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Abstract

Conformal prediction provides a powerful frame-
work for constructing distribution-free prediction
regions with finite-sample coverage guarantees.
While extensively studied in univariate settings,
its extension to multi-output problems presents
additional challenges, including complex output
dependencies and high computational costs, and
remains relatively underexplored. In this work,
we present a unified comparative study of nine
conformal methods with different multivariate
base models for constructing multivariate predic-
tion regions within the same framework. This
study highlights their key properties while also ex-
ploring the connections between them. Addition-
ally, we introduce two novel classes of conformity
scores for multi-output regression that generalize
their univariate counterparts. These scores ensure
asymptotic conditional coverage while maintain-
ing exact finite-sample marginal coverage. One
class is compatible with any generative model, of-
fering broad applicability, while the other is com-
putationally efficient, leveraging the properties of
invertible generative models. Finally, we conduct
a comprehensive empirical evaluation across 13
tabular datasets, comparing all the multi-output
conformal methods explored in this work. To en-
sure a fair and consistent comparison, all methods
are implemented within a unified code base1.
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Figure 1: Examples of bivariate prediction regions with an
80% coverage level for a toy example.

1. Introduction
Quantifying uncertainty in model predictions is crucial in
many real-world applications, often involving prediction
problems with multiple output variables and complex statis-
tical dependencies. For example, in medical diagnostics, the
progression of a disease can be studied by analysing mul-
tiple health indicators that exhibit nonlinear dependencies,
such as blood pressure and cholesterol levels of a patient
(Rajkomar et al., 2018). Although modern probabilistic AI
models can model complex relationships between variables,
they may produce unreliable or overly confident predictions
(Nalisnick et al., 2018).

Conformal prediction (CP) offers a robust framework for
improving model reliability by generating distribution-free
prediction regions with a finite-sample coverage guaran-
tee (Vovk et al., 1999). Although substantial research has
focused on univariate prediction problems (Romano et al.,
2019; Sesia and Romano, 2021; Rossellini et al., 2024),
multivariate settings have received less attention. Among
existing work, Zhou et al. (2024) achieves marginal cover-
age by combining univariate prediction regions, but fails to
capture dependencies between variables. Other methods,
such as density-based approaches (Izbicki et al., 2022) or
sample-based techniques (Wang et al., 2023b; Plassier et al.,
2025), suffer from high computational costs. An alterna-
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tive method (Sadinle et al., 2019) optimises the size of the
region, but does not achieve asymptotic conditional cover-
age. For a toy bivariate example, Figure 1 illustrates the
diversity of prediction regions obtained using a selection of
conformal methods considered in this paper.

Our first contribution is a unified comparative study of nine
conformal methods with different multivariate base models
for constructing multivariate prediction regions within the
same framework. This study highlights their key properties
while also exploring the connections between them. We ex-
amine different conformity scores with different multivariate
base predictors, discussing prediction regions derived from
the marginal distributions of individual output variables,
their joint PDF, or sampling procedures (e.g., generative
models).

Our second contribution introduces two novel classes of
conformity scores for multi-output regression that gener-
alize their univariate counterparts. These scores ensure
asymptotic conditional coverage while maintaining exact
finite-sample marginal coverage.

The first, CDF-based scores, leverage the cumulative distri-
bution function (CDF) of any conformity score to achieve
asymptotic conditional coverage. This approach general-
izes the univariate HPD-split score, based on univariate
highest-density region from Izbicki et al., 2020, to multivari-
ate prediction regions derived from any conformity score.
Additionally, we propose a specific instance of CDF-based
scores that builds on PCP from Wang et al., 2023b. This
method avoids the estimation of a predictive density, instead
relying solely on samples from any generative model.

The second, latent-based scores is inspired by Feldman et
al., 2023 and can be interpreted as an extension of distri-
butional conformal prediction (Chernozhukov et al., 2021)
to multivariate outputs. Compared to Feldman et al., 2023,
it does not require directional quantile regression, and the
conformalization is performed directly in the latent space,
eliminating the need to construct a grid. This enhances both
computational efficiency and scalability.

Finally, as our third contribution, we conduct a large-scale
empirical study comparing the different multi-output con-
formal methods across 13 tabular datasets with multivariate
outputs, evaluating several performance metrics. We con-
sider a variety of multivariate regression models, namely
Multivariate Quantile Function Forecaster (Kan et al., 2022),
Distributional Random Forests (Cevid et al., 2022), and a
multivariate Gaussian Mixture Model parameterized by a
hypernetwork (Ha et al., 2022; Bishop, 1994).

2. Background
Consider a multivariate regression problem where the objec-
tive is to predict a d-dimensional response vector y ∈ Y =
Rd based on a feature vector x ∈ X ⊆ Rp. We assume
there exists a true joint distribution FXY over X × Y , and
we have access to a dataset D = {(X(j), Y (j))}nj=1 where

(X(j), Y (j))
i.i.d.∼ FXY . Given a feature vector x, we denote

the conditional distribution of Y given X = x as FY |X=x,
and the associated probability density function (PDF) as
fY |X=x.

Using the dataset D, for any x ∈ X , CP allows us to trans-
form base predictors, denoted ĥ, into calibrated, distribution-
free prediction regions R̂(x) ⊆ Y for the true output y with
finite-sample coverage guarantees.

2.1. Split-conformal prediction

Split-conformal prediction (SCP, Papadopoulos et al., 2002)
is a computationally efficient variant of conformal predic-
tion that divides the dataset D into two disjoint subsets: a
training set Dtrain and a calibration set Dcal. A model is
first trained on Dtrain to obtain a base predictor ĥ. Based
on ĥ, a conformity score (function) s : X × Y → R is
defined, where lower scores indicate a better fit between the
feature vector x and the response y. The calibration scores
S = {s(x, y)}(x,y)∈Dcal

∪ {+∞} are then computed, from
which the (1− α) empirical quantile is calculated as:

q̂ = Quantile
(
S; kα

|Dcal|+ 1

)
, (1)

where kα = ⌈(|Dcal|+ 1)(1− α)⌉. This quantile serves as
the threshold for constructing prediction regions. For an
input x, the (random) prediction region is given by:

R̂(x) = {y ∈ Y : s(x, y) ≤ q̂}. (2)

If the random pair (X,Y ) is exchangeable with Dcal, SCP
guarantees marginal coverage:

PX,Y,Dcal(Y ∈ R̂(X)) = P(s(X,Y ) ≤ q̂) ≥ 1− α, (3)

where the probability is taken over (X,Y ) and Dcal. As-
suming no ties in scores, the marginal coverage is exactly

kα

|Dcal|+1 , yielding P(Y ∈ R̂(X)) ≤ 1− α+ 1
|Dcal|+1 .

Ideally, the prediction region should achieve conditional
coverage at the level 1− α, i.e.:

P(Y ∈ R̂(X) | X) ≥ 1− α. (4)

holds almost surely. This is a stronger requirement than
marginal coverage in (3). However, as Barber et al. (2019)
demonstrate, achieving conditional coverage is generally
impossible without making additional assumptions about
the underlying data-generating process.
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2.2. Multi-output conformal methods

Many conformal prediction methods have been proposed in
the literature and implemented within the SCP framework
for various base predictors and conformity scores, with a
specific focus on univariate prediction problems. In this sec-
tion, we survey several conformal methods for constructing
multivariate prediction regions, using different multivari-
ate base predictors and corresponding conformity scores.
Specifically, we discuss density-based, and sample-based
methods, which are based on their joint PDF, or a sampling
procedure (e.g., a generative model), respectively. In the
following, we describe the conformity scores s for different
methods. The methods M-CP and CopulaCPTS, which pro-
duce hyperrectangular regions, are detailed in Appendix B.
Once a conformity score is defined, the corresponding pre-
diction region R̂ can be computed using (2). We detail this
relationship for each method in Appendix C. Furthermore,
in Section 5, we analyze the properties and relationships
between these methods and provide illustrative examples of
the resulting prediction regions.

DR-CP. Given a predictive density f̂Y |X=x, a natural con-
formity score is the negative density:

sDR-CP(x, y) = −f̂(y | x). (5)

The corresponding prediction region is a density superlevel
set, R̂DR-CP(x) = {y ∈ Y : f̂(y | x) ≥ −q̂}. Sadinle
et al. (2019) use this conformity score in the context of
classification.

C-HDR. Izbicki et al., 2022 proposed the HPD-split
method, which defines a conformity score based on the
Highest Predictive Density (HPD):

HPDf̂ (y | x) =
∫
{y′|f̂(y′|x)≥f̂(y|x)}

f̂(y′ | x) dy′ (6)

= P
(
f̂(Ŷ | x) ≥ f̂(y | x) | X = x

)
, (7)

where Ŷ ∼ f̂Y |X=x. The corresponding prediction region
is a highest density region (HDR, Hyndman, 1996) with
respect to f̂ at level q̂:

R̂C-HDR(x) = {y ∈ Y : f̂(y | x) ≥ tq̂}, (8)

where tq̂ = sup{t : P(f̂(Ŷ | x) ≥ t | X = x) ≥ q̂}.

Compared to DR-CP, where the threshold −q̂ is independent
of x, C-HDR allows the threshold tq̂ to vary with x. To
compute the HPD in (6), Izbicki et al., 2022 use numerical
integration, whereas in our experiments, we approximate
(7) using Monte Carlo sampling, as described in (13).

In the context of classification, Adaptive Prediction Sets
(Romano et al., 2020) follows a similar principle by con-
structing a “highest mass region”, which corresponds to a

superlevel set of the probability mass function with proba-
bility content at least q̂.

PCP. Let Ỹ (1), Ỹ (2), . . . , Ỹ (L) denote a sample with L
points from the (estimated) conditional distribution F̂Y |X=x.
Probabilistic Conformal Prediction (PCP, Wang et al.,
2023b) defines a conformity score as the closest distance to
y:

sPCP(x, y) = min
l∈[L]

∥y − Ỹ (l)∥2, (9)

where Ỹ (l) ∼ F̂Y |X=x, l ∈ [L]. (10)

The corresponding region is a union of L balls centered at
each sampled point Ỹ (l), i.e. R̂PCP(x) =

⋃
l∈[L]{y ∈ Y :

∥y − Ỹ (l)∥2 ≤ q̂}.

HD-PCP. When a predictive density is available alongside
a sample of L points, Wang et al., 2023b proposed an ex-
tension to PCP, called HD-PCP. This method uses the same
conformity score as in (9), but only retains the ⌊(1− α)L⌋
samples with the highest density, ensuring that the predic-
tion region is concentrated on high-density points.

ST-DQR. Motivated by the limitation that existing mul-
tivariate quantile regression methods do not allow the con-
struction of regions with arbitrary shapes, Feldman et al.,
2023 proposed to construct convex regions in a latent space
Z using directional quantile regression (Paindaveine and
Šiman, 2011). These regions are then mapped to the out-
put space Y using a conditional variational autoencoder
(CVAE), allowing a non-linear mapping between the two
spaces. Specifically, they apply a conformalization step by
creating a grid of points within the region in Z , map the
points to the output space Y , and construct d-balls around
the mapped samples, similarly to PCP.

3. Generalized Conformity Scores for
Multi-Output Regression

In this section, we introduce two new classes of confor-
mity scores: CDF-based and latent-based scores. These
scores generalize existing conformity scores for univariate
regression to accommodate any conformity score for multi-
variate outputs. The former generalizes HPD-split (Izbicki
et al., 2020) to any conformity score, allowing to apply
this method to multivariate outputs. We further propose a
specific instance that builds on PCP (Wang et al., 2023b).
The latter is inspired by Feldman et al., 2023 and can be
interpreted as an extension of distributional conformal pre-
diction (Chernozhukov et al., 2021) for multivariate outputs.
Section 5 will present a comparative study of the conformity
scores introduced in Section 2.2 alongside those introduced
in this section.
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3.1. CDF-based conformity scores

Consider a conformity score sW , and define the random
variable W = sW (X,Y ) for a random pair (X,Y ). For
an observation (x, y), we introduce a new conformity score
based on the conditional CDF of W given X = x, evaluated
at sW (x, y). Specifically, the score is given by

sCDF(x, y) = P(sW (X,Y ) ≤ sW (x, y) | X = x) (11)
= FW |X=x(sW (x, y)). (12)

This new conformity score measures the rank of sW (x, y)
relative to the conditional distribution of W given X = x.

This method applies to any conformity score sW and gen-
eralizes the (oracle) HPD-split introduced in Izbicki et al.,
2020 in the context of univariate regression. Specifically,
when sW (x, y) = sDR-CP(x, y) is used in (12), we recover
the C-HDR method. Additionally, by the probability integral
transform, sCDF(X,Y ) | X = x ∼ U(0, 1) for x ∈ X ,
meaning that the conformity score’s distribution is indepen-
dent of x. This property ensures that conditional coverage
is achieved as |Dcal| → ∞ (see Appendix E.2, Lemma 2).
A similar observation was made by Izbicki et al., 2020 for
C-HDR.

However, in practice, since the distribution of Y | X =
x is unknown, we approximate sCDF using Monte Carlo
sampling:

sECDF(x, y) =
1

K

∑
k∈[K]

I
(
sW (x, Ŷ (k)) ≤ sW (x, y)

)
,

where Ŷ (k) ∼ F̂Y |X=x, k ∈ [K]. (13)

Dheur et al., 2024 considered a particular case of this empir-
ical CDF-based approach with the sDR-CP score for a bivari-
ate prediction problem involving temporal point processes,
where the HDR is estimated via Monte Carlo sampling.

C-PCP. We introduce a special case of our new score,
called C-PCP (CDF-based Probabilistic Conformal Predic-
tion), by setting sW (x, y) = sPCP(x, y) in (13), which
gives:

sC-PCP(x, y) =

1

K

∑
k∈[K]

I
(
min
l∈[L]

∥Ŷ (k) − Ỹ (l)∥ ≤ min
l∈[L]

∥y − Ỹ (l)∥
)
.

Compared to the methods in Izbicki et al., 2020 and Dheur
et al., 2024, this score has the advantage of not requiring
the estimation of a predictive density, relying instead on
samples from the conditional distribution. Consequently,
this score can be applied with any generative model that
does not have an explicit density, while still retaining the
desirable properties of our CDF-based score.

Interestingly, C-PCP shares similarities with the recently
proposed CP2-PCP method by Plassier et al., 2025. For a
given x ∈ X , both methods adapt the radius of the balls
based on a second sample from the conditional distribution
composed of K points, requiring a total of L+K samples.
A detailed discussion can be found in Appendix I.

3.2. Latent-based conformity scores

Inspired by Feldman et al. (2023), we propose a latent-based
conformity score with key distinctions. First, our method
does not require the use of directional quantile regression.
Additionally, the conformalization step is performed in the
latent space, eliminating the need to construct a grid, which
improves both computational efficiency and scalability.

Our base predictor is a conditional invertible generative
model Q̂ : Z × X → Y , which maps a latent random
variable Z ∈ Z (e.g., drawn from a standard multivariate
normal distribution) to the output space Y , conditional on
X ∈ X (e.g., using normalizing flows). The model is both
conditional and invertible, meaning that

Q̂(Q̂−1(y;x);x) = y,∀x ∈ X , y ∈ Y.

We propose the following conformity score, called L-CP
(Latent-based Conformal Prediction), defined as:

sL-CP(x, y) = dZ(Q̂
−1(y;x)), (14)

where dZ : Z → R is a conformity function in the latent
space Z , independent of x. In our experiments, we use
Z ∼ N (0, Id) and dZ(z) = ∥z∥.

The corresponding prediction region is obtained by mapping
a region in the latent space, RZ(q̂) = {z ∈ Z : dZ(z) ≤ q̂},
to a region in the output space, R̂L-CP(x) = {Q̂(z;x) : z ∈
RZ(q̂)}.

L-CP generalizes Distributional Conformal Prediction
(Chernozhukov et al., 2021), which is a special case when
Y is univariate (d = 1), Z ∼ U(0, 1), dZ(z) = |z− 1

2 |, and
Q̂(·;x) is the quantile function of Y given x.

