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Abstract

A common approach for solving planning problems is to model them in a formal
language such as the Planning Domain Definition Language (PDDL), and then
use an appropriate PDDL planner. Several algorithms for learning PDDL models
from observations have been proposed but plans created with these learned models
may not be sound. We propose two algorithms for learning PDDL models that are
guaranteed to be safe to use even when given observations that include partially
observable states. We analyze these algorithms theoretically, characterizing the
sample complexity each algorithm requires to guarantee probabilistic completeness.
We also show experimentally that our algorithms are often better than FAMA, a
state-of-the-art PDDL learning algorithm.

1 Introduction

Classical planning, i.e., planning in a discrete, deterministic, and fully observable environment, is a
useful abstraction for solving many planning problems. In order to use these planners, however, one
must first model the problem at hand in a formal language, such as the Planning Domain Definition
Language (PDDL). This is not an easy task. Therefore, several approaches to learning a PDDL model
from observations have been proposed [Aineto et al., 2019, Stern and Juba, 2017, Juba et al., 2021,
Cresswell et al., 2013, Wu et al., 2007]. A prominent example is FAMA [Aineto et al., 2019], which
is a state-of-the-art algorithm for learning a PDDL model from observations. A major advantage
of FAMA is that it is able to learn a PDDL model even if the given observations are incomplete, in
the sense that only a subset of the actions and state variables are observed. A major disadvantage of
FAMA and most PDDL model learning algorithms is that they do not provide any guarantee on the
performance of the learned model. Plans generated with the learned model may not be executable or
may fail to achieve their intended goals. SAM Learning [Stern and Juba, 2017, Juba et al., 2021, Juba
and Stern, 2022, Mordoch et al., 2022] is a recently introduced family of learning algorithms that
provide safety guarantees over the learned PDDL model: any plan generated with the model they
return is guaranteed to be executable and achieve the intended goals. SAM Learning, however, is
limited to learning from fully observed trajectories.

In this paper, we propose two algorithms for learning safe PDDL models in partially observed domains.
The first algorithm, PI-SAM, extends SAM [Juba et al., 2021] to support partially observable domains
by only applying the SAM learning rules when a literal is observed in the states immediately before
and after an action is applied. PI-SAM is easy to implement, has a polynomial running time, and
outputs a classical planning PDDL model that provides the desired safety guarantee. The second
algorithm, EPI-SAM, utilizes observations that PI-SAM ignores to learn a stronger formulation. EPI-
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SAM compiles its knowledge and uncertainty about the underlying action model into a conformant
planning problem, whose solution is also a safe solution to the underlying classical planning problem.
We analyze the running time of EPI-SAM and prove that the conformant planning problem created
by EPI-SAM is the strongest safe problem formulation.

In terms of sample complexity, we show that in general it is not possible to guarantee efficient learning
of a safe action model when the observations are partially observable. Nevertheless, we introduce
a form of bounded concealment assumption, adapted from prior work on learning from partial
observations [Michael, 2010], under which both PI-SAM and EPI-SAM are guaranteed probabilistic
completeness with a tractable sample complexity. Experimentally, we evaluated the performance of
both algorithms and compared them with FAMA [Aineto et al., 2019] on common domains from the
International Planning Competition (IPC) [McDermott, 2000]. Our results show that PI-SAM and
EPI-SAM often outperform FAMA in terms of the number of samples they require to learn effective
action models, while still preserving our safety guarantee.

