar{\ell}(y_1, y_0, \mathbf{x}) = F_1(y_1|\mathbf{x}) - F_0(y_0|\mathbf{x})$$

which is increasing in y_1 for any y_0, \mathbf{x} . Furthermore for any \mathbf{x}, y_0 $g_{\boldsymbol{\theta}}$ is by construction affine in $\boldsymbol{\theta}$. Hence, as the composition of an affine function and a convex function is convex, we have that

$$\ell(\boldsymbol{\theta}, y_0, \mathbf{x}) = \bar{\ell}(g_{\boldsymbol{\theta}}(y_0|\mathbf{x}), y_0, \mathbf{x})$$

864 is convex w.r.t. θ . Hence as integrals of convex functions are convex, $L(\theta) = \mathbb{E}[\ell(\theta, Y_0, Z)]$ is also
 865 convex w.r.t. θ .

866 We also have that from Assumption 1(a) that $\bar{\zeta}(y_1, y_0, \mathbf{x}) \leq 1 + 1/c$ for all y_1, y_0, \mathbf{x} combining this
 867 with Assumptions 1(b)&(c) we have that

$$\begin{aligned} \|v^{(t)}\| &\leq \sup_{\theta, y_0, \mathbf{z}} \|\mathbf{f}(y_0, \mathbf{x})\bar{\zeta}(\theta^T \mathbf{f}(y_0 | \mathbf{x}), y_0, \mathbf{z}) \\ &\leq \rho \cdot (1 + 1/c) \leq \frac{2\rho}{c}. \end{aligned}$$

874 Meaning that we are in the setting of Lemma 5.

875 Taking expectations on over the result of the Lemma gives

$$\mathbb{E}[L(\hat{\theta}) - L(\tilde{\theta})] \leq \frac{2B\rho}{c\sqrt{n}} - \frac{1}{n} \sum_{t=1}^n \mathbb{E}[\langle \theta^{(t)} - \tilde{\theta}, \varepsilon^{(t)} \rangle]$$

880 and all we have remaining to do is bound $-\mathbb{E}[\langle \theta^{(t)} - \tilde{\theta}, \varepsilon^{(t)} \rangle]$. For this we have that

$$\begin{aligned} -\mathbb{E}[\langle \theta^{(t)} - \tilde{\theta}, \varepsilon^{(t)} \rangle] &= -\mathbb{E}[\langle \theta^{(t)} - \tilde{\theta}, \mathbb{E}[\varepsilon^{(t)} | \theta^{(t)}] \rangle] \\ &\leq \mathbb{E}\{\|\theta^{(t)} - \tilde{\theta}\| \|\mathbb{E}[\varepsilon^{(t)} | \theta^{(t)}]\|\} \quad \text{by the Cauchy-Schwartz inequality} \\ &\leq \mathbb{E}\{\|\theta^{(t)} - \tilde{\theta}\| \mathbb{E}[\|\varepsilon^{(t)}\| | \theta^{(t)}]\} \quad \text{by Jensen's inequality} \\ &\leq \frac{2\rho}{c} \sqrt{\mathbb{E}\left[\left|\pi(X) - \hat{\pi}(X)\right|^2\right] \mathbb{E}\left[\sup_{\substack{y_0 \in \mathcal{Y}, \\ a \in \{0,1\}}} \left|F_a(y_0 | X) - \hat{F}_a(y_0 | X)\right|^2\right]} \\ &\quad \cdot \mathbb{E}\left[\|\theta^{(t)} - \tilde{\theta}\|\right] \quad \text{by Lemma 6} \\ &\leq \frac{4B\rho}{c} \sqrt{\mathbb{E}\left[\left|\pi(X) - \hat{\pi}(X)\right|^2\right] \mathbb{E}\left[\sup_{\substack{y_0 \in \mathcal{Y}, \\ a \in \{0,1\}}} \left|F_a(y_0 | X) - \hat{F}_a(y_0 | X)\right|^2\right]}. \end{aligned}$$

894 with the final line coming from our projection step. Combining this with Lemma 5 gives our desired
 895 result. \square

902 A.2.2 STRONGLY CONVEX CONVERGENCE

903 **Lemma 8.** *Let $L(\theta)$ be a strongly function w.r.t. θ with strong convexity parameter η and define
 904 $\tilde{\theta} = \operatorname{argmin}_{\theta} L(\theta)$. Assume that $\|\tilde{\theta}\| \leq B$ for some $B > 0$. Define $\theta^{(1)} = \mathbf{0}$ and inductively take*

$$\theta^{(t+\frac{1}{2})} = \theta^{(t)} - \mu_t v^{(t)} \quad \theta^{(t+1)} = \operatorname{argmin}_{\theta: \|\theta\| \leq B} \|\theta - \theta^{(t+\frac{1}{2})}\|$$

905 with $\mu_t = \frac{1}{\eta t}$ and $v^{(1)}, \dots, v^{(n)}$ a sequence of RVs satisfying $\|v^{(t)}\| \leq \tilde{\rho}$ almost surely. Finally, take
 906 our parameter estimate to be $\hat{\theta} = \frac{1}{n} \sum_{t=1}^n \theta^{(t)}$.

907 Then we have that

$$L(\hat{\theta}) - L(\tilde{\theta}) \leq \frac{\tilde{\rho}^2}{2\eta} \frac{1 + \log(n)}{n} - \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, \varepsilon^{(t)} \rangle$$

913 where $\varepsilon^{(t)} := v^{(t)} - \nabla_{\theta^{(t)}} L(\theta^{(t)})$.

918 *Proof of Theorem 5.* Define $\nabla^{(t)} := \nabla_{\theta^{(t)}} L(\theta^{(t)})$ so that $\mathbb{E}[v^{(t)}|\theta^{(t)}] = \nabla^{(t)} + \varepsilon^{(t)}$ where $\nabla^{(t)}$
919 represents the unbiased gradient estimate and $\varepsilon^{(t)}$ represents the bias.
920

921 From Shalev-Shwartz and Ben-David (2014) section 14.4.1 we have that
922

$$\langle \theta^{(t)} - \theta^*, v^{(t)} \rangle \leq \frac{\mu_t}{2} \|v^{(t)}\|^2 + \frac{\|\theta^{(t)} - \theta^*\| - \|\theta^{(t+1)} - \theta^*\|^2}{2\mu_t}$$

923 Additionally we have
924

$$\begin{aligned} L(\hat{\theta}) - L(\theta^*) &\leq \frac{1}{n} \sum_{t=1}^n L(\theta^{(t)}) - L(\theta^*) \quad \text{by Jensen's inequality.} \\ &\leq \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, \nabla^{(t)} \rangle - \frac{\eta}{2} \|\theta^{(t)} - \theta^*\|^2 \quad \text{by strong convexity of } L \\ &= \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, v^{(t)} \rangle - \frac{\eta}{2} \|\theta^{(t)} - \theta^*\|^2 - \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, \varepsilon^{(t)} \rangle \end{aligned}$$