Concurrent work by Fang et al., 2025 introduces CONTRA
, sharing the same algorithm as our latent-based methods.
While related, the papers diverge in their primary focus.
Fang et al., 2025 emphasizes the smaller prediction regions
achieved by CONTRA, whereas our work concentrates on
the computational complexity and conditional coverage
guarantees of the latent-based methods while obtaining re-
gion sizes that are small but not smaller than density-based
methods.

4. Related Work
Conformal Prediction (CP), introduced by Vovk et al., 1999,
forms the foundation of our work by providing prediction

4



Multi-Output Conformal Regression

1 0 1X 2
0 2

Y1

2
0
2

Y 2

Oracle

1 0 1X 2
0 2

Y1

2
0
2

Y 2

M-CP

1 0 1X 2
0 2

Y1

2
0
2

Y 2

CopulaCPTS

1 0 1X 2
0 2

Y1

2
0
2

Y 2

DR-CP

1 0 1X 2
0 2

Y1

2
0
2

Y 2

C-HDR

1 0 1X 2
0 2

Y1

2
0
2

Y 2
PCP

1 0 1X 2
0 2

Y1

2
0
2

Y 2

HD-PCP

1 0 1X 2
0 2

Y1

2
0
2

Y 2

STDQR

1 0 1X 2
0 2

Y1

2
0
2

Y 2

C-PCP

1 0 1X 2
0 2

Y1

2
0
2

Y 2

L-CP
 

Figure 2: Prediction regions for a bivariate unimodal dataset, conditional on a unidimensional input. The black, green, and
yellow contours represent regions with nominal coverage levels of 20%, 40%, and 80%, respectively.

regions with finite-sample coverage guarantees. CP meth-
ods are well established for regression with univariate out-
puts (Papadopoulos et al., 2008; Lei and Wasserman, 2014;
Romano et al., 2019; Sesia and Romano, 2021) and classi-
fication (Romano et al., 2020; Angelopoulos et al., 2020).
In the multi-output regression setting, we need to capture
dependencies between output dimensions, represent more
complex prediction regions and handle a larger computa-
tional demand.

To address multivariate prediction challenges, optimal trans-
port methods such as cyclically monotone mappings (Car-
lier et al., 2016) define multivariate quantile regions with
desirable properties such as existence and uniqueness of
mappings. Hallin and Šiman (2017), Hallin et al. (2021),
and Barrio et al. (2024) have proposed extensions of these
approaches. Neural network-based techniques leverage nor-
malizing flows (Kan et al., 2022; Huang et al., 2020) or
variational autoencoders (Feldman et al., 2023) to learn
flexible quantile regions. Additionally, highest density
regions (HDRs) (Hyndman, 1996) handle multimodality
and have been applied in various contexts (Camehl et al.,
2024; Izbicki et al., 2022; Dheur et al., 2024). Recently,
Wang et al., 2023b proposed constructing prediction regions
as hyperballs centered on generated samples, with exten-
sions by Plassier et al., 2025 improving conditional validity.
Other methods use copulas (Messoudi et al., 2021a; Sun
and Yu, 2024b) to model the dependency between vari-
ables.Appendix A provides a more detailed discussion on
related work.

5. Comparison of Multi-Output Conformal
Methods

In this section, we present a unified comparison of the con-
formity scores introduced in Section 2.2 and the generalized

scores proposed in Section 3.1.

5.1. Illustrative examples

We provide illustrative examples of bivariate prediction re-
gions for different conformal methods on simulated data,
covering both unimodal (Figure 2) and bimodal distribu-
tions (Figure 10 in Appendix D.2). The data-generating pro-
cesses are given in Appendix D.2. Additionally, we present
bivariate prediction regions for a real-world application, pre-
dicting a taxi passenger’s drop-off location based on the
passenger’s information (Figures 8 and 9 in Appendix D.1).

In both Figures 2 and 10, the black, green, and yellow con-
tours represent prediction regions with nominal coverage
levels of 20%, 40%, and 80%, respectively. The top-left
panel illustrates the density level sets of the oracle distri-
bution FY |X . The remaining panels display the prediction
regions generated by various conformal methods, all utiliz-
ing the MQF2 base predictor, as explained in Appendix F.2.

We observe the following for the unimodal case in Figure 2.
M-CP and CopulaCPTS capture heteroscedasticity but pro-
duce rectangular prediction regions, which do not align with
the circular level sets of the oracle conditional distribution,
resulting in a lack of sharpness. DR-CP fails to maintain
conditional coverage, and for X = 1, the absence of black
and green contours indicates that the predictive density does
not reach the threshold −q̂ defined in (5) for coverage levels
of 0.2 and 0.4. C-HDR generates prediction regions that
closely resemble the oracle level sets. PCP generates highly
discontinuous regions, especially at lower coverage levels,
where the regions appear as balls centered on individual
samples. In contrast, HD-PCP and STDQR yield smoother,
more continuous regions but require the estimation of a pre-
dictive PDF or the identification of a map from the latent
space to the output space, respectively.
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Table 1: Properties of different multivariate conformal methods. (*) M-CP achieves ACC under certain assumptions
(Appendix E.2.3). (**) STDQR and L-CP require a conditional invertible generative model Q̂ : Z × X → Y . (†)
CopulaCPTS has a pre-training cost of O(C).

Method Type of region Asymptotic
conditional
coverage

Computational
complexity

Predictive
density
not required

Sampling
procedure
not required

M-CP Hyperrectangle ✗(*) O(dM) ✓ ✓

CopulaCPTS Hyperrectangle ✗ O(dM)† ✓ ✓
DR-CP Density superlevel set ✗ O(D) ✗ ✓
C-HDR Density superlevel set K → ∞ O(K(D + S)) ✗ ✗
PCP Union of d-balls ✗ O(LS) ✓ ✗
HD-PCP Union of d-balls ✗ O(L(D + S)) ✗ ✗
STDQR Union of d-balls ✗ O(LS) ✓(**) ✗
C-PCP Union of d-balls K → ∞ O((K + L)S) ✓ ✗
L-CP Quantile region ✓ O(Q) ✓(**) ✗

For our methods, unlike PCP, C-PCP adjusts the radius of the
prediction regions to improve conditional coverage. This
is evident in the example, where the radius of the balls
for X = −1 is smaller than for X = 1, as indicated by
the tighter regions around the samples. L-CP generates
prediction regions that closely align with the oracle level
sets, demonstrating good conditional coverage.

For the bimodal distribution in Figure 10 (Appendix D.2),
the prediction regions generated by M-CP and L-CP are
connected, failing to capture the bimodal nature of the dis-
tribution. For the real-world application, Figures 8 and 9
(Appendix D.1) illustrate predictions under low and high
uncertainty, respectively. Our methods, L-CP and C-PCP,
alongside M-CP and C-HDR, demonstrate the best adaptabil-
ity to outputs with varying levels of uncertainty.

5.2. Properties

In this section, we compare conformal methods based on
several key properties. In the following, we use d.

= to denote
equality in distribution and a.s.

= to denote almost sure equality.

Marginal coverage. All the conformal methods presented
achieve the classical finite-sample marginal coverage. But,
as noted by Wang et al., 2023b (Theorem 1), the marginal
coverage of methods such as C-HDR, PCP, HD-PCP, and
C-PCP also depends on the randomness of the generated
samples. In Appendix E.1, we demonstrate that the marginal
coverage, conditional on the calibration dataset Dcal and the
samples drawn from it, follows a beta distribution, using
standard arguments. CopulaCPTS is the only method that
does not enter into the standard split-conformal algorithm
and who does not satisfy the above property.

Asymptotic conditional coverage (ACC). We examine
the asymptotic conditional coverage property, which cor-
responds to conditional coverage as defined in (4) under

the assumptions that |Dcal| → ∞ and the base predictor
corresponds to the oracle distribution FY |X .

While the assumption of oracle base predictor is strong, it
is crucial to demonstrate that the conformal procedure pre-
serves the performance of the base model. Specifically,
given x ∈ X , for M-CP and CopulaCPTS, we assume
l̂i(x) = QYi|X=x(αl) and ûi(x) = QYi|X=x(αu) with
i = 1, . . . , d; for DR-CP, C-HDR, and HD-PCP, f̂Y |X=x =

fY |X=x; for L-CP, Q̂(Z;x)
d.
= Y |X = x; and for PCP and

C-PCP, F̂Y |X=x = FY |X=x.

Our empirical results (Section 6) demonstrate that meth-
ods achieving ACC under these assumptions also exhibit
superior approximate conditional coverage across diverse
datasets and base predictors. L-CP is the only method that
achieves ACC without additional assumptions. C-HDR and
C-PCP achieve ACC with K → ∞. Finally, M-CP achieves
ACC under specific assumptions. Assuming that Y1, . . . , Yd

are conditionally independent given X , M-CP achieves ACC
if αu − αl =

d
√
1− α. Furthermore, under the unrealistic

assumption that Y1 | X a.s.
= . . .

a.s.
= Yd | X , M-CP achieves

ACC if αu−αl = 1−α. The true dependence typically lies
between these two extremes. We provide detailed proofs of
these statements in Appendix E.2.

As discussed in Section 5.1, DR-CP fails to achieve ACC.
Likewise, PCP, HD-PCP and STDQR do not achieve ACC,
as they are constrained to producing regions with upper
bounded volume for any x ∈ X . Assuming each ball has a
volume of V , PCP generates regions with a total volume of at
most LV . For a given instance x ∈ X with high uncertainty,
it may be impossible to capture sufficient probability mass
to achieve conditional coverage.

Region size. Among the methods that achieve ACC, C-HDR
is expected to perform best, as it converges to the highest
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density regions, which correspond to the smallest volume re-
gions (Hyndman, 1996). Prediction regions from C-PCP are
expected to have a larger volume since they are constrained
to a union of L d-balls. Similarly, prediction regions from
L-CP are less flexible than those from C-HDR, as they are
connected when the region RZ(λ) in the latent space is
connected for all λ ∈ R and Q̂ is continuous. This con-
straint may be desirable when more interpretable regions
are preferred (Sesia and Romano, 2021).

Among the remaining methods, DR-CP minimizes the mean
region size E[|R̂(X)|] under the oracle PDF as |Dcal| → ∞,
as shown in Theorem 1 by Sadinle et al., 2019. In con-
trast, M-CP and CopulaCPTS are expected to yield larger
prediction regions, as they do not explicitly account for
dependencies between outputs. While PCP, HD-PCP, and
C-PCP can capture multimodality, they are susceptible to
the randomness of the sampling procedure, as evidenced by
the shape of the regions in Figure 2. Furthermore, since they
rely on a finite union of L d-balls, they are subject to the
curse of dimensionality in high-dimensional spaces, where
data sparsity necessitates larger balls to maintain marginal
coverage.

A potential weakness of the mean region size is that it can be
disproportionately skewed by inputs with high uncertainty.
To mitigate this sensitivity, we also report the median region
size as a more robust alternative.

Computational complexity. Table 1 reports the compu-
tational complexity of each conformity score. For M-CP
and CopulaCPTS, let M represent the compute time of
the univariate conformity score for a single dimension and
C the optimization time for CopulaCPTS. Let D, S, and
Q denote the time required for density evaluation, sam-
pling, and calculating the inverse of the quantile function
Q̂−1, respectively. In many cases, M and C are relatively
low, while D, S, and Q are comparable. C-HDR, PCP,
HD-PCP, STDQR and C-PCP are significantly slower than
M-CP, L-CP, and DR-CP since they need to generate a large
number of samples to compute the conformity score (we
used K = L = 100 in our experiments).

Base predictor. Some conformal methods stand out be-
cause they do not need to evaluate the predictive density f̂
or generate samples. M-CP and CopulaCPTS only require
a univariate model for each dimension, without needing a
model for the joint distribution of Y . DR-CP does not require
sampling from the model, which is beneficial when using
normalizing flows that are slower to invert (e.g., Masked
Autoregressive Flows (MAF, Papamakarios, Pavlakou, et
al., 2017) or Convex Potential Flows (Huang et al., 2020)).
PCP and C-PCP do not require evaluating the predictive
density f̂ , making them compatible with any generative
model, including diffusion models and GANs. L-CP and
STDQR do not require predictive density evaluation but re-

quire the model to be invertible. We summarize the different
properties in Table 1.

5.3. Connection between sample-based and
density-based methods

Interestingly, the sample-based methods (PCP, HD-PCP,
C-PCP) can be viewed as special cases of density-based
methods (DR-CP, C-HDR). Let us assume a common pre-
dictive PDF f̂ is used for the base predictor of these
conformal methods. While PCP and C-PCP do not re-
quire a PDF, we assume that f̂Y |X=x and F̂Y |X=x cor-
respond to the same distribution. Let Ỹ (l) ∼ F̂Y |X=x

for l ∈ [L], and fS(·; Ỹ (l)) be a PDF with spherical level
sets, centered at Ỹ (l), such as a standard multivariate Gaus-
sian N (·; Ỹ (l), Id). For x ∈ X , we define a new PDF
f̂max(y | x) = maxl∈[L] fS(y; Ỹ

(l))/C, where C is a nor-
malizing constant ensuring that f̂max(· | x) integrates to
1. The following proposition establishes the relationship
between these methods.

Proposition 1. PCP is equivalent to DR-CP with f̂ = f̂max.
Similarly, HD-PCP is equivalent to DR-CP with f̂ = f̂max
where only ⌊(1 − α)L⌋ samples with the highest density
among {Ỹ (l)}l∈[L] are kept. Finally, C-PCP is equivalent to
C-HDR with f̂ = f̂max.

We provide a proof in Appendix E.3. Although these
sample-based methods are special cases of density-based ap-
proaches, the key advantage of PCP and C-PCP is that they
rely solely on a sampling procedure, without requiring a
predictive density f̂ as base predictor. Figure 3 summarizes
the connections between the main conformal methods.

An interesting practical takeaway is that DR-CP and C-HDR
are linked in the same way as PCP and C-PCP. Since DR-CP
under the oracle has the smallest expected region size while
C-HDR empirically has a smaller median region size, similar
observations are expected for PCP and C-PCP. This is veri-
fied empirically: PCP has a smaller mean region size across
all base predictors, while C-PCP has a smaller median re-
gion size.

C-HDR

Figure 3: Connections between different methods.
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6. A Large-Scale Study of Multi-Output
Conformal Methods

In this section, we present a large-scale study of multi-output
conformal methods using 13 tabular datasets from previous
studies (Tsoumakas et al., 2011; Feldman et al., 2023; Wang
et al., 2023b; Barrio et al., 2024; Camehl et al., 2024). To
ensure sufficient data for training, calibration, and testing,
we include only datasets with at least 2,000 instances. The
selected datasets contain between 7,207 and 50,000 data
points, with the number of input features p ranging from 1
to 279 and the number of output variables d ranging from 2
to 16.

We consider three base predictors: the Multivariate Quantile
Function Forecaster (MQF2), a normalizing flow (Kan et al.,
2022), Distributional Random Forests (Cevid et al., 2022),
and a multivariate Gaussian mixture model (Bishop, 1994).
We present results for MQF2 in the main text, while similar
results for the other models are provided in Appendix G.
We compare the methods using several metrics, including
conditional coverage (WSC, CEC-X, and CEC-V), marginal
coverage (MC), region size, and computational time. A
detailed description of the experimental setup is provided in
Appendix F.

Conditional coverage. Figure 4 presents the results for
all datasets, ordered by increasing dataset size. On most
datasets, C-PCP, L-CP, and C-HDR obtain the best condi-
tional coverage. In contrast, HD-PCP, STDQR, PCP, and
DR-CP are the least conditionally calibrated. Finally, M-CP

123456789

PCP
STDQR

CopulaCPTS
M-CP

HD-PCP
L-CP
C-PCP
DR-CP
C-HDR

Rank of Median Region Size

Figure 5: CD diagrams with the base predictor MQF2 based
on 10 runs per dataset and method.

and CopulaCPTS attain intermediate conditional coverage,
with M-CP performing slightly better. These results align
with our analysis in Section 5.2, where we showed that
C-PCP, L-CP, and C-HDR achieve ACC, while HD-PCP,
STDQR, PCP, and DR-CP do not, and M-CP achieves it only
under specific conditions. Finally, Figure 12 shows that all
methods achieve marginal coverage, as expected.