2 Background and Problem Definition

A classical planning domain is defined by a tuple ⟨F,A⟩ where F is a set of Boolean state variables,
also known as fluents, and A is a set of actions. A state is a complete assignment of values to all
fluents, i.e., s : F → {true, false}. A partial state is an assignment of values to some (possibly all)
of the fluents. For a fluent f and a partial state p, we denote by p[f ] the value assigned to f according
to p. A partial state p is consistent with a partial state p′ if for every fluent f either p[f ] = p′[f ],
f is not assigned in p, or f is not assigned in p′. A literal in this context is either a fluent f ∈ F
or its negation ¬f . For a literal ℓ = ¬f , we denote by p[ℓ] = true, and p[ℓ] = false the fact that
p[f ] = false and p[f ] = true, respectively. We say that a literal ℓ is in a partial state p, denoted ℓ ∈ p,
if p[ℓ] = true. Similarly, if p[ℓ] = false we say that ℓ is not in s, denoted ℓ /∈ s. An action a is defined
by a tuple ⟨name(a), pre(a), eff(a)⟩ where name(a) is a unique identifier of the action and pre(a)
and eff(a) are partial states that specify the preconditions and effects of a, respectively. An action
model of a planning domain is its set of actions including their names, preconditions, and effects. An
action a is applicable in a state s if pre(a) is consistent with s. Applying a in s results in a state a(s)
where for every fluent f ∈ F : (1) if f is assigned in eff(a) then eff(a)[f ] = a(s)[f ], (2) otherwise,
s[f ] = a(s)[f ]. A sequence of actions π = (a1, . . . an) is applicable in a state s if a1 is applicable in
s and for every i = 2, . . . , n, ai is applicable in ai−1(· · · a1(s) · · · ). The result of applying such a
sequence of actions in a state s, denoted π(s), is the state an(· · · a1(s) · · · ).
A classical planning problem is defined by a tuple ⟨F,A, I,G⟩ where ⟨F,A⟩ is a domain, I is the
initial state, and G is a partial state representing the goal we aim to achieve. A state s is called a goal
state if G is consistent with s. A solution to a planning problem is a plan, which is a sequence of
actions π such that π is applicable in I and π(I) results in a goal state. Classical planning domains
and problems are often described in a lifted manner, where fluents and actions are parameterized
over objects. For ease of presentation, we describe our work in a grounded manner, but our work
fully supports a lifted domain representation directly following Juba et al. [2021]. A trajectory is an
alternating sequence of states and actions. For a trajectory T = (s0, a1, . . . , an, sn), let T.si = si
and T.ai = ai. The last state and action in T are denoted by T.s−1 and T.a−1, respectively, and
T.s and T.a denote the sequence of states and actions in T , respectively. An action model A is
consistent with a trajectory T if according to A the sequence of actions T.a is applicable in T.s0 and
T.si = T.ai(· · ·T.a1(T.s0) · · · ) for every i ∈ {1, . . . , |T |}.

Conformant planning [Bonet, 2010] and contingent planning [Majercik and Littman, 2003, Hoffmann
and Brafman, 2005, Albore et al., 2009, Brafman and Shani, 2012] are previously studied types of
planning under uncertainty that are directly related to our work. In both, the effects of some actions
may be non-deterministic, and the initial state I is replaced by a formula φI over the set of fluents
that defines a set of possible initial states. In conformant planning, the agent is assumed to be unable
to collect observations during execution. As such, conformant planning algorithms output a linear
plan, which is a sequence of actions, as in classical planning. A (strong) solution to a conformant
planning problem is a linear plan that is guaranteed to achieve the goal regardless of the inherent
uncertainty due to the initial state and non-deterministic effects. In contingent planning, some actions’
effects may include observing the values of some fluents, and the agent is assumed to be able to
collect these observations and adapt its behavior accordingly.
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Many algorithms have been proposed for learning action models from a given set of trajectories [Cress-
well et al., 2013, Yang et al., 2007, Aineto et al., 2019, Juba et al., 2021]. Algorithms from the
LOCM family [Cresswell and Gregory, 2011, Cresswell et al., 2013] learn action models by analyzing
observed action sequences and constructing finite state machines that capture how actions change the
states of objects in the world. The FAMA algorithm [Aineto et al., 2019] translates the problem of
learning an action model to a planning problem, where every solution to this planning problem is
an action model consistent with the available observations. FAMA works even if the observations
given to it are partially observable. Algorithms from the SAM learning family [Stern and Juba, 2017,
Juba et al., 2021, Juba and Stern, 2022, Mordoch et al., 2022] are different from other action model
learning algorithms in that they guarantee that the action model they return is safe, in the sense that
plans consistent with it are also consistent with the real, unknown action model. Most algorithms from
this family have a tractable running time and reasonable sample complexity to ensure a probabilistic
form of completeness, but rely on perfect observability of the given observations.

