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ABSTRACT

Given a matrix A ∈ Rm×d with singular values σ1 ≥ · · · ≥ σd, and a random
matrix G ∈ Rm×d with iid N(0, T ) entries for some T > 0, we derive new bounds
on the Frobenius distance between subspaces spanned by the top-k (right) singular
vectors of A and A+G. This problem arises in numerous applications in statistics
where a data matrix may be corrupted by Gaussian noise, and in the analysis of
the Gaussian mechanism in differential privacy, where Gaussian noise is added
to data to preserve private information. We show that, for matrices A where the
gaps in the top-k singular values are roughly Ω(σk−σk+1) the expected Frobenius
distance between the subspaces is Õ(

√
d

σk−σk+1
×

√
T ), improving on previous

bounds by a factor of
√
m√
d

. To obtain our bounds we view the perturbation to the
singular vectors as a diffusion process– the Dyson-Bessel process– and use tools
from stochastic calculus to track the evolution of the subspace spanned by the top-k
singular vectors, which may be of independent interest.

1 INTRODUCTION

Given a matrix A ∈ Rm×d with d ≤ m and singular values σ1 ≥ · · · ≥ σd, one oftentimes wishes to
approximate the right-singular vectors of A by a lower rank matrix of some rank k < d Shikhaliev
et al. (2019); Hubert & Engelen (2004); James et al. (2013); Kishore Kumar & Schneider (2017);
Liberty et al. (2007). For instance, one may wish to learn the subspace spanned by the top-k right-
singular vectors of A, in which case one may seek a projection matrix which minimizes the distance
to the projection matrix onto the subspace spanned by the top-k right-singular vectors of A. One
can also consider the related problem of recovering a matrix M̂k which minimizes the Frobenius
distance ∥M̂k − A⊤A∥F to the covariance matrix A⊤A of the data A. Roughly speaking, both of
these problems are instances of the following general problem: given a set of numbers γ1 ≥ · · · ≥ γd
and denoting by Γ := diag(γ1, · · · , γd) and by A = UΣV ⊤ a singular value decomposition of
A, find a matrix M ∈ OΓ2 which minimizes the Frobenius distance ∥M − V ⊤Γ2V ∥F , where
OΓ2 := {UΓ2U⊤ : U ∈ O(d)} denotes the orbit of Γ2 under the orthogonal group. Plugging in
γi = 1 for i ≤ k and γi = 0 for i > k, we recover the problem of finding a projection matrix which
minimizes the Frobenius distance to the projection matrix onto the subspace spanned by to top-k
right-singular vectors of A. And, roughly speaking, when we set γi ≈ σi for i ≤ k and γi = 0 for
i > k, we recover the problem of finding a rank-k covariance matrix which minimizes the Frobenius
distance to the covariance matrix of A.

In many applications, the matrix A is perturbed by a “noise” matrix E ∈ Rm×d and one only has
access to a perturbed matrix A+ E. Oftentimes, the noise matrix consist of iid Gaussian entries. For
instance, in statistics applications, and signal and image processing applications, this noise may arise
as natural background Gaussian noise obscuring a “signal” matrix A Wu & Chen (1997); Helstrom
(1955); Liu & Lin (2012); DjuriC (1996); Bergmans (1974). In differential privacy applications,
Gaussian noise may be artificially added to the data matrix A, or to a machine learning algorithm
trained on the data A, to hide sensitive information about individuals in the dataset Dwork (2006);
Dwork et al. (2006); see e.g. Dwork et al. (2014); Mangoubi & Vishnoi (2022; 2023; In Press) where
symmetric-matrix Gaussian noise is added to covariance matrices to guarantee privacy. The addition

1



Published as a conference paper at ICLR 2025

of Gaussian noise to ensure privacy is referred to as the Gaussian mechanism, and is known to satisfy
(ε, δ)-differential privacy guarantees.

1.1 RELATED WORK

Multiple prior works have shown singular subspace perturbation bounds when E ∈ Rm×d may be
any (deterministic) matrix. For instance, the Davis-Kahan-Wedin sine-Theta theorem Davis & Kahan
(1970); Wedin (1972) implies a bound of roughly

|||VkV
⊤
k − V̂kV̂

⊤
k ||| ≤ |||E|||

σk − σk+1
, (1)

where Vk, V̂k are, respectively, the matrices whose columns are the top-k right-singular vectors of
A and Â := A+ E, and ||| · ||| is e.g. the Frobenius norm ∥ · ∥F or the spectral norm ∥ · ∥2. These
bounds are tight (for sufficiently small |||E|||) in the general setting where E ∈ Rm×d may be any
(deterministic) matrix.

When the perturbation E is, e.g., a Gaussian random matrix with iid N(0, T ) entries for some T > 0,
one can plug in high-probability concentration bounds, which imply that ∥E∥2 ≤ O(

√
m)) w.h.p., to

the deterministic bounds in equation 1 to obtain a bound of

∥VkV
⊤
k − V̂kV̂

⊤
k ∥F ≤

√
k
√
m

σk − σk+1
×

√
T

w.h.p. However, the resulting bounds may not be tight.

Multiple works have obtained tighter bounds than those implied by the deterministic bounds in
equation 1, in different settings when E is a random matrix from some known distribution or class
of distributions (see e.g. O’Rourke et al. (2018); Fan et al. (2018); Abbe et al. (2022); Cai et al.
(2021)). In particular, when their bounds, which are given in terms of the spectral norm, are applied to
bounding the Frobenius norm distance, the results in O’Rourke et al. (2018) imply that if the entries
of E satisfy concentration properties which generalize those of Gaussian distributions, and A has
rank r ≤ d, then

∥V̂kV̂
⊤
k − VkV

⊤
k ∥F ≤ O

(
k

( √
r

σk − σk+1
+

m

σk(σk − σk+1)
+

√
m

σk

))
(2)

w.h.p. In O’Rourke et al. (2023) the authors obtain singular subspace perturbation bounds
when E is a random matrix with iid standard Gaussian entries. Their results, which are given
as bounds on the spectral norm, imply that max

(
∥ÛkÛ

⊤
k − UkU

⊤
k ∥2, ∥V̂kV̂

⊤
k − VkV

⊤
k ∥2

)
≤

O
(
r
√∑k

j=1
1

(σj−σk+1)2
+

√
m

√
k

σk

)
. This in turn implies bounds on the Frobenius norm of

max
(
∥ÛkÛ

⊤
k − UkU

⊤
k ∥F , ∥V̂kV̂

⊤
k − VkV

⊤
k ∥F

)
≤ O

r
√
k

√√√√ k∑
j=1

1

(σj − σk+1)2
+

√
m
√
k

σk

 .

(3)

O’Rourke et al. (2023) show that their spectral norm bounds are tight with respect to the subspace
spanned by the top-k m-dimensional left singular vectors of A ∈ Rm×d when m ≥ d. However, the
bounds in equation 3 do not imply tight bounds on the perturbation V̂kV̂

⊤
k − VkV

⊤
k to the subspace

spanned by the top-k d-dimensional right singular vectors. In particular, the bound on the peturbation
V̂kV̂

⊤
k − VkV

⊤
k to the subspace spanned by the top-k d-dimensional right singular vectors implied

by equation 3 grows proportional to the (square root of) the larger of the matrix dimensions
√
m.

This leads to the question of whether one can obtain improved bounds on the perturbation ∥V̂kV̂
⊤
k −

VkV
⊤
k ∥F to the subspace spanned by the top-k d-dimensional right singular vectors of an m × d

matrix A with m > d perturbed by Gaussian noise, which do not grow with the larger dimension m.

Subspace perturbation bounds have also been obtained in different settings where the input matrix,
and random matrix perturbation, is a symmetric matrix (see e.g. Dwork et al. (2014); Eldridge et al.
(2018); Fan et al. (2018)). For instance, Dwork et al. (2014) obtain perturbation bounds for covariance
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matrices perturbed by symmetric Gaussian noise, and apply these perturbation bounds to a version
of the Gaussian mechanism to obtain tighter utility bounds for covariance matrix approximation
problems under (ε, δ)-differential privacy. Mangoubi & Vishnoi (2022; 2023) improve on some of
their utility bounds by viewing the addition of the symmetric Gaussian noise as a symmetric-matrix
valued stochastic process, and use tools from and stochastic calculus and random matrix theory to
bound the perturbation to the symmetric matrix eigenvectors.

1.2 OUR CONTRIBUTIONS

Given any matrix A ∈ Rm×d, and a set of numbers γ1 ≥ · · · ≥ γd, our main result (Theorem
2.2) is a bound on the perturbation to the matrix V ⊤Γ2V ∈ OΓ2 where A = UΣV ⊤ is a singular
value decomposition of A. We show that, if the matrix A is perturbed by a matrix E =

√
TG,

where T > 0 and G is a Gaussian random matrix with iid N(0, 1) entries, the right-singular vectors
V̂ = (v̂1, · · · , v̂d) of the perturbed matrix A+

√
TG satisfy the bound

E
[
∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥F

]
≤ O

√√√√ k∑
i=1

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2

√
T

 ,

where the right-hand-side is a sum-of-squares of the ratios of the eigenvalue gaps of Γ and Σ.

Plugging in different values of γ, we obtain as corollaries bounds for the subspace recovery
and low-rank covariance matrix approximation problems. In particular, show that ∥VkV

⊤
k −

V̂kV̂
⊤
k ∥F ≤ O

( √
d

σk − σk+1

√
T

)
whenever the top-k singular value gaps of A are roughly

Ω(max(σk − σk+1,
√
m
√
T )) (Corollary 2.3). This improves (in expectation) on the bounds implied

by both Davis & Kahan (1970); Wedin (1972) and O’Rourke et al. (2018) by a factor of roughly√
m√
d

√
k, and by a factor of

√
m√
d

over the bounds implied by O’Rourke et al. (2023), in the above setting
where E is a Gaussian random matrix. In particular, our bound replaces those bounds’ dependence on
the number of rows m with the number of columns d. This can lead to a large improvement in many
applications, as one oftentimes has that the number m of rows in the data matrix (corresponding to
the number of datapoints) is much larger than the number of columns d (which oftentimes correspond
to different features in the data). Our results also imply similar improvements for the low-rank
covariance matrix approximation problem (Corrollary 2.4).