Region size. Figure 5 presents a critical difference (CD)
diagram (Demšar, 2006) comparing the median region size
of all methods across datasets. Higher-ranked methods
(further right) perform better. Thick horizontal lines indicate
models with no statistically significant difference at the 0.05
level (see Appendix F.5 for details).

Among the methods that achieve ACC, C-HDR yields the
smallest median region size, as expected, since its regions
converge to the highest density regions (Izbicki et al., 2022).
C-PCP and L-CP produce slightly larger regions, though
the difference is not significant for these datasets. Among
the remaining methods, DR-CP yields the smallest median
region. In contrast, M-CP and CopulaCPTS generate larger
regions, which is expected given their less flexible hyper-
rectangular shape. PCP tends to obtain the largest region
sizes as it includes samples from low-density areas, whereas
STQDR and HD-PCP mitigate this by removing samples from
low-density areas, resulting in more compact regions. Fi-
nally, Figure 13 in Appendix G provides results for the mean
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Figure 6: Total time in seconds for calibration and test.
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region size, where DR-CP consistently performs best, under
the oracle setting, it minimizes the expected region size, as
explained in Section 5.2.

Computation time. Figure 6 shows the total computation
time for each method. M-CP and CopulaCPTS have the
shortest computation times, as they do not require learning
a complex model for the output joint distribution. L-CP and
DR-CP follow, benefiting from the absence of per-instance
sampling. In contrast, sampling-based methods typically
require 100 to 200 times more computation time.

Application to image dataset. Finally, we extend our com-
parison to a regression problem where the output is an im-
age, which has a higher dimensionality than the previously
considered tabular datasets. Specifically, we use the CIFAR-
10 dataset (Krizhevsky et al., 2014), consisting of 32×32
RGB images, each labeled with one of 10 possible classes.
We train the base predictor Glow (Kingma and Dhariwal,
2018), conditioned on the image label, where the output
space is Y = [0, 1]3×32×32 (d = 3072) and the input space
is X = {0, . . . , 9} (p = 1). The results, detailed in Ap-
pendix J, lead to similar conclusions regarding conditional
coverage, region size, and computational time.

7. Conclusion
We studied the problem of constructing conformal predic-
tion regions for multi-output regression, which remains rel-
atively underexplored compared to the univariate case. We
presented a unified comparative study of several conformal
methods along with their associated conformity scores, high-
lighting their properties and interconnections. In addition,
we introduced two new classes of conformity scores: CDF-
based scores, including a variant compatible with generative
models, and latent-based scores, which exploit invertible
generative models for improved computational efficiency.
Both classes generalize existing conformity scores from the
univariate setting.

The choice of conformity score directly influences the ge-
ometry and flexibility of the resulting prediction regions. In
the univariate setting, the most flexible regions are typically
unions of intervals. In contrast, the multivariate case allows
for a wider variety of geometries, ranging from hyperrectan-
gles and ellipsoids to highly flexible, nonconvex regions that
can be disconnected and capture distributional bimodality.
A simple and computationally efficient approach is to con-
struct separate univariate prediction regions for each output
dimension and apply a correction for joint coverage. How-
ever, these methods do not capture dependencies between
output dimensions and typically result in rigid, (unions of)
hyperrectangular regions with limited flexibility. In con-
trast, more flexible methods account for correlations and
dependencies across outputs by incorporating the covariance

structure, modeling the joint density, or leveraging gener-
ative models. These approaches produce more expressive
prediction regions but are generally more computationally
demanding.

While conformal prediction (CP) always guarantees
marginal coverage, conformity scores whose thresholds do
not vary instance-wise fail to achieve the desirable property
of asymptotic conditional coverage (ACC). In contrast, our
proposed scores enable ACC but require estimating the con-
ditional distribution of the conformity score—an inherently
challenging task in low-data regimes. Similarly, CP methods
based on generative models introduce additional sampling
variability. Finally, our large-scale empirical study system-
atically compares these conformal methods across multiple
multi-output regression datasets, using various evaluation
metrics, including conditional coverage and prediction re-
gion volume.

Future work will focus on replacing region prediction with
a recalibrated multivariate distribution, equipped with an
explicit density function and conformal coverage guaran-
tees. We also plan to extend our approach to more complex
outputs, including semi-structured and unstructured data
(e.g., images, text, and graphs), and to further investigate
the theoretical connection between multivariate calibration
and conformal prediction
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Impact statement
This work contributes to the development of statistically
reliable and interpretable machine learning algorithms. En-
hancing trust and transparency in predictive modeling helps
designing more practical and accessible models for real-
world applications.
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A. Related Work
Our research builds on a broad body of literature that spans several closely related themes. This supplementary section
provides a concise overview of these topics.

In the realm of multivariate functional data, Diquigiovanni et al., 2021a introduced conformal predictors that create
adaptive, finite-sample valid prediction bands, with extensions into time series applications, particularly in energy markets
(Diquigiovanni et al., 2024). In image processing, recent applications (Horwitz and Hoshen, 2022; Teneggi et al., 2023)
apply CP in a pixel-wise manner, resulting in hyperrectangular regions that may not capture pixel dependencies effectively.

For multi-step-ahead or multi-horizon forecasting, predictions can be made across multiple outputs simultaneously rather
than sequentially, aligning with a multi-output forecasting framework. Stankeviciute et al., 2021 explored multi-horizon
time series forecasting using recurrent neural networks (RNNs), incorporating univariate conformal techniques with nominal
coverage adjustments via Bonferroni correction. Similarly, English et al., 2024 adapted the Amplitude-Modulated L-inf
norm method from Diquigiovanni et al., 2021b for multi-output, multi-step forecasting.

In multi-target regression, Messoudi et al., 2021b applied copula functions in deep neural networks to provide multivariate
predictions with guaranteed coverage. Their findings suggest that simple parametric copulas can work for certain datasets,
but more complex copulas may be required for well-calibrated predictions, which introduces challenges, as complex copulas
typically require significant calibration data. Building on this, Sun and Yu, 2024b proposed a copula-based method for
multi-step time series forecasting, optimizing the calibration and efficiency of confidence intervals. However, this method
requires two calibration phases and is primarily feasible with large calibration datasets. Moreover, its validity relies on
the empirical copula, limiting applicability to other learnable copula classes. One very recent advancement on the subject,
following ideas expressed by Messoudi et al., 2021b in their conclusions, is Park et al., 2024, where the dependence structure
between marginal distributions is recovered via the use of vine copulas.

Another set of methodologies that tackle multi-output problems are based on multiplicity-correction approaches for multiple
testing. Timans et al., 2025 improves over Bonferroni correction using permutation tests, and obtain a tighter and globally
valid prediction. Methods based on multiplicity correction such as controlling the Family-Wise Error Rate (FWER) are
valuable for providing error control guarantees across multiple outputs. In contrast, the methods we survey and propose aim
for potentially tighter prediction regions by directly modeling the multivariate structure.

In the context of conformal prediction, the flexibility in configuring the prediction region is a degree of freedom for the
modeler. To overcome the limitations of traditional hyper-rectangular prediction regions, Messoudi et al., 2022 introduced
ellipsoidal uncertainty sets that enable instance-specific adaptation of confidence regions. Johnstone and Ndiaye, 2022
advanced multi-output regression by developing efficient techniques for approximating conformal prediction sets without
retraining the model, although their approach relies heavily on the predictive model being a linear function of Y . Sun and
Yu, 2024b constructed ellipsoidal prediction regions for time series, capable of modeling dependencies between outputs,
though this method does not handle multimodality. Our work closely connects with the multivariate conformal prediction
literature, where multi-horizon prediction is viewed as a prediction across multiple outputs.

Overall, as this study demonstrates, the flexibility of conformal prediction allows for coherent handling of diverse data types.
Multi-output problems represent one facet of a broader taxonomy, as explored by Zhou et al., 2025, who discuss further
developments in multi-output conformal prediction.

B. Additional multi-output conformal methods
In this section, we describe the prediction regions R̂ for M-CP and CopulaCPTS, which both produce hyperrectangular
regions.

M-CP. Zhou et al., 2024 applied a univariate conformal method to each output i ∈ [d] of the multivariate response.
Specifically, given a conformity score si for the i-th dimension, joint coverage across all dimensions can be achieved using
the following conformity score:

sM-CP(x, y) = max
i∈[d]

si(x, yi). (15)

A similar score has been considered by Diquigiovanni et al. (2021b) in the context of functional regression.

In this work, we use Conformalized Quantile Regression (CQR, Romano et al., 2019) for each output i ∈ [d], where the
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conformity score is given by:
si(x, yi) = max{l̂i(x)− yi, yi − ûi(x)}, (16)

with l̂i(x) and ûi(x) representing the lower and upper conditional quantiles of Yi|X = x at levels αl and αu, respectively. In
our experiments, we consider equal-tailed prediction intervals, where αl =

α
2 , αu = 1− α

2 , and α denotes the miscoverage

level. The corresponding prediction region R̂M-CP(x) =×d

i=1
[l̂i(x)− q̂, ûi(x) + q̂] is a hyperrectangle.

CopulaCPTS. CopulaCPTS (Sun and Yu, 2024a) is originally designed for time-series but the calibration procedure is
valid for any multi-dimensional variable. It models the joint probability of uncertainty for each output with a copula. The
calibration set is divided into two subsets Dcal−1 and Dcal−2. Dcal−1 serves for the estimation of a CDF on the conformity
score of each output and Dcal−2 allows to calibrate the copula. CopulaCPTS can combine any univariate or multivariate
conformity scores. In this paper, we use the CQR score si (16) for each dimension i ∈ [d].

Denote F̂i the empirical CDF of the conformity scores {si(x, yi)}(x,y)∈Dcal−1
for i ∈ [d], and F̂−1

i the corresponding
empirical quantile function. In practice, to minimize region sizes while achieving marginal validity, CopulaCPTS computes
the optimal s∗1, . . . , s

∗
d that minimize the following loss using stochastic gradient descent:

L(ŝ1, . . . , ŝd) =
1

|Dcal−2|
∑

(x,y)∈Dcal−2

d∏
i=1

1
[
F̂i(si(x, yi)) < F̂−1

i (ŝi)
]
− (1− α). (17)

Then, the prediction region is defined as:

R̂CopulaCPTS(x) = {y ∈ Y : ∀i ∈ [d], si(x, yi) < s∗i } (18)

Sun and Yu, 2024a proved that this prediction set achieves marginal coverage. However, since CopulaCPTS does not follow
the SCP algorithm, it does not achieve properties on the marginal coverage from Appendix E.1.

C. Relationship between conformity scores and regions
Section 2.2 and Section 3 in the main text presented several multi-output conformal methods through their conformity score
s. As explained in Section 2.1, their corresponding prediction region R̂ can be computed as follows:

R̂(x) = {y ∈ Y : s(x, y) ≤ q̂}.

In this section, we explicitly derive the prediction region associated with these methods.

M-CP. Following Zhou et al., 2024, the prediction region R̂M-CP can be derived from sM-CP as follows:

sM-CP(x, y) ≤ q̂ ⇐⇒ max
i∈[d]

si(x, yi) ≤ q̂ (19)

⇐⇒ ∀i ∈ [d], si(x, yi) ≤ q̂ (20)

⇐⇒ ∀i ∈ [d],max{l̂i(x)− yi, yi − ûi(x)} ≤ q̂ (21)

⇐⇒ ∀i ∈ [d], l̂i(x)− yi ≤ q̂ ∧ yi − ûi(x) ≤ q̂ (22)

⇐⇒ ∀i ∈ [d], l̂i(x)− q̂ ≤ yi ∧ yi ≤ ûi(x) + q̂ (23)

⇐⇒ ∀i ∈ [d], yi ∈ [l̂i(x)− q̂, ûi(x) + q̂] (24)

⇐⇒ y ∈
d×

i=1

[l̂i(x)− q̂, ûi(x) + q̂] (25)

⇐⇒ y ∈ R̂M-CP(x). (26)

DR-CP The equivalence is straightforward.
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C-HDR. Given Ŷ ∼ f̂Y |X=x and U = f̂(Ŷ | X = x), for any y ∈ Y , we can write

sC-HDR(x, y) (27)
= HPDf̂ (y | x) (28)

= P(f̂(Ŷ | x) ≥ f̂(y | x) | X = x) (29)

= P(U ≥ f̂(y | x) | X = x) (30)

= 1− P(U ≤ f̂(y | x) | X = x) (31)

= 1− FU |X=x(f̂(y | x)), (32)

where FU |X=x is the conditional CDF of U given X = x.

Recall that the prediction region for C-HDR is given by

R̂C-HDR(x) = {y ∈ Y : f̂(y | x) ≥ tq̂}, where tq̂ = sup{t : P(f̂(Ŷ | x) ≥ t | X = x) ≥ q̂}. (33)

The threshold tq̂ in (33) can be equivalently written as follows:

tq̂ = sup{t : P(f̂(Ŷ | x) ≥ t | X = x) ≥ q̂} (34)
= sup{t : P(U ≥ t | X = x) ≥ q̂} (35)
= sup{t : 1− P (U ≤ t | X = x) ≥ q̂} (36)
= sup{t : 1− q̂ ≥ FU |X=x(t)} (37)

= F−1
U |X=x(1− q̂), (38)

where we use the definition of the upper quantile function in the last step.

Using (27), (33), and (38), we can write

sC-HDR(x, y) ≤ q̂ ⇐⇒ HPDf̂ (y | x) ≤ q̂ (39)

⇐⇒ 1− FU |X=x(f̂(y | x)) ≤ q̂ (40)

⇐⇒ FU |X=x(f̂(y | x)) ≥ 1− q̂ (41)

⇐⇒ f̂(y | x) ≥ F−1
U |X=x(1− q̂) (42)

⇐⇒ f̂(y | x) ≥ tq̂ (43)

⇐⇒ y ∈ R̂C-HDR(x). (44)

PCP. Let B(µ, r) represent a ball with center µ and radius r. Following Wang et al., 2023b, we show that, for any x ∈ X ,
R̂PCP(x) corresponds to a union of balls:

sPCP(x, y) ≤ q̂ ⇐⇒ min
l∈[L]

∥y − Ỹ (l)∥2 ≤ q̂ (45)

⇐⇒ ∃l ∈ [L], ∥y − Ỹ (l)∥2 ≤ q̂ (46)

⇐⇒ ∃l ∈ [L], y ∈ B(Ỹ (l), q̂) (47)

⇐⇒ y ∈
⋃
l∈[L]

B(Ỹ (l), q̂) (48)

⇐⇒ y ∈ R̂PCP(x), (49)

where Ỹ (l) ∼ F̂Y |X=x, l ∈ [L].

HD-PCP. For HD-PCP, the reasoning is similar to PCP with the difference that only the ⌊(1 − α)L⌋ samples with the
highest density are kept.
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CDF-based conformity scores. We note that the region R̂CDF(x) has a similar form to R̂W (x) = {y ∈ Y : sW (x, y) ≤ q̂},
except that the threshold on sW (x, y) is different and depends on x. In fact, we can write

R̂CDF(x) = {y ∈ Y : sCDF(x, y) ≤ q̂} (50)
= {y ∈ Y : FW |X=x(sW (x, y)) ≤ q̂} (51)

= {y ∈ Y : sW (x, y) ≤ F−1
W |X=x(q̂)}. (52)

In the special case where sW = sPCP, since PCP always generates predictions as a union of balls, we can conclude that
C-PCP will do the same.