The partially observed trajectories we consider are created by masking some fluent values in a
trajectory, essentially changing some states into partial states. A literal ℓ is said to be masked in a
partial state p, denoted by p[ℓ] = ? if the corresponding fluent is not assigned in p. We say that an
action model A is consistent with a partially observable trajectory T if it is consistent with at least
one trajectory created by assigning values to all masked literals in T .

Definition 2.1. A safe model-free planning problem is defined by a tuple ⟨Π, T ⟩ where Π =
⟨F,A, I,G⟩ is a classical planning problem, and T is a set of partially observable trajectories created
by executing plans that solve other problems in the same domain, and masking some literals in the
states of the resulting trajectories. A safe model-free planning algorithm accepts the tuple ⟨F, I,G, T ⟩
and outputs a plan π that is a solution to the underlying planning problem Π.

The key challenge in solving such problems is that the problem-solver is not given any prior knowledge
about the action model or the values of the masked literals. Nevertheless, the returned plan π must
be safe, in the sense that π is a sequence of actions that are applicable in I according to the real
action model A and ends up in a goal state. We make the following simplifying assumptions. Actions
have deterministic effects. The preconditions and effects of actions are conjunctions of literals,
as opposed to more complex logical statements, such as conditional effects. The form of partial
observability defined above embodies the assumption that observations are noiseless: the value of a
literal that is not masked is assumed to be correct. These assumptions are reasonable when planning
in digital/virtual environments, such as video games, or environments that have been instrumented
with reliable sensors, such as warehouses designed to be navigated by robots [Li et al., 2020].

3 Partial Information SAM Learning

Following prior work [Stern and Juba, 2017, Juba et al., 2021], we first learn an action model from
the given trajectories, and then use a planner to solve the given planning problem. We aim to learn an
action model that is safe.

Definition 3.1 (Safe Action Model). An action model Â is safe w.r.t an action model A if (1) for
every action a ∈ Â and state s if a is applicable in s according to Â then it is also applicable in s

according to A, and (2) for every goal G, if a plan achieves G according to Â then it also achieves G
according to A. Safety of/w.r.t is defined analogously for a fixed problem and its goal G.

The first learning algorithm we propose is called Partial Information SAM (PI-SAM). PI-SAM is
based on the following observation.

Observation 3.2 (PI-SAM Rules). For any action triplet ⟨s, a, s′⟩ and literal ℓ

Rule 1 [not a precondition]. If (ℓ ∈ s) ∧ (s[ℓ] ̸= ?) then ¬ℓ is not a precondition of a.
Rule 2 [an effect]. If (ℓ /∈ s) ∧ (ℓ ∈ s′) ∧ (s[ℓ] ̸= ?) ∧ (s′[ℓ] ̸= ?) then ℓ is an effect of a.
Rule 3 [not an effect]. If (ℓ /∈ s′) ∧ (s′[ℓ] ̸= ?) then ℓ is not an effect of a.