To obtain our bounds, building on several previous works, including Dyson (1962); Norris et al.
(1986); Bru (1989); Mangoubi & Vishnoi (2022; 2023; In Press), we view the perturbation of a
matrix A ∈ Rm×d by Gaussian noise as a Brownian motion on the entries of an Rm×d matrix,
Φ(t) := A + B(t) where B(t) is a m × d matrix whose entries undergo iid standard Brownian
motions. This Brownian motion induces a stochastic diffusion process on the singular values and
singular vectors of Φ(t), referred to as the Dyson-Bessel process. The evolution of these eigenvalues
and eigenvectors is determined by a system of stochastic differential equations (see e.g. Dyson (1962);
Norris et al. (1986); Guionnet & Huang (2021)). This allows us to use Ito’s lemma from stochastic
calculus to track the evolution of the Frobenius distance as a stochastic integral of a sum-of-squares
of perturbations to the (right)-singular vectors of Φ(t). In particular, the stochastic evolution of the
eigenvectors allows us to bypass higher-order matrix derivative terms that arise in Taylor expansions
of deterministic perturbations, as these terms vanish in the stochastic derivative when the perturbation
is a Brownian motion, due to the independence of random noise additions at each infinitesimal
time-step of the Brownian motion. This in turn allows us to obtain stronger bounds than would be
possible in the deterministic setting.

2 MAIN RESULTS

For any d > 0, denote by O(d) the group of orthogonal of d× d matrices. For any diagonal matrix
Λ ∈ Rd×d, denote by OΛ := {UΛU⊤ : U ∈ O(d)} the orbit of Λ under the orthogonal group.

Given any matrix A ∈ Rm×d, where d ≤ m, with singular values σ1 ≥ ... ≥ σd ≥ 0 and
corresponding orthonormal right-singular vectors v1, ...vd, and given any numbers γ1 ≥ · · · ≥ γd,
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our main result (Theorem 2.2) is a bound on the perturbation to the matrix V ⊤Γ2V ∈ OΓ2 , where
V := [v1, ...vd] ∈ Rd×d and Γ := diag(γ1, . . . , γd).

Our main result holds under the following assumption on the gaps in the top k + 1 singular values
σ1 ≥ ... ≥ σk+1 of the matrix A. We note that this assumption is satisfied on many real-world
datasets whose singular values exhibit exponential decay (see e.g. Appendix J of Mangoubi & Vishnoi
(2022) for examples of datasets with exponentially-decaying singular values).
Assumption 2.1 (A, k, T, σ, γ) (Singular value gaps). The gaps in the top k + 1 singular values
σ1 ≥ ... ≥ σk+1 of the matrix A ∈ Rm×d satisfy σi − σi+1 ≥ 8

√
T
√
m log( 1δ ) for every i ∈ [k],

where δ := 1
8dγ2

1
× γ2

1−γ2
d

(σ1−σd)2
.

We now state our main result.
Theorem 2.2 (Main result). Let T > 0. Given a rectangular matrix A ∈ Rm×d with singular values
σ1 ≥ ... ≥ σd ≥ 0 and corresponding orthonormal right-singular vectors v1, ...vd (and denote
V := [v1, ...vd] ∈ Rd×d). Let G be a matrix with i.i.d. N(0, 1) entries, and consider the perturbed
matrix Â := A+

√
TG ∈ Rm×d.

Define σ̂1 ≥ ... ≥ σ̂d ≥ 0 to be the singular values of Â with corresponding orthonormal right-
singular vectors v̂1, ...v̂d (and denote V̂ := [v̂1, ...v̂d]).

Let γ1 ≥ ... ≥ γd ≥ 0 and k ∈ [d] be any numbers such that γi = 0 for i > k, and define Γ := diag
(γ1, ..., γd). Then if A satisfies Assumption 2.1 for (A, k, T, σ, γ), we have

E
[
∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥2F

]
≤ O

 k∑
i=1

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2

T. (4)

We give an overview of the proof of Theorem 2.2 in Section 4. The full proof is given in Appendix A.

2.1 APPLICATION TO SINGULAR SUBSPACE RECOVERY.

To obtain a pertubration bound for the subspace recovery problem, we plug in γi = 1 for all i ≤ k,
and γi = 0 for all i > k, into Theorem 2.2.
Corollary 2.3 (Subspace recovery). Let T > 0. Given a rectangular matrix A ∈ Rm×d with
singular values σ1 ≥ ... ≥ σd ≥ 0 and corresponding right-singular vectors v1, ...vd. Let G be a
matrix with i.i.d. N(0, 1) entries, and consider the perturbed matrix Â = A+

√
TG.

For any k ∈ [d], define the d × k matrices Vk = [v1, ...vk] and V̂k = [v̂1, ...v̂k] where v̂1, · · · , v̂k
denote the right-singular vectors of Â corresponding to its top-k singular values. Then if A satisfies
Assumption 2.1(A, k, T, σ, γ) where γ = (1, · · · , 1, 0, · · · , 0) is the vector with the first k entries
equal to 1, we have

E
[
∥V̂kV̂

⊤
k − VkV

⊤
k ∥F

]
≤ O

( √
kd

σk − σk+1

√
T

)
. (5)

Moreover, if we further have that σi − σi+1 ≥ Ω(σk − σk+1) for all i ≤ k, then

E
[
∥V̂kV̂

⊤
k − VkV

⊤
k ∥F

]
≤ O

( √
d

σk − σk+1

√
T

)
. (6)

The proof of Corollary 2.3 is given in Appendix B. Corollary 2.3 improves, in the setting where
the perturbation G is a Gaussian random matrix, by a factor of

√
m√
d

(in expectation) on the bound

∥V̂kV̂
⊤
k − VkV

⊤
k ∥F ≤ O(

√
km

σk − σk+1

√
T ) w.h.p. implied by the Davis-Kahan-Wedin sine-Theta

theorem Davis & Kahan (1970); Wedin (1972), whenever Assumption 2.1 is satisfied. If we also have
that σi − σi+1 ≥ Ω(σk − σk+1) for all i ≤ k (as is the case for many real-world datasets which may
exhibit exponential decay in their singular values), the improvement is

√
k
√
m√
d

.
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Moreover, Corollary 2.3 also improves, in the setting where the perturbation G is a Gaussian random
matrix, by a factor of

√
k
√
m√
d

, on the bound of ∥V̂kV̂
⊤
k −VkV

⊤
k ∥F ≤ O(

√
mk
σk

√
T ) w.h.p. implied by

Theorem 18 of O’Rourke et al. (2018), and by a factor of
√
m√
d

, on the bound of ∥V̂kV̂
⊤
k −VkV

⊤
k ∥F ≤

O(
√
m

√
k

σk

√
T ) w.h.p. implied by Theorem 7 of O’Rourke et al. (2023), when Assumption 2.1 is

satisfied and e.g. σk − σk+1 = Ω(σk) (as is also the case for many real-world datasets). This can
lead to a large improvement in many applications, as one oftentimes has that the number m of rows
in the data matrix (corresponding to the number of datapoints) is much larger than the number of
columns d (which oftentimes correspond to different features in the data).

Finally, Corollary 2.3 also implies the same upper bound on the expected spectral norm, since
E[∥VkV

⊤
k − V̂kV̂

⊤
k ∥2] ≤ E[∥VkV

⊤
k − V̂kV̂

⊤
k ∥F ]. Thus it improves, e.g., by a factor of

√
m√

d
√
k

(in

expectation) on the spectral norm bound ∥V̂kV̂
⊤
k − VkV

⊤
k ∥2 ≤ O(

√
m

√
k

σk

√
T ) w.h.p. implied by

Theorem 7 of O’Rourke et al. (2023), whenever Assumption 2.1 is satisfied, σk − σk+1 = Ω(σk)
and m > dk.

2.2 APPLICATION TO RANK-k COVARIANCE MATRIX APPROXIMATION.

To obtain a perturbation bound for the rank-k covariance matrix approximation problem, we plug in
γi = σi for all i ≤ k, and γi = 0 for all i > k, into Theorem 2.2.
Corollary 2.4 (Rank-k covariance matrix approximation). Let T > 0. Given a rectangular matrix
A ∈ Rm×d with singular values σ1 ≥ ... ≥ σd ≥ 0 and with right-singular vectors v1, ...vd, where
we define V := [v1, ...vd] ∈ Rd×d. Let G be a matrix with i.i.d. N(0, 1) entries, and consider the
perturbed matrix that outputs Â = A+

√
TG.

For any k ∈ [d], define Σk := diag (σ1, ..., σk, 0, ...0). Define σ̂1 ≥ ... ≥ σ̂d ≥ 0 to be the
singular values of Â with corresponding orthonormal right-singular vectors v̂1, ...v̂d, where we
define V̂ := [v̂1, ...v̂d], and define Σ̂k := diag (σ̂1, ..., σ̂k, 0, ...0). Then if A satisfies Assumption 2.1
for (A, k, T, σ, γ) for γ = (σ1, · · · , σk, 0, · · · , 0), we have

E
[
∥V̂ Σ̂⊤

k Σ̂kV̂
⊤ − V Σ⊤

k ΣkV
⊤∥2F

]
≤ O

(
d∥Σk∥2F + k

d∑
j=k+1

(
σk

σk

σk − σj

)2
)
T. (7)

The proof of Corollary 2.4 is given in Appendix C. In particular, Corollary 2.4 implies that√
E
[
∥V̂ Σ̂⊤

k Σ̂kV̂ ⊤ − V Σ⊤
k ΣkV ⊤∥2F

]
≤ O

(√
k
√
d

(
σ1 + σk

σk

σk − σk+1

))√
T .

Corollary 2.4 improves, in the setting where the perturbation G is a Gaussian random matrix, by a
factor of

√
m√
d

(in expectation) on the bound of ∥V̂ Σ̂⊤
k Σ̂kV̂

⊤−V Σ⊤
k ΣkV

⊤∥F ≤ O(k1.5
√
m
√
Tσ1+

σ2
k

√
k
√
m

σk−σk+1

√
T ) w.h.p. implied by the Davis-Kahan-Wedin sine-Theta theorem Davis & Kahan

(1970); Wedin (1972) whenever Assumption 2.1 is satisfied (see Appendix D for details). If we also
have that σk − σk+1 = Ω(σk), the improvement is

√
m√
d
k.