925 then from our prior result we get
926

$$\begin{aligned} &= \frac{1}{n} \sum_{t=1}^n \frac{\mu_t}{2} \|v^{(t)}\|^2 + \frac{\|\theta^{(t)} - \theta^*\| - \|\theta^{(t+1)} - \theta^*\|^2}{2\mu_t} - \frac{\eta}{2} \|\theta^{(t)} - \theta^*\|^2 \theta \\ &\quad - \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, \varepsilon^{(t)} \rangle \\ &\leq \frac{1}{n} \sum_{t=1}^n \frac{\tilde{\rho}^2}{2\eta t} + \frac{1 - \|\theta^{(n+1)} - \theta^*\|^2}{2\mu_n} - \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, \varepsilon^{(t)} \rangle \\ &\leq \frac{\tilde{\rho}^2}{2\eta} \frac{1 + \log(n)}{n} - \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \theta^*, \varepsilon^{(t)} \rangle. \end{aligned}$$

927 \square
928

929 **Proposition 9.** Suppose that assumption 1 holds and that $\|\theta^*\| \leq B$ for some $B > 0$. Additionally now suppose that $p_1(y|\mathbf{x}) > \xi_2$ for all y, \mathbf{x} and that the minimum eigenvalue of
930 $\mathbb{E}[\mathbf{f}(Y_0, X)\mathbf{f}(Y_0, X)^\top]$ is greater than η_2 .
931

932 Define $\theta^{(1)} = \mathbf{0}$ and inductively take
933

$$\theta^{(t+\frac{1}{2})} = \theta^{(t)} - \mu_t v^{(t)} \quad \theta^{(t+1)} = \operatorname{argmin}_{\theta: \|\theta\| \leq B} \|\theta - \theta^{(t+\frac{1}{2})}\|$$

934 with $\mu_t = \frac{1}{\eta_2 \xi_2 n}$ and $v^{(t)} := \hat{\zeta}(\theta^{(t)}, Y_0^{(t)}, Z^{(t)})$. Finally, take our parameter estimate to be
935 $\hat{\theta} = \frac{1}{n} \sum_{t=1}^n \theta^{(t)}$. Then we have
936

$$\mathbb{E}[L(\hat{\theta}) - L(\tilde{\theta})] \leq C_2 \left(\frac{1 + \log(n)}{n} + \sqrt{\mathbb{E} \left[\left(\pi(X) - \hat{\pi}(X) \right)^2 \right] \mathbb{E} \left[\sup_{y_0 \in \mathcal{Y}} \left(F_a(y_0|X) - \hat{F}_a(y_0|X) \right)^2 \right]} \right)$$

937 with $C_2 = \frac{\rho^2}{c\eta_2 \xi_2} + \frac{4B\rho}{c}$
938

939 *Proof.* This is almost identical to the proof of Proposition 7. The only additional step is to prove
940 strong convexity of $L(\theta)$.
941

972 We have that
 973

$$\begin{aligned}
 974 \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) &= \mathbb{E} [\nabla_{\boldsymbol{\theta}}(g_{\boldsymbol{\theta}}(y|\mathbf{x})) (F_1[g_{\boldsymbol{\theta}}(Y_0|\mathbf{x})|\mathbf{x}]) - F_0[y_0|\mathbf{x}]] \\
 975 &= \mathbb{E} [\mathbf{f}(Y_0, X) \cdot (F_1[g_{\boldsymbol{\theta}}(Y_0|\mathbf{x})|\mathbf{x}]) - F_0[y_0|\mathbf{x}]] \\
 976 \Rightarrow \nabla_{\boldsymbol{\theta}}^2 L(\boldsymbol{\theta}) &= \mathbb{E} [\mathbf{f}(Y_0, X) \mathbf{f}(Y_0, X)^\top \cdot \partial_{g_{\boldsymbol{\theta}}(Y_0|X)} (F_1[g_{\boldsymbol{\theta}}(Y_0|X)|X]) - F_0[Y_0|X]] \\
 977 &= \mathbb{E} [\mathbf{f}(Y_0, X) \mathbf{f}(Y_0, X)^\top \cdot p_1\{g_{\boldsymbol{\theta}}(Y_0|X)\}] \\
 978 &\geq \xi_2 \mathbb{E} [\mathbf{f}(Y_0, X) \mathbf{f}(Y_0, X)^\top] \\
 979 \\
 980
 \end{aligned}$$

981 which by our assumptions has minimum Eigenvalue greater than $\xi_2 \eta_2$. Hence $L(\boldsymbol{\theta})$ is strongly convex
 982 with parameter $\eta := \xi_2 \eta_2$.

983 Now we can proceed as in Theorem 3 to obtain
 984

$$\mathbb{E}[L(\hat{\boldsymbol{\theta}}) - L(\tilde{\boldsymbol{\theta}})] \leq \frac{\rho}{cn_2\xi_2} \frac{1 + \log(n)}{n} - \mathbb{E} \left[\frac{1}{n} \sum_{t=1}^n \langle \boldsymbol{\theta}^{(t)} - \tilde{\boldsymbol{\theta}}, \varepsilon^{(t)} \rangle \right].$$

985 Then using Lemma 6 and following an identical approach to Proposition 7 we get our result. \square
 986

990 A.2.3 PROOF OF THEOREM 3

992 *Proof of Theorem 3.* This result is simply the concatenations of Propositions 7 & 9. \square
 993

994 A.2.4 PROBABILITY BOUNDS

996 We first state a version of Azuma-Hoeffding bound which will be useful for our work. This Lemma
 997 is a slight modification of the version found in Wainwright (2019).

998 **Lemma 10** (Azuma-Hoeffding). *For $n \in \mathbb{N}$, let $W^{(1)}, \dots, W^{(n)}$ be a Martingale difference sequence
 999 with respect to filtration $\{\mathcal{F}^{(t)}\}_{t=1}^n$*

1000 *Suppose also that $|W^{(t)}| \leq \tilde{\rho}$ a.s. for all $t \in [n]$. We then have that for any $\delta > 0$*

$$1003 \mathbb{P} \left(\frac{1}{n} \sum_{t=1}^n W^{(t)} \leq \sqrt{\frac{2 \log(1/\delta)}{n}} \right) \geq 1 - \delta.$$

1006 **Remark 7.** *For $W^{(t)}$ to be a martingale difference sequence we must have that $W^{(t)}$ is $\mathcal{F}^{(t)}$
 1007 measurable, $\mathbb{E}[|W^{(t)}|] < \infty$, and $\mathbb{E}[W^{(t)}|\mathcal{F}^{(t-1)}] = 0$ a.s. .*

1009 We now get finite sample probability result in the setting of the first part of Theorem 3. For clarity we
 1010 restate this setting in the result.

