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Abstract
In Multimodal Machine Translation (MMT),001
the use of visual data has shown only marginal002
improvements compared to text-only models.003
Previously, the CoMMuTE dataset and associ-004
ated metric were proposed to score models on005
tasks where the imagery is necessary to disam-006
biguate between two possible translations for007
each ambiguous source sentence. In this work,008
we introduce new metrics within the CoM-009
MuTE domain to provide deeper insights into010
image-aware translation models. Our proposed011
metrics differ from the previous CoMMuTE012
scoring method by 1) assessing the impact of013
multiple images on individual translations and014
2) evaluating a model’s ability to jointly se-015
lect each translation for each image context.016
Our results challenge the conventional views017
of poor visual comprehension capabilities of018
MMT models and show that models can in-019
deed meaningfully interpret visual information,020
though they may not leverage it sufficiently in021
the final decision.022

1 Introduction023

The use of multimodal data, combining visual and024

textual inputs, is becoming increasingly important025

in deep learning, especially in language modeling.026

Multimodal Machine Translation (MMT) presents027

a unique challenge in this area, as previous Ma-028

chine Translation (MT) systems traditionally relied029

only on text. Despite the potential benefits of in-030

corporating imagery, its efficacy in MMT remains031

controversial. Critics often view imagery as merely032

a regularizer rather than a core component of trans-033

lation systems (Caglayan et al., 2016; Wu et al.,034

2021). This skepticism is fueled by results with the035

assumption that textual context alone suffices for036

most translation tasks (Caglayan et al., 2019).037

To explore these concerns, the CoMMuTE038

dataset was developed to test MMT models on039

source sentences where visual context is essential040

for accurate selection between possible translations041

(Futeral et al., 2023). Their proposed evaluation 042

metric scores a model’s preference/choice between 043

two reference translations, diverging from tradi- 044

tional metrics such as BLEU (Papineni et al., 2002) 045

and Meteor (Banerjee and Lavie, 2005) that instead 046

compare a generated translation against a single 047

reference. Initial analyses using the CoMMuTE 048

dataset and metric indicate that current models 049

show only slight, or no, improvement over using 050

text-only models (Futeral et al., 2023). 051

Building on this recent foundation, we introduce 052

a new complementary evaluative CoMMuTE met- 053

ric that assesses a model’s understanding of varying 054

imagery on a fixed reference translation. We ad- 055

ditionally provide two group metrics designed to 056

evaluate a model’s ability to jointly choose each 057

translation given their associated image contexts. 058

Results with our proposed metrics demonstrate 059

that in many circumstances, models can indeed 060

effectively understand and properly interpret the 061

visual information, even if the final translation deci- 062

sions are unaffected. This suggests the significant 063

potential for improvements in model design to fur- 064

ther leverage visual information. 065

2 Related Work 066

In this section, we present an overview of recent 067

advancements and methodologies in two critical 068

areas of related research. We first explore how im- 069

agery can enhance translation capabilities in MMT 070

and subsequently shift our focus to contrastive eval- 071

uation methods, which represent a shift from tra- 072

ditional single-reference comparisons to more nu- 073

anced assessments using multiple contrasting refer- 074

ences. 075

2.1 Multimodal Machine Translation 076

MMT typically trains with datasets such as 077

Multi30k (Elliott et al., 2016) to enhance trans- 078

lation capabilities, yet results are not largely im- 079
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proved (Caglayan et al., 2019). Research such as080