Latent-based conformity scores. Since Q̂(·;x) is bijective, for every y ∈ Y , there exists a unique z ∈ Z such that
y = Q̂(z;x). Therefore, the condition dZ(Q̂

−1(y;x)) ≤ q̂ is equivalent to dZ(z) ≤ q̂, where z = Q̂−1(y;x). This gives
the prediction region:

R̂L-CP(x) = {y ∈ Y : dZ(Q̂
−1(y;x)) ≤ q̂} (53)

= {Q̂(z;x) : z ∈ Z and dZ(z) ≤ q̂}. (54)

D. Additional illustrative examples
D.1. A real-world application

Following Wang et al., 2023a, we apply the multi-output conformal methods to the taxi dataset, where the goal is to predict
the drop-off location of a New York taxi passenger based on the passenger’s information.

Figures 7(a) and 8(a) displays five randomly selected samples from the dataset, showing the pick-up (red pin) and drop-off
(blue pin) locations of taxi passengers. The remaining panels show a specific input-output pair (x, y) and the corresponding
prediction regions generated by the conformal methods discussed in this paper. The coverage level 1− α for these regions is
set to 0.8, with MQF2 as the base predictor, as introduced in Section F.2.

Figure 7 corresponds to the same data and predictions regions as Figure 8 except that it is zoomed for better comparison
with Figure 9. Each region is labeled with its size, calculated using the estimator from Section F.4, displayed in the bottom
left corner. Notably, C-PCP generates regions similar in shape to PCP but with an input-adaptive radius, resulting in smaller
region sizes (8.2 compared to 8.67) in this case. Additionally, HD-PCP produces more clustered regions, while PCP and
C-PCP show more dispersed regions.
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(a) Sample Data (b) M-CP (c) CopulaCPTS (d) DR-CP (e) C-HDR

(f) PCP (g) HD-PCP (h) STDQR (i) C-PCP (j) L-CP

Figure 7: Conformal methods applied on the NYC Taxi dataset for an input with low uncertainty.

(a) Sample Data (b) M-CP (c) CopulaCPTS (d) DR-CP (e) C-HDR

(f) PCP (g) HD-PCP (h) STDQR (i) C-PCP (j) L-CP

Figure 8: Conformal methods applied on the NYC Taxi dataset for an input with low uncertainty.

Figure 9 presents the same example for an input-output pair where the input is associated with higher uncertainty, resulting
in larger region sizes. As in the first figure, the shapes of the regions (e.g., unions of hyperrectangles, quantile regions, etc.)
remain consistent but expand to cover a larger area. Conformal methods with the best region sizes differ between the two
figures, with C-HDR producing the smallest region in the first figure and DR-CP in the second. In this case, C-PCP selects a
larger radius than PCP, resulting in larger regions than PCP. The observation that PCP and C-PCP produce more dispersed
regions, while HD-PCP generates more clustered regions, also holds true for this higher uncertainty case.
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(a) Sample Data (b) M-CP (c) CopulaCPTS (d) DR-CP (e) C-HDR

(f) PCP (g) HD-PCP (h) STDQR (i) C-PCP (j) L-CP

Figure 9: Conformal methods applied on the NYC Taxi dataset for an input with high uncertainty.

D.2. Toy examples

We define two data-generating processes to evaluate the models compared to a known distribution: a unimodal heteroscedastic
distribution and a bimodal heteroscedastic distribution. The input variable X ∈ R is unidimensional (p = 1) and the output
variable Y ∈ R2 is bidimensional (d = 2). The variables X and Y are scaled linearly such that the mean and variances on
each dimension are 0 and 1. The figures are inspired by Barrio et al., 2024.

Unimodal heteroscedastic process. The first process is illustrated in Figure 2 in the main text. The data generating
process is as follows:

X ∼ U(0, 1), (55)

Y | X = x ∼ 1

k

k∑
j=1

N
(
(1.3− x)µ(j)(x), σ2I2

)
, (56)

(57)

where k = 200, σ = 0.2, I2 is the 2× 2 identity, and, for j = 1, . . . , k,

µ
(j)
1 = cosαj (58)

µ
(j)
2 = (0.5− sinαj) (59)

αj =
(j − 1)π

k − 1
(60)

Detailed metrics for this dataset, supporting Section 5.1, are provided in Table 2.
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MC Median Size CEC-X CEC-Z WSC Test time
Method (×100) (×100)

M-CP 0.8050.0039 8.470.14 0.1100.023 0.08120.018 0.8030.011 0.03360.022
CopulaCPTS 0.8150.011 8.780.25 0.1910.049 0.1630.047 0.8140.015 1.040.021
DR-CP 0.8080.0042 7.030.071 0.6130.045 0.5600.042 0.7100.016 0.02090.00047
C-HDR 0.8100.0038 6.800.059 0.06370.016 0.08250.012 0.7980.0070 3.520.085
PCP 0.8050.0039 9.160.089 0.6680.052 0.5870.046 0.7130.0080 1.690.021
HD-PCP 0.8040.0037 7.440.056 0.2870.031 0.2560.034 0.7580.013 3.380.043
STDQR 0.8060.0027 7.870.070 0.3430.025 0.3050.027 0.7460.011 1.770.022
C-PCP 0.8080.0049 9.140.12 0.04640.013 0.04840.013 0.8220.0085 3.440.056
L-CP 0.8030.0039 8.240.11 0.05440.0073 0.06540.012 0.8110.011 0.02170.00052

Table 2: Detailed metrics for the unimodal heteroscedastic process from Figure 2.

Bimodal heteroscedastic process. Figure 10, similar to Figure 2 but with a bimodal distribution for the output, is
introduced in Section 5.1.

The data generating process is as follows:

X ∼ U(0.5, 2), (61)
Y | X = x ∼ 0.5 · N (4, xId) + 0.5 · N (−4, Id/x). (62)
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Figure 10: Examples of prediction regions on a bivariate bimodal dataset, conditional on a unidimensional input.

E. Proofs
E.1. Distribution of the marginal coverage conditional on calibration data

In contrast to M-CP, L-CP, and DR-CP, the methods C-HDR, PCP, HD-PCP, and C-PCP rely on a non-deterministic conformity
score. For each calibration and test point, C-HDR, PCP, HD-PCP, and C-PCP require sampling K, L, L, and L+K points,
respectively.

Let Dcal = {(X(j), Y (j))}j∈[|Dcal|] represent the calibration dataset and (X,Y ) be the test instance. Let Scal =

{S(j)
cal }j∈[|Dcal|] represent samples from the calibration dataset where S(j)

cal is generated based on input X(j) and Stest
the samples generated based on input X . Despite the added sampling uncertainty, these methods still provide a marginal
coverage guarantee:

PX,Y,Stest,Dcal,Scal(Y ∈ R̂(X)) ≥ 1− α. (63)
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Compared to (3), the probability is additionally on Scal and Stest. This result, specifically for PCP and HD-PCP, was
demonstrated by Wang et al., 2023b.

In Lemma 1, we further show that the marginal coverage conditional on the calibration dataset Dcal and the samples Scal
follows a beta distribution, using standard arguments. Assuming no ties among the scores, this lemma applies to any
conformity score s.

Lemma 1. Assuming no ties among the scores and i.i.d. inputs, outputs and samples, the distribution of the coverage,
conditional on the calibration dataset and its samples, is given by:

P(Y ∈ R̂(X) | Dcal,Scal) ∼ Beta(kα, |Dcal|+ 1− kα), (64)

where kα = ⌈(1− α)(|Dcal|+ 1)⌉. Moreover, P(Y ∈ R̂(X)) = kα

|Dcal|+1 ≥ 1− α.

Proof. For the methods C-HDR, PCP, HD-PCP, and C-PCP, the conformity score s is non-deterministic due to sampling
uncertainty. To clarify, we define a deterministic conformity score s̄ : X × Y × S, where S represents the space of samples
for a given method.

For j = 1, . . . , |Dcal|, let Sj = s̄(X(j), Y (j),S(j)
cal ) denote the conformity score on the calibration dataset, and let

S = s̄(X,Y,Stest) represent the conformity score for the test instance. Since s̄ is deterministic and the tuples
(X(1), Y (1),S(1)

cal ), . . . , (X
(|Dcal|), Y (|Dcal|),S(|Dcal|)

cal ), (X,Y,Stest) are i.i.d. random variables, S1, . . . , S|Dcal|, S are also
i.i.d. random variables.

Since S1, . . . , S|Dcal|, S are indentically distributed, they share the same CDF. Using the probability integral transform,
FS(S) ∼ U(0, 1). Thus, FS(S1), . . . , FS(S|Dcal|) correspond to uniform variates U1, . . . , U|Dcal|. Since there are no ties
among the scores, FS is strictly increasing, and FS(S(j)) = U(j) for j = 1, . . . , |Dcal|, where S(j) and U(j) are the j-th
order statistics. Hence:

P(Y ∈ R̂(X) | Dcal,Scal) = P(S ≤ S(kα) | S1, . . . , S|Dcal|) (65)
= FS(S(kα)) (66)
= U(kα) (67)
∼ Beta(kα, |Dcal|+ 1− kα). (68)

The final step results from the distribution of uniform order statistics. Taking the expectation of the Beta distribution gives:

P(Y ∈ R̂(X)) = E[P(Y ∈ R̂(X) | Dcal,Scal)] =
kα

|Dcal|+ 1
≥ 1− α. (69)

E.2. Proofs of asymptotic conditional coverage

E.2.1. L-CP

Proposition 2. Assuming |Dcal| → ∞ and Q̂(Z;X)
d.
= Y |X , L-CP achieves conditional coverage.

Proof. We first show that the conditional coverage of L-CP is equal to the CDF of the random variable dZ(Z) in q̂, i.e.,
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FdZ(Z)(q̂). Given x ∈ X , we have:

P(Y ∈ R̂L-CP(X) | X = x) (70)

=P(Y ∈ {Q̂(z;x) : z ∈ RZ(q̂)} | X = x) (71)

=P(Q̂−1(Y ;X) ∈ RZ(q̂) | X = x) (Invertibility of Q̂(·;X)) (72)

=P(Z ∈ RZ(q̂)) (Q̂(Z;X)
d.
= Y |X) (73)

=P(dZ(Z) ≤ q̂) (74)
=FdZ(Z)(q̂). (75)

Marginalizing over X , we obtain that the marginal coverage is also equal to FdZ(Z)(q̂):

P(Y ∈ R̂L-CP(X)) (76)

=EX

[
P(Y ∈ R̂L-CP(X) | X)

]
(77)

=EX

[
FdZ(Z)(q̂)

]
(78)

=FdZ(Z)(q̂) (79)

In the limit of |Dcal| → ∞, thanks to the Glivenko-Cantelli theorem, P(Y ∈ R̂L-CP(X)) = 1−α and the quantile q̂ obtained
by SCP is thus F−1

dZ(Z)(1− α).

Finally, we obtain that the conditional coverage is equal to 1− α:

P(Y ∈ R̂L-CP(X) | X = x) (80)

=FdZ(Z)(F
−1
dZ(Z)(1− α)) (81)

=1− α. (82)

E.2.2. C-HDR AND C-PCP

Lemma 2. Assuming |Dcal| → ∞, any conformal method with conformity score sCDF (12) achieves conditional coverage,
independently from the conformity score sW of the base method. With the additional assumption that K → ∞ and f̂ = f ,
sECDF (13) achieves conditional coverage.

Proof. Let W = sW (X,Y ) and consider x ∈ X and y ∈ Y . By the probability integral transform, sCDF(x, Y ) =
FW |X=x(W | X = x) ∼ U(0, 1).

Marginalizing over X , we obtain:

P(Y ∈ R̂CDF(X)) = P(sCDF(X,Y ) ≤ q̂) (83)
= EX[P(sCDF(X,Y ) ≤ q̂ | X)] (84)
= EX[P(U ≤ q̂)] (85)
= EX[q̂] (86)
= q̂, (87)

where U ∼ U(0, 1). In the limit of |Dcal| → ∞, thanks to the Glivenko-Cantelli theorem, P(Y ∈ R̂CDF(X)) = 1− α and
the quantile q̂ obtained by SCP is thus 1− α.

Finally, we note that:

P(Y ∈ R̂CDF(X) | X = x) = P(sCDF(X,Y ) ≤ q̂ | X = x) (88)
= P(U ≤ 1− α) (89)
= 1− α. (90)
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Assuming f̂ = f , observe that, for any x ∈ X and y ∈ Y , sECDF(x, y) → sCDF(x, y) as K → ∞ by the law of large
numbers. Thus, under these conditions, any conformal method with conformity score sECDF achieves conditional coverage.

Proposition 3. Assuming |Dcal| → ∞ and K → ∞, both C-HDR and C-PCP with the oracle base predictor f̂ = f achieve
conditional coverage.

Proof. The proof is direct by Lemma 2 with sW (x, y) = sDR-CP(x, y) for C-HDR and sW (x, y) = sPCP(x, y) for C-
PCP.

E.2.3. M-CP

Consider M-CP with exact quantile estimates l̂i(x) = QYi
(αl | x) and ûi(x) = QYi

(αu | x) where QYi
(α | x) is the

quantile function of Yi conditional to X = x evaluated in α. This section introduces two propositions where M-CP requests
two different nominal coverage levels αu − αl, namely d

√
1− α and 1− α. The propositions show that M-CP can achieve

conditional coverage under two contrasting scenarios: independence or total dependence between the dimensions of the
output.
Proposition 4. Assuming Y1, . . . , Yd are conditionally independent given X , M-CP achieves conditional coverage if
αu − αl =

d
√
1− α.

Proof. For any x ∈ X and i ∈ [d], we first establish that the d
√
1− αth quantile of the distribution of si(X,Yi) given X = x

equals 0:

P(si(X,Yi) ≤ 0 | X = x) = P(max{li(X)− Y, Y − ui(X)} ≤ 0 | X = x) (91)
= P(li(X) ≤ Y ∧ Y ≤ ui(X) | X = x) (92)
= 1− P(li(X) > Y ∨ Y > ui(X) | X = x) (93)
= 1− P(li(X) > Y | X = x)− P(Y > ui(X) | X = x) (94)
= 1− αl − (1− αu) (95)
= αu − αl (96)

= d
√
1− α. (97)

Using (97), we show that the 1− αth quantile of the distribution of s(X,Y ) given X = x is 0:

P(sM-CP(X,Y ) ≤ 0 | X = x) = P(si(X,Yi) ≤ 0,∀i ∈ [d] | X = x) (98)
= P(s1(X,Y1) ≤ 0 ∧ · · · ∧ sd(X,Yd) ≤ 0 | X = x) (99)
= P(s1(X,Y1) ≤ 0 | X = x) . . .P(sd(X,Yd) ≤ 0 | X = x) (100)

= d
√
1− α

d
(101)

= 1− α, (102)

where (100) is obtained by conditional independence of Y1, . . . , Yd given X . Marginalizing over X , we obtain that the
1− αth quantile of s(X,Y ) is 0:

P(sM-CP(X,Y ) ≤ 0) = EX[P(sM-CP(X,Y ) ≤ 0 | X)] (103)
= EX[1− α] (104)
= 1− α. (105)

In the limit of |Dcal| → ∞, thanks to the Glivenko-Cantelli theorem, P(Y ∈ R̂M-CP(X)) = 1−α and the quantile q̂ obtained
by SCP is thus 0.

Finally, using (102) and q̂ = 0, we obtain that M-CP achieves conditional coverage:

P(Y ∈ R̂M-CP(X) | X = x) = P(sM-CP(X,Y ) ≤ q̂ | X = x) = 1− α. (106)
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Proposition 5. Assuming Y1|X
a.s.
= . . .

a.s.
= Yd|X , M-CP achieves conditional coverage if αu − αl = 1− α.