1011 **Proposition 11.** *Suppose that assumption 1 holds and that $\|\tilde{\boldsymbol{\theta}}\| \leq B$ for some $B > 0$. For $t \in [n]$,
 1012 define $\boldsymbol{\theta}^{(t)}$ inductively by*

$$1014 \boldsymbol{\theta}^{(t+\frac{1}{2})} = \boldsymbol{\theta}^{(t)} - \mu_t v^{(t)} \quad \boldsymbol{\theta}^{(t+1)} = \operatorname{argmin}_{\boldsymbol{\theta}: \|\boldsymbol{\theta}\| \leq B} \|\boldsymbol{\theta} - \boldsymbol{\theta}^{(t+\frac{1}{2})}\|$$

1017 with $\boldsymbol{\theta}^{(1)} = \mathbf{0}$, $\mu_t = \frac{Bc}{2\rho\sqrt{n}}$, and $v^{(t)} := \hat{\zeta}(\boldsymbol{\theta}^{(t)}, Y_0^{(t)}, Z^{(t)})$. Finally, define the parameter estimate as
 1018 $\hat{\boldsymbol{\theta}} = \frac{1}{n} \sum_{t=1}^n \boldsymbol{\theta}^{(t)}$. Then if $\hat{\pi}, \hat{F}_a$ are independent of $\left\{ (Y_0^{(t)}, Z^{(t)}) \right\}_{t=1}^n$, we have that for any $\delta > 0$,
 1019 with probability at least $1 - \delta$,

$$1022 L(\hat{\boldsymbol{\theta}}) - L(\tilde{\boldsymbol{\theta}}) \leq C_3 \frac{1 + \sqrt{\log(1/\delta)}}{\sqrt{n}} + \left| \pi(X) - \hat{\pi}(X) \right| \sup_{\substack{y_0 \in \mathcal{Y}, \\ a \in \{0,1\}}} \left| F_a(y_0|X) - \hat{F}_a(y_0|X) \right|.$$

1025 with $C_3 := 16\sqrt{2} \frac{B\rho}{c}$

1026 *Proof.* Again we are in the case of Lemma 5 with $\tilde{\rho} = 2\rho/c$ meaning we have that
1027

$$1028 \quad L(\hat{\theta}) - L(\tilde{\theta}) \leq \frac{2B\rho}{c\sqrt{n}} - \frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \tilde{\theta}, \varepsilon^{(t)} \rangle \quad (12)$$

1031 Now for $t \in [n]$ define the filtration $\{\mathcal{F}^{(t)}\}_{t=1}^n$ by $\mathcal{F}^{(t)} = \{\{\theta^{(i)}\}_{i=1}^t, \hat{\pi}, \hat{F}_a\}$. Additionally define
1032 RVs $W^{(t)} = -\langle \theta^{(t)} - \tilde{\theta}, \varepsilon^{(t)} - \mathbb{E}[\varepsilon^{(t)} | \theta^{(t)}, \hat{\pi}, \hat{F}_a] \rangle$.
1033

1034 Then we have that $\{W^{(t)}\}_{t=1}^n$ is a martingale difference process with respect to $\{\mathcal{F}^{(t)}\}_{t=1}^n$.
1035

1036 Furthermore we have that $\|v^{(t)}\| \leq \frac{2\rho}{c}$. Additionally $\|\nabla_{\theta^{(t)}} L(\theta^{(t)})\| \leq 2\rho$. Hence
1037

$$\begin{aligned} 1038 \quad & \|\varepsilon^{(t)}\| \leq \frac{4\rho}{c} \\ 1039 \quad & \Rightarrow \left\| \varepsilon^{(t)} - \mathbb{E} \left[\varepsilon^{(t)} | \varepsilon^{(t)} | \theta^{(t)}, \hat{\pi}, \hat{F}_a \right] \right\| \leq \frac{8\rho}{c} \\ 1040 \quad & \Rightarrow \|W^{(t)}\| \leq \frac{16B\rho}{c}. \end{aligned}$$

1044 As such we can apply the Azuma-Hoeffding inequality stated in Lemma 10 to get that
1045

$$1046 \quad \mathbb{P} \left(\frac{1}{n} \sum_{t=1}^n W^{(t)} \leq C_3 \sqrt{\frac{\log(1/\delta)}{n}} \right) \geq 1 - \delta.$$

1049 with $C_3 = 16\sqrt{2}\frac{B\rho}{c}$. Furthermore we have that
1050

$$\begin{aligned} 1051 \quad & \frac{1}{n} \sum_{t=1}^n W^{(t)} \leq C_3 \sqrt{\frac{\log(1/\delta)}{n}} \\ 1052 \quad & \Rightarrow -\frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \tilde{\theta}, \varepsilon^{(t)} \rangle \leq C_3 \sqrt{\frac{\log(1/\delta)}{n}} - \frac{1}{n} \sum_{i=1}^n \langle \theta^{(t)} - \tilde{\theta}, \mathbb{E}[\varepsilon^{(t)} | \theta^{(t)}, \hat{\pi}, \hat{F}_a] \rangle \\ 1053 \quad & \Rightarrow -\frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \tilde{\theta}, \varepsilon^{(t)} \rangle \leq C_3 \sqrt{\frac{\log(1/\delta)}{n}} + \frac{1}{n} \sum_{i=1}^n \|\theta^{(t)} - \tilde{\theta}\| \|\mathbb{E}[\varepsilon^{(t)} | \theta^{(t)}, \hat{\pi}, \hat{F}_a]\| \end{aligned}$$

1054 by the Cauchy-Schwartz inequality. By Lemma 6 and the fact that $\|\theta^{(t)} - \tilde{\theta}\| \leq 2B$ this gives that
1055

$$1056 \quad -\frac{1}{n} \sum_{t=1}^n \langle \theta^{(t)} - \tilde{\theta}, \varepsilon^{(t)} \rangle \leq C_3 \left(\sqrt{\frac{\log(1/\delta)}{n}} + \left| \pi(X) - \hat{\pi}(X) \right| \sup_{\substack{y_0 \in \mathcal{Y}, \\ a \in \{0,1\}}} \left| F_a(y_0 | X) - \hat{F}_a(y_0 | X) \right| \right).$$