PI-SAM applies rules 1 and 2 in almost the same way as SAM Learning. For every action a observed
in some trajectory, we first assume that it has no effects and its preconditions consist of all possible
literals. Then, for every transition ⟨s, a, s′⟩ and each literal ℓ observed in both pre- and post-states,
i.e., (s[ℓ] ̸=?) ∧ (s′[ℓ] ̸=?), we apply Rule 1 to remove preconditions and apply Rule 2 to add effects.
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PI-SAM runs in O
(∑

a∈A |T (a)| · |F|
)

, where T (a) is the set of transitions in T with action a.1

PI-SAM also returns a safe action model, following the same reasoning given for the fully observable
case [Stern and Juba, 2017]. Note that PI-SAM essentially uses the SAM learning rules, except that
they are only applied for literals observed in both pre- and post-states. This may seem unintuitive,
since Rule 1 does not require that a literal l is observed in a post-state to infer that it cannot be a
precondition. To see why this modification is needed, consider running PI-SAM on a single trajectory
with a single transition ⟨s, a, s′⟩ where ℓ /∈ s and s′[ℓ] = ?. Since the value of l is masked in s′, we
cannot apply Rule 3, and thus PI-SAM will assume l is not an effect of a. However, we cannot know
if l is an effect of a or not. Thus, even though we can infer that l is not a precondition of a, returning
an action model that allows a in such states may yield an unsafe action model.

Sample Complexity Analysis Learning a non-trivial safe action model without any restrictions on
how the partially observable trajectories have been generated is impossible. To see this, consider the
case where the value of some fluent f is always masked. Since we never observe the value of f , then
for every action a we can never be certain if its preconditions include f , ¬f , or neither. Thus, we
can never have a safe action model that allows action a to be applied. This example highlights that
some assumption about how the partially observable trajectories were created is necessary in order to
guarantee efficient learning of a safe action model. We propose such an assumption, based on the
definition of a masking function.
Definition 3.3 (Masking function). A trajectory masking function O is a function that maps a
trajectory T to a partially observable trajectory O(T ) where (1) T.a = O(T ).a, (2) |T | = |O(T )|,
and (3) ∀i : T.si is consistent with O(T ).si.

An example of a masking function is random masking, which masks the value of each fluent with
some fixed, independent probability. Without loss of generality. we assume the set of trajectories
T were created by applying some masking function O on fully observable trajectories. Next, we
introduce the following assumption about masking functions, adapted from Michael’s theory of
learning from partial information Michael [2010]:
Definition 3.4 (Bounded Concealment Assumption). A masking function satisfies the η-bounded
concealment assumption in an environment if for every literal that is not a precondition of an action,
when that action is taken and the literal is false, then the corresponding fluent is observed in both the
pre- and post-states with probability at least η.

As an example of a masking function that satisfies a bounded concealment assumption, consider
a random masking function, where every literal is masked with a fixed independent probability α.
Thus, each literal is observed in both the pre- and post-states with probability α2 on each transition,
i.e., such cases feature α2-bounded concealment. Next, we analyze the relation between the number
of trajectories given to PI-SAM and the ability of the action model it returns to solve new problems in
the same domain, under the bounded concealment assumption. Let PD be a probability distribution
over solvable planning problems in a domain D. Let TD be a probability distribution over pairs
⟨P, T ⟩ given by drawing a problem P from P(D), using a sound and complete planner to generate a
plan for P , and setting T to be the trajectory from following this plan.2

Theorem 3.5. Under η-bounded concealment, given m ≥ 1
ϵ·η (2 ln 3|A| · |F| + ln 1

δ ) trajectories
sampled from TD, PI-SAM returns a safe action model MPI-SAM such that with probability at least
1− δ, a problem drawn from PD is not solvable with MPI-SAM with probability at most ϵ.
Definition 3.6 (Adequate). An action model M is ϵ-adequate if, with probability at most ϵ, a
trajectory T sampled from TD contains an action triplet ⟨s, a, s′⟩ where 1. s does not satisfy preM (a)
or 2. there is a literal in s′ \ s but not in effM (a).
Lemma 3.7. The action model returned by PI-SAM Learning given m trajectories (as specified in
Theorem 3.5) is ϵ-adequate with probability at least 1− δ.