Proof. Let x ∈ X . Using (96), we first show that the 1− αth conditional quantile of the distribution of si(X,Yi), for any
i ∈ [d], is 0:

P(si(X,Yi) ≤ 0 | X = x) = αu − αl (107)
= 1− α. (108)

Using (108), we show that the 1− αth quantile of the distribution of s(X,Y ) given X is 0:

P(s(X,Y ) ≤ 0 | X = x) = P(si(X,Yi) ≤ 0,∀i ∈ [d] | X = x) (109)
= P(s1(X,Y1) ≤ 0 ∧ · · · ∧ sd(X,Yd) ≤ 0 | X = x) (110)
= P(s1(X,Y1) ≤ 0 | X = x) (111)
= 1− α, (112)

where (111) is due to Y1|X
a.s.
= . . .

a.s.
= Yd|X , which implies that, conditional to X = x, l1(X) = · · · = ld(X) and

u1(X) = · · · = ud(X) and thus s1(X,Y1) = · · · = sd(X,Yd). Using (105), we obtain that q̂ = 0, Finally, using (112), we
obtain that M-CP achieves conditional coverage:

P(Y ∈ R̂(X) | X = x) = P(s(X,Y ) ≤ 0 | X = x) = 1− α. (113)

E.3. Connection between sample-based and density-based methods

This section proves the connections between sample-based and density-based methods as introduced in Section 5.3. We start
by restating a known lemma of conformal prediction.
Lemma 3. Consider a conformal prediction method with conformity score s. If g : R → R is a strictly increasing function,
then the method with conformity score g ◦ s will produce the same prediction regions.

Proof. For any x ∈ X , consider the prediction region created with s as in Section 2.1:

R̂(x) =
{
y ∈ Y : s(x, y) ≤ Quantile

(
{si}i∈[|Dcal|] ∪ {∞}; kα

)}
. (114)

Since g is strictly increasing,

R̂(x) =
{
y ∈ Y : g(s(x, y)) ≤ g

(
Quantile

(
{si}i∈[|Dcal|] ∪ {∞}; kα

))}
(115)

=
{
y ∈ Y : g(s(x, y)) ≤ Quantile

(
{g(si)}i∈[|Dcal|] ∪ {∞}; kα

)}
. (116)

Since (116) corresponds to the prediction region with conformity score g ◦ s, this shows that the two methods create the
same regions.

Proposition 1. PCP is equivalent to DR-CP with f̂ = f̂max. Similarly, HD-PCP is equivalent to DR-CP with f̂ = f̂max where
only ⌊(1− α)L⌋ samples with the highest density among {Ỹ (l)}l∈[L] are kept. Finally, C-PCP is equivalent to C-HDR with
f̂ = f̂max.

Proof. In the following proof, we note a ↑ b to signify that there exists a strictly increasing function g such that a = g(b).
Consider DR-CP with f̂ = f̂max. We have:

sDR-CP(x, y) = −f̂max(y | x) (117)

↑ −max
l∈[L]

fS(y; Ỹ
(l))

(
f̂max(y | x) = max

l∈[L]
fS(y; Ỹ

(l))/C

)
(118)

= min
l∈[L]

−fS(y; Ỹ
(l)) (119)

↑ min
l∈[L]

∥y − Ỹ (l)∥2
(
fS(y; Ỹ

(l)) has spherical level sets centered at Ỹ (l)
)

(120)

= sPCP(x, y). (121)
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We obtain the equivalence between the two methods by Lemma 3. The proof for HD-PCP follows the same arguments.

We now consider C-HDR with f̂ = f̂max. We have:

sC-HDR(x, y) =
1

K

∑
k∈[K]

1(f̂max(Ŷ
(k) | x) ≥ f̂max(y | x)) where Ŷ (k) ∼ f̂Y |X=x, k ∈ [K]. (122)

Developing the inequality for k ∈ [K], we obtain:

f̂max(Ŷ
(k) | x) ≥ f̂max(y | x) (123)

⇐⇒ max
l∈[L]

fS(Ŷ
(k); Ŷ (l)) ≥ max

l∈[L]
fS(y; Ŷ

(l))

(
f̂max(y | x) = max

l∈[L]
fS(y; Ỹ

(l))/C

)
(124)

⇐⇒ min
l∈[L]

−fS(Ŷ
(k); Ŷ (l)) ≤ min

l∈[L]
−fS(y; Ŷ

(l)) (125)

⇐⇒ min
l∈[L]

∥Ŷ (k) − Ỹ (l)∥2 ≤ min
l∈[L]

∥y − Ỹ (l)∥2.
(
fS(y; Ỹ

(l)) has spherical level sets centered at Ỹ (l)
)

(126)

(127)

Noting that (122) with (127) corresponds to the conformity score of C-PCP, we obtain the equivalence.

F. Experimental setup
This section describes our experimental setup in more details. Computations were performed based on 2 workstations, one
with with 2 A6000 GPUs and 64 CPU threads, and one with 2 A5000 GPUs and 64 CPU threads, running for 48 hours.

F.1. Datasets

We consider a total of 13 datasets that have been used in previous studies. Since our focus is on multivariate prediction
regions, we select only datasets with an output that is at least two-dimensional. Specifically, we include 6 datasets from
Feldman et al., 2023, 4 datasets from Tsoumakas et al., 2011 (MULAN benchmark), 1 dataset from Wang et al., 2023b, 1
datasets from Barrio et al., 2024, and 1 dataset from Camehl et al., 2024.

Each dataset is split into training, validation, calibration, and test sets with 2048 points reserved for calibration. The
remaining data is split into 55% for training, 15% for validation and 30% for testing. The preprocessing follows the setup
described in Grinsztajn et al., 2022. Table 3 provides the detailed characteristics of each dataset.

Table 3: Characteristics of each dataset considered in this study.

Nb instances Nb features p Nb targets d
Source Dataset

Camehl households 7207 4 4
Mulan scm20d 8966 60 16

rf1 9005 64 8
rf2 9005 64 8
scm1d 9803 279 16

Feldman meps_21 15656 137 2
meps_19 15785 137 2
meps_20 17541 137 2
house 21613 14 2
bio 45730 8 2
blog_data 50000 55 2

Del Barrio calcofi 50000 1 2
Wang taxi 50000 4 2

F.2. Base predictors

We consider multiple base predictors and focus on MQF2 for our main experiments (Section 6).
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MQF2. The Multivariate Quantile Function Forecaster (MQF2, Kan et al., 2022) is a normalizing flow that is directly
compatible with most of the methods presented since it is invertible, has an explicit PDF, and can be sampled from. M-CP,
CopulaCPTS and STDQR require small adaptations from the original methods, as discussed below. The quantile function Q̂
and distribution function Q̂−1 of MQF2 exhibit cyclical monotonicity, meaning they are the gradient of a convex function
(Hallin et al., 2021).

The main idea behind MQF2 is to interpret Convex Potential Flows (Huang et al., 2020) as multivariate (vector) quantile
functions, in the sense that the representation property (128) and cyclical monotonicity property (129) are satisfied (Carlier
et al., 2016):

Y = Q̂(Z;x) ∀x ∈ X where Z ∼ U(0, 1)d, (128)(
Q̂(z1;x)− Q̂(z2;x)

)T
(z1 − z2) ≥ 0 ∀x ∈ X , z1, z2 ∈ Z. (129)

When d = 1, this reduces to the classical univariate quantile function. In practice, we follow Kan et al., 2022 and use a
quantile vector that follows a normal distribution Z ∼ N (0, I), allowing better training.

The underlying model of MQF2 is a partially input-convex neural network (PINN, Amos et al., 2017) with two hidden
layers, each containing 30 units. Increasing the number of parameters did not significantly improve performance, which is
partly due to the efficiency of Convex Potential Flows compared to other normalizing flows (Huang et al., 2020). While
hyperparameter tuning for each dataset could enhance performance, it is not the primary focus of this paper.

MQF2 is trained using maximum likelihood estimation with early stopping, with a patience of 15 epochs, where validation
loss is measured every two epochs.

Distributional Random Forests. Distributional Random Forest (Cevid et al., 2022) is a model built upon the Random
Forest algorithm, which adaptively identifies the relevant training data points for any given test point. More specifically,
given a test point x ∈ X , Distributional Random Forest outputs a weight w(x(i) | x) for each training point x(i) with
x(i) ∈ Dtrain. This approach enables accurate estimation of any quantity of interest conditional on x ∈ X . In our experiments,
we estimate the conditional distribution Y |X as a Gaussian mixture, with each component centered on a training point and
weighted by the Distributional Random Forest.

The PDF at y ∈ Y given x ∈ X is expressed as:

f̂(y | x) =
|Dtrain|∑
i=1

w(x(i) | x) · N (y | y(i), σId),

where σ is tuned by minimizing the NLL on a grid search. For the Distributional Random Forest, the minimum node size is
set to 15, the forest consists of 2000 trees, and the splitting criterion is the maximum mean discrepancy (MMD).

Since this method does not operate in a latent space, we do not consider L-CP in combination with this base predictor. CD
diagrams for this predictor are presented in Appendix G.2.

Multivariate Gaussian Mixture Model parameterized by a hypernetwork. As another base predictor, we consider a
multivariate Gaussian Mixture Model parameterized by a hypernetwork. The hypernetwork is a multilayer perceptron (MLP)
that outputs the parameters of a mixture of M multivariate Gaussian distributions. Given x ∈ X , for each mixture component
m ∈ [M ], the hypernetwork outputs the logit zm(x) (for the categorical distribution over the mixture components), the mean
µm(x) (component location), and the lower triangular Cholesky factor Lm(x) (representing the scale of the covariance
matrix).

The mixture weights πm(x) are obtained by applying the softmax function to the logits zm(x), ensuring they sum to 1. The
covariance matrices Σm(x) for each component are constructed by taking the product Lm(x)Lm(x)⊤, guaranteeing that
they are positive semi-definite.

The PDF evaluated in y ∈ Y conditional to x ∈ X is given by:

f̂(y | x) =
M∑

m=1

πm(x) · N (y | µm(x),Σm(x)).
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The model is trained using maximum likelihood estimation with M = 10.

Similarly to Distributional Random Forests, this method does not operate in a latent space, and thus we do not consider
L-CP. CD diagrams for this predictor are presented in Appendix G.3.

F.3. Adaptation of conformal methods into a common framework.

To ensure a fair comparison among conformal methods, we apply the calibration step using the same base predictors. Only
M-CP, CopulaCPTS, and STDQR require slight modifications from their original formulations.

For M-CP and CopulaCPTS, direct estimation of marginal distributions for each output Yi, i ∈ [d] is infeasible with MQF2.
Instead, we estimate the lower and upper quantiles by first sampling {Ŷ (l)}l∈[L] from f̂Y |X=x given x ∈ X , and then

computing the empirical quantiles Ŷ
(⌊Lα

2 ⌋)
i and Ŷ

(⌊L(1−α
2 )⌋)

i . Sampling time is not accounted in time computations
for these methods. While a more computationally efficient base predictor could be used, this approach ensures a direct
comparison with other conformal methods by maintaining consistency in the base predictor.

For STDQR, we modify the original method by replacing the conditional variational autoencoder (CVAE) with a normalizing
flow. Following recommendations for future work from Feldman et al., 2023, we exploit the property that the output is
normally distributed in the latent space and replace the base predictor by a normalizing flow. This adaptation leverages
the assumption that the output is normally distributed in the latent space, allowing for an exact inverse transformation and
eliminating a potential source of noise. To construct a region RZ with coverage 1−α in the latent space, we select the 1−α
proportion of samples closest to the origin, ensuring correct coverage without the need for directional quantile regression.
The calibration procedure remains unchanged.

F.4. Metrics

Marginal coverage. Marginal coverage is measured using

MC =
1

|Dtest|
∑

(x,y)∈Dtest

1(y ∈ R̂(x)).

Region size. We report the mean region size

Mean Size =
1

|Dtest|
∑

(x,y)∈Dtest

|R̂(x)|.

To avoid large regions disproportionately affecting the result, we also report the median of the region sizes

Median Size = Quantile({|R̂(x)|}(x,y)∈Dtest ; 0.5)

Computing the size of the region is challenging in high dimensions. Hence, we propose an unbiased estimator of the region
size using importance sampling:

|R̂(x)| =
∫
Y

1(y ∈ R̂(x))dy = EŶ∼f̂(x)

[
1(Ŷ ∈ R̂(x))

f̂(Ŷ | x)

]
≈ 1

K

K∑
k=1

1(Ŷ (k) ∈ R̂(x))

f̂(Ŷ (k) | x)
, (130)

where Ŷ (k) ∼ f̂Y |X=x, k ∈ [K]. This estimator is compatible with all base predictors in Appendix F.2 since it is both
possible to sample from their predictive distribution and evaluate the PDF. In Appendix F.7, we discuss the efficiency of this
estimator.

Conditional coverage. To ensure a robust evaluation of conditional coverage, we consider three different conditional
coverage metrics, detailed in Appendix F.6. The Worst Slab Coverage (WSC, Cauchois et al., 2021) groups inputs into
"slabs" and evaluates the worst obtained coverage. The coverage error conditional to X (CEC-X) partitions the input
space X and evaluates coverage on each subset. The coverage error conditional to V = f̂(Ŷ | X), where Ŷ ∼ f̂Y |X ,
(CEC-V, Izbicki et al., 2022; Dheur et al., 2024), creates a partition based on the distribution of V , which is more robust to
high-dimensional inputs.
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Computing time. We report the total time required for calibration and testing the marginal coverage. Specifically, this
requires evaluating conformity scores on Dcal followed by evaluating conformity scores on Dtest.

F.5. Multi-Model, Multi-Dataset Comparison

In order to determine whether there are significant differences in model performance, we first apply the Friedman test
(Friedman, 1940). Following the recommendations of Benavoli et al. (2016), we then conduct a pairwise post-hoc analysis
using the Wilcoxon signed-rank test (Wilcoxon, 1945), coupled with Holm’s alpha correction (Holm, 1979) to adjust for
multiple comparisons.

The results are visualized using critical difference (CD) diagrams (Demšar, 2006). In these diagrams, models are ranked,
with a lower rank (positioned further to the right) indicating better performance. A thick horizontal line connects models
whose performances are not statistically different at the 0.05 significance level.

For MC and WSC, the CD diagrams report |MC − (1− α)| and |WSC − (1− α)|, both of which should be minimized.

F.6. Metrics of Conditional Coverage

Worst Slab Coverage. Introduced in Cauchois et al., 2021, the Worst Slab Coverage (WSC) metric quantifies the minimal
coverage over all possible slabs in Rd, where each slab contains at least a fraction δ of the total mass, with 0 < δ ≤ 1. For a
given vector v ∈ Rd, the WSC associated with v, denoted as WSCv , is defined by:

WSCv = inf
a<b

{
P̂Dtest

(
yi ∈ R̂(xi) | a ≤ v⊺xi ≤ b

)
s.t. P̂Dtest(a ≤ v⊺xi ≤ b) ≥ δ

}
, (131)

where a, b ∈ R. This metric assesses conditional coverage by focusing on inputs xi that lie within a slab defined by v, using
the inner product v⊺xi to measure similarity.

To estimate the worst-case slab, we follow the method from Cauchois et al., 2021, uniformly sampling 1,000 vectors vj
from the unit sphere Sd−1 and calculating:

WSC = min
vj∈Sd−1

WSCvj . (132)

To mitigate overfitting on the test dataset, we partition the test set into two subsets, Dtest = D(1)
test ∪ D(2)

test , as in Romano et al.,
2020; Sesia and Romano, 2021. We identify the worst combination of a, b, and v on D(1)

test by minimizing the WSC metric
with δ = 0.2, and then evaluate conditional coverage on the separate subset D(2)

test .

CEC-X. CEC-X approximates conditional coverage by partitioning the input space X ∈ X ⊆ Rp. We apply the k-
means++ clustering algorithm on the inputs X(i) in the validation dataset Dval, creating a partition A = A1 ∪ · · · ∪AJ over
X . The Coverage Error Conditional to X is defined as:

CEC-X =
1

|Dtest|

|Dtest|∑
i=1

J∑
j=1

(
P̂Dtest

(
y(i) ∈ R̂(x(i))

∣∣∣ x(i) ∈ Aj

)
− (1− α)

)2
. (133)

CEC-V. CEC-V is similar to CEC-X, but the conditioning is on the distribution of log V = log f̂(Ŷ | X), where
Ŷ ∼ f̂Y |X . Unlike CEC-X, CEC-V is more robust to high-dimensional inputs. This approach originates from the CD-split+

method (Izbicki et al., 2022) and has been adapted to multivariate outputs in Dheur et al., 2024.