1057 Hence by equation 12 we have that w.p. at least $1 - \delta$
1058

$$1059 \quad L(\hat{\theta}) - L(\tilde{\theta}) \leq C_3 \frac{1 + \sqrt{\log(1/\delta)}}{\sqrt{n}} + \left| \pi(X) - \hat{\pi}(X) \right| \sup_{\substack{y_0 \in \mathcal{Y}, \\ a \in \{0,1\}}} \left| F_a(y_0 | X) - \hat{F}_a(y_0 | X) \right|.$$

1060 \square

1061 B ADDITIONAL METHODS

1062 B.1 IPW APPROACH

1063 Alternatively to our doubly-robust gradient estimator we can define an arguably simpler estimator
1064 which only depends on the propensity function π . This is done by defining
1065

$$1066 \quad \zeta_{\text{ipw}}(\theta, y_0, \mathbf{z}) = \nabla_{\theta} g_{\theta}(y_0 | \mathbf{x}) \left(\frac{a}{\pi(\mathbf{x})} \mathbf{1} y \leq g_{\theta}(y_0 | \mathbf{x}) \right) - \frac{1-a}{1-\pi(\mathbf{x})} \mathbf{1} y \leq y_0.$$

We then have that $\mathbb{E}[\zeta_{\text{ipw}}(\boldsymbol{\theta}, y_0, Z) | X = \mathbf{x}] = \nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}, y_0, \mathbf{x})$. Meaning that Proposition 2 holds for ζ_{ipw} as well. From this we can define $\hat{\zeta}_{\text{ipw}}$ analogously to $\hat{\zeta}_{\text{dr}}$ and also use it in Algorithm 1. This is precisely the IPW procedure presented in our results.

In these results we see that the performance of this is very poor due to it's over reliance on inverse probability weighting which can be quite unstable.

B.2 DIRECTLY EVALUATING THE LOSS

For validation purposes it can be useful to approximate the sample loss directly rather than its gradient. To obtain this from the gradient $\bar{\zeta}$ this we can split the objective into two parts, one involving all terms of $F_1(y_1 | \mathbf{x})$ and all other terms.

As such we re-write $\bar{\zeta}$ as

$$\begin{aligned} \bar{\zeta}_{\text{dr}}(y_1, y_0, \mathbf{z}) &:= \underbrace{\frac{a}{\pi(\mathbf{x})} \{1\{y \leq y_1\}\} - \frac{1-a}{1-\pi(\mathbf{x})} (\mathbb{1}\{y \leq y_0\} - F_0(y_0 | \mathbf{x}) - F_0(y_0 | \mathbf{x}))}_{I_1} \\ &\quad + \underbrace{\left(1 - \frac{a}{\pi(\mathbf{x})}\right) F_1(y_1 | \mathbf{x})}_{I_2} \end{aligned}$$

Now for the first term (I_1) we know that an anti-(weak)derivative is which keeps the loss continuous w.r.t. y_1 is

$$(y_1 - y) \left\{ \frac{a}{\pi(\mathbf{x})} \{1\{y \leq y_1\}\} - \frac{1-a}{1-\pi(\mathbf{x})} (\mathbb{1}\{y \leq y_0\} - F_0(y_0 | \mathbf{x}) - F_0(y_0 | \mathbf{x})) \right\}$$

For the second term (which is continuous as a function of y_1) we can use the FTC to get an antiderivative of

$$\left(\frac{\pi(\mathbf{x}) - a}{\pi(\mathbf{x})} \right) \int_y^{y_1} F_1(t | \mathbf{x}) dt.$$

In fact we can also view the antiderivative of I_1 as the integral of I_1 between y_1, y .

Combining these we thus get

$$\begin{aligned} \bar{\ell}_{\text{dr}}(y_1, y_0, \mathbf{z}) &= (y_1 - y) \left\{ \frac{a}{\pi(\mathbf{x})} (\mathbb{1}\{y \leq y_1\}) \right. \\ &\quad \left. - \frac{1-a}{1-\pi(\mathbf{x})} (\mathbb{1}\{y \leq y_0\} - F_0(y_0 | \mathbf{x}) - F_0(y_0 | \mathbf{x})) \right\} \\ &\quad + \left(\frac{\pi(\mathbf{x}) - a}{\pi(\mathbf{x})} \right) \int_y^{y_1} F_1(t | \mathbf{x}) dt \\ \Rightarrow \mathbb{E}[\ell(\boldsymbol{\theta}, Y_0, Z)] &= \mathbb{E} \left[(g_{\boldsymbol{\theta}}(Y_0 | X) - Y) \left\{ \frac{A}{\pi(X)} (\mathbb{1}\{Y \leq g_{\boldsymbol{\theta}}(Y_0 | X)\}) \right. \right. \\ &\quad \left. \left. - \frac{1-A}{1-\pi(X)} (\mathbb{1}\{Y \leq Y_0\} - F_0(Y_0 | X) - F_0(Y_0 | X)) \right\} \right. \\ &\quad \left. + \left(\frac{\pi(X) - A}{\pi(X)} \right) \int_y^{g(Y_0 | X)} F_1(t | X) dt \right] \end{aligned}$$

We can then approximate the expectation via samples and the 1D integral via quadrature to get an approximation for the loss.

Remark 8. *The choice of y for the lower bound of the integral is simply chosen to keep the size of the integral reasonable and to give the first term a simple form. Any choice of lower bound not depending upon y_1 would be valid.*

1134 **C ADDITIONAL DETAILS**

1135 **C.1 COMPLEXITY OF THE CQC VERSUS THE CCDF CONTRASTING FUNCTION**

1136 While not a strictly weaker notion, we do believe that a simple CQC function is a more natural notion
 1137 than a simple CCDF contrasting function.

1138 As a general case suppose we are in the potential outcomes framework so that $Y \equiv Y_A$ with Y_0, Y_1
 1139 representing our unobserved outcomes for an individual were the off or on treatment respectively.
 1140 Suppose now that given Y_0, X one can determine Y_1 as the following $Y_1 = f(Y_0, X)$ with f
 1141 an increasing function of Y_0 (a natural notion wherein those who perform better off treatment
 1142 also perform better on treatment.) We then have that the CQC is given by f , in other words
 1143 $g^*(y_0|\mathbf{x}) = f(y_0, \mathbf{x})$. Hence simplicity of f translates directly to simplicity of the CQC.

1144 Alternatively, for the CCDF contrasting function we get that

$$1145 \begin{aligned} h(y_1, y_0, \mathbf{x}) &= F_1(y_1|\mathbf{x}) - F_0(y_0|\mathbf{x}) \\ 1146 &= F_1(y_1|\mathbf{x}) - F_1(f(y_0, \mathbf{x})|\mathbf{x}) \end{aligned}$$

1147 which does not necessarily cancel out to give a function of f for all y_0, y_1 . In fact the only case
 1148 where we know this cancellation to occur is when $Y|X = \mathbf{x}, A = a$ are certain cases of uniform
 1149 distributions.