Elliott (2018) demonstrates that the replacement of081

associated images with random counterparts often082

does not significantly impact translation quality,083

suggesting a predominant reliance on textual data.084

A later study further indicated that imagery typi-085

cally serves merely as a form of regularization in086

training current models (Wu et al., 2021).087

When imagery is available at inference time, ap-088

proaches such as Graph-MMT (Yin et al., 2020),089

VTLM (Caglayan et al., 2021), Gated Fusion (Wu090

et al., 2021), and VGAMT (Futeral et al., 2023)091

are applicable. These methods leverage diverse092

global visual features from sources such as ResNet-093

50 (He et al., 2016) and CLIP (Radford et al.,094

2021), as well as visual semantic features through095

advanced object detectors like MDETR (Kamath096

et al., 2021).097

In scenarios lacking visual data at inference time,098

innovative models such as CLIP-Trans (Gupta et al.,099

2023), UVR-NMT (Zhang et al., 2020), and ImagiT100

(Long et al., 2021) instead strategically leverage101

image-text datasets only during their training phase.102

These models employ sophisticated mechanisms to103

enhance their semantic understanding during train-104

ing such as aligning image-text embedding spaces105

and synthesizing visual features. By pretraining on106

multimodal data, these models acquire a nuanced107

understanding of complex semantic relationships108

that text alone might not fully encapsulate. Some109

models, such as CLIP-Trans, can be modified to110

support the use of imagery at inference time by111

replacing CLIP text embeddings with CLIP image112

embeddings.113

There has also been notable progress in adapting114

pretrained language models (LMs) such as BERT115

(Devlin et al., 2019) and XLM (Conneau and Lam-116

ple, 2019) for multimodal use. Techniques such117

as visually-conditioned masked language model-118

ing (VMLM) are explored in various architectures119

(Chen et al., 2020; Lu et al., 2019; Su et al., 2020;120

Li et al., 2020; Zhou et al., 2021; Ni et al., 2021;121

Futeral et al., 2023). Furthermore, the development122

of adapters and other lightweight modules can sig-123

nificantly enhance multimodal capabilities of LMs124

(Houlsby et al., 2019; Eichenberg et al., 2022; Yang125

et al., 2022; Tsimpoukelli et al., 2021; Sung et al.,126

2022; Futeral et al., 2023).127

2.2 Contrastive Evaluation128

Contrastive evaluation methodologies have become129

crucial for nuanced assessments of translation sys-130

tems. These methodologies utilize contrastive test 131

sets designed to challenge models to correctly rank 132

pairs of translations, helping distinguish between 133

correct and incorrect alternatives (Futeral et al., 134

2023). Contrastive datasets have been used to eval- 135

uate linguistic phenomena including grammatical- 136

ity (Sennrich, 2017), pronoun translation (Müller 137

et al., 2018; Bawden et al., 2018; Voita et al., 2019), 138

and multi-sense word disambiguation (Rios Gonza- 139

les et al., 2017; Raganato et al., 2019; Futeral et al., 140

2023). Moreover, the coherence of lexical usage 141

across translations has been thoroughly explored 142

(Bawden et al., 2018; Voita et al., 2019). 143

3 CoMMuTE Dataset and Metric 144

The CoMMuTE dataset (Futeral et al., 2023) was 145

recently introduced to score an MMT model’s pref- 146

erence between two given translations for an am- 147

biguous source based on the provided imagery. 148

Specifically, CoMMuTE is comprised of 154 am- 149

biguous English sentences, each paired with two 150

contrasting images and their respective translations, 151

where the two translations are available in French, 152

German, and Czech. Each instance in the dataset is 153

structured as a tuple (s, ia, ta, ib, tb), where s is an 154

ambiguous source sentence and (ia, ib) are images 155

that disambiguate the sentence into two possible 156

translations (ta, tb), respectively. For example, in 157

Fig. 1, the English source sentence “That’s lots of 158

bucks!” could refer to either deer or dollars, and 159

the image is needed to determine the appropriate 160

context. 161

To specifically score such disambiguation capa- 162

bilities, the authors proposed a metric, which we 163

refer to as TextCoMMuTE (TC), that compares the 164

model’s preference for the correct translation over 165

the incorrect translation based on a single provided 166

image context. 167

The model’s uncertainty in a translation t given a 168

source s and an image i is quantified by perplexity, 169

defined as 170

P(s, i, t) = exp

(
− 1

N

N∑
k=1

log p(tk|s, i, t<k)

)
(1) 171

Here, N is the number of tokens in the transla- 172

tion, tk is the k-th token in the translation, and 173

p(tk|s, i, t<k) denotes the conditional probability 174

of the k-th token given the source, image, and pre- 175

ceding tokens. In practice, this probability is ap- 176

proximated using the softmax of model outputs. 177

Perplexity can be seen as a measure of uncertainty 178
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(a) French Translation a: Il
y a beaucoup de cerfs !

(b) French Translation b:
Cela fait beaucoup de dol-
lars !