A proof of Lemma 3.7 appears in the appendix. Proof of Theorem 3.5. When PI-SAM deletes a literal
from pre(a), it observed a triplet ⟨s, a, s′⟩ where l is false in s. Thus, whenever action a can be taken
in some state under MPI-SAM, it can also be taken in M∗. Conversely, since MPI-SAM is ϵ-adequate,
with probability at least 1 − ϵ the sequence of actions appearing in the trajectory associated with

1Assuming one can access T (a) in O(1).
2The planner need not be deterministic.
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Algorithm 1 EPI-SAM: Learning Effects
Input :Partially observed trajectories T
Output :CNFeff(ℓ) for each literal l

1 foreach literal ℓ do
2 CNFeff(ℓ)← ∅

foreach action a do Add to CNFeff(ℓ): {¬IsEff(ℓ, a) ∨ ¬IsEff(¬ℓ, a)}
3 foreach trajectory T ∈ T do
4 foreach index i ∈ {1, . . . , |T |} where ℓ ∈ T.si do
5 T ′ ← max. prefix of T.si where ℓ is masked

if ℓ /∈ T ′.s0 then Add to CNFeff(ℓ):
{

IsEff(ℓ, T ′.a1) ∨ · · · ∨ IsEff(ℓ, T ′.a|T ′|)
}

6 Add to CNFeff(ℓ): {¬IsEff(¬ℓ, T ′.a|T ′|)}
foreach j = 1 to |T ′| − 1 do

7 Add to CNFeff(ℓ): {¬IsEff(¬ℓ, T ′.aj) ∨ IsEff(ℓ, T ′.aj+1) ∨ · · · ∨ IsEff(ℓ, T ′.a|T ′|)}
8 end
9 end

10 end
11 end
12 return {CNFeff(ℓ)}ℓ

a draw from TD is a valid plan in MPI-SAM. The first condition ensures that the preconditions of
MPI-SAM allow the action to be executed, and the second condition guarantees that MPI-SAM obtains
the same states on each transition. Thus, with probability 1− ϵ, the goal is achievable under MPI-SAM
using the plan.

4 Extended PI-SAM (EPI-SAM)

The PI-SAM algorithm is easy to implement and outputs an action model that can be used by any
planner designed to solve classical planning problems. Yet, it only uses transitions where there are
literals that are observed in both pre- and post-states. For example, consider an action a, a literal ℓ,
and three transitions ⟨s1, a, s′1⟩, ⟨s2, a, s′2⟩, and ⟨s3, a, s′3⟩ where ℓ is not observed in any state except
s1, s′2, and s′3 in which its values are false, false, and true, respectively. Since ℓ was observed to be
false in s1, we can deduce it is not a precondition of a (Rule 1 in Observation 3.2). Since ℓ is never
observed in both pre- and post-states of the same transition, the PI-SAM algorithm still does not
remove ℓ from pre(a). However, considering the value of ℓ in s′2 and s′3, we can deduce that neither
ℓ nor ¬ℓ are effects of a (Rule 2 and 3 in Observation 3.2). Thus, it is possible to apply a in states
without ℓ and maintain our safety property. Next, we propose the Extended PI-SAM (EPI-SAM)
learning algorithm, which is able to make such inferences.

EPI-SAM relies on several key observations. The first observation is that learning of the effects of
actions and learning their preconditions can be done separately, because we can never be certain that
a literal is a precondition of an action. The second observation is that limiting the output of EPI-SAM
to a classical planning action model limits the scope of safe model-free planning problems we can
solve. For example, if we observe a trajectory (s0, a1, s1, a2, s2), where s0[ℓ] = false, s2[ℓ] = true,
and ℓ is masked in s1, we cannot discern which action — a1 or a2 — achieved ℓ, but we can learn
that at least one of them has done so. While classical planning action models cannot capture this
knowledge directly, such uncertainty can be compiled into a non-classical planning problem.