1150 **C.2 EXPERIMENTAL DETAILS**

1151 Here we provide additional details for our experiments. For our training we used 1,000 iterations
 1152 of Adam with a learning-rate of 0.1 for any optimisation based approach. For estimation of the
 1153 propensity score we used logistic regression with L2 regularisation.

1154 For estimation of our CCDFs, we used kernel CCDF estimation. Specifically for a kernel $k : \mathcal{Y} \times \mathcal{X} \rightarrow$
 1155 \mathcal{X} and a sample $\{(Y^{(i)}, X^{(i)})\}_{i=1}^n$, we take

$$1156 \widehat{F}_a(y|\mathbf{x}) := \frac{\sum_{i=1}^n k(\mathbf{x}, X^{(i)}) \mathbf{1}\{Y^{(i)} \leq y\}}{\sum_{i=1}^n k(\mathbf{x}, X^{(i)})}.$$

1157 For our kernel we used an RBF kernel with bandwidth parameter chosen via grid-search testing on
 1158 separate data against the true CCDF.

1159 For hyper-parameter optimisation of our CQC model, with the linear and MLP models with our
 1160 approach, the only hyperparameter that was tuned was the learning rate. This was set using an 80-20
 1161 splits for training and validation from half the data used in our training (the other half being used for
 1162 nuisance parameter estimation.) As our validation loss we used the sample loss given in Appendix
 1163 B.2. A choice was made to take the trimmed mean removing the top and bottom 5% of samples in
 1164 order to avoid a small number of large samples dominating the loss. For the pre-existing inversion
 1165 based method, the kernel bandwidth was chosen on validation data when comparing to the true CQC
 1166 when the CQC was trained on balanced data so that no nuisance parameter estimates are required.
 1167 While not possible in practical examples, this was done to ensure the inverting method was not
 1168 hampered by poor hyperparameter selection.

1169 Each experiment was ran on a single 4 core CPU with 16Gb of ram and took no longer than 240
 1170 minutes to run (less than 1-minute per iteration).

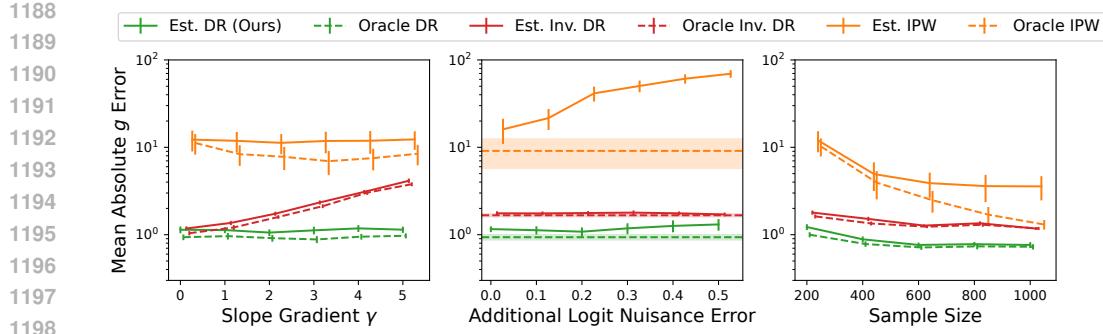
1171 The employment scheme data used in Section 5 was originally provided in Autor and Houseman
 1172 (2010) with a Creative Commons Attribution 4.0 International Public License found here: <https://www.openicpsr.org/openicpsr/project/113761/version/V1/view>.

1173 The colon cancer data used in Appendix D.7 is provided as part of the R package `survival` and first
 1174 introduced in Laurie et al. (1989) with no Licence provided.

1175 **D ADDITIONAL RESULTS**

1176 **D.1 1-DIM EXAMPLES**

1177 In this example our data set-up is as follows $X \sim N(0, 1)$, $Y|X = x, A = 0 \sim N(\cos(6x), 1)$,
 1178 $Y|X = x, A = 1 \sim N(2\cos(6x) + \gamma x, 4)$. Again in this case the marginal distributions contain



(a) Varying CQC slope steepness w.r.t. x with sample size 500. (b) Varying nuisance parameter error with sample size 500 and $\gamma = 2$. (c) Varying sample size with $\gamma = 2$

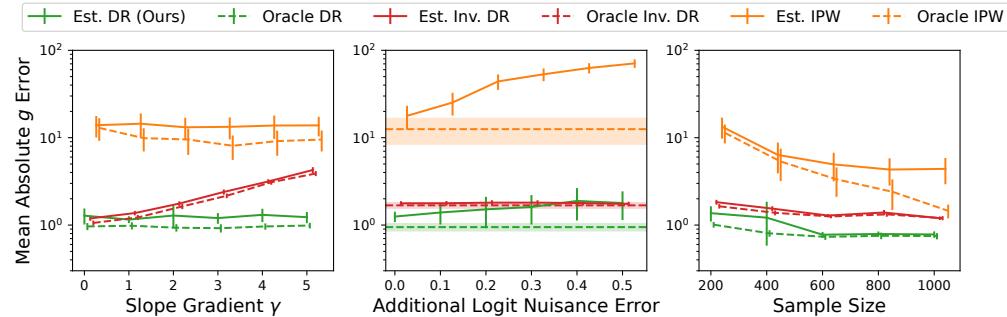
Figure 4: Truncated mean absolute error of CQC estimate for various methods with top and bottom 2.5% of runs removed alongside 95% C.I.s over 100 runs. Lower is best.

"complexity" via the high frequency sine term which persists into the CATE, CQTE, and CCDF contrasting function however the CQC is simple, being given by $g^*(y|x) = 2y + \gamma x$. As in Section 4 we test estimation of this example with varying levels of γ (representing steepness of our CQC), varying logit error on our nuisance parameter, and varying sample sizes. Due to a small number of outlier runs, for ease of interpretability, we present the truncated mean (where the largest and smallest 2.5% of results for each method removed) alongside 95% confidence intervals in figure 4. For transparency, we also present the standard mean with 95% confidence intervals in Figure 5.

Here we see identical patterns to our previous 10-dimensional example presented in Figure 2, with our approach (Est. DR) performing strongest in almost all cases. We again see that as the CQC gets steeper (Figure 4a) our estimation error stay relatively unchanged while the estimation error of the inverting approach gets worse.