In practice, given an input x, a new feature vx is created. First, samples vi from V | X = x are generated by sampling
y1, . . . , ym ∼ f̂Y |X=x and evaluating vi = f̂(yi | x). The resulting vector vx = (v(1), . . . , v(m)) consists of the order
statistics v(i) from v1, . . . , vm.
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Figure 11: Panels 1 to 4: Trajectories of the log volume estimator with increasing K compared to the true log volume
(dashed line) for different output dimensions d. Panel 5: Log volume estimator with K = 100 compared to the true log
volume (dashed line).

The k-means++ clustering algorithm is applied on the vectors log vX(i) in the validation dataset Dval, and a partition
AV = A1 ∪ · · · ∪ AJ over Rm is obtained. The Coverage Error Conditional to the distribution of V is then computed
according to (133), using the partition AV .

Dheur et al., 2024 notes that the distance function corresponding to this partitioning approach is the 2-Wasserstein distance
with respect to the distribution of V .

F.7. Estimator for the region size

In this section, we discuss the efficiency of the region size estimator introduced in Appendix F.4. This estimator is based on
a density estimator f̂Y |X=x and a sample Ŷ (k), k ∈ [K], drawn i.i.d. from the conditional distribution Y | X = x for any
x ∈ X . Specifically, the estimator is given by:

V̂ (x) =
1

K

K∑
k=1

1(Ŷ (k) ∈ R̂(x))

f̂(Ŷ (k) | x)
.

While the estimator is unbiased, i.e., E[V̂ (x)] = |R̂(x)|, we want to study its variance. Let I = 1(Ŷ ∈ R̂(x)) represent the
indicator that a sample Ŷ lies within the prediction region R̂(x), and let ρ = P(Ŷ ∈ R̂(x)) denote the coverage probability
obtained from the samples based on our density estimator. Using the law of total variance, we obtain the following expression
for the variance of V̂ (x):

V
[
V̂ (x)

]
=

1

K
V

[
I

f̂(Ŷ | x)

]

=
1

K

(
E

[
V

[
I

f̂(Ŷ | x)

∣∣∣∣∣ I
]]

+ V

[
E

[
I

f̂(Ŷ | x)

∣∣∣∣∣ I
]])

=
1

K

ρV

[
1

f̂(Ŷ | x)

]
+ ρ(1− ρ)E

[
1

f̂(Ŷ | x)

]2 .

Assuming that the density estimate corresponds to the true density, i.e. f̂Y |X=x = fY |x(· | x) and that R̂ achieves
conditional coverage, then ρ = 1− α, and we obtain:

V
[
V̂ (x)

]
=

1

K

(
(1− α)V

[
1

fY |x(Y | x)

]
+ α(1− α)E

[
1

fY |x(Y | x)

]2)
.

This indicates that the variance of our estimator only depends on the variance and expectation of the random variable 1
f(Y |x) .

In this case, the variance does not directly depend on the output dimension d.

Figure 11 shows how the estimator behaves in a scenario with a specific density estimator and prediction region with varying
output dimension d and an 80% coverage level. Since there is no dependence on X , we abbreviate the notation as follows:
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R̂ = R̂(x), f̂(y) = f̂(y | x), and V̂ = V̂ (x) for any x ∈ X . The density estimator is a standard normal distribution
f̂(y) = N (y; 0, Id) and the prediction region is a ball R̂ =

{
y ∈ Y : ∥y∥2 ≤ F−1

χ2
d
(1− α)

}
, where χ2

d is the chi-squared

distribution with d degrees of freedom and F−1
χ2
d

is its quantile function. It can be shown that PŶ∼f̂(·)(Ŷ ∈ R̂) = 1− α. In

this case, the volume V of R̂ can be computed exactly.

Each of the first four panels in Figure 11 shows five trajectories for log V̂ as K increases from 1 to 100. The true volume,
log V , of the prediction region is indicated by a dashed line. We observe that the estimator converges within a reasonable
range of the true volume for varying output dimensions d. The last panel illustrates the value of log V̂ as a function of d,
with log V again marked by a dashed line. From this, we observe that the estimator remains close to the true volume across
different output dimensions d.

G. Additional results
This section presents additional results for MQF2 (Appendix G.1), Distributional Random Forests (Appendix G.2) and the
Multivariate Gaussian Mixture Model (Appendix G.3). The experimental setup is described in Appendix F.

G.1. MQF²

Figure 12 presents the marginal coverage and median region size across datasets of increasing size for MQF2. In Panel 1,
all methods except CopulaCPTS attain precise marginal coverage. This is expected since these methods follow the SCP
algorithm (Section 2.1) and their marginal coverage conditional on the calibration dataset and samples from the calibration
dataset follows a Beta distribution whose parameters only depend on the size of the calibration dataset (Appendix E.1).
While CopulaCPTS attains marginal coverage, the larger variance in its marginal coverage arises because it does not follow
the SCP algorithm.

In Panel 2, the median region size is normalized between 0 and 1 for each dataset in order to facilitate comparison. We
observe that C-HDR often obtains the smallest median region size. The performance of the other methods can vary highly
across datasets for the median region size and is better visualized in a CD diagram (see Figure 13).
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Figure 12: Marginal coverage and median region size with the base predictor MQF2 across datasets sorted by size.

Figure 13 presents critical difference diagrams for three conditional coverage metrics (CEC-X , CEC-Z and WSC), the
mean region size and median region size, the total calibration and test time. Results are consistent with the results from the
main text.
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Dataset M-CP CopulaCPTS DR-CP C-HDR PCP HD-PCP STDQR C-PCP L-CP

households 14.20.48 12.30.87 13.20.29 10.60.33 20.50.38 15.60.39 17.80.41 15.50.74 18.60.80
scm20d 67.68.5 1.12e+022.1e+01 2.33e+022.2e+01 42.07.9 1.05e+021.1e+01 94.49.4 99.41.0e+01 26.03.1 72.01.0e+01
rf2 0.005470.0027 0.005550.0033 0.002150.0010 0.0006900.00032 0.007000.0036 0.006170.0030 0.006240.0031 0.002620.0012 0.001040.00048
rf1 0.005470.0027 0.005550.0033 0.002150.0010 0.0006900.00032 0.007000.0036 0.006170.0030 0.006240.0031 0.002620.0012 0.001040.00048
scm1d 0.5280.046 0.3230.050 0.8670.078 0.2390.026 0.6980.065 0.6840.062 0.6710.069 0.2160.024 0.1970.020
meps_21 0.1850.013 0.1710.014 0.2270.013 0.1320.024 0.3590.021 0.2460.015 0.2830.015 0.2200.021 0.2440.052
meps_19 0.2140.022 0.5950.42 0.1750.011 0.1190.019 0.3960.059 0.2660.033 0.3070.043 0.2380.026 0.2320.043
meps_20 0.3710.061 0.3620.059 0.2230.020 0.1140.012 0.5350.050 0.4360.066 0.4720.052 0.3410.039 0.2800.028
house 1.170.023 1.220.043 0.6640.021 0.6510.016 0.8820.023 0.6800.018 0.7990.023 0.8580.018 1.190.017
bio 0.3030.0066 0.2960.0092 0.2570.0067 0.2180.0053 0.3430.0076 0.2590.0065 0.2690.0067 0.3020.0074 0.2670.0061
blog_data 0.1700.039 0.09480.015 0.03740.0056 0.01550.0031 0.1410.023 0.1250.023 0.1630.036 0.1060.021 0.06760.017
calcofi 2.130.024 2.380.12 1.670.022 1.990.026 2.330.029 1.890.029 1.970.021 2.810.042 2.700.024
taxi 4.260.068 4.720.11 2.620.029 2.620.033 4.030.040 3.180.030 3.630.058 4.020.064 4.940.12

Table 4: Median region size with the base predictor MQF2.

Dataset M-CP CopulaCPTS DR-CP C-HDR PCP HD-PCP STDQR C-PCP L-CP

households 36.90.86 35.11.4 15.70.63 40.11.2 33.82.1 30.12.1 28.82.1 62.62.5 50.61.4
scm20d 7.03e+062.5e+06 3.82e+071.6e+07 6.40e+031.9e+03 5.30e+092.1e+09 1.61e+045.1e+03 1.56e+045.1e+03 1.59e+045.1e+03 1.37e+091.0e+09 2.20e+109.1e+09
rf1 1.86e+021.0e+02 1.83e+029.6e+01 15.19.9 3.50e+021.7e+02 1.29e+028.1e+01 1.09e+026.7e+01 4.05e+052.1e+05 9.85e+024.8e+02 4.01e+021.9e+02
rf2 1.86e+021.0e+02 1.83e+029.6e+01 15.19.9 3.51e+021.7e+02 1.29e+028.1e+01 1.09e+026.7e+01 4.05e+052.1e+05 9.87e+024.8e+02 4.02e+021.9e+02
scm1d 2.37e+055.7e+04 1.81e+055.1e+04 78.41.6e+01 2.73e+085.3e+07 57.31.8e+01 43.01.1e+01 43.61.1e+01 1.48e+084.9e+07 1.52e+082.6e+07
meps_21 1.210.045 1.170.046 0.3150.020 1.440.14 0.6170.029 0.5580.026 0.5530.025 2.070.10 1.960.34
meps_19 1.140.027 1.110.031 0.2930.018 1.290.056 0.5810.027 0.5590.021 0.5370.021 1.960.072 1.520.053
meps_20 1.200.045 1.170.038 0.3090.014 1.300.047 0.6060.020 0.5620.020 0.5460.018 2.010.11 1.590.064
house 1.830.027 1.810.038 0.8870.033 1.090.033 1.230.034 0.9640.030 1.140.030 1.440.040 1.710.013
bio 1.400.39 1.420.39 0.2690.010 0.4860.037 0.3960.014 0.2970.0090 0.3110.010 1.410.31 2.570.77
calcofi 2.040.023 2.220.071 1.420.018 1.950.040 2.220.031 1.700.022 1.780.026 2.830.036 2.340.044
blog_data 0.3900.017 0.3900.016 0.08520.0050 0.3750.018 0.1730.0097 0.1630.0078 0.1880.0067 0.6130.028 0.5200.027
taxi 5.680.084 6.350.16 2.670.047 3.210.049 4.550.090 3.540.075 3.990.071 5.360.090 6.510.12

Table 5: Mean region size with the base predictor MQF2.
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Figure 13: CD diagrams with the base predictor MQF2 with 10 runs per dataset and method.

G.2. Distributional Random Forests

Figure 14 presents additional results for the base predictor Distributional Random Forests. Since this model does not rely on
a latent space, results for STDQR and L-CP are not included.

In terms of conditional coverage, the results align with those of MQF2, with C-PCP and C-HDR outperforming DR-CP, PCP,
and HD-PCP. Notably, M-CP achieves competitive conditional coverage, suggesting it pairs well with DRF-KDE. Similar to
MQF2, all methods except for CopulaCPTS attain precise marginal coverage.

The median region size is normalized to a [0,1] range for each dataset to facilitate comparison. We observe that C-HDR
generally achieves the smallest median region size, followed by DR-CP. The test time is the lowest for M-CP and CopulaCPTS

30



Multi-Output Conformal Regression

while C-PCP and C-HDR obtain the highest computation times.
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Figure 14: Conditional coverage metrics with the base predictor Distributional Random Forests across datasets sorted by
size.

Figure 15 shows CD diagrams obtained with Distributional Random Forests as the base predictor. The results are consistent
with Figure 14.
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Figure 15: CD diagrams with the base predictor Distributional Random Forests based on 10 runs per dataset and method.

G.3. Multivariate Gaussian Mixture Model

Figure 16 presents additional results for the base predictor Multivariate Gaussian Mixture Model. Similarly to Distributional
Random Forests, this model does not rely on a latent space and thus results for STDQR and L-CP are not included.

The conditional coverage also aligns with MQF2, C-PCP and C-HDR outperforming DR-CP, PCP, and HD-PCP. M-CP and
CopulaCPTS achieving intermediate conditional coverage. As expected, marginal coverage is precise for all methods except
CopulaCPTS.

C-HDR often obtains the smallest median region size, while DR-CP consistently attains the best mean region size.
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Figure 16: Conditional coverage metrics with the multivariate Gaussian mixture model base predictor across datasets sorted
by size.

CD diagrams in Figure 17 are consistent with Figure 16.
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Figure 17: CD diagrams based on Multivariate Gaussian Mixture Model parameterized by a hypernetwork with M = 10
and 10 runs per dataset and method.

G.4. Impact of the number of samples K

Figures 18 and 19 illustrate how conditional coverage, marginal coverage and region size change as a function ofK on
all datasets. For a better comparison among datasets, the metrics CEC-X , CEC-Z, the median region size and the mean
region size are normalized between 0 and 1, with results averaged over 10 runs. Furthermore, the red line indicates a linear
regression fit, allowing to see the trend.

Conditional coverage metrics decreasing with K indicate that conditional coverage tends to improve with an increasing
number of samples. This is expected since an increasing number of Monte-Carlo samples allows a better estimation of the
CDF of the scores in (13). Marginal validity is obtained with any K. However, small sizes of K will lead to more duplicated
conformity scores and thus a possibility of overcoverage. Median region sizes and mean region sizes also tend to decrease
with K as the CDF approximation improves.
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Figure 18: Evolution of conditional coverage, marginal coverage and region sizes of C-PCP as a function of the number of
samples K using the base predictor MQF2. The metrics CEC-X , and CEC-Z should be minimized, while the marginal
coverage and WSC should approach 1− α (indicated by the dashed black line). The red line, obtained by linear regression,
indicates the general trend.
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Figure 19: Reproduction of Figure 18 for C-HDR.

H. Comparison with Bonferroni correction
To better understand the prediction regions produced by FWER control methods, we provide a qualitative and quantitative
comparison with Bonferroni correction. We consider Bonferroni correction applied to the scores of CQR (see (16)), similarly
to M-CP. Figure 20 provides an illustrative example, and Table 6 provides results on this same dataset. This shows that
Bonferroni is computationally fast but produces larger regions due to the rectangular shape.
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Figure 20: Prediction regions for a bivariate unimodal dataset, conditional on a unidimensional input. The black, green, and
yellow contours represent regions with nominal coverage levels of 20%, 40%, and 80%, respectively. The figure is similar to
Figure 2 in the main text, with Bonferroni added as a comparison. Both Bonferroni and M-CP are based on Conformal
Quantile Regression (CQR) applied separately for each dimension.

Table 6: Detailed metrics for the unimodal heteroscedastic process from Figure 20, with 1− α fixed to 0.8.

MC Median Size CEC-X CEC-Z WSC Test time
Method (×100) (×100)

Bonferroni 0.8130.0036 9.070.15 0.02410.012 0.02490.0098 0.8150.0063 0.003395.9e-05
M-CP 0.8010.0037 8.620.074 0.02400.0031 0.01570.0031 0.7960.012 0.09590.058
DR-CP 0.7960.0019 6.830.042 0.4320.019 0.4030.015 0.6970.0093 0.05570.00075
C-HDR 0.8090.0025 6.970.039 0.01290.0059 0.01550.0037 0.8150.0030 14.20.11
L-CP 0.7980.0024 8.060.035 0.005860.00095 0.005490.0014 0.7940.0039 0.05840.0012

I. Comparison between C-PCP and CP²-PCP
In this section, we compare our proposed method, C-PCP, with the CP2-PCP method recently proposed by Plassier et al.,
2025. More generally, we also compare the methods from the CP2 framework of Plassier et al., 2025 with our class of CDF-
based conformity scores (Section 3.1 in the main text). In Appendix I.1, we present the more general CP2 framework using
our own notation for clarity, with CP2-PCP as a particular case of CP2. In Appendix I.2, we discuss the asymptotic properties
of CP2 and show the asymptotic equivalence with CDF-based methods. In Appendix I.3, we discuss the relationship between
CDF-based and CP2-based methods.