Based on these observations, EPI-SAM has the following parts: learning effects, learning precondi-
tions, and compilation to non-classical planning. In the first part (learning effects), EPI-SAM creates
a Conjunctive Normal Form (CNF) formula for each literal ℓ, denoted by CNFeff(ℓ), which describes
conditions for sequences of actions that achieve ℓ in the problems returned by EPI-SAM. The literals
of this CNF are of the form IsEff(ℓ, a), representing whether literal ℓ is an effect of action a. In
the second part (learning preconditions), EPI-SAM creates a set of literals pre(a) for each action
a that describes the preconditions of a in the returned problems. In the third part (compilation to
non-classical planning), EPI-SAM creates a conformant planning problem using the output of the
previous two parts. This conformant planning problem is constructed so that any (strong) solution to
this problem is a safe solution to the actual planning problem. We describe these in detail next.
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Algorithm 2 EPI-SAM: Learning Preconditions
Input :Partially observed trajectories T
Output :Precondition pre(a) for each action a

13 foreach action a do pre(a)← all literals
14 foreach action a, literal ℓ do
15 if ∃ ⟨s, a, s′⟩ ∈ T ∈ T where ¬ℓ ∈ s then
16 Remove ℓ from pre(a)

Continue to the next (a, ℓ) pair
17 Ta,ℓ ← AssumePrecondition(a, ℓ, T ) ; Airr ← ∅

while ∃a′ /∈ Airr where Irrelevant(a′,ℓ,Ta,ℓ) do
18 foreach ⟨s, a′, s′⟩ in T ∈ Ta,ℓ do
19 if s[ℓ] and s′[ℓ] are inconsistent then
20 Remove ℓ from pre(a)

Continue to the next (a, ℓ) pair
21 else
22 if s[ℓ] = ? then s[ℓ]← s′[ℓ]
23 Remove ⟨s, a′, s′⟩ from T
24 end
25 end
26 end
27 end
28 return {pre(a)}a

Learning Effects To learn effects, EPI-SAM extends PI-SAM rules 2 and 3 (Observation 3.2) from
rules over transitions to rules over sub-trajectories. A trajectory T ′ is a sub-trajectory of trajectory T ,
denoted T ′ ⊆ T , if it is a consecutive subsequence of T , i.e., there exists i and j where i < j such
that T ′.s0 = T.si and for every k ∈ {1, . . . , |T ′|} we have T ′.sk = T.si+k and T ′.ak = T.ai+k.
Observation 4.1 (EPI-SAM Rules). For any sub-trajectory T ′ of a trajectory in T that ends in a
state where literal l is not masked, i.e., where T ′.s−1[l] ̸= ?, then

Rule 1 [an effect]. If l ∈ T ′.s−1 and l /∈ T ′.s0 then ∃a ∈ T ′.a that has l as an effect.
Rule 2 [not an effect]. If l ∈ T.s−1 then ¬l is not an effect of T ′.a−1

Rule 3 [not deleted].If l ∈ T ′.s−1 and ¬l is an effect of an action T ′.ai then ∃i′ > i that has l as
an effect.

Algorithm 1 lists the pseudo-code for effects learning in EPI-SAM, which builds on the EPI-SAM
rules in Observation 4.1. Initially, CNFeff(ℓ) contains a single clause for every action a that ensures
the effects of a are mutually exclusive (line 2). Then, we implement the EPI-SAM rules by going
over every trajectory T and every state T.si in which ℓ is not masked. For each such pair of trajectory
and state, we extract the longest sub-trajectory T ′ ⊆ T that ends in T.si and where ℓ is masked in all
other states in T ′ (line 5). If a literal ℓ was false at the first state of T ′, then we add to CNFeff(ℓ) a
clause to ensure that ℓ is an effect of some action ai (EPI-SAM Rule 1). Then, we add a clause to
ensure that ¬ℓ is not an effect of the last action in T ′ (EPI-SAM Rule 2). Finally, we add a clause to
ensure that if ¬ℓ was an effect of any action a ∈ T ′.a then some action in T ′ after that action must
have had ℓ as an effect (EPI-SAM Rule 3).