Figure 1: English Source: That’s lots of bucks!

as it is the exponential of the negative mean log179

probability. Hence, lower perplexity is desired for180

a correct output versus an incorrect output.181

The TC metric is then defined for a single image-182

translation triple (im, tm, tn) as183

TCm,n = 1{P(s, im, tm) < P(s, im, tn)} (2)184

where im and tm correspond to the matching im-185

age/translation and tn is the incorrect translation in186

the associated triple. Moreover, 1 is the indicator187

function that is 1 if the perplexity for the correct188

translation is less than that of the incorrect transla-189

tion, and 0 otherwise.190

Note that each of the 154 tuples in CoMMuTE191

yields 2 TC scores: TCa,b and TCb,a. Hence,192

there are actually 308 individual TC scores for the193

dataset. An average is taken over the N=154 TC194

pairs as a summary statistic195

TC =
1

2N

N∑
j=1

{TCaj ,bj + TCbj ,aj} (3)196

Again, the TC score (Eqn. 3) views the two197

triples in each tuple independently even though198

both triples are associated with the same source199

sentence. TC scores range from 0-1 with 1 indi-200

cating correct disambiguation of all triples in the201

dataset. A text-only model scores a TC of 0.5202

by definition (assuming no ties in perplexity) be-203

cause for any tuple j in the dataset, exactly one204

of TCaj ,bj and TCbj ,aj will be 1 while the other205

is 0 (i.e., the image makes no contribution to the206

translation preference for a given source).207

From an MMT perspective, this metric is insight-208

ful as translations with lower perplexities are typi-209

cally more likely to be generated or appear higher210

in an n-best list.211

4 Enhanced CoMMuTE Metrics212

We now propose new complementary contrastive213

metrics to provide a more nuanced understanding214

of the interpretation of imagery for models with the 215

CoMMuTE dataset. 216

4.1 ImageCoMMuTE 217

Rather than comparing two translations with the 218

same image and source as is done with TC, we in- 219

stead examine the contribution of two different im- 220

ages to the same translation. From this perspective, 221

we can directly assess whether the correctly associ- 222

ated image is appropriately affecting model uncer- 223

tainty (reducing the perplexity of its corresponding 224

translation). For a source s, images (im, in), and a 225

translation tm, we define ImageCoMMuTE (IC) as 226

ICm,n = 1{P(s, im, tm) < P(s, in, tm)} (4) 227

where im is the correctly associated image and in 228

is incorrectly associated image for translation tm. 229

Similar to TC, one can aggregate scores over a 230

dataset by taking the mean of the N=154 pairs 231

IC =
1

2N

N∑
j=1

{ICaj ,bj + ICbj ,aj} (5) 232

Scores for IC range from 0-1, and a score of 0.5 in- 233

dicates a random preference for the image context. 234

Our IC metric evaluates changes in model con- 235

fidence for the same translation when presented 236

with varying imagery. This approach directly as- 237

sesses the interplay between imagery and text in- 238

terpretation within the model. This differs from 239

the work presented in Elliott (2018), where they 240

assess average differences in model uncertainty, 241

while we assess indicators of decisions. This IC 242

metric also alleviates any possible concerns of the 243

reliance on comparing perplexity averages and cal- 244

ibration across translations (as is done with TC). 245

We will return to these potential issues in our dis- 246

cussion later. By maintaining a single reference 247

translation across different visual contexts, our IC 248

metric provides a more robust and precise measure 249

of how imagery is understood by the model. 250

4.2 Group CoMMuTE 251

Though TC and IC are insightful metrics on their 252

own, they both ignore the consistency desired for 253

the underlying source-translation pairs. With TC, 254

the set of both translations is independently pro- 255

cessed twice (each time with a different image con- 256

text). Similarly with IC, the set of both images is 257

independently processed twice (each time with a 258

different translation target). What is truly desired 259
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is that the model consistently and correctly under-260