Moreover, Corollary 2.4 also improves, when the perturbation is Gaussian, by a factor of
√
m√
d

√
k

(in expectation) on the bound implied by Theorem 18 of O’Rourke et al. (2018) whenever e.g.
σk − σk+1 = Ω(σk), as in this setting their bound implies ∥V̂ Σ̂⊤

k Σ̂kV̂
⊤ − V Σ⊤

k ΣkV
⊤∥F ≤

O
(
σ1k

√
m
√
T
)

w.h.p. (see Appendix D for details).

Remark 2.5 (Tightness in full-rank special case). In the special case where k = d, we have
∥(A+

√
TG)⊤(A+

√
TG)−A⊤A∥F = ∥

√
TA⊤G+

√
TG⊤A+TG⊤G∥F = Θ(∥A⊤G∥F

√
T ) =

Θ(∥Σd∥F
√
d
√
T ) w.h.p. Thus, Corollary 2.4 is tight in this special case. The last equality above

holds w.h.p. because ∥A⊤G∥2F = tr(G⊤AA⊤G) = tr(G⊤ΣdΣ
⊤
d G) = tr(ΣdΣ

⊤
d GG⊤) = ∥Σd∥2F d

w.h.p., where we may assume without loss of generality that A is a diagonal matrix because the
distribution of G is invariant w.r.t. multiplication by orthogonal matrices.
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2.3 APPLICATIONS TO DIFFERENTIAL PRIVACY

In many applications, datasets contain sensitive information. For instance, this may be the case for
medical applications where datasets may contain sensitive information about individual patients. In
such applications, one can add random noise to the dataset (or, more generally, add random noise to a
machine learning algorithm trained on this dataset) to “hide” private information about individuals.

In high-dimensional statistics, one oftentimes cares only about the covariance between a subset S1 of
m “input” features and another (possibly, but not necessarily, disjoint) subset S2 of d features (which
may correspond to “output” features or labels to be predicted). Differential privacy can be used here to
calculate private covariance estimates, especially in settings where the data is too high-dimensional to
compute an the full symmetric covariance matrix, as privatizing such a high-dimensional matrix may
require adding an unnecessarily large amount of noise. For instance, in Biomedical and Genomics
datasets which involve gene expression data, covariances between different features may be stored as
a rectangular matrix A where rows represent genes and columns represent disease conditions (see
e.g. Patnaik et al. (2012)). Applying DP PCA to these matrices enables privacy-preserving analysis,
without exposing sensitive information about individuals.

For any ε, δ > 0, a randomized mechanism M is said to be (ε, δ)-differentially private Dwork (2006)
Dwork et al. (2006) if for any two neighboring datasets D,D′ ∈ D one has P(M(D) ∈ S) ≤
eεP(M(D′) ∈ S)+δ. Datasets D,D′ are said to be neighbors if they differ by at most one datapoint.
The sensitivity of a function f : D → Rm×d is defined as the supremum of ∥f(D)− f(D′)∥F over
all neighboring D,D′ ∈ D. Following, e.g., Dwork et al. (2014), we assume the input matrix A is a
function of the dataset, A = f(D), where f has sensitivity at most 1 (see also e.g. Kapralov & Talwar
(2013); Amin et al. (2019); Mangoubi & Vishnoi (2022); Mangoubi et al. (2022)). To ensure that the
sensitivity is ≤ 1, a standard preprocessing step is to “clip” the datapoints such that each datapoint
x ∈ D has length at most ∥x∥ ≤ 1. This ensures that, whenever A = f(D) arises from a 1-Lipschitz
function f , the sensitity of this function f will be ≤ 1. For instance, if A is a rectangular covariance
matrix arising from data matrices X ∈ RN×m and Y ∈ RN×d (whose collumns correpond to subsets
of size m and d of the features in a dataset, and rows are datapoints), where A = X⊤Y , then A is a
function f((X,Y )) = X⊤Y which is 1-Lipschitz in each datapoint.

One of the most popular methods of privatizing a dataset is the Gaussian mechanism, a randomized
mechanism which adds iid Gaussian noise to each entry of the data matrix Dwork et al. (2006). Prior
works (e.g., Dwork et al. (2014); Mangoubi & Vishnoi (2022; 2023; In Press)) have provided utility
bounds for a version of the Gaussian mechanism in the special case when A is a symmetric matrix,
and when the noise G added to this matrix is a symmetric Gaussian random matrix. However, in
many applications including those mentioned above, it is oftentimes desirable to output a privatized
version of a rectangular matrix A ∈ Rm×d.

The Gaussian mechanism adds Gaussian noise A+
√
TG to the output of f(D) = A, where each

entry of the random matrix G ∈ Rm×d is i.i.d. N(0, 1), for some T > 0. If f has sensitivity at most
1 (as is the case in the above examples), and one sets T =

2 log( 1.25
δ )

ε2 then the Gaussian mechanism
can be shown to satisfy (ε, δ)-differential privacy Dwork et al. (2006). Our bounds in Corollary 2.3
therefore immediately imply a bound on the Frobenius-norm utility of the subspace spanned by the
top-k right-singular vectors of the output A+

√
TG of the Gaussian mechanism, when the Gaussian

mechanism is applied to a rectangular matrix A ∈ Rm×d. In particular, Corollary 2.3 implies a utility

bound of E
[
∥V̂kV̂

⊤
k − VkV

⊤
k ∥F

]
≤ O

( √
d

σk − σk+1

√
T

)
= O

( √
d

σk − σk+1

√
2 log( 1.25

δ )

ε

)
for the

Gaussian mechanism with (ε, δ)-differential privacy, whenever the singular values σ1 ≥ · · · ≥ σd of
A satisfy Assumption 2.1 and, e.g. σi − σi+1 ≥ Ω(σk − σk+1) for all i ≤ k.

This improves by a factor of
√
m

√
k/

√
d (in expectation) on the bound ∥V̂kV̂

⊤
k − VkV

⊤
k ∥F ≤

O(

√
km

σk − σk+1

√
2 log( 1.25

δ )

ε ) implied by the Davis-Kahan-Wedin sine-Theta theorem Davis & Ka-

han (1970); Wedin (1972), and by a factor of
√
m

√
k/

√
d, on the bound of ∥V̂kV̂

⊤
k − VkV

⊤
k ∥F ≤

O(
√
m

√
k

σk

√
2 log( 1.25

δ )/ε) implied by Theorem 7 of O’Rourke et al. (2023).
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3 PRELIMINARIES

In this section, we present preliminary materials used in the proof of our main result. In particular,
we present the aformentioned matrix-valued Brownian motion process Φ(t) in Section 3.1. Next, we
present the stochastic differential equations (SDEs) which govern the evolution of the singular values
of right-singular vectors of Φ(t) in Section 3.2.

3.1 DYSON-BESSEL PROCESS

We consider the matrix-valued stochastic motion process, Φ(t), where, for all t ≥ 0, the entries of
Φ(t) evolve as independent standard Brownian motions with initial condition Φ(0) = A. In particular,
at time t = T we have Φ(T ) = A+

√
TG where G is an m× d Gaussian random matrix with iid

N(0, 1) entries.

Recall that σ1 ≥ . . . ≥ σd denote the singular values of A. At every time t > 0, we denote (with
slight abuse of notation) the singular values of Φ(t) by σ1(t) ≥ σ2(t) ≥ · · · ≥ σd(t). In particular
σi ≡ σi(0) for all i ∈ [d], and the singular values σ1(t), . . . , σd(t) are distinct at every time t > 0
with probability 1 (see e.g. Guionnet & Huang (2021)). The matrix-valued Brownian motion Φ(t)
induces stochastic diffusion processes on the singular values σi(t) and singular vectors vi(t), referred
to as the Dyson-Bessel process. The dynamics of the singular values σi(t) of the Dyson-Bessel
process are given by the following system of stochastic differential equations (see e.g. Norris et al.
(1986) or Theorem 1 in Bru (1989)),

dσi(t) = dβii(t) +

 1

2σi(t)

∑
{j∈[d]:j ̸=i}

(σi(t))
2 + (σj(t))

2

(σi(t))2 − (σj(t))2
+

m− 1

2σi(t)

 dt, ∀1 ≤ i ≤ d, (8)

where βii, 1 ≤ i ≤ d is a family of independent one-dimensional Brownian motions.

3.2 RIGHT SINGULAR VECTOR SDE

The dynamics of right-singular vectors vi(t) of the Dyson-Bessel process are governed by the
following stochastic differential equations (see e.g. Norris et al. (1986) or Theorem 2 in Bru (1989)),

dvi(t) =
∑

{j∈[d]:j ̸=i}

vj(t)

√
(σj(t))

2 + (σi(t))
2

((σj(t))2 − (σi(t))2)2
dβji(t)−

vi(t)

2

(σj(t))
2 + (σi(t))

2

((σj(t))2 − (σi(t))2)2
dt

=
∑

{j∈[d]:j ̸=i}

vj(t)cij(t)dβji(t)−
vi(t)

2
c2ij(t)dt, ∀1 ≤ i ≤ d, (9)

where βij(t), 1 ≤ i < j ≤ d, is a family of independent standard one-dimensional Brownian motions,
and the βij(t) form a skew-symmetric matrix, i.e. βij(t) = −βji(t) for all t ≥ 0. For convenience,

in the above equation, we denote cij(t) :=
√

(σj(t))2+(σi(t))2

((σj(t))2−(σi(t))2)2
= cji(t) for all i, j ∈ [d].

3.3 ITO’S LEMMA

We will also use the following result from stochastic Calculus, Ito’s Lemma, which is a generalization
of the chain rule in deterministic calculus.
Lemma 3.1 (Ito’s Lemma Itô (1951)). Let f : Rd → R be a second-order differentiable function,
and let X(t) be a diffusion process on Rd. Then

df(Xt) = (∇f(Xt))
⊤dXt +

1
2 (dXt)

⊤(∇2f(Xt))dXt ∀t ≥ 0.