Learning Preconditions EPI-SAM starts by assuming for every action a that it has all literals as
preconditions. Then, it removes a literal l from the set of preconditions of an action a if and only if
assuming l is a precondition of pre(a) is inconsistent with T . There are two possible ways in which
the assumption that l is a precondition of a can be inconsistent with the observations: (1) there is a
transition ⟨s, a, s′⟩ in T where s[l] = false, and (2) no set of action effects is consistent with T when
we additionally set s[l] = true for every transition ⟨s, a, s′⟩ in T . The former corresponds to PI-SAM
Rule 1, which can be easily verified in linear time. The latter can be checked by setting s[l] = true in
the relevant transitions, running EPI-SAM’s effect-learning part (Algorithm 1) on the resulting set of
trajectories, and checking if the resulting CNF is satisfiable. This check can be done by calling any
SAT solver. Fortunately, it is also possible to perform this satisfiability check in polynomial time.
This is because assumptions about which action achieves literal l are independent of any assumption
about which actions achieve any other literal except ¬l.3

3This independence fails when conditional effects are allowed.
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Algorithm 2 lists the pseudo-code of EPI-SAM’s precondition learning part. Like PI-SAM, EPI-SAM
initially assumes that the preconditions of every action include all literals. Then, EPI-SAM iterates
over every pair of action a and literal ℓ to check if ℓ can be removed from the set of preconditions
assumed for a. The first way EPI-SAM attempts to remove ℓ from pre(a) is by checking if it violates
PI-SAM Rule 1 (lines 15-16). The second way is by using a proof-by-contradiction approach,
checking if assuming ℓ is a precondition of a leads to a contradiction with the observations and
every possible assumption about actions’ effects. EPI-SAM performs this check by performing the
following steps. First, it creates a copy of the set of trajectories T where ℓ is set to be true in every
state where a is applied (the AssumePrecondition call in line 17). This set of modified trajectories is
denoted by Ta,ℓ in Algorithm 2. Then, EPI-SAM iteratively searches for actions that are irrelevant
for the value of ℓ. An action a is said to be irrelevant for the value of ℓ if we can infer that neither ℓ
nor ¬ℓ are effects of a. We do this by invoking PI-SAM Rule 2 for both ℓ and ¬ℓ. That is, action a′

is identified as irrelevant to ℓ if there are two transitions ⟨s1, a′, s′1⟩ and ⟨s2, a′, s′2⟩ where ℓ is not
masked in their post-states and it has different values, i.e., (s′1[ℓ] ̸= ?)∧(s′2[ℓ] ̸= ?)∧(s′1[ℓ] ̸= s′2[ℓ]).
A contradiction is identified if there exists a transition ⟨s, a′, s′⟩ where a′ is an irrelevant action but
the value of ℓ in s and in s′ is inconsistent, i.e., unmasked and different (line 19). If a′ is irrelevant but
the values of s and s′ are consistent, then we propagate the value of s′ to s and remove the transition
⟨s, a′, s′⟩ from Ta,ℓ (lines 22-23). 4