stands both cases for each set jointly to demonstrate261

true understanding.262

Therefore, we propose a new group variant263

for TC and IC. To evaluate consistency across264

the paired nature of the task, we define Group265

TextCoMMuTE (GTC) as266

GTCa,b = TCa,b · TCb,a (6)267

and Group ImageCoMMuTE (GIC) as268

GICa,b = ICa,b · ICb,a (7)269

These group metrics function with a logical “AND”270

between the two independent triple scores, ensuring271

that a score of 1 reflects consistent and correct272

interpretations for the tuple as a whole. As earlier,273

one can also aggregate group scores using a mean274

with275

GTC =
1

N

N∑
j=1

GTCaj ,bj (8)276

277

GIC =
1

N

N∑
j=1

GICaj ,bj (9)278

These scores also yield values between 0-1.279

Our primary goal is to assess if the model prop-280

erly interprets and understands imagery for the281

translations. Group scores such as GTC and GIC282

are crucial because they assess consistent model283

behavior with different text-image combinations,284

indicating true comprehension rather than coinci-285

dental correctness.286

5 Experiments and Results287

We present a comprehensive assessment of the pre-288

vious and new CoMMuTE metrics on three pre-289

trained English-to-French MMT models. Our eval-290

uation is structured to elucidate how well these291

models understand the imagery with respect to re-292

solving ambiguities in the CoMMuTE dataset. We293

begin by evaluating performance on the original294

CoMMuTE dataset, followed by an assessment us-295

ing an extended set of imagery we collected for296

each CoMMuTE tuple to reveal further strengths297

and weaknesses across models.298

5.1 Models299

We employed three English-to-French MMT mod-300

els, each chosen for its unique approach to integrat-301

ing visual data with textual information.302

VGAMT. The authors of CoMMuTE proposed 303

VGAMT (Futeral et al., 2023), enhancing a pre- 304

trained mBART MT model (Liu et al., 2020) by 305

incorporating CLIP ViT-B/32 image embeddings 306

and fine-tuning adapters. While VGAMT included 307

an object detector and a visually guided attention 308

mechanism, our evaluation focused on its simpli- 309

fied variant from their ablation study (Futeral et al., 310

2023), which solely uses CLIP image embeddings. 311

This model was trained using both visual masked 312

language modeling and MMT objectives, having 313

1B total parameters. In our experiments, we em- 314

ployed three VGAMT models provided by the au- 315

thors, each trained with a different random seed. 316

CLIP-Trans. The authors (Gupta et al., 2023) 317

align the embedding spaces of a pretrained mBART 318

MT model (Liu et al., 2020) with a multilingual 319

M-CLIP model (Carlsson et al., 2022) via a map- 320

ping network. The model first trains on an image- 321

captioning task using M-CLIP image embeddings 322

followed by text-only MT training with M-CLIP 323

text embeddings. They also suggest that imagery 324

can be utilized at inference time, substituting M- 325

CLIP text embeddings with image embeddings, 326

even though it is not directly trained on MMT. We 327

used a model following this approach with 1.3B 328

total parameters. In the experiments, we evaluated 329

two CLIP-Trans models provided by the authors, 330

each trained with a different random seed. 331

Gated Fusion. This model introduces a dynamic 332

gating mechanism that adaptively combines image 333

and text representations, with gate values ranging 334

from 0 to 1 for image components (Wu et al., 2021). 335

The model leverages ResNet-50 (He et al., 2016) 336

image features and a tiny transformer for a total of 337

32M parameters (substantially smaller than CLIP- 338

Trans and VGAMT). We trained the model solely 339

on the Multi30K dataset (Elliott et al., 2016), adher- 340

ing to the authors’ training protocol. We observed 341

that the gating mechanism frequently assigns low 342

values, often near 0, which tends to minimize the 343

impact of visual data. To better incorporate image 344

content into the translation process, we trained ad- 345

ditional variants with fixed gate values of 0.25, 0.5, 346

and 0.75. Each of these variants was trained and 347

evaluated using three different random seeds. 348

5.2 Baseline Results 349

We first conducted a baseline evaluation on the 350

CoMMuTE dataset. Table 1 (left) displays the TC 351

and GTC scores. We report mean TC and GTC 352

scores taken across models with random seeds 353
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Model Mean TC ↑ Mean GTC ↑ IPR ↑ INR ↓ CPR ↑ CNR ↓
VGAMT 0.63 0.26 0.13 0.00 0.50 0.37

CLIP-Trans 0.51 0.03 0.03 0.02 0.48 0.47
Gated Fusion 0.50 0.02 0.01 0.01 0.49 0.49

Gated Fusion0.25 0.52 0.10 0.07 0.05 0.45 0.43
Gated Fusion0.5 0.50 0.07 0.05 0.05 0.45 0.45
Gated Fusion0.75 0.49 0.02 0.02 0.04 0.46 0.48

Table 1: Baseline TC and GTC scores on the original CoMMuTE dataset, and consistency rates compared to
pseudo-text-only baseline.