3.4 OTHER PRELIMINARIES

We will use the following deterministic eigenvalue perturbation bound
Lemma 3.2 (Weyl’s Inequality Weyl (1912)). Let A,E ∈ Rm×d is a matrix. Denote by σ1 ≥ . . . ≥
σd the singular values of A and by σ̂1 ≥ . . . ≥ σ̂d the singular values of A+ E. Then

|σi − σ̂i| ≤ ∥E∥2 ∀i ∈ [d].

7
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The following concentration bound, Theorem 4.4.5 of Vershynin (2018) applied to Gaussian random
matrices, will allow us to bound the spectral norm of the Gaussian perturbation G (which in turn will
allow us to apply equation 3.2 to bound the perturbations to eigenvalues).

Lemma 3.3 (Spectral-norm concentration bound for Gaussian matrices Vershynin (2018)). If
G ∈ Rm×d is a Gaussian random matrix with iid N(0, 1) entries, then P(∥G∥2 >

√
m+

√
d+ s) <

2e−s2 for all s > 0.

4 OVERVIEW OF PROOF OF THEOREM 2.2

We present an overview of the proof of Theorem 2.2 along with the main technical lemmas used in
the proof. In Steps 1 and 2 we express the perturbed matrix, and its quantities of interest derived from
its right-singular vectors, as matrix-valued diffusions. Steps 3, 4, and 5 present the main technical
lemmas, and we complete the proof in Step 6. The full proof is given in Appendix A.5.

4.1 VIEWING THE PERTURBED MATRIX AS A MATRIX-VALUED BROWNIAN MOTION.

To obtain our bounds, we begin by defining the matrix-valued Brownian motion, Φ(t) := A+B(t)
for all t ≥ 0, where the entries of B(t) evolve as independent standard Brownian motions initialized
at 0. In particular, at time t = 0 we have Φ(0) = A, and at time t = T we have Φ(T ) = A+

√
TG

where G is an m× d Gaussian random matrix with iid N(0, 1) entries.

4.2 PROJECTING THE MATRIX BROWNIAN MOTION ONTO THE ORTHOGONAL ORBIT OΓ2 .

Denote by A = UΣV ⊤ and Â = Û Σ̂V̂ ⊤ singular value decompositions of A and Â, respectively,
where U, Û ∈ O(m), V, V̂ ∈ O(d), and Σ, Σ̂ ∈ Rm×d are diagonal.

Recall that our goal is to bound the quantity E[∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥F ], where A⊤A =

V Σ⊤ΣV ⊤ and Â⊤Â = V̂ Σ̂⊤Σ̂V̂ ⊤ are eigenvalue decompositions of A⊤A and Â⊤Â. To ob-
tain a bound on this quantity, we first define a stochastic process Ψ(t) for which Ψ(0) = V Γ⊤ΓV ⊤

and Ψ(T ) = V̂ Γ⊤ΓV̂ ⊤. We then bound the expected Frobenius distance

E[∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥F ] = E[∥Ψ(T )−Ψ(0)∥F ]

by integrating the stochastic derivative of Ψ(t) over the time period [0, T ].

Towards this, at every time t ≥ 0, define Φ(t) := U(t)Σ(t)V (t)⊤ to be a singular value decom-
position of the rectangular matrix Φ(t), where Σ(t) ∈ Rm×d is a diagonal matrix whose diagonal
entries are the singular values σ1(t) ≥ · · · ≥ σd(t) of Φ(t). V (t) = [v1(t), · · · , vd(t)] is a d × d
orthogonal matrix whose columns v1(t), · · · , vd(t) are the corresponding right-singular vectors of
Φ(t). V (t) ∈ O(m) is an m×m orthogonal matrix whose columns are left-singular vectors of Φ(t).

At every time, denote by Ψ(t) ∈ OΓ2 to be the symmetric matrix with given eigenvalues Γ⊤Γ and
eigenvectors given by the columns of V (t):

Ψ(t) := V (t)Γ⊤ΓV (t)⊤,∀t ∈ [0, T ].

In other words, Ψ(t) ∈ OΓ2 is the Frobenius-distance minimizing projection of the matrix Brownian
motion Φ(t) onto the orthogonal orbit manifold OΓ2 .

4.3 DERIVING AN EXPRESSION FOR THE STOCHASTIC DERIVATIVE dΨ(t).

To bound the expected squared Frobenius distance E
[
∥Ψ(T )−Ψ(0)∥2F

]
we would like to express it

as an integral in terms of the stochastic derivative of Φ(t).

Towards this end, we use the stochastic differential equations which govern the evolution of the
eigenvectors of the Dyson-Bessel process equation 9 to derive an expression for the stochastic

8
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derivative dΨ(t) of the matrix diffusion Ψ(t) (Lemma A.2),

dΨ(t) =

d∑
i=1

γ2
i d(vi(t)v

⊤
i (t))

=

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )

[
cij(t)

2
dβji(t)(vi(t)v

⊤
j (t) + vj(t)v

⊤
i (t))− c2ij(t)dt(vi(t)v

⊤
i (t))

]
. (10)

4.4 BOUNDING THE SINGULAR VALUE GAPS.

The above equation (equation 10) for the stochastic derivative dΨ(t) includes terms cij(t), whose
magnitude is proportional to the inverse of the gaps in the squared singular values σ2

i (t)− σ2
j (t) for

each i, j ∈ [d]. In order to bound these terms, we use Weyl’s inequality equation 3.2 together with
standard concentration bounds for the spectral norm of Gaussian random matrices (Lemma 3.3), to
show that the gaps σi(t)− σj(t) in the top k + 1 singular values satisfy (Lemma A.3),

σi(t)− σj(t) ≥
1

2
(σi − σj) ∀t ∈ [0, T ], i < j ≤ k + 1

with high probability at least 1 − δ, provided that the initial gaps are sufficiently large to satisfy
Assumption 2.1(A, k, T, σ, γ) . This implies that, with high probability at least 1 − δ, the inverse-
eigenvalue gap terms in equation 10 satisfy (Lemma A.4)

cij(t) =

√
(σj(t))2 + (σi(t))2

((σj(t))2 − (σi(t))2)2
≤ 4

σi − σj
, ∀i < j, t ∈ [0, T ]. (11)

4.5 INTEGRATING THE STOCHASTIC DERIVATIVE OF DΨ(t) OVER THE TIME INTERVAL [0, T ].

Next we express the expected squared Frobenius distance E
[
∥Ψ(T )−Ψ(0)∥2F

]
as an integral

E
[
∥Ψ(T )−Ψ(0)∥2F

]
= E

[
∥
∫ T

0
dΨ(t)∥2F

]
.

Next, we apply Ito’s Lemma (Lemma 3.1) to f(Ψ(t)) where f(X) := ∥ · ∥2F , and plug in our
high-probability bound on the inverse eigenvalue gap terms cij(t) equation 11, to derive an upper

bound for the integral E
[
∥
∫ T

0
dΨ(t)∥2F

]
, which gives roughly (Lemma A.5)

E
[
∥Ψ(T )−Ψ(0)∥2F

]
≤ 32

∫ T

0

E

 d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )
2c2ij(t)

dt+ 32T

∫ T

0

E

 d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )
2c2ij(t)

2
dt

≤ 32

∫ T

0

E

 d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )
2

(σi − σj)2

dt+ 32T

∫ T

0

E

 d∑
i=1

∑
j ̸=i

|γ2
i − γ2

j |
(σi − σj)2

2
dt. (12)

Noting that the second term on the right-hand side of (12) is at least as small as the first term, and
applying the Cauchy-Schwarz inequality to the second term, we get that (Theorem 2.2),

E
[
∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥2F

]
= E

[
∥Ψ(T )−Ψ(0)∥2F

]
≤ O

( k∑
i=1

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2

)
T.

5 CONCLUSION

In this paper, we obtain Frobenius-norm bounds on the perturbation to the singular subspace spanned
by the top-k singular vectors of a matrix A ∈ Rm×d, when A is perturbed by an m × d Gaussian
random matrix. Our bounds improve, in many settings where the perturbation is Gaussian, on bounds

9
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implied by previous works, by a factor of roughly
√
m√
d

. This may lead to a large improvement in many
applications, as one oftentimes has that the number m of rows in the data matrix (corresponding to
the number of datapoints) is much larger than the number of columns d (which oftentimes correspond
to different features in the data). To obtain our bounds we view use tools from stochastic calculus to
track the evolution of the subspace spanned by the top-k singular vectors.

On the other hand, we note that our bounds assume that the top-k singular value gaps of A are roughly
Ω(

√
m); while this assumption may hold in settings where the data matrix has fast-decaying singular

values, it would be interesting to see if it is possible to relax this assumption. Moreover, we note
that our bounds only apply in the special case when the perturbation G is Gaussian, and it would be
interesting to see whether our bounds can be extended to other random matrix distributions.
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A PROOF THEOREM 2.2

A.1 PROOF OF LEMMA A.1

We first decomposite the matrix Ψ(t) as a sum of its right-singular vectors: Ψ(t) =∑d
i=1 γ

2
i (vi(t)v

⊤
i (t)). Thus we have

dΨ(t) =

d∑
i=1

γ2
i d(vi(t)v

⊤
i (t)) (13)

We begin by computing the stochastic derivative dvi(t)v
⊤
i (t) for each i ∈ [d], by applying the

formula in (9), together with Ito’s Lemma (Lemma 3.1).
Lemma A.1 (Stochastic derivative of vi(t)vi(t)⊤). For all t ∈ [0, T ],

d
(
vi(t)v

⊤
i (t)

)
=
∑
j ̸=i

vj(t)cij(t)dβji(t)−
1

2
vi(t)

∑
j ̸=i

c2ij(t)dt.

Proof. The dynamic of right-singular vectors Bru (1989) are the following:

dvi(t) =
∑
j ̸=i

vj(t)

√
λj(t) + λi(t)

(λj(t)− λi(t))2
dβji(t)−

1

2
vi(t)

∑
j ̸=i

λj(t) + λi(t)

(λj(t)− λi(t))2
dt

=
∑
j ̸=i

vj(t)cij(t)dβji(t)−
1

2
vi(t)

∑
j ̸=i

c2ij(t)dt.