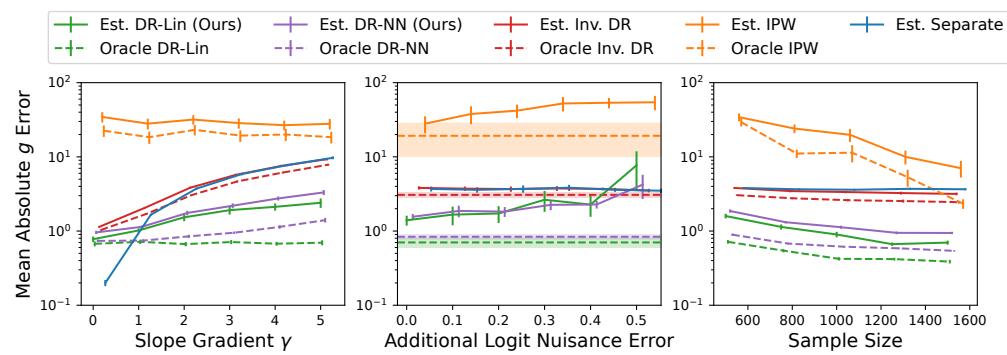
As we vary nuisance parameter estimation error (Figure 4b), observe that Est. DR performs best at all levels. Despite this, we again observe that there is no discernible difference between Est. Inv. DR and Oracle Inv. DR whereas Est. DR does seem to perform marginally worse than Oracle DR. This does seem to support the hypothesis that Est. Inv. DR is more robust to nuisance parameter estimation error. We do still see evidence of robustness in Est. DR however as it is still minimally affected by nuisance parameter estimation error when compared to Est. IPW (which is not doubly robust.)

In Figure 4c, we see our approach, Est. DR, having the smallest Mean absolute error across all sample sizes.



(a) Varying CQC slope steepness w.r.t. x with sample size 500. (b) Varying nuisance parameter error with sample size 500 and $\gamma = 2$. (c) Varying sample size with $\gamma = 2$

Figure 5: Mean absolute error of CQC estimate for various methods with 95% C.I.s over 100 runs. Lower is best.

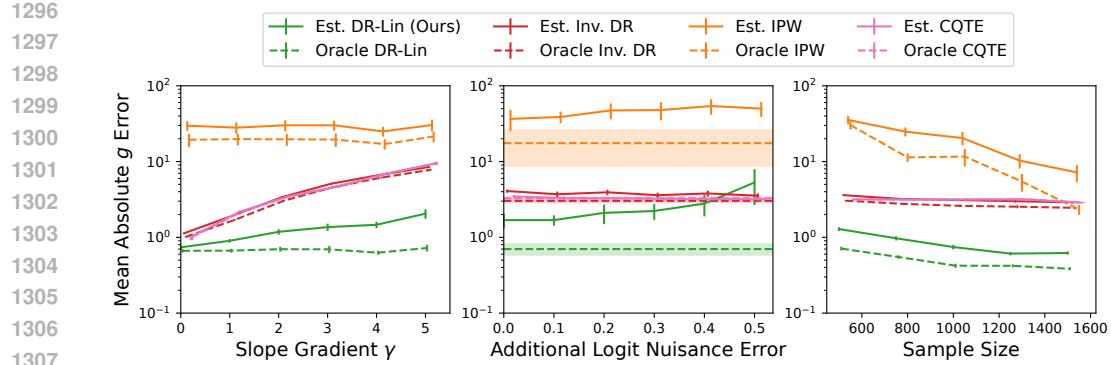
1242 D.2 10-DIM EXPERIMENT
12431244 Here we present additional results from our 10 dimensional experiment introduced in Section 4.
12451246 D.2.1 S-LEARNER AND CQTE APPROACH
12471248 Here we introduce additional comparators specifically in the form of an S-Learner and the CQTE
1249 estimator of Kallus and Oprescu (2023).
12501251 **S-Learner** The S-Learner works by finding the value of y_1 which sets $\hat{h}(y_1, y_0, \mathbf{x}) = \hat{F}_1(y_1|\mathbf{x}) - \hat{F}_0(y_0|\mathbf{x}) = 0$. This can be thought of as taking our estimator to be $\hat{F}_1^{-1}(\hat{F}_0(y_0|\mathbf{x})|\mathbf{x})$ where \hat{F}_a^{-1} is computed by inverting \hat{F}_1 .
12521253 The results are presented in Figure 6. As we can see that Separate approach performs comparably to
1254 the DR approach in most settings except for the case when the slope parameter is set to 0. We can
1255 potentially understand this in terms of the derivative of our CQC w.r.t. \mathbf{x} . We have that $\nabla_{\mathbf{x}}g^*(y_0|\mathbf{x}) = \gamma\mathbf{v}$.
1256 Alternatively we see that $\nabla F_0(y_0|\mathbf{x}) = \nabla\Phi(y - \sin(\pi\mathbf{v}^\top \mathbf{x})) = f(y - \sin(\pi\mathbf{v}^\top \mathbf{x})) \cdot \pi\mathbf{v}$ where
1257 Φ, f are the CDF and density of a 0 means standard deviation 1 Gaussian. As such while the CQC
1258 is a simpler function, its derivative can be on a larger scale than that of the CQC making it more
1259 difficult to estimate from the perspective of Nadarya-Watson (NW) estimation. As such an approach
1260 which estimates the CQC using NW estimation (as the inverting approach does) will get minimal
1261 benefit over estimating the two CCDFs separately and using this as its estimate.
12621273 (a) Varying CQC slope steepness (b) Varying nuisance parameter er-
1274 w.r.t. \mathbf{x} with sample size 500. (c) Varying sample size with $\gamma = 2$
12751276 Figure 6: Mean absolute error of CQC estimate for various methods with 95% C.I.s over 100 runs.
12771278 **CQTE Estimator** We also compare to the CQTE estimator of Kallus and Oprescu (2023). For
1279 estimation of each nuisance parameter and the final regression we use the same approach as used for
1280 the inverting estimator of Givens et al. (2024). The CQTE also requires estimation of the conditional
1281 density of $Y|X$ as the quantiles. That is for $a \in \{0, 1\}$, $p_{Y|X,A=a}(F_a^{-1}(\alpha|\mathbf{x}))$ for a given value of α
1282 our specified quantile level. To rule out poor performance due to poor estimation of this additional
1283 nuisance parameter we use its exact value for both the oracle and estimated approach. To compare
1284 this estimator to our CQC estimate we use the identity

1285
$$g(y|\mathbf{x}) = \tau_q(F_0(y|\mathbf{x})) + F_0(y|\mathbf{x})$$

1286 to transform the CQTE estimate using the exact CCDF. Additionally as the CQTE estimator is
1287 constructed to learn the CQTE for a specific quantile, for each run we fix the quantile that we will
1288 test the estimator on. We do not change the training procedure of the other estimators.
12891290 Results for this experiment are given in Figure 7 as we can see the CQTE approach performs
1291 comparably to the inverting approach and performs significantly worse than our direct estimator in
1292 almost all settings. Interestingly the Oracle and estimated approaches appear indistinguishable we
1293 could be due to using exact estimator of the conditional probability density function in both cases.
12941295 D.3 VARYING HYPERPARAMETERS & COMPUTE TIME
1296

1297 D.3.1 VARYING LEARNING RATE

1298 Here we explore the effect of our choice of learning rate on our performance for our 10-dimensional
1299 experiment in Section 4. The results are presented in Figure 8.
1300



(a) Varying CQC slope steepness w.r.t. α with sample size 500. (b) Varying nuisance parameter error with sample size 500 and $\gamma = 2$. (c) Varying sample size with $\gamma = 2$

Figure 7: Mean absolute error of CQC estimate for various methods with 95% C.I.s over 100 runs.