Figure 2: Mixed imagery from Fig. 1 used for a pseudo-
text-only baseline.

(standard deviations were very low in all cases).354

For reference, a pure text-only MT model will have355

TC=0.5 and GTC=0, since the model will always356

choose one translation over the other for each tuple.357

VGAMT scores highest in these two metrics,358

with the CLIP-Trans and Gated Fusion variants359

scoring near text-only in TC. The GTC scores of360

all models are above 0%, suggesting that all models361

can consistently disambiguate at least some tuples,362

though the scores are low. The gate values within363

the default Gated Fusion model were inspected and364

found to be near 0 (as expected). Interestingly,365

we see that TC for Gated Fusion improves slightly366

with a fixed larger gate value of 0.25 indicating that367

the strength of imagery does have the potential to368

change translations.369

5.3 Comparison to Pseudo-text-only370

We next examined how much the imagery affected371

model decisions in comparison to the underlying372

textual bias. We compared the changes in TC373

scores using the original image context pairs (from374

CoMMuTE) versus an ambiguous mixed image.375

As MMT models are trained with both imagery376

and text, one cannot properly obtain a pure text-377

only result through simple methods such as pass-378

ing a zero image or removing the image context379

from the tokens. To obtain a pseudo-text-only base-380

line we employed a 50/50% “mixup” (Zhang et al.,381

2018) of the two image contexts for each tuple to382

create a single ambiguous image (see Fig. 2). Here, 383

both image contexts are provided in a single im- 384

age. We evaluated TC using this mixed image and 385

also using the original images to get two competing 386

TC scores for each image-translation triple. Note 387

that the pseudo-text-only MMT model will score 388

TC=0.5 (and GTC=0) by definition (we are using 389

the same mixed image across two comparisons, and 390

thus, preference does not change). 391

We measure changes in the score between the 392

original images and the mixed image for each tuple 393

using four consistency rates. The first two rates 394

measure the percent of image-translation triples 395

for which the original imagery and the mixed im- 396

agery gave different preferences for translations. 397

That is, in these cases, the model’s decision when 398

using the original imagery was different from the 399

model’s decision when using the mixed imagery. 400

The inconsistent positive rate (IPR) measures the 401

percentage of image-translation triples that chose 402

the right translation with the original imagery and 403

the opposite/wrong translation with mixed imagery. 404

The inconsistent negative rate (INR) measures the 405

percentage of image-translation triples that chose 406

the wrong translation with the original imagery and 407

the opposite/right translation with mixed imagery. 408

The performance of the remaining examples can be 409

quantified by a consistent positive rate (CPR) and 410

a consistent negative rate (CNR), measuring the 411

percentage of triples whose correct and incorrect 412

preferences did not change when using the original 413

or mixed imagery. Since the corpus is evenly split 414

into 2 ambiguities, these rates are bounded in [0, 415

0.5] with IPR + CNR = INR + CPR = 0.5. 416

Table 1 (right) displays the consistency rates us- 417

ing the pseudo-text-only baseline for each of the 418

models. The VGAMT model scores the highest 419

IPR of 0.13 with an INR of 0, indicating that the 420

model corrected 13% of translations without any 421

negative impact when using the original imagery. 422

In contrast, the CLIP-Trans and Gated Fusion vari- 423
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Model Mean IC ↑ Mean GIC ↑
VGAMT 0.81 0.66

CLIP-Trans 0.51 0.11
Gated Fusion 0.51 0.11

Gated Fusion0.25 0.51 0.12
Gated Fusion0.5 0.50 0.13
Gated Fusion0.75 0.50 0.11

Table 2: Baseline IC and GIC scores.