Thus, we have

d
(
vi(t)v

⊤
i (t)

)
= (vi(t) + dvi(t)) (vi(t) + dvi(t))

⊤ − vi(t)v
⊤
i (t)

=

vi(t) +
∑
j ̸=i

vj(t)cij(t)dβji(t)−
1

2
vi(t)

∑
j ̸=i

c2ijdt


×

vi(t)
⊤ +

∑
j ̸=i

vj(t)
⊤cij(t)dβji(t)−

1

2
vi(t)

⊤
∑
j ̸=i

c2ij(t)dt

− vi(t)vi(t)
⊤

= vi(t)

∑
j ̸=i

v⊤j (t)cij(t)dβji(t)

− 1

2
vi(t)v

⊤
i (t)

∑
j ̸=i

c2ij(t)dt+

∑
j ̸=i

vj(t)cij(t)dβji(t)

 v⊤i (t)

+

∑
j ̸=i

vj(t)cij(t)dβji(t)

∑
j ̸=i

v⊤j (t)cij(t)dβji(t)

− 1

2
vi(t)v

⊤
i (t)

∑
j ̸=i

c2ij(t)dt+ o(dt)

= vi(t)

∑
j ̸=i

v⊤j (t)cij(t)dβji(t)

+

∑
j ̸=i

vj(t)cij(t)dβji(t)

 v⊤i (t)− vi(t)v
⊤
i (t)

∑
j ̸=i

c2ij(t)dt

+
∑
k ̸=i

∑
j ̸=i

vk(t)v
⊤
j (t)cik(t)cij(t)dβki(t)dβji(t)

= vi(t)

∑
j ̸=i

v⊤j (t)cij(t)dβji(t)

+

∑
j ̸=i

vj(t)cij(t)dβji(t)

 v⊤i (t)− vi(t)v
⊤
i (t)

∑
j ̸=i

c2ij(t)dt

+
∑
k ̸=i

∑
j ̸=i

vk(t)v
⊤
j (t)cik(t)cij(t)1{(kj)=(ii)}dt

=
∑
j ̸=i

cij(t)dβji(t)(vi(t)v
⊤
j (t) + vj(t)v

⊤
i (t))−

∑
j ̸=i

c2ij(t)dt(vi(t)v
⊤
i (t)− vj(t)v

⊤
j (t)).

15
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A.2 PROOF OF LEMMA A.2

Recall that

Ψ(t) =

d∑
i=1

γ2
i (vi(t)v

⊤
i (t)).

We now apply Lemma A.1 to compute the stochastic derivative of Ψ(t).
Lemma A.2 (Stochastic derivative of Ψ(t)). For all t ∈ [0, T ], we have that

dΨ(t) =

d∑
i=1

∑
j ̸=i

γ2
i − γ2

j

2

[
cij(t)dβji(t)(vi(t)v

⊤
j (t) + vj(t)v

⊤
i (t))− c2ij(t)dt(vi(t)v

⊤
i (t)− vj(t)vj(t)

⊤)
]
.

Proof.

dΨ(t) =

d∑
i=1

γ2
i d(vi(t)v

⊤
i (t))

=

d∑
i=1

γ2
i

∑
j ̸=i

cij(t)dβji(t)(vi(t)v
⊤
j (t) + vj(t)v

⊤
i (t))−

∑
j ̸=i

c2ij(t)dt(vi(t)v
⊤
i (t)− vj(t)v

⊤
j (t))


=

d∑
i=1

∑
j ̸=i

γ2
i cij(t)dβji(t)(vj(t)v

⊤
i (t) + vi(t)v

⊤
j (t))−

d∑
i=1

∑
j ̸=i

γ2
i c

2
ij(t)dt(vi(t)v

⊤
i (t)− vj(t)v

⊤
j (t))

=
1

2

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )cij(t)dβji(t)(vi(t)vj(t)
⊤ + vj(t)v

⊤
i (t))

− 1

2

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )c
2
ij(t)dt(vi(t)v

⊤
i (t)− vj(t)vj(t)

⊤)

(14)

The last equality in the block of equations 14 holds for the following reason:

Since βij(t) form a skew-symmetric matrix, i.e. βij(t) = −βji(t) for all t ≥ 0, we have that
dβij(t) = −dβji(t) for all t ≥ 0. Thus, we have that for all j ̸= i,

cij(t)dβij(t)(vj(t)vi(t)
⊤ + vi(t)vj(t)

⊤) = −cij(t)dβji(t)(vj(t)vi(t)
⊤ + vi(t)vj(t)

⊤) (15)

Thus, combining the pairs of terms in the first double summation on the r.h.s. of equation 14 with
index (i, j) = (a, b) and (i, j) = (b, a) for every b ̸= a, we have by equation 15 that

d∑
i=1

∑
j ̸=i

γ2
i cij(t)dβji(t)(vj(t)v

⊤
i (t) + vi(t)v

⊤
j (t))

Eq.15
=

1

2

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )cij(t)dβji(t)(vi(t)vj(t)
⊤ + vj(t)v

⊤
i (t)) (16)

Moreover, observe that, for every i ̸= j,

(γ2
i −γ2

j )c
2
ij(t)dt(vi(t)vi(t)

⊤−vj(t)vj(t)
⊤) = (γ2

j−γ2
i )c

2
ij(t)dt(vj(t)vj(t)

⊤−vi(t)vi(t)
⊤). (17)

Thus, combining the pairs of terms in the second double summation on the r.h.s. of equation 14 with
index (i, j) = (a, b) and (i, j) = (b, a) for every b ̸= a, we have by equation 17 that

d∑
i=1

∑
j ̸=i

γ2
i c

2
ij(t)dt(vi(t)v

⊤
i (t)−vj(t)v

⊤
j (t)) =

1

2

d∑
i=1

∑
j ̸=i

(γ2
i −γ2

j )c
2
ij(t)dt(vi(t)v

⊤
i (t)−vj(t)vj(t)

⊤)

(18)

16
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Pluggining in equation 16 and equation 18 into the second-to-last equality in the block of equations
14, we get that the last equality in the block of equations 14 holds.

Thus, we have

dΨ(t)
Eq. 14
=

1

2

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )cij(t)dβji(t)(vi(t)vj(t)
⊤ + vj(t)v

⊤
i (t))

− 1

2

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )c
2
ij(t)dt(vi(t)v

⊤
i (t)− vj(t)vj(t)

⊤)

=

d∑
i=1

∑
j ̸=i

γ2
i − γ2

j

2

[
cij(t)dβji(t)(vi(t)v

⊤
j (t) + vj(t)v

⊤
i (t))

− c2ij(t)dt(vi(t)v
⊤
i (t)− vj(t)vj(t)

⊤)
]
.

A.3 PROOFS OF LEMMAS A.3 AND A.4

Next, we show high-probability bounds on the singular gaps σi(t) − σj(t) (Lemma A.3) and
coefficients cij(t) (Lemma A.4).

Lemma A.3 (Bound on singular gaps:). Suppose that Assumption 2.1 for (A, k, T, σ, γ) is satisfied.
Then for all t ∈ [0, T ], with probability 1− δ where δ := 1

8dγ2
1
× γ2

1−γ2
d

(σ1−σd)2
, we have |σi(t)−σj(t)| ≥

√
t
1

2
(σi − σj) for any i < j.

Proof. With probability at least 1− δ, by Lemma 3.3, we have

∥B(t)∥2 = ∥
√
tG∥2 ≤

√
t× 2

√
max{m, d} log(1

δ
) =

√
t× 2

√
m log(

1

δ
),

where G is a matrix with iid N(0, 1) entries.

Thus, by Weyl’s inequality (Lemma 3.2), we have that

|σi(t)− σi|
Lemma3.2

≤ ∥B(t)∥2
Lemma3.3

≤
√
t2
√
m log(

1

δ
) (19)

for all i ∈ [d] with probability at least 1− δ.

Therefore, we have that

|σi(t)− σj(t)| ≥ σi − σj − |σi(t)− σi| − |σj(t)− σj |
Eq. 19
≥ σi − σj −

√
t× 4

√
m log(

1

δ
)

≥ 1

2
(σi − σj)

with probability at least 1− δ, for any i < j and any t ∈ [0, T ].

The following proposition shows that the symmetric coefficients cij(t) are bounded by the reciprocal
of the initial singular value gaps.

Lemma A.4 (Bound of coefficients cij(t)). Suppose that Assumption 2.1 for (A, k, T, σ, γ) is

satisfied. Then for all t ∈ [0, T ], with probability 1− δ where δ := 1
8dγ2

1
× γ2

1−γ2
d

(σ1−σd)2
, we have

cij(t) ≤
4

σi − σj
, for any i < j.

17
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Proof. By Lemma A.3, we have we have with probability at least 1− δ

cij(t) =

√
σ2
j (t) + σ2

i (t)

|σ2
j (t)− σ2

i (t)|

≤ 2
σj(t) + σi(t)

|σj(t)− σi(t)|(σi(t) + σi(t))

=
2

|σj(t)− σi(t)|
=

2

|σi(t)− σj(t)|
≤ 4

σi − σj
, for any i < j.

A.4 PROOF OF LEMMA A.5

Next, to bound the quantity E
[
∥Ψ(T )−Ψ(0)∥2F

]
, use Lemma A.2 together with Ito’s Lemma

(Lemma 3.1), and then apply Lemma A.4 to the resulting expression (Lemma A.5).

Lemma A.5 (Bound the Frobenius error as an integral of Ψ(t)).

E
[
∥Ψ(T )−Ψ(0)∥2F

]
≤ 16

∫ T

0

E

 d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )
2

(σi − σj)2

dt+ 32T

∫ T

0

E

 d∑
i=1

∑
j ̸=i

|γ2
i − γ2

j |
(σi − σj)2

2
dt. (20)

Proof. Let E be the event that |σi(t) − σj(t)| ≥
1

2
(σi − σj) for any i < j and any t ∈ [0, T ]. By

Lemma A.3, we have P(E) ≥ 1− δ.