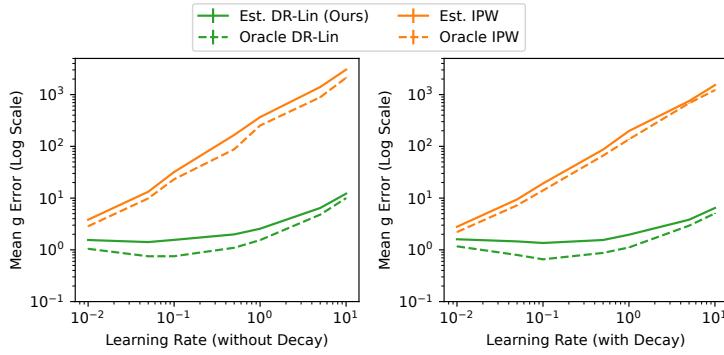


Figure 8: Mean absolute error of CQC estimate for various methods as learning rate increases. 95% C.I.s included. For the right figure a learning rate decay was also introduced

As we can see, for our DR method, higher learning rates can hamper performance although the method does not seem excessively sensitive to learning rates. By contrast the IPW approach gets drastically worse as learning rate increases. We also see that adding learning rate decay can further mitigate the effect of the learning rate on performance. For our main experiment we chose our learning rate via a validation procedure using the test loss discussed in Appendix B.2.

D.3.2 VARYING ITERATION NUMBER

He we explore the rate at which our method converges. In Figure 9 we plot the convergence of our method for the IPW and DR approaches with oracle and estimated nuisance parameters.

We see that our DR approach converges within about 150 iterations while the IPW approach doesn't seem to converge at all or if it does converges to an incorrect value. We note that while 1000 iterations is very conservative, this still takes around 1 second with 1000 samples and so is reasonable to perform. In the following section we illustrate the time take for our new approach, demonstrating it to have more desirable dependence upon sample and test size.

D.3.3 TIME TAKEN

In Figure 10 we plot the time take to train and evaluate various models for various number of training samples (left plot) and evaluation samples (right plot). We see that for small training and evaluation samples the previous inverting approach is quicker due to not having a distinct training sample however we can see that overall it has less desirable dependency on the training and evaluation samples, with the computational cost being $O(n^2m)$ compared to $O(nT + m)$ for our approach with n = sample size, m = evaluation size, T = iterations. Throughout we kept iterations fixed at an overly conservative 1000.

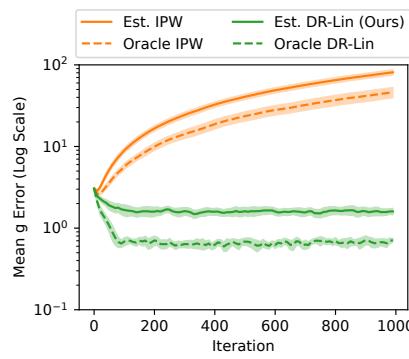


Figure 9: Mean absolute error of CQC estimate for various methods over iteration number. 95% C.I.s included.



Figure 10: Mean time taken for training and evaluation of our gradient approach and the inverting approach for varying number of training and evaluation samples. 95% C.I.s included.

D.4 NUISANCE PARAMETER DEPENDENCE

Here we explore the dependence of our approach on the accuracy of our estimates. Specifically we fix either the propensity or the CCDFs at their true values and estimate the other alongside various levels of additional error. These results are presented in Figure 11.

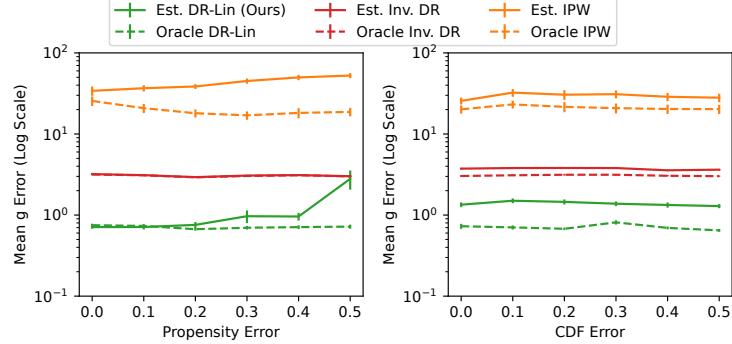


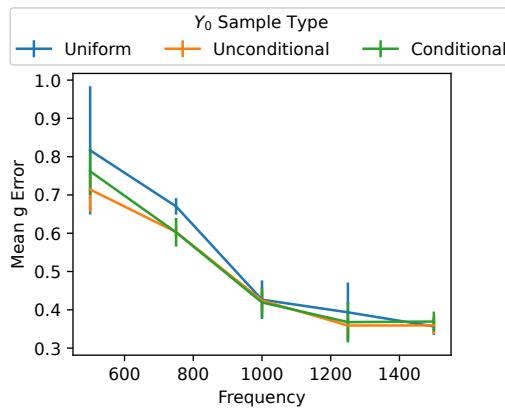
Figure 11: Mean absolute error of CQC estimate for various methods as nuisance error for Propensity and CCDF estimates increases separately. 95% C.I.s included.