ants show smaller IPR and INR rates, suggesting424

that imagery has a weaker yet still noticeable effect425

on these models. The higher INR rates for these426

models indicate that imagery can actually hurt their427

performance.428

By examining the CPR and CNR rates in the429

table, we see that imagery may not be signifi-430

cantly impactful in the decisions across all models.431

These rates only measure the proportion of image-432

translation triples (with the original imagery) that433

agree with the pseudo-text-only baseline (with the434

mixed imagery). They do not describe if the model435

associates correct/incorrect imagery with transla-436

tion confidence. The model still might correctly437

associate the original imagery, giving lower per-438

plexity of the correct translation (desired), but this439

change may not be drastic enough to overturn the440

model’s underlying textual preference. This high-441

lights the need for a metric, such as the proposed IC,442

to measure how confidence in a translation changes443

with correct and incorrect imagery.444

5.4 ImageCoMMuTE Results445

We next conducted an evaluation of the CoMMuTE446

dataset using our proposed IC and GIC metrics.447

Table 2 displays the mean IC and GIC scores taken448

across the models with random seeds. Note that IC449

and GIC metrics are undefined for a pure text-only450

MT model, and thus, we cannot compute the four451

consistency rates.452

Our image-based metrics (IC and GIC) demon-453

strate that VGAMT interprets imagery most effec-454

tively, achieving 0.81 on IC and 0.66 on GIC, which455

are significantly higher than the TC of 0.63 and456

GTC of 0.26. Other models continue to score only457

slightly above 0.5. These results demonstrate that458

VGAMT more appropriately adjusts uncertainty in459

a translation based on imagery.460

We also investigated whether the different mod-461

els made the same errors. We identified the image-462

translation triples where each model made errors in463

terms of TC and also for IC. We then calculated the464

Model TC IC
VGAMT vs CLIP-Trans 0.36 0.17

VGAMT vs Gated Fusion0.25 0.25 0.16
Gated Fusion0.25 vs CLIP-Trans 0.34 0.34

Table 3: Intersection-Over-Union of failures as deter-
mined by TC and IC.

intersection-over-union (IOU) between 2 models, 465

which is a set similarity metric defined as the ratio 466

of the number of image-translation triples common 467

to both error sets for a given metric (intersection) 468

to the total number of unique image-translation 469

triples in both error sets (union). This metric helps 470

quantify the similarity in errors across models as a 471

scalar bounded in [0,1] where 1 signifies exact sim- 472

ilarity in errors. The results in Table 3 reveal that 473

models do not strongly make the same mistakes yet 474

do share some overlap. 475

5.5 Extended CoMMuTE 476

We next extended the CoMMuTE dataset by incor- 477

porating additional images per translation in each 478

tuple. This extension allows for a broader assess- 479

ment of model performance across diverse image 480

inputs and enables a search for images that could 481

either improve or degrade the scores. 482

For each ambiguous source s, we manually gen- 483

erated two distinct, unambiguous captions, ca and 484

cb, which correspond directly to the translations 485

ta and tb, respectively. For example, the English 486

sentence “That’s lots of bucks!” is transformed to 487

“a photo of deer” and “a photo of dollars”. 488

Utilizing these unambiguous captions, we then 489

sourced corresponding images from the DataComp- 490

12.8M dataset (Gadre et al., 2023), which com- 491

prises 12.8 million image-text pairs harvested from 492

the Common Crawl (Common Crawl). The Dat- 493

aComp dataset serves as a foundation dataset for 494

enhancing the training of CLIP models. We em- 495

ploy a CLIP ViT-B/32 model, pretrained on the 496

LAION-5B dataset (Schuhmann et al., 2022), to 497

retrieve images most similar (cosine similarity) to 498

our unambiguous captions. 499

From this candidate set of imagery, the top 15 500

images that most closely aligned with each caption, 501

adhering to a minimum dimension of 64 pixels and 502

a maximum aspect ratio of 2.5, were retrieved auto- 503

matically. We manually selected the four most rep- 504

resentative images from this set (due to potentially 505

noisy images retrieved). If fewer than 4 suitable im- 506

ages were found, additional images were sourced 507
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from Google Images. This method resulted in a508