By Lemma A.2, we have

∥Ψ(T )−Ψ(0)∥2F = ∥
∫ T

o

dΨ(t)∥2F

LemmaA.2
=

∥∥∥∥12
∫ T

0

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )cij(t)dβji(t)(vi(t)vj(t)
⊤ + vj(t)vi(t)

⊤)

− 1

2

∫ T

0

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )c
2
ij(t)dt(vi(t)v

⊤
i (t)− vj(t)vj(t)

⊤)

∥∥∥∥2
F

≤ 3

∥∥∥∥∥∥12
∫ T

0

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )cij(t)dβji(t)(vi(t)vj(t)
⊤ + vj(t)vi(t)

⊤)

∥∥∥∥∥∥
2

F

+ 3

∥∥∥∥∥∥12
∫ T

0

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )c
2
ij(t)dt(vi(t)v

⊤
i (t)− vj(t)vj(t)

⊤)

∥∥∥∥∥∥
2

F

= 3I2 + 3I2 (21)

where the inequality holds by the triangle inequality, and where, for convenience, we define

I1 :=

∥∥∥∥∥∥12
∫ T

0

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )cij(t)dβji(t)(vi(t)vj(t)
⊤ + vj(t)vi(t)

⊤)

∥∥∥∥∥∥
2

F

and

I2 :=

∥∥∥∥∥∥12
∫ T

0

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )c
2
ij(t)dt(vi(t)v

⊤
i (t)− vj(t)vj(t)

⊤)

∥∥∥∥∥∥
2

F

.

18
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To evaluate the first integral I1, define

X(t) :=

∫ T

0

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )cij(t)dβji(t)(vi(t)vj(t)
⊤ + vj(t)vi(t)

⊤)

for all t > 0. Then we have that

dX(t) =

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )cij(t)dβji(t)(vi(t)vj(t)
⊤ + vj(t)vi(t)

⊤) =

d∑
i=1

∑
j ̸=i

Rji(t)dβji(t)

where Rji(t) := (γ2
i − γ2

j )× cij(t)× (vi(t)vj(t)
⊤ + vj(t)vi(t)

⊤), so its [l, r] component is

dX(t)[l, r] =

d∑
i=1

∑
j ̸=i

Rji(t)[l, r]dβji(t).

Defining the function f(X) := ∥X∥2F :=
∑d

l=1

∑d
r=1 X

2[l, r] and applying Ito’s Lemma (Lemma
3.1), we have

df(X) =

d∑
l=1

d∑
r=1

2X(t)[l, r]dX(t)[l, r] +
1

2

d∑
l=1

d∑
r=1

2⟨dX(t)[l, r],dX(t)[l, r]⟩

=

d∑
l=1

d∑
r=1

2X(t)[l, r]

d∑
i=1

∑
j ̸=i

Rji(t)[l, r]dβji(t) +

d∑
l=1

d∑
r=1

d∑
i=1

∑
j ̸=i

R2
ji(t)[l, r]dt.

Thus,

E(I1 × 1E) =
1

2
E [(f(X(T ))− f(X(0))× 1E ] = 0 +

1

2
E[
∫ T

0

d∑
l=1

d∑
r=1

d∑
i=1

∑
j ̸=i

R2
ji(t)[l, r]dt× 1E ]

=
1

2
E[
∫ T

0

d∑
l=1

d∑
r=1

d∑
i=1

∑
j ̸=i

(
(γ2

i − γ2
j )cij(t)(vi(t)vj(t)

⊤ + vj(t)vi(t)
⊤)[l, r]

)2
dt× 1E ]

=
1

2
E[
∫ T

0

d∑
i=1

∑
j ̸=i

d∑
l=1

d∑
r=1

(
(γ2

i − γ2
j )cij(t)(vi(t)vj(t)

⊤ + vj(t)vi(t)
⊤)[l, r]

)2
dt× 1E ]

=
1

2
E[
∫ T

0

d∑
i=1

∑
j ̸=i

∥(γ2
i − γ2

j )cij(t)(vi(t)vj(t)
⊤ + vj(t)vi(t)

⊤))∥2Fdt× 1E ]

=
1

2

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2
i − γ2

j )
2c2ij(t)∥(vi(t)vj(t)⊤ + vj(t)vi(t)

⊤))∥2Fdt× 1E ]

≤ 1

2

∫ T

0

E[
d∑

i=1

∑
j ̸=i

16(γ2
i − γ2

j )
2

(σi − σj)2
4dt] = 32

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2
i − γ2

j )
2

(σi − σj)2
dt], (22)

The first inequality holds since the term E[
∑d

l=1

∑d
r=1 2X(t)[l, r]

∑d
i=1

∑
j ̸=i Rji(t)[l, r]dβji(t)] =

0 vanishes because dβji(t) is inedependent of both X(t)[l, r] and Rji(t)[l, r] for every i, j, l, r. The

last inequality holds since, whenever the event E occurs, we have |σi(t)− σj(t)| ≥
1

2
(σi − σj) for

any i < j and any t ∈ [0, T ].
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For the second integral I2, we have

I2 =

∥∥∥∥∥∥12
∫ T

0

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )c
2
ij(t)(vi(t)v

⊤
i (t)− vj(t)vj(t)

⊤)dt

∥∥∥∥∥∥
2

F

=
1

2

∥∥∥∥∥∥
∫ T

0

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )c
2
ij(t)(vi(t)v

⊤
i (t)− vj(t)vj(t)

⊤)× 1 dt

∥∥∥∥∥∥
2

F

≤ 1

2

∫ T

0

∥∥∥∥∥∥
d∑

i=1

∑
j ̸=i

(γ2
i − γ2

j )c
2
ij(t)(vi(t)v

⊤
i (t)− vj(t)vj(t)

⊤)

∥∥∥∥∥∥
2

F

dt×
∫ T

0

12dt

=
1

2
T

∫ T

0

d∑
i=1

∥∥∥∥∥∥
∑
j ̸=i

(γ2
i − γ2

j )c
2
ij(t)(vi(t)v

⊤
i (t)− vj(t)vj(t)

⊤)

∥∥∥∥∥∥
2

F

dt

=
1

2
T

∫ T

0

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )c
2
ij(t)

2

∥vi(t)v⊤i (t)− vj(t)vj(t)
⊤∥2Fdt

≤ 2T

∫ T

0

d∑
i=1

∑
j ̸=i

(γ2
i − γ2

j )c
2
ij(t)

2

dt (23)

where the first inequality holds by the Cauchy-Schwartz inequality. The third and fourth equalities
hold since vi(t)vi(t)

⊤vj(t)vj(t)
⊤ = 0 for all i ̸= j. The last equality holds since ∥vi(t)v⊤i (t) −

vj(t)vj(t)
⊤∥F ≤ ∥vi(t)v⊤i (t)∥F + ∥vj(t)vj(t)⊤∥F ≤ 2 because ∥vi(t)v⊤i (t)∥ = 1 for all i ∈ [d].

Whenever the event E occurs we have by the proof of Lemma A.4 that cij(t) ≤
4

σi − σj
for all i < j

and all t ∈ [0, T ].

Thus, equation 23 implies that

I2 × 1E ≤ 32T

∫ T

0

d∑
i=1

∑
j ̸=i

|γ2
i − γ2

j |
(σi − σj)2

2

dt. (24)

We can express E[∥Ψ(T )−Ψ(0)∥2F ] as the following sum,

E[∥Ψ(T )−Ψ(0)∥2F ] = E[∥Ψ(T )−Ψ(0)∥2F × 1E ] + E[∥Ψ(T )−Ψ(0)∥2F × 1Ec ] (25)

Combining equation 22 and equation 24, it follows that

E[∥Ψ(T )−Ψ(0)∥2F × 1E ] ≤ E[∥Ψ(T )−Ψ(0)∥2F ]
≤ E[I1 × 1E + I2 × 1E ]

= E[I1 × 1E ] + E[I2 × 1E ]

≤ 32

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2
i − γ2

j )
2

(σi − σj)2
dt] + 32T

∫ T

0

E[
d∑

i=1

∑
j ̸=i

|γ2
i − γ2

j |
(σi − σj)2

2

]dt.

(26)
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Moreover, we have

E[∥Ψ(T )−Ψ(0)∥2F × 1Ec ] ≤ P(Ec)

≤ E[4∥Ψ(T )∥2F + 4∥Ψ(0)∥2F × 1Ec ]

≤ 8dγ2
1P(Ec)

≤ 8dγ2
1 × δ

≤ γ2
1 − γ2

d

(σ1 − σd)2

≤ 32

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2
i − γ2

j )
2

(σi − σj)2
dt] + 32T

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2
i − γ2

j )

(σi − σj)2

2

]dt,

(27)

where the fifth inequality holds since δ ≤ 1
8dγ2

1
× γ2

1−γ2
d

(σ1−σd)2
.

Therefore, plugging equation 26 and equation 27 into equation 25, we have

E[∥Ψ(T )−Ψ(0)∥2F ] ≤ 32

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2
i − γ2

j )
2

(σi − σj)2
dt] + 32T

∫ T

0

E[
d∑

i=1

∑
j ̸=i

|γ2
i − γ2

j |
(σi − σj)2

2

]dt.

A.5 COMPLETING THE PROOF OF THEOREM 2.2

We now complete the proof of the main result.

Proof of Theorem 2.2. From Lemma A.5, we have

E
[
∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥2F

]
= E

[
∥Ψ(T )−Ψ(0)∥2F

]
≤ 32

∫ T

0

E[
d∑

i=1

∑
j ̸=i

(γ2
i − γ2

j )
2

(σi − σj)2
dt] + 32T

∫ T

0

E[
d∑

i=1

∑
j ̸=i

|γ2
i − γ2

j |
(σi − σj)2

2

]dt

≤ 64

∫ T

0

E[
d∑

i=1

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2
dt] + 64T

∫ T

0

E[
d∑

i=1

 d∑
j=i+1

|γ2
i − γ2

j |
(σi − σj)2

2

]dt

= 64

∫ T

0

E[
k∑

i=1

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2
dt] + 64T

∫ T

0

E[
k∑

i=1

 d∑
j=i+1

|γ2
i − γ2

j |
(σi − σj)2

2

]dt

= 64T

k∑
i=1

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2
+ 64T 2

k∑
i=1

 d∑
j=i+1

|γ2
i − γ2

j |
(σi − σj)2

2

= O

 k∑
i=1

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2
+ T

k∑
i=1

 d∑
j=i+1

(γ2
i − γ2

j )

(σi − σj)2

2
T. (28)
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By the Cauchy-Schwarz inequality, we have that d∑
j=i+1

(γ2
i − γ2

j )

(σi − σj)2

2

=

 d∑
j=i+1

1

|σi − σj |
×

|γ2
i − γ2

j |
|σi − σj |

2

≤

 d∑
j=i+1

1

(σi − σj)2

×

 d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2


≤

 d∑
j=i+1

1

(
√
d)2

×

 d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2


≤

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2
. (29)

Plugging equation 29 into equation 28, we have

E
[
∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥2F

]
≤ O

 k∑
i=1

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2

T.