Compilation to Non-Classical Planning Next, EPI-SAM creates a conformant planning problem
ΠSAM based on the outputs of the previous EPI-SAM parts, {CNFeff(ℓ)}ℓ and {prea}a, and the
available knowledge of the underlying planning problem Π. A conformant planning problem is
defined by a tuple ⟨F,O,A, I,G⟩ where F , A, I , and G are the set of fluents, actions, initial state,
and goals, as in a classical planning problem, except that A may include non-deterministic and
conditional effects, and I is a set of possible initial states defined by a formula over F . O is the
subset of fluents in F that are observable. The set of fluents in ΠSAM includes all fluents in Π and
an additional fluent fIsEff(a,ℓ) for every action a and literal ℓ. All fluents from Π are observable
in ΠSAM and all others are not. The initial state formula in ΠSAM sets the values of all observable
fluents according to their initial values in Π. In addition, it includes all the clauses in the CNFs
returned by EPI-SAM ({CNFeff(ℓ)}ℓ), replacing every literal IsEff(a, ℓ) with the corresponding fluent
fIsEff(a,ℓ). The action model of ΠSAM includes all actions observed in T . For each action a, we set its
preconditions to the set of preconditions learned for it by EPI-SAM’s learning preconditions part,
pre(a). All the effects of a are conditional effects. A conditional effect of an action is an effect (i.e.,
a partial state) that is only applied if a specified condition holds. For each action a and literal ℓ, we
add a conditional effect such that if fIsEff(a,ℓ) is true then ℓ is an effect of a. Note that conditional
effects are supported by many classical and conformant planners [Bonet, 2010, Grastien et al., 2017].
If the agent executing the plan can observe the values of fluents during execution and react, then
the above compilation can be used almost as-is to construct a contingent planning problem instead
of a conformant planning problem. The output of a contingent planning algorithm is a plan tree,
branching over the observed values during execution, which can be more efficient than the linear plan
returned for the respective conformant planning problem.

Theoretical Properties Next, we analyze EPI-SAM theoretically, showing that it is safe, runs in
polynomial time, and it is the strongest algorithm for solving safe model-free planning problems,
in the sense that any algorithm able to solve a problem that cannot be solved by EPI-SAM cannot
also be safe. Throughout this analysis, we denote by A∗ the action model of the underlying problem,
and denote by preA(a) and effA(a) the set of preconditions and effects, respectively, of an action
a according to an action model A. Observe that every classical action model A corresponds to an
assignment σA to the formula Φeff =

∧
ℓ CNFeff(ℓ), by setting IsEff(ℓ, a) to true if ℓ is an effect of a

for each literal ℓ and action a. Similarly, every satisfying assignment of Φeff describes the effects of a
classical action model. Lemmas and theorems given below either without a proof or with a proof
sketch are formally proven in the appendix.
Lemma 4.2. If a classical action model A is consistent with T then σA is a satisfying assignment of
Φeff. Conversely, every satisfying assignment σ to Φeff describes the effects of at least one classical
action model that is consistent with T .
Lemma 4.3. For every action a in ASAM and literal ℓ, it holds that ℓ ∈ preASAM

(a) if and only if there
exists an action model A consistent with T where ℓ ∈ preA(a).

4If ∃ ⟨s′, a′′, s′′⟩ ∈ T , then removing ⟨s, a′, s′⟩ implicitly adds the transition ⟨s, a′′, s′′⟩.
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Domain Algorithm η = 0.3 η = 0.1
|T | P(pre) R(pre) P(eff ) R(eff ) T(sec) |T | P(pre) R(pre) P(eff ) R(eff ) T(sec)

Blocks FAMA 3 0.90 0.90 1.00 0.89 13 6 0.90 0.85 0.90 0.85 60
(5,4,2,2) PI-SAM 3 1.00 0.90 1.00 0.95 9 6 1.00 0.83 1.00 0.85 43

EPI-SAM* 3 1.00 0.92 1.00 0.95 - 6 1.00 0.85 1.00 0.88 -
Depot FAMA 5 0.80 0.85 0.90 1.00 17 8 0.80 0.80 0.90 1.00 60
(6,5,4,2) PI-SAM 5 1.00 0.85 1.00 1.00 12 8 1.00 0.82 1.00 1.00 53

EPI-SAM* 5 1.00 0.85 1.00 1.00 - 8 1.00 0.83 1.00 1.00 -
Ferry FAMA 3 0.85 1.00 1.00 1.00 9 6 0.80 1.00 0.85 1.00 35
(5,3,2,2) PI-SAM 3 1.00 1.00 1.00 1.00 5 6 1.00 0.94 1.00 0.90 27

EPI-SAM* 