I.1. The CP² framework

Let us define a family of non-decreasing nested regions {R(x; t)}t∈R such that
⋂

t∈R R(x; t) = ∅ and
⋃

t∈R R(x; t) = Y ,
and

⋂
t′<t R(x; t′) = R(x; t). Without loss of generality, these nested regions are expressed in terms of a conformity score

sW (x, y) ∈ R as follows:
R(x; t) = {y ∈ Y : sW (x, y) ≤ t}, (134)

where sW (x, y) is continuous in y.

As the next step, we introduce a family of transformation functions fτ (λ) : R → R parameterized by τ ∈ R. It is assumed
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that for any τ , the function λ 7→ fτ (λ) is increasing and bijective. Let φ ∈ R be a constant (e.g., φ = 1). We also define the
function gφ(τ) = fτ (φ) and assume that τ 7→ gφ(τ) is increasing and bijective.

As a first step towards defining CP2, we construct a prediction region assuming knowledge of the conditional distribution
FY |X . For a given input x ∈ X , the prediction region is defined as:

R̄CP2(x) = R(x; fτx(φ)), (135)

where

τx = inf {τ : P (Y ∈ R(X; fτ (φ)) | X = x) ≥ 1− α} (136)

implies that R̄CP2(x) guarantees conditional coverage given x. Furthermore, using (134) and defining the random variable
W = sW (X,Y ), we can equivalently express (136) as

τx = inf {τ : P (sW (X,Y ) ≤ fτ (φ) | X = x) ≥ 1− α} (137)

= inf
{
τ : P

(
g−1
φ (sW (X,Y )) ≤ τ | X = x

)
≥ 1− α

}
(138)

= Qg−1
φ (W )|X=x(1− α) (139)

= g−1
φ (QW |X=x(1− α)), (140)

where we used that gφ is increasing and bijective, with g−1
φ (fτ (φ)) = τ . In other words, τx is the 1−α quantile of g−1

φ (W ).

However, in practice, τx cannot be computed directly because the true conditional distribution FY |x is unknown. Instead, it
can be estimated using a sample Ŷ (k), k ∈ [K], drawn from the estimated conditional distribution F̂Y |X=x. If Q̂W |X=x(1−
α) is the 1− α quantile of the empirical distribution 1

K

∑
k∈[K] δsW (x,Ŷ (k)), we can compute

τ̂x = g−1
φ (Q̂W |X=x(1− α)). (141)

It should be noted that this estimated prediction region loses the exact conditional and marginal coverage properties due to
the reliance on the estimated conditional distribution. The following shows how conformal prediction can restore some
coverage properties.

From (134), using (135), we can write

R̄CP2(x) = {y ∈ Y : sW (x, y) ≤ fτx(φ)} (142)

=
{
y ∈ Y : f−1

τx (sW (x, y)) ≤ φ
}
, (143)

where we used the invertibility of fτ for any τ ∈ R.

Based on (143), Plassier et al., 2025 defined the following conformity score:

sCP2(x, y) = f−1
τ̂x

(sW (x, y)), (144)

for which the corresponding prediction region R̂CP2 is given by

R̂CP2(x) = {y ∈ Y : sCP2(x, y) ≤ q̂}, (145)

where we used (2) from the main text.

As an example, taking fτ (λ) = τλ and φ = 1, the conformity score becomes:

sCP2(x, y) = sW (x, y)/τ̂x, (146)

where τ̂x is defined in (141). Finally, we obtain CP2-PCP simply by replacing sW with sPCP in (146).
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I.2. Asymptotic properties

I.2.1. ASYMPTOTIC EQUIVALENCE OF PREDICTION REGIONS

In the following, we prove that the prediction regions generated by CP2 (for any fτ and φ) and CDF-based methods are
identical in the oracle setting, asymptotically, as |Dcal| → ∞. Specifically, for any x ∈ X , both methods select the same
threshold t1−α = QW (1− α | X = x) for the prediction region R(x; t1−α), which ensures a coverage level of 1− α.
Proposition 6. Provided that the assumptions in Appendix I.1 hold, for any x ∈ X , the prediction regions R̄CP2(x) (for any
choice of fτ and φ) and R̂CDF(x) are equivalent.

Proof. Using the fact that g−1
φ (fτ (φ)) = τ for any τ ∈ R and that gφ is increasing and bijective, we can write:

R̄CP2(x) = {y ∈ Y : sW (x, y) ≤ fτx(φ)} (147)

= {y ∈ Y : g−1
φ (sW (x, y)) ≤ τx} (148)

= {y ∈ Y : g−1
φ (sW (x, y)) ≤ g−1

φ (QW |X=x(1− α))} (149)

= {y ∈ Y : sW (x, y) ≤ QW |X=x(1− α)}. (150)

Let R̄CDF(x) denote the prediction region obtained using the conformity score sCDF as |Dcal| → ∞. As shown in Section 3.1,
sCDF(X,Y ) ∼ U(0, 1), which implies q̂ = 1− α. Therefore:

R̄CDF(x) = {y ∈ Y : sCDF(x, y) ≤ 1− α} (151)
= {y ∈ Y : FW |X=x(sW (x, y)) ≤ 1− α} (152)
= {y ∈ Y : sW (x, y) ≤ QW |X=x(1− α)}. (153)

This shows that R̄CP2(x) = R̄CDF(x) and that the threshold t1−α = QW |X=x(1− α) is identical for both methods.

I.2.2. ASYMPTOTIC CONDITIONAL COVERAGE

Proposition 7. Provided that the assumptions in Section 5.2 of the main text hold, specifically that F̂Y |X=x = FY |x for all
x ∈ X , and |Dcal| → ∞, CP2 achieves ACC as K → ∞.

Proof. Under these assumptions, we have Q̂W |X=x = QW |X=x, which implies τ̂x = τx for all x ∈ X . Hence, the
prediction region for CP2 is given by:

R̄CP2(x) = {y ∈ Y : sCP2(x, y) ≤ φ}.

Since this prediction region provides conditional coverage, it also ensures marginal coverage:

P(Y ∈ R̄CP2(X)) = P(sCP2(X,Y ) ≤ φ) (154)
= EX [P(sCP2(X,Y ) ≤ φ | X)] (155)
= EX [1− α] (156)
= 1− α. (157)

Since q̂ is the 1− α quantile of sCP2(X,Y ), and as |Dcal| → ∞, we have q̂ = φ by definition. Therefore, since R̄CP2(x)

achieves conditional coverage (see (136)), the region R̂CP2(x) also achieves ACC:

P(Y ∈ R̂CP2(X) | X = x) = P(sCP2(X,Y ) ≤ q̂ | X = x) (158)
= P(sCP2(X,Y ) ≤ φ | X = x) (159)
≥ 1− α. (160)
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I.3. Relationship between CDF-based and CP²-based methods

A natural question is whether there exists {fτ}τ∈R and φ ∈ R (with the assumptions introduced in Appendix I.1) such
that CDF-based and CP2-based methods produce the same regions. In the simple case where the distribution of the base
conformity score is in a location family, Proposition 8 shows that the two methods are equivalent for a simple choice of fτ
and ϕ. However, the proof is not easily generalizable to a location-scale family. Further development of existing classes of
conformal methods with ACC and their intersections is a promising avenue for future research. Interestingly, we discuss
below that answering this question would also draw links between established univariate conformal methods.

Analogy to univariate conformal prediction. To further clarify the distinction between CDF- and CP²-based methods, we
can draw an analogy to the established univariate methods Dist-split (DS, Izbicki et al., 2020) and Conformalized Quantile
Regression (CQR, Romano et al., 2019). Since CDF- and CP²-based methods calibrate one quantile intead of an interval, we
only consider the right-tail version of DS and CQR:

• sECDF is analogous to DS but operates in the space of conformity instead of the output space Y . DS uses the estimated
conditional CDF of the output variable, sDS(x, y) = F̂Y |X=x(y), transforming y based on its rank.

• sCP² with difference adjustment is analogous to CQR, and also operates in the space of conformity instead of the output
space Y . Note that CP2 with difference adjustment can be simplified to sCP²(x, y) = sW (x, y)−Q̂W |x(1−α). Similarly,
CQR uses a score based on the difference from a single estimated conditional quantile, sCQR(x, y) = y− Q̂Y |x(1−α).

Both CDF-based and CP2-based methods rely on a sample {Ŷ (k)}Kk=1 where Ŷ (k) ∼ F̂Y |X=x. The difference lies in the
way they transform sW (x, y) to obtain ACC. Recall that the conformity scores sECDF and sCP2 are given by

sECDF(x, y) =
1

K

∑
k∈[K]

I
(
sW (x, Ŷ (k)) ≤ sW (x, y)

)
= F̂W |X=x(sW (x, y)), (161)

sCP2(x, y) = f−1
τ̂x

(sW (x, y)) where τ̂x = g−1
φ (Q̂W |X=x(1− α)). (162)

It is known that two conformal methods produce equal regions if and only if their conformity scores are equal after applying
a strictly increasing function ϕ : R → R, i.e.:

sECDF(x, y) = ϕ(sCP2(x, y)) ∀x ∈ X , y ∈ Y. (163)

Given x ∈ X , when K is finite, the conformity score sECDF(x, ·) is discontinuous and is thus necessarily different from
the conformity score sCP2(x, ·), which is continuous. A more interesting setting is the case where K → ∞ and sECDF(x, ·)
becomes continuous. We define the random variable Ŵ = sW (X, Ŷ ), with Ŷ ∼ F̂Y |X . Let FŴ |x and QŴ |x denote the

conditional CDF and QF of Ŵ given X = x. The conformity scores are defined as follows:

s̄ECDF(x, y) = FŴ |x(sW (x, y)), (164)

s̄CP2(x, y) = f−1
τ̂x

(sW (x, y)) where τ̂x = g−1
φ (QŴ |x(1− α)). (165)

Thus, we require that
f−1
τx (sW (x, y)) = ϕ(FŴ |x(sW (x, y))) ∀x ∈ X , y ∈ Y (166)

or equivalently
f−1
τx (w) = ϕ(FŴ |x(w)) ∀x ∈ X , w ∈ R. (167)

In Proposition 8, we show that, in the particular case where the conditional distributions {FŴ |x}x∈X belong to a location
family, there exists a simple choice of {fτ}τ∈R, φ ∈ R and strictly increasing ϕ : R → R such that the two methods are
equivalent.
Proposition 8. Consider a scenario where all conditional distributions {FŴ |x}x∈X belong to a location family, i.e.,

FŴ |x = F (w − µ̂x) and QŴ |x(α) = F−1(α) + µ̂x, (168)

for some continuous and strictly increasing base CDF F and location parameter µ̂x. The conformity scores s̄ECDF and s̄CP2

lead to the same prediction regions.
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Proof. We will show that there is a family of transformations {fτ}τ∈R, φ ∈ R and strictly increasing ϕ : R → R with the
assumptions above such that, for any x ∈ X and w ∈ R,

f−1
τx (w) = ϕ(FŴ |x(w | X = x)) (169)

Define the transformation function fτ as:

fτ (λ) = F−1(λ) + τ, (170)

where τ > 0, and define φ = 1− α and ϕ(λ) = λ.

The inverse transformations are:

f−1
τ (λ) = F (λ− τ), (171)

and

g−1
φ (w) = w − F−1(φ). (172)

Now, for x ∈ X , compute

τ̂x = F−1(1− α) + µ̂x − F−1(φ) = µ̂x. (173)

Finally, we obtain the required equality

f−1
τ̂x

(w) = F (w − τ̂x) = F (w − µ̂x) = FŴ |x(w). (174)

I.4. Empirical comparison

We perform a direct empirical comparison between CDF-based methods (C-PCP, C-HDR) and the corresponding CP2

methods (CP2-PCP, CP2-HPD using both linear (-L) and difference (-D) adjustments from Plassier et al., 2025). Figure 21
shows that:

• C-PCP performs comparably to CP²-PCP-L (best CP² variant for PCP).

• C-HDR performs comparably to CP²-HPD-D (best CP² variant for HPD).

• Other CP² variants (CP²-PCP-D, CP²-HPD-L) are generally outperformed by their CDF-based version.
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Figure 21: Comparison of CDF-base d methods and CP2-based methods.

The worsened conditional coverage of CP2-PCP-D is an interesting observation that was not observed in the smaller scale
study of Plassier et al., 2025. In the case of CP2-HPD-L, the poor conditional coverage is due to an incompatibility of the
linear adjustment function with the (log-scaled) conformity score sDR-CP(x, y) = − log f̂(y|x), which can present negative
values and thus a decreasing (instead of increasing) adjustment function fτ (λ) = τλ.

This shows that our simpler sECDF formulation achieves the same practical benefits as sCP2 without the sensibility of choosing
an adjustment function fτ .

J. Results on an image dataset
To better understand the behavior of prediction regions in high-dimensional spaces, we apply conformal methods to the
CIFAR-10 dataset (Krizhevsky et al., 2014), which consists of 32x32 RGB images, each labeled with one of 10 possible
classes. We train a generative model conditioned on the image label, where Y = [0, 1]3×32×32 (d = 3072) represents the
image space, and X = {0, . . . , 9} (p = 1) represents the labels. The training, calibration, and test datasets contain 50,000,
1,500, and 1,500 images, respectively. As noted in Angelopoulos and Bates, 2023, this calibration dataset size is sufficient to
ensure good marginal coverage.

Our generative model is a conditional Glow model (Kingma and Dhariwal, 2018) based on the implementation from Stimper
et al., 2022 using a 3-level multi-scale architecture with 32 blocks per level. Like MQF2 (Appendix F.2), this generative
model is a normalizing flow and directly compatible with all methods presented, except M-CP. For a direct comparison with
M-CP, we compute quantiles based on samples from the generative model as in Appendix F.2.

The latent space of the conditional Glow model, due to its multi-scale architecture, consists of three subspaces: Z = Z1 ×
Z2 ×Z3, where Z1 = R48×4×4, Z2 = R12×8×8, and Z3 = R6×16×16. As the distance function dZ in the latent space, we
use the maximum norm across the three spaces to penalize high norms in any of them: dZ(z) = max{∥z1∥2, ∥z2∥2, ∥z3∥2},
where z = z1 × z2 × z3.

Table 7 presents the metrics introduced in Appendix F.4. All methods achieve marginal coverage despite the high
dimensionality of Y , which is expected as the marginal coverage distribution conditional on the calibration dataset is
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independent of d (Appendix E.1). The median of the logarithm of the region size is the smallest for C-HDR and DR-CP,
which matches results on tabular datasets. The mean region size is not reported because it becomes infinity with machine
precision. Instead, we report the mean of the logarithm of the region size, with similar conclusions to the median region size.

Regarding conditional coverage, as in other experiments, L-CP, C-HDR, C-PCP, and M-CP exhibit the smallest CEC-X and
CEC-Z values, indicating superior conditional coverage. The WSC metric supports similar conclusions, with DR-CP and PCP
being the least calibrated.

Table 7: Results obtained with a conditional Glow model on CIFAR-10 with 1− α = 0.9.