B PROOF OF COROLLARY 2.3

Proof of Corollary 2.3. To prove Corollary 2.3, we plug in γ1 = · · · = γk = 1 and γk+1 = · · · =
γd = 0 to Theorem 2.2. There are two cases.

In the first case, where A may be any m × d matrix which satisfies Assumption 2.1, plugging in
γ1 = · · · = γk = 1 and γk+1 = · · · = γd = 0 to Theorem 2.2 we get

E
[
∥V̂kV̂

⊤
k − VkV

⊤
k ∥2F

]
= E

[
∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥2F

]
≤ O

 k∑
i=1

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2

T

= O

 k∑
i=1

d∑
j=k+1

1

(σi − σj)2

T

≤ O

 k∑
i=1

d∑
j=k+1

1

(σk − σk+1)2

T

≤ O

(
kd

(σk − σk+1)2
T

)
(30)

where the first inequality holds by Theorem 2.2 and the second equality holds in that γ1 = · · · =
γk = 1 and γk+1 = · · · = γd = 0.

By Jensen’s Inequality, we have that

E
[
∥V̂kV̂

⊤
k − VkV

⊤
k ∥F

]
≤
√

E
[
∥V̂kV̂ ⊤

k − VkV ⊤
k ∥2F

]
≤ O(

√
kd

(σk − σk+1)
)
√
T .
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In the second case, where the singular values of A also satisfy σi − σi+1 ≥ Ω(σk − σk+1) for all
i ≤ k, we have

E
[
∥V̂kV̂

⊤
k − VkV

⊤
k ∥2F

]
= E

[
∥V̂ Γ⊤ΓV̂ ⊤ − V Γ⊤ΓV ⊤∥2F

]
≤ O

 k∑
i=1

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2

T

= O

 k∑
i=1

d∑
j=k+1

1

(σi − σj)2

T

≤ O

 k∑
i=1

d∑
j=k+1

1

(i− k − 1)2(σk − σk+1)2

T

≤ O

(
k∑

i=1

d

(i− k − 1)2(σk − σk+1)2

)
T

≤ O

(
d

(σk − σk+1)2

k∑
i=1

1

i2

)
T

≤ O

(
d

(σk − σk+1)2

)
T (31)

where the first inequality holds by Theorem 2.2 and the second equality holds since γ1 = · · · = γk = 1
and γk+1 = · · · = γd = 0, the second inequality holds since σi − σi+1 ≥ Ω(σk − σk+1) for all
i ≤ k, and the last inequality holds since

∑k
i=1

1
i2 ≤

∑∞
i=1

1
i2 = O(1).

Thanks to Jensen’s Inequality, we have that

E
[
∥V̂kV̂

⊤
k − VkV

⊤
k ∥F

]
≤
√

E
[
∥V̂kV̂ ⊤

k − VkV ⊤
k ∥2F

]
≤ O(

√
d

(σk − σk+1)
)
√
T .

C PROOF OF COROLLARY 2.4

Proof of Corollary 2.4. We first bound the quantity E
[
∥V̂ Σ⊤

k ΣkV̂
⊤ − V Σ⊤

k ΣkV
⊤∥F

]
.

23



Published as a conference paper at ICLR 2025

Set γi = σi for i ≤ k and γi = 0 for i > k. Then by Theorem 2.2 we have

E
[
∥V̂ Σ⊤

k ΣkV̂
⊤ − V Σ⊤

k ΣkV
⊤∥2F

]
≤ O

 k∑
i=1

d∑
j=i+1

(γ2
i − γ2

j )
2

(σi − σj)2

T

= O

k−1∑
i=1

k∑
j=i+1

(σ2
i − σ2

j )
2

(σi − σj)2
+

k∑
i=1

d∑
j=k+1

(
σ2
i − 02

σi − σj

)2
T

= O

k−1∑
i=1

k∑
j=i+1

(σi + σj)
2 +

k∑
i=1

d∑
j=k+1

(
σ2
i − σ2

k

σi − σj
+

σ2
k

σi − σj

)2
T

≤ O

k−1∑
i=1

k∑
j=i+1

(σi + σj)
2 +

k∑
i=1

d∑
j=k+1

(
σi +

σ2
k

σi − σj

)2
T

= O

k−1∑
i=1

k∑
j=i+1

(σi + σj)
2 +

k∑
i=1

d∑
j=k+1

(
σi + σk

σk

σi − σj

)2
T

≤ O

k−1∑
i=1

k∑
j=i+1

(σi + σj)
2 +

k∑
i=1

d∑
j=k+1

(
σi + σk

σk

σk − σj

)2
T

≤ O

k−1∑
i=1

k∑
j=i+1

(σi + σj)
2 +

k∑
i=1

d∑
j=k+1

σ2
i +

k∑
i=1

d∑
j=k+1

(
σk

σk

σk − σj

)2
T

≤ O

d∥Σk∥2F +

k∑
i=1

d∑
j=k+1

(
σk

σk

σk − σj

)2
T

≤ O

(
d∥Σk∥2F + k(d− k)

(
σk

σk

σk − σk+1

)2
)
T. (32)

We next bound the quantity E
[
∥V̂ Σ̂⊤

k Σ̂kV̂
⊤ − V̂ Σ⊤

k ΣkV̂
⊤∥F

]
.

Let E1 be the event when ∥G∥ >
√
max(m, d) log(1/δ). By Lemma 3.3, we have P(E1) ≥ 1− δ.

Since ∥Σk∥F ≤
√
kσ1 and ∥Σ̂k∥F <

√
kσ1(t), we can use the bound

∥Σ⊤
k Σk − Σ̂⊤

k Σ̂k∥F < ∥Σ⊤
k Σk∥F + ∥Σ̂⊤

k Σ̂k∥F < kσ1 + kσ2
1(t) < 4kσ2

1

and hence
E[∥Σ⊤

k Σk − Σ̂⊤
k Σ̂k∥F ∗ 1E1

] < 2
√
kσ1 ∗ P (E1) < 4kσ2

1 ∗ δ.

Recall that (from Assumption 2.1) δ < 1
kσ2

1
. Hence,

E[∥Σ⊤
k Σk − Σ̂⊤

k Σ̂k∥F ∗ 1E1
] < 4

Now consider the event Ec
1, where ∥G∥ <

√
max(m, d) log(1/δ). From above, we have P(Ec

1) =
1− P(E1) ≤ δ. For Ec

1 we get,

E[∥Σ⊤
k Σk − Σ̂⊤

k Σ̂k∥F ∗ 1Ec
1
] < E[∥(Σk − Σ̂k)(Σk + Σ̂k)∥F ∗ 1Ec

1
]

< E[
√
T∥Gk∥ ∗ (∥Σk∥F + ∥Σ̂k∥F ) ∗ 1Ec

1
]

< E[2
√
kTσ1∥Gk∥ ∗ 1Ec

1
]

< 2
√
kdσ1 log(1/δ)

√
T .
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Finally, put the two cases together:

E
[
∥V̂ Σ̂⊤

k Σ̂kV̂
⊤ − V̂ Σ⊤

k ΣkV̂
⊤∥F

]
= E[∥Σk − Σ̂k∥F ]

= E[∥Σk − Σ̂k∥F ∗ 1E1 ] + E[∥Σk − Σ̂k∥F ∗ 1Ec
1
]

< 4 + 2
√
kdσ1 log(1/δ)

√
T

= O(
√
kdσ1 log(1/δ))

√
T . (33)

Combining equation 32 and equation 33, we have

E
[
∥V̂ Σ̂⊤

k Σ̂kV̂
⊤ − V Σ⊤

k ΣkV
⊤∥F

]
≤ E

[
∥V̂ Σ̂⊤

k Σ̂kV̂
⊤ − V̂ Σ⊤

k ΣkV̂
⊤∥F

]
+ E

[
∥V̂ Σ⊤

k ΣkV̂
⊤ − V Σ⊤

k ΣkV
⊤∥F

]
≤ O

(√
d∥Σk∥F +

√
k(d− k)

(
σk

σk

σk − σk+1

))√
T +O(

√
kdσ1 log(1/δ))

√
T

≤ O

(√
d∥Σk∥F +

√
k(d− k)

(
σk

σk

σk − σk+1

))√
T . (34)

D ADDITIONAL COMPARISONS FOR LOW-RANK COVARIANCE
APPROXIMATION

In this section, we present how one can derive high-probability bounds on the quantity ∥V̂ Σ̂2
kV̂

⊤ −
V Σ2

kV
⊤∥F from the subspace perturbation bounds of Davis & Kahan (1970); Wedin (1972) or

O’Rourke et al. (2018).

Towards this end, we note that

∥V̂ Σ̂2
kV̂

⊤ − V Σ2
kV

⊤∥F ≤ ∥V̂ Σ̂2
kV̂

⊤ − V̂ Σ2
kV̂

⊤∥F + ∥V̂ Σ2
kV̂

⊤ − V Σ2
kV

⊤∥F .

The first term can be bounded as

∥V̂ Σ̂2
kV̂

⊤ − V̂ Σ2
kV̂

⊤∥F = ∥Σ̂2
k − Σ2

k∥F =

k∑
i=1

σ̂2
i − σ2

i ,

which can be bounded using Weyl’s inequality (Lemma 3.2) together with the Gaussian concentration
inequality in Lemma 3.3.