We see that both CDF error and Propensity error have some effect on performance for our method. Interestingly with no additional error our propensity performs comparably to the oracle however additional propensity error can have a notable impact when it gets too large. Interestingly for the CCDFs, additional error doesn't seem to impact performance but our estimated approach performs

1404 significantly worse than our oracle estimator suggesting that our estimate for the CCDFs is already
 1405 quite poor. For the inverting approach, increased propensity error seems to have no effect while the
 1406 effect of the estimated CCDF is small but statistically significant.
 1407

1408 D.5 Y_0 SAMPLING METHOD

1409 Here we explore the impact of our sampling choice on Y_0 as discussed in Remark 6. Specifically we
 1410 sample Y_0 in 3 different ways. Firstly we sample Y_0 uniformly from the range of the 5%-95% quantile
 1411 of Y_0 and call this method “Uniform”. Secondly we sample Y_0 uniformly with replacement from our
 1412 Y samples with $A = 0$ to approximately sample from $Y|A = 0$ and call this method “Unconditional”.
 1413 Finally we sample exactly from $Y|X = X^{(i)}, A = 0$ for each $X^{(i)}$ using the true inverse CDF and
 1414 call this method “Conditional”. Performance over various sample sizes are presented in Figure 12.
 1415 As we can see the sample choice seems to have little impact on performance with the “Uniform”
 1416 approach potentially performing marginally worse although this is not statistically significant for all
 1417 sample sizes.
 1418



1432 Figure 12: Mean absolute error of CQC estimate for various Y_0 sampling choices as sample size
 1433 increases. 95% C.I.s included.
 1434

1435 D.6 EMPLOYMENT SCHEME EXAMPLE

1436 Here we provide the parameters themselves for our aforementioned employment example.
 1437

1438 Table 1: Table presenting the covariates from our CQC estimate plotted in Figure 3. The mode is
 1439 $g_{\theta}(y|x) = \theta_{\text{int, shift}} + \theta_{\text{age, shift}}x + (\theta_{\text{int, scale}} + \theta_{\text{age, scale}}x)y$
 1440

Covariate	Parameter Type	
	Shift	Scale
Intercept	1.43	1.74
Age	0.032	-0.017

1446 We can see the overall shape of the CQC represented in the parameters. Firstly we see that the
 1447 scale term is significantly larger than 1 at the intercept and will continue to be larger than 1 for all
 1448 values of age thus representing an increase in earning improvement as non-intervention earnings
 1449 increase. We also see this increase in earning improvement decrease as a function of age as the age
 1450 scale parameter is negative. We can easily see how one could generalise this to multiple covariates.
 1451 For interpretability it perhaps makes sense to normalise both y and x for all parameters to be on a
 1452 comparable scale and give the intercept a more natural interpretation.
 1453

1454 D.7 COLON CANCER EXAMPLE

1455 We additionally apply our trial to data from a clinical trial on the the effect of colon cancer
 1456 treatment on survival time/time to remission. This dataset was originally introduced in Lau-
 1457 rie et al. (1989) and can be found in the “survival” package in R and loaded with the line
 1458 data(colon, package="survival"). It was also previously studied via the CQC in Givens

et al. (2024). The dataset consists of 929 patients who are randomised to receive either treatment or control. The time until their death, recurrence of their cancer, or the end of the trial was then recorded alongside which one of these 3 outcomes occurred. The longest recorded time an individual participated in the trial was 3329 days. We take our response (Y) to be the time until their event/end of the trial and a 1-dim covariate (X) of the participants age upon trial entry.

As previous analysis of this trial showed the CQC to be distinctly nonlinear, here we fit the CQC using a fully connected Neural Network (NN). This NN takes in y_0, x as two separate features and then consists of two fully connected hidden layers of 20 nodes each and tanh activation functions. One again we estimate g^* and then use this to estimate $\Delta(y|x) = g^*(y|x) - y$. The results of this estimation are given in Figure 13. For comparison we provide the estimated CQC via the existing inversion procedure in Figure 14

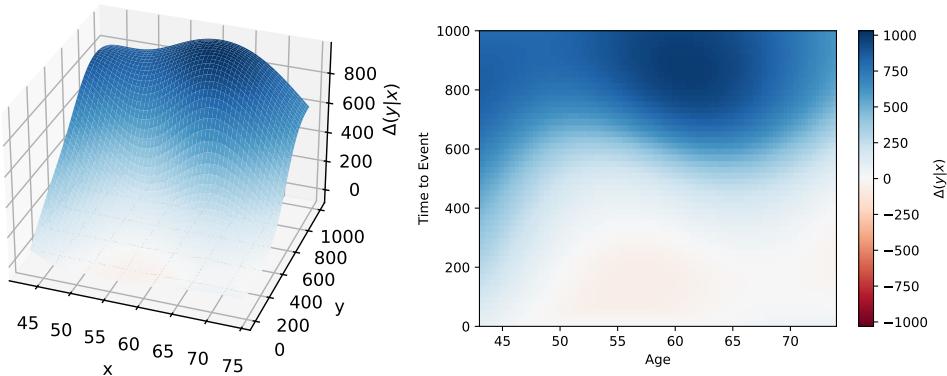


Figure 13: Surface plot and heat plot of $\Delta(y|x)$ over y, x for colon cancer trial data with $X = \text{Age}$, $Y = \text{Time to Event}$.

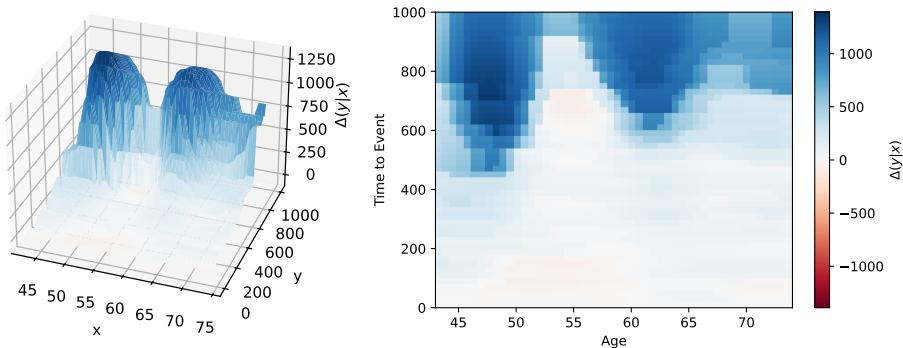


Figure 14: Surface plot and heat plot of $\Delta(y|x)$ over y, x for colon cancer trial data with $X = \text{Age}$, $Y = \text{Time to Event}$.

Here we see a very interesting pattern in which for the a reasonable range of the untreated response, the treated response is no difference and then there is a sudden increase in the treated response. This seems to suggest a relatively binary treatment outcome in which some people do not respond at all to treatment while others see a marked improvement. Interestingly, we also see that individuals younger than 50 seem to be most likely to see an improvement in their outcome while the strongest improvement seems to come for a smaller number of individuals between the ages of 56-66. This could partially be a result of the censoring as the largest values present on the graph are over 1,000 days larger than the untreated survival time of 1,000 days which, in total is reaching the longer end of follow-up. All of this aligns closely with the estimate CQC via the existing inversion approach presented in Figure 14 with the newer version providing a smoother and more readable estimate of the CQC.

1512 **E LLM USAGE**
1513

1514 An LLM was used for minor editing of the papers prose. This was done solely for the purposes of
1515 conciseness and clarity.

1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565