total of 1540 images, providing 5 images (instead509

of just 1) for each unambiguous translation. Conse-510

quently, this extended CoMMuTE dataset includes511

the original source s, translations ta and tb, and512

now 5 images each for ia and ib.513

With this extended CoMMuTE dataset, we exam-514

ined if there existed subsets of imagery that could515

significantly increase or decrease the GIC score (as516

we deem GIC the most important metric for each517

model). For each tuple in our extended dataset, we518

identified the image pair (one image taken from519

each image set) that maximizes or minimizes the520

GIC score. As multiple pairs can meet the criteria,521

we select the pair that optimizes522

{P(s, ia, ta)− P(s, ib, ta)} +

{P(s, ib, tb)− P(s, ia, tb)}
(10)523

This expression reflects the confidence gaps for the524

translations. Given that a lower perplexity indicates525

a better result and considering the ordering of dif-526

ferences in Eqn. 10, we minimize (or maximize)527

this equation to maximize (or minimize) the GIC528

score accordingly. When seeking images to max-529

imize the GIC score, we break ties by finding the530

image pair that minimizes Eqn. 10 (can be negative).531

When seeking images to minimize the GIC score,532

we break ties with the image pair that maximizes533

Eqn. 10. We refer to the image subset specifically534

tailored to maximize GIC as Image-Oracle. We535

also tracked the replacement rate (RR) of the num-536

ber of images replaced from the original dataset.537

As shown in Table 4, the maximal GIC image538

subsets show high effectiveness, with VGAMT539

scoring a Max IC of 0.96 and a Max GIC of 0.92.540

This suggests that the model can accurately inter-541

pret the intended visual signals in these particular542

image pairs for nearly all translations. This is fur-543

ther supported by the notably higher Max IC and544

GIC scores in the CLIP-Trans and Gated Fusion545

variants. Conversely, we see that sets of images546

can be found to hurt performance, especially in547

CLIP-Trans and Gated Fusion. Therefore, it is pos-548

sible to have imagery that drastically improves or549

degrades the scores. We see that replacement rates550

are high indicating that the original dataset is not551

prominent in these maximal/minimal subsets. The552

results with maximal/minimal GIC show that the553

model does indeed have an internal understanding554

of the imagery with respect to the translation task.555

We would expect the Image-Oracle images that556

maximized GIC to similarly improve TC and GTC557

Figure 3: Calibration results using temperature scaling.

scores. However, Table 5 shows only minor im- 558

provements in TC and GTC across models. Thus, 559

even though the IC and GIC metrics strongly indi- 560

cate the image interpretability of the models, the 561

TC and GTC metrics fail to highlight the potential 562

contribution of imagery. 563

6 Discussion 564

This study introduced image-based and group met- 565

rics for CoMMuTE to better evaluate if models do 566

understand imagery in MMT. In this section, we ex- 567

plore possible reasons why TC scores are so much 568

lower than IC and discuss future directions on how 569

to further leverage the imagery to improve MMT. 570

There are two potential issues related to perplex- 571

ity and calibration that may affect the TC/GTC 572

scores. First, there is an assumption that perplex- 573

ity is indeed an appropriate uncertainty metric to 574

compare two translations. Perplexity is a transform 575

of the mean log probability and, therefore, relies 576

on averages where all tokens are weighted equally. 577

There may indeed be other better measures of un- 578

certainty. It is also assumed that the model is well 579

calibrated to properly compare across translations. 580

One method to examine the effects of averages 581

across sequences of different lengths in the perplex- 582

ity computation is to remove any shared prefix in 583

ta, tb before computing perplexity and then com- 584

pare to the results without prefix removal (original 585

method). Ignoring common prefixes (while still 586

weighting the remaining tokens equally) actually 587

shows a slight degradation in scores (as illustrated 588

in Table 6). These results suggest perplexity (a 589

transform of mean log probability) does have some 590

issues as a comparison method. However, this does 591

not fully explain the low TC/GTC scores. 592

We also investigated the effects of model cali- 593

bration using a simple global temperature scaling 594

method (Guo et al., 2017) across a range of temper- 595

ature values from 0.25 to 2. As shown in Fig. 3, the 596
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Model Min IC ↑ Min GIC ↑ RR Max IC ↑ Max GIC ↑ RR
VGAMT 0.59 0.33 0.80 0.96 0.92 0.71

CLIP-Trans 0.41 0.00 0.79 0.82 0.66 0.78
Gated Fusion 0.40 0.00 0.77 0.73 0.48 0.78

Gated Fusion0.25 0.38 0.00 0.80 0.86 0.71 0.80
Gated Fusion0.5 0.35 0.00 0.81 0.88 0.76 0.77
Gated Fusion0.75 0.37 0.00 0.79 0.85 0.71 0.80

Table 4: Minimum and maximum IC and GIC scores along with replacement rates.