For the second term, we have

∥V̂ Σ2
kV̂

⊤ − V Σ2
kV

⊤∥F = ∥V̂ Σ2
kV̂

⊤ − V Σ2
kV

⊤∥F

= ∥
k−1∑
i=1

(σ2
i − σ2

i+1)(V̂iV̂
⊤
i − ViV

⊤
i ) + σ2

k(V̂kV̂
⊤
k − VkV

⊤
k )∥F

≤
k−1∑
i=1

(σ2
i − σ2

i+1)∥V̂iV̂
⊤
i − ViV

⊤
i ∥F + σ2

k∥V̂kV̂
⊤
k − VkV

⊤
k ∥F

≤
k−1∑
i=1

(σi + σi+1)(σi − σi+1)∥V̂iV̂
⊤
i − ViV

⊤
i ∥F + σ2

k∥V̂kV̂
⊤
k − VkV

⊤
k ∥F

≤
k−1∑
i=1

(σi − σi+1)

√
i
√
d

σi − σi+1
+ σk

√
k
√
d

σk − σk+1

= O

(
k1.5

√
d+

σk

σk − σk+1

√
k
√
d

)
. (35)
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Plugging into equation 35 the bound of ∥ViV
⊤
i − V̂iV̂

⊤
i ∥F ≤

√
i
√
m

σi−σi+1

√
T w.h.p. implied by Davis

& Kahan (1970); Wedin (1972), one has

∥V̂ Σ2
kV̂

⊤ − V Σ2
kV

⊤∥F ≤
k−1∑
i=1

(σi + σi+1)(σi − σi+1)

√
i
√
m

σi − σi+1

√
T + σ2

k

√
k
√
m

σk − σk+1

√
T

≤
√
m
√
T

k−1∑
i=1

(σi + σi+1)
√
i+ σ2

k

√
k
√
m

σk − σk+1

√
T

≤ 2k1.5
√
m
√
Tσ1 + σ2

k

√
k
√
m

σk − σk+1

√
T .

One can also instead plug in the bound from Theorem 18 of O’Rourke et al. (2018) (restated here as
equation 2 in Section 1.1) into equation 35. When, e.g., σk − σk+1 ≥ Ω(max(σk,

√
m)), equation 2

reduces to ∥V̂ Σ2
i V̂

⊤ − V Σ2
iV

⊤∥F ≤ O
(
i
√
m

σi

√
T
)

for i ≤ k into equation 35. Thus, plugging in
this bound into equation 35, one has

∥V̂ Σ2
kV̂

⊤ − V Σ2
kV

⊤∥F ≤
k−1∑
i=1

(σi + σi+1)(σi − σi+1)i

√
m

σi

√
T + σ2

kk

√
m

σk

√
T

≤ O

(
k−1∑
i=1

(σi − σi+1)i
√
m
√
T + σkk

√
m
√
T

)
≤ O

(
(σ1 − σk)k

√
m
√
T + σkk

√
m
√
T
)

≤ O
(
σ1k

√
m
√
T
)
.

E NUMERICAL SIMULATIONS

In this section, we present numerical simulations that illustrate the theoretical results in Theorem 2.2,
and investigate the extent to which the bounds in Theorem 2.2 are tight.

E.1 SIMULATIONS FOR RANK-k COVARIANCE MATRIX APPROXIMATION

In this set of simulations, we compute the squared Frobenius error for the rank-k covariance approx-
imation problem, ∥V̂ Σ̂T

k Σ̂kV̂
T − V ΣT

kΣkV
T ∥2F . We take an input “data” matrix A, perturb the

matrix by iid Gaussian noise (that is, Â = A+
√
TG where G has iid N(0, 1) entries), and compute

the error ∥V̂ Σ̂T
k Σ̂kV̂

T − V ΣT
kΣkV

T ∥2F , for different values of m, d, k. In the following simulations
we choose the input “data” matrix to be a synthetic data matrix with linearly decaying spectral profile
spectral profile σi =

√
m× (d− i+ 1) for all i ∈ [d]. We note that, since the noise distribution G is

invariant to multiplication orthogonal matrices, we may assume without loss of generality that A is a
(rectangular) m× d diagonal matrix with diagonal entries σ1, · · · , σd and zeros in all other entries.

We then plot the ratio of the error observed in the experiments to the r.h.s. of the bound in Cororlary
2.4, ∥V̂ Σ̂T

k Σ̂kV̂
T−V ΣT

k ΣkV
T ∥2

F

d∥Σk∥2
F+k

∑d
j=k+1(

σ2
k

σk−σj
)2

, for different values of m (Figure 1), d (Figure 2), and k (Figure 3),

keeping the other two variables fixed in each plot.

We observe that, the ratio of the experimentally observed error and our upper bound does not change
much (up to a small constant factor) for different values of m or d, suggesting that, for matrices A
with the above spectral profile, our bound in Corollary 2.4 is tight with respect to m (Figure 1) and d
(Figure 2).

On the other hand, we observe (Figure 3) that the ratio of the observed error and our upper bound
seems to be smaller for values of k which are far from 1 or d, suggesting that Corollary 2.4 may not
have a tight dependence on k for input matrices of this spectral profile.
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Figure 1: Plot of the rescaled error, that is, the l.h.s. of Corollary 2.4 divided by the r.h.s.,
∥V̂ Σ̂T

k Σ̂kV̂
T−V ΣT

k ΣkV
T ∥2

F

d∥Σk∥2
F+k

∑d
j=k+1(

σ2
k

σk−σj
)2

, for different values of m. Error bars indicate standard deviation. Here,

d = 15, k = 5, T = 1 and the input matrix has spectral profile σi =
√
m× (d− i+1) for all i ∈ [d].

The rescaled error does not change much, suggesting that, for input matrices of this spectral profile,
Corollary 2.4 has a tight dependence on m.
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Figure 2: Plot of the rescaled error, that is, the l.h.s. of Corollary 2.4 divided by the r.h.s.,
∥V̂ Σ̂T

k Σ̂kV̂
T−V ΣT

k ΣkV
T ∥2

F

d∥Σk∥2
F+k

∑d
j=k+1(

σ2
k

σk−σj
)2

, for different values of d. Error bars indicate standard deviation. Here,

m = 1000, k = 5, T = 1 and the input matrix has spectral profile σi =
√
m× (d− i+ 1) for all

i ∈ [d]. The rescaled error does not change much, suggesting that, for input matrices of this spectral
profile, Corollary 2.4 has a tight dependence on d.
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Figure 3: Plot of the rescaled error, that is, the l.h.s. of Corollary 2.4 divided by the r.h.s.,
∥V̂ Σ̂T

k Σ̂kV̂
T−V ΣT

k ΣkV
T ∥2

F

d∥Σk∥2
F+k

∑d
j=k+1(

σ2
k

σk−σj
)2

, for different values of d. Error bars indicate standard deviation. Here,

m = 1000, d = 5, T = 1 and the input matrix has spectral profile σi =
√
m× (d− i+ 1) for all

i ∈ [d]. The rescaled error seems to be smaller for values of k which are far from 1 or d, suggesting
that Corollary 2.4 may not have a tight dependence on k for input matrices of this spectral profile.

E.2 SIMULATIONS FOR SUBSPACE RECOVERY

In this section, we present numerical simulations that illustrate the theoretical results in Theorem 2.2,
and investigate the extent to which the bounds in Theorem 2.2 are tight.

E.3 SIMULATIONS FOR RANK-k COVARIANCE MATRIX APPROXIMATION

In this set of simulations, we compute the Frobenius norm error for the subspace recovery problem,
∥V̂ V̂ T − V V T ∥F . We take an input “data” matrix A, perturb the matrix by iid Gaussian noise (that
is, Â = A+

√
TG where G has iid N(0, 1) entries), and compute the error ∥V̂ V̂ T − V V T ∥F , for

different values of m, d, k. As in the simulations of Section E.1, we choose the input “data” matrix to
be a synthetic data matrix with linearly decaying spectral profile spectral profile σi =

√
m×(d−i+1)

for all i ∈ [d].

We then plot the ratio of the error observed in the experiments to the r.h.s. of the bound in Corollary
2.3, ∥V̂kV̂

⊤
k −VkV

⊤
k ∥F√

d/(σk−σk+1)
, for different values of m (Figure 4), d (Figure 5), and k (Figure 6), keeping the

other two variables fixed in each plot.

We observe that, the ratio of the experimentally observed error and our upper bound does not change
much (up to a small constant factor) for different values of m or k, suggesting that, for matrices A
with the above spectral profile, our bound in Corollary 2.3 is tight with respect to m (Figure 4) and k
(Figure 6).

On the other hand, we observe (Figure 5) that the ratio of the observed error and our upper bound
seems to decrease with d, suggesting that, Corollary 2.3 may not be tight in d for input matrices of
this spectral profile..
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Figure 4: Plot of the rescaled subspace recovery error, that is, the l.h.s. of Corollary 2.3 divided by
the r.h.s., ∥V̂kV̂

⊤
k −VkV

⊤
k ∥F√

d/(σk−σk+1)
, for different values of m. Error bars indicate standard deviation. Here,

d = 15, k = 5, T = 1 and the input matrix has spectral profile σi =
√
m× (d− i+1) for all i ∈ [d].

The rescaled error does not change much, suggesting that, for input matrices of this spectral profile,
Corollary 2.3 has a tight dependence on m.
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Figure 5: Plot of the rescaled subspace recovery error, that is, the l.h.s. of Corollary 2.3 divided by
the r.h.s., ∥V̂kV̂

⊤
k −VkV

⊤
k ∥F√

d/(σk−σk+1)
, for different values of m. Error bars indicate standard deviation. Here,

d = 15, k = 5, T = 1 and the input matrix has spectral profile σi =
√
m× (d− i+1) for all i ∈ [d].

The rescaled error decreases with d, suggesting that, Corollary 2.3 may not be tight in d for input
matrices of this spectral profile.
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Figure 6: Plot of the rescaled subspace recovery error, that is, the l.h.s. of Corollary 2.3 divided by
the r.h.s., ∥V̂kV̂

⊤
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⊤
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d/(σk−σk+1)
, for different values of k. Error bars indicate standard deviation. Here,

d = 15, k = 5, T = 1 and the input matrix has spectral profile σi =
√
m× (d− i+1) for all i ∈ [d].

The rescaled error does not change much, suggesting that, for input matrices of this spectral profile,
Corollary 2.3 has a tight dependence on k.
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