MC Median Log Size Mean Log Size CEC-X CEC-Z WSC Time (s)
Dataset Method (×100) (×100)

cifar10 M-CP 0.9000.0035 -7.10e+035.7 -7.05e+031.3e+01 0.1110.028 0.2010.033 0.8550.012 0.4650.16
DR-CP 0.9030.0042 -8.30e+031.4e+01 -8.33e+031.4e+01 0.1520.030 0.3250.033 0.8610.0064 47.01.7e+01
C-HDR 0.9020.0041 -8.33e+031.9e+01 -8.40e+031.9e+01 0.05330.010 0.06290.020 0.9030.0030 4538.7e+01
PCP 0.8990.0038 -7.11e+034.5 -7.06e+031.3e+01 0.3420.070 0.1950.030 0.8250.0098 2033.5e+01
HD-PCP 0.8990.0038 -7.12e+034.8 -7.06e+031.2e+01 0.3590.075 0.1980.030 0.8190.0098 4066.9e+01
STDQR 0.8980.0046 -7.11e+034.6 -7.06e+031.2e+01 0.3570.071 0.2050.033 0.8280.015 2043.5e+01
C-PCP 0.9000.0036 -7.08e+034.9 -7.04e+031.1e+01 0.1180.021 0.08770.023 0.8800.0067 4086.9e+01
L-CP 0.9000.0033 -7.19e+037.0 -7.15e+031.1e+01 0.06680.0086 0.1900.027 0.8770.011 47.41.8e+01

K. Full results
Tables 8 and 9 show the full results obtained with the setup described in Section 6. Each metric is the mean over 10
independent runs. The standard error of the mean is indicated as an index. For each dataset and metric, bold values indicate
results statistically similar to the best performer (α = 0.05) according to a Z-test.

40



Multi-Output Conformal Regression

Table 8: Full results obtained with the setup described in Section 6 (Part 1).

MC Median Size CEC-X CEC-Z WSC Test time
Dataset Method (×100) (×100)

households M-CP 0.8010.0051 14.20.48 0.3400.068 0.3640.032 0.7790.010 5.690.49
CopulaCPTS 0.7820.0094 12.30.87 0.5240.057 0.6510.058 0.7450.016 8.860.77
DR-CP 0.8020.0046 13.20.29 0.9870.10 1.880.14 0.6560.018 0.2250.0092
C-HDR 0.8070.0054 10.60.33 0.2090.039 0.1490.020 0.7950.010 6.120.50
PCP 0.7980.0048 20.50.38 1.070.085 2.350.15 0.6320.015 5.480.46
HD-PCP 0.8000.0043 15.60.39 0.7760.091 1.380.10 0.7070.014 5.760.47
STDQR 0.8040.0050 17.80.41 0.9180.073 1.970.098 0.6770.019 8.450.79
C-PCP 0.8030.0066 15.50.74 0.1790.045 0.1200.026 0.8000.0061 11.20.95
L-CP 0.8000.0034 18.60.80 0.2040.040 0.1180.018 0.7880.014 0.1010.0043

scm20d M-CP 0.8000.0039 67.68.5 0.06820.011 0.9140.061 0.7770.0090 8.080.17
CopulaCPTS 0.8330.0086 1.12e+022.1e+01 0.2210.063 0.8780.043 0.8020.012 10.90.21
DR-CP 0.7990.0048 2.33e+022.2e+01 0.4290.044 2.720.16 0.6910.018 0.5600.025
C-HDR 0.8060.0055 42.07.9 0.1590.024 0.1020.017 0.7960.0065 9.420.18
PCP 0.7980.0051 1.05e+021.1e+01 0.5810.045 5.280.23 0.6210.016 6.270.39
HD-PCP 0.7990.0049 94.49.4 0.5040.047 4.780.23 0.6710.011 7.110.42
STDQR 0.8010.0047 99.41.0e+01 0.5400.052 4.860.17 0.6200.016 8.150.29
C-PCP 0.8090.0038 26.03.1 0.1050.020 0.08960.014 0.7890.0066 14.30.44
L-CP 0.7960.0035 72.01.0e+01 0.1660.033 0.08730.018 0.7860.0063 0.09870.0059

rf2 M-CP 0.7970.0046 0.005470.0027 0.2020.030 0.9680.15 0.6670.018 20.72.4
CopulaCPTS 0.7850.010 0.005550.0033 0.2990.045 1.180.17 0.6350.019 29.64.0
DR-CP 0.7990.0028 0.002150.0010 0.9490.21 5.420.70 0.5490.038 0.3440.015
C-HDR 0.8010.0033 0.0006900.00032 0.1110.036 0.2300.047 0.7320.018 21.52.4
PCP 0.8010.0022 0.007000.0036 0.8630.20 5.950.48 0.5380.030 17.82.4
HD-PCP 0.8000.0024 0.006170.0030 0.7760.19 5.580.49 0.5630.029 18.32.4
STDQR 0.8000.0032 0.006240.0031 0.7880.19 5.670.50 0.5660.025 25.74.1
C-PCP 0.8020.0051 0.002620.0012 0.09250.016 0.1690.027 0.7320.017 38.64.8
L-CP 0.8000.0026 0.001040.00048 0.1070.032 0.2360.042 0.7300.0093 0.09600.0053

rf1 M-CP 0.7970.0046 0.005470.0027 0.2020.030 0.9680.15 0.6670.018 20.92.5
CopulaCPTS 0.7850.010 0.005550.0033 0.2990.045 1.180.17 0.6350.019 29.84.1
DR-CP 0.7990.0028 0.002150.0010 0.9490.21 5.420.70 0.5490.038 0.3350.016
C-HDR 0.8010.0033 0.0006900.00032 0.1110.036 0.2300.047 0.7320.018 21.72.5
PCP 0.8010.0022 0.007000.0036 0.8630.20 5.950.48 0.5380.030 17.92.4
HD-PCP 0.8000.0024 0.006170.0030 0.7760.19 5.580.49 0.5630.029 18.42.4
STDQR 0.8000.0032 0.006240.0031 0.7880.19 5.670.50 0.5660.025 25.74.1
C-PCP 0.8020.0051 0.002620.0012 0.09250.016 0.1690.027 0.7320.017 38.84.9
L-CP 0.8000.0026 0.001040.00048 0.1070.032 0.2360.042 0.7300.0093 0.09760.0057

scm1d M-CP 0.7960.0027 0.5280.046 1.020.060 2.420.094 0.6360.017 85.62.4e+01
CopulaCPTS 0.7320.011 0.3230.050 1.720.20 3.490.27 0.5820.017 87.82.4e+01
DR-CP 0.7930.0036 0.8670.078 1.500.087 5.170.20 0.5590.0097 0.5840.025
C-HDR 0.8120.0046 0.2390.026 0.4520.062 0.1140.015 0.7610.010 87.02.4e+01
PCP 0.7950.0054 0.6980.065 1.770.12 8.110.23 0.5160.013 5.530.34
HD-PCP 0.7950.0053 0.6840.062 1.750.11 7.960.22 0.5300.017 6.410.38
STDQR 0.7950.0064 0.6710.069 1.780.13 8.070.23 0.5020.017 6.870.23
C-PCP 0.8030.0053 0.2160.024 0.4560.066 0.1540.028 0.7510.0044 91.12.4e+01
L-CP 0.7990.0045 0.1970.020 0.4630.059 0.1080.017 0.7310.014 0.1020.0056

meps_21 M-CP 0.8000.0051 0.1850.013 0.9260.096 0.7750.099 0.7010.010 1.35e+021.7e+01
CopulaCPTS 0.7780.0064 0.1710.014 0.9570.13 0.6930.099 0.6840.011 1.61e+021.9e+01
DR-CP 0.8030.0023 0.2270.013 3.750.16 4.380.52 0.5310.012 0.2280.011
C-HDR 0.8070.0046 0.1320.024 0.4370.045 0.2600.041 0.7450.013 1.35e+021.7e+01
PCP 0.8010.0031 0.3590.021 3.170.13 3.750.44 0.5500.0078 78.48.3
HD-PCP 0.8020.0024 0.2460.015 2.090.15 2.180.28 0.6010.010 78.78.3
STDQR 0.8020.0022 0.2830.015 2.600.12 2.970.36 0.5820.011 96.09.9
C-PCP 0.8050.0026 0.2200.021 0.1650.044 0.08510.025 0.7750.0065 2.13e+022.3e+01
L-CP 0.8010.0034 0.2440.052 0.7700.13 0.4220.11 0.6850.026 0.1250.0073

meps_19 M-CP 0.8030.0027 0.2140.022 0.7020.049 0.6220.086 0.7090.0095 1.44e+022.3e+01
CopulaCPTS 0.8040.022 0.5950.42 1.130.26 0.9260.29 0.7210.030 1.77e+022.8e+01
DR-CP 0.7950.0028 0.1750.011 3.910.18 3.980.73 0.5010.013 0.2240.011
C-HDR 0.8070.0039 0.1190.019 0.3800.036 0.2450.039 0.7530.013 1.44e+022.3e+01
PCP 0.7940.0033 0.3960.059 2.950.23 3.510.53 0.5420.013 99.91.7e+01
HD-PCP 0.7960.0032 0.2660.033 1.980.14 2.050.35 0.5830.0090 1.00e+021.7e+01
STDQR 0.7910.0032 0.3070.043 2.630.23 2.950.49 0.5570.014 1.17e+021.8e+01
C-PCP 0.8100.0021 0.2380.026 0.1280.016 0.07570.024 0.7970.0088 2.44e+023.9e+01
L-CP 0.8030.0033 0.2320.043 0.6790.13 0.4150.13 0.7020.022 0.1230.0069
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Table 9: Full results obtained with the setup described in Section 6 (Part 2).

MC Median Size CEC-X CEC-Z WSC Test time
Dataset Method (×100) (×100)

meps_20 M-CP 0.8060.0042 0.3710.061 0.8680.10 0.4550.12 0.7020.014 1.93e+022.1e+01
CopulaCPTS 0.7940.0091 0.3620.059 0.9630.12 0.4970.12 0.6920.016 2.30e+022.4e+01
DR-CP 0.8050.0036 0.2230.020 3.520.11 2.790.76 0.5300.0098 0.2270.010
C-HDR 0.8050.0044 0.1140.012 0.4390.10 0.1220.036 0.7450.010 1.94e+022.1e+01
PCP 0.8010.0036 0.5350.050 2.830.091 2.420.67 0.5440.0088 1.20e+021.4e+01
HD-PCP 0.8040.0039 0.4360.066 1.890.13 1.340.37 0.6220.012 1.20e+021.4e+01
STDQR 0.8030.0048 0.4720.052 2.450.15 1.840.50 0.5750.016 1.40e+021.6e+01
C-PCP 0.8060.0041 0.3410.039 0.1860.061 0.04840.010 0.7920.013 3.13e+023.1e+01
L-CP 0.7990.0033 0.2800.028 0.6620.073 0.2590.081 0.7030.014 0.1270.0062

house M-CP 0.8010.0023 1.170.023 0.2540.023 0.1900.019 0.7300.0098 56.03.8e+01
CopulaCPTS 0.8120.0082 1.220.043 0.3160.035 0.2760.027 0.7500.012 60.73.8e+01
DR-CP 0.8010.0041 0.6640.021 0.8950.045 1.200.073 0.6270.011 0.2830.011
C-HDR 0.8070.0039 0.6510.016 0.3880.026 0.1140.013 0.7090.010 56.63.8e+01
PCP 0.8010.0026 0.8820.023 0.7530.030 1.140.038 0.6430.0076 17.60.98
HD-PCP 0.8030.0034 0.6800.018 0.6940.033 0.7890.035 0.6490.0089 18.00.99
STDQR 0.8010.0042 0.7990.023 0.6700.022 0.7880.038 0.6490.0077 19.50.88
C-PCP 0.8090.0030 0.8580.018 0.2750.026 0.08310.011 0.7290.0091 73.73.8e+01
L-CP 0.8020.0035 1.190.017 0.1740.020 0.05420.0079 0.7560.0090 0.1460.0067

bio M-CP 0.8090.0021 0.3030.0066 0.1370.0093 0.2530.013 0.7640.0055 1.27e+026.0
CopulaCPTS 0.8000.0045 0.2960.0092 0.1370.0083 0.2600.015 0.7510.0068 1.45e+027.1
DR-CP 0.8050.0020 0.2570.0067 0.5070.028 1.140.034 0.6460.0066 0.5110.020
C-HDR 0.8080.0015 0.2180.0053 0.03720.0073 0.03600.0056 0.7940.0054 1.29e+026.0
PCP 0.8020.0021 0.3430.0076 0.5670.029 1.320.023 0.6280.0052 1.27e+026.1
HD-PCP 0.8040.0016 0.2590.0065 0.3520.020 0.8030.020 0.6730.0043 1.27e+026.1
STDQR 0.8030.0024 0.2690.0067 0.3890.019 0.9120.036 0.6670.0058 86.66.5
C-PCP 0.8100.0029 0.3020.0074 0.03690.0063 0.04040.0069 0.7980.0052 2.54e+021.2e+01
L-CP 0.8050.00093 0.2670.0061 0.02030.0045 0.01980.0021 0.7890.0039 0.2510.013

blog_data M-CP 0.8020.0049 0.1700.039 0.2920.051 0.1530.072 0.7360.012 5.06e+037.0e+02
CopulaCPTS 0.8130.0078 0.09480.015 0.3130.050 0.2310.063 0.7420.010 5.13e+037.1e+02
DR-CP 0.8080.0014 0.03740.0056 1.060.098 1.500.43 0.6440.0059 0.5150.026
C-HDR 0.8090.0030 0.01550.0031 0.2370.068 0.06110.019 0.7510.013 5.06e+037.0e+02
PCP 0.8010.0033 0.1410.023 0.9380.081 1.520.36 0.6430.0052 5.74e+027.9e+01
HD-PCP 0.8030.0038 0.1250.023 0.7940.075 0.9450.22 0.6600.0080 5.75e+027.9e+01
STDQR 0.8100.0072 0.1630.036 0.8050.074 0.8810.18 0.6780.012 5.84e+028.0e+01
C-PCP 0.8040.0045 0.1060.021 0.1630.049 0.1130.056 0.7640.012 5.63e+037.3e+02
L-CP 0.8010.0023 0.06760.017 0.3270.088 0.06240.023 0.7220.012 0.2580.012

calcofi M-CP 0.8030.0023 2.130.024 0.4330.015 0.4460.016 0.7340.0069 26.41.1
CopulaCPTS 0.8150.0075 2.380.12 0.4800.048 0.4920.048 0.7460.0096 29.61.2
DR-CP 0.8050.0027 1.670.022 1.440.040 1.560.039 0.6540.0061 0.5290.023
C-HDR 0.8050.0018 1.990.026 0.02940.012 0.01870.0037 0.7940.0053 27.71.2
PCP 0.8020.0026 2.330.029 1.640.042 1.790.041 0.6380.0034 26.51.2
HD-PCP 0.8020.0033 1.890.029 0.9800.033 1.050.030 0.6830.0050 27.31.2
STDQR 0.7990.0034 1.970.021 1.130.031 1.230.033 0.6760.0080 26.40.99
C-PCP 0.8090.0030 2.810.042 0.03320.0093 0.02530.0048 0.8060.0050 52.92.3
L-CP 0.8000.0020 2.700.024 0.03320.019 0.01790.0040 0.7920.0035 0.2640.012

taxi M-CP 0.8020.0032 4.260.068 0.05850.0034 0.04210.0058 0.7840.0052 60.68.6
CopulaCPTS 0.8220.0040 4.720.11 0.1140.018 0.09890.019 0.7990.0050 68.49.7
DR-CP 0.8050.0024 2.620.029 0.3830.016 0.4510.024 0.7070.0048 0.5390.031
C-HDR 0.8090.0030 2.620.033 0.03880.0049 0.04410.0053 0.7930.0040 61.98.6
PCP 0.8040.0016 4.030.040 0.3410.022 0.3990.025 0.7150.0042 60.28.5
HD-PCP 0.8050.0018 3.180.030 0.1940.012 0.2190.012 0.7500.0055 61.18.5
STDQR 0.8050.0035 3.630.058 0.2030.011 0.2240.013 0.7480.0080 32.41.1
C-PCP 0.8070.0026 4.020.064 0.03070.0053 0.03380.0048 0.8020.0050 1.21e+021.7e+01
L-CP 0.8050.0033 4.940.12 0.02640.0030 0.01960.0035 0.7960.0046 0.2430.012
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