Model Mean TC ↑ Mean GTC ↑
VGAMT 0.67 0.34

CLIP-Trans 0.53 0.06
Gated Fusion 0.51 0.02

Gated Fusion0.25 0.64 0.28
Gated Fusion0.5 0.59 0.18
Gated Fusion0.75 0.56 0.12

Table 5: Image-Oracle TC and GTC scores.

Model Mean TC ↑ Mean GTC ↑
VGAMT 0.66 0.32

CLIP-Trans 0.52 0.04
Gated Fusion 0.51 0.01

Gated Fusion0.25 0.60 0.21
Gated Fusion0.5 0.58 0.15
Gated Fusion0.75 0.53 0.07

Table 6: Image-Oracle TC scores with the shared prefix
removed in perplexity computation.

TC scores vary widely, indicating potential miscal-597

ibration, while IC scores suggest that models are598

relatively well-calibrated (at T=1). We also exam-599

ined higher temperatures, which did not change the600

results, suggesting calibration does not appear to be601

primarily responsible for the TC/GTC degradation.602

Therefore, given the stronger results from603

IC/GIC, we believe the main overall issue with604

TC/GTC is that the underlying textual prefer-605

ence/bias in these models is too strong and does not606

allow much influence from the imagery (which we607

have shown to be interpreted well by the models).608

7 Recommendations for Future Work609

One future area of work is the integration of im-610

agery earlier in the model’s architecture rather than611

appending them at the end of the processing chain612

(Wu et al., 2021; Gupta et al., 2023). Integrating613

image features earlier in the model’s architecture614

could enhance the model’s ability to better leverage615

the rich contextual cues provided by the imagery.616

This approach may result in translations that are 617

more contextually nuanced, with increased atten- 618

tion to specific words critical for disambiguation. 619

Additionally, enhancing the impact of visual sig- 620

nals within the model could also prove beneficial. 621

This could be achieved by adjusting the gate val- 622

ues in models that use gating mechanisms, such 623

as Gated Fusion (Wu et al., 2021), to strengthen 624

the influence of visual data. As demonstrated, set- 625

ting a fixed gate value that prioritizes visual infor- 626

mation could help in situations where visual con- 627

text is crucial for disambiguating textual content. 628

Even though the non-gated VGAMT was the top 629

performer, there is still room for improvement by 630

strengthening the role of imagery in the processing 631

using some method of gating or amplification. 632

Earlier we have shown that the IOU of errors 633

between model pairs did not have strong alignment. 634

This diversity implies that ensembling different 635

models could potentially mitigate individual weak- 636

nesses and enhance overall performance. 637

8 Conclusion 638

Our study challenges the widespread belief that 639

visual cues are not generally very helpful to MMT. 640

By employing our proposed IC and Group CoM- 641

MuTE metrics within an expanded CoMMuTE 642

dataset, we have established a robust framework 643

for assessing if visual information is understood 644

in MMT systems. Our results reveal that while 645

visual data does indeed support translation prefer- 646

ences, it is not leveraged significantly to enhance 647

the outcomes over the underlying textual bias. Our 648

findings mark a promising direction for future re- 649

search in MMT, suggesting that further exploration 650

could uncover ways to amplify this positive impact. 651
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Limitations654

Firstly, we evaluated English-French translations655

in CoMMuTE. It remains to be seen whether the656

results generalize to other languages. Additionally,657

our evaluations were conducted on an extended set658

of 5 images, whereas larger sets (e.g., 100 images)659

would provide more robust insights. Furthermore,660

we relied on the default single reference translation661

for each image. Having additional translations for662

each image context would enable a more compre-663

hensive evaluation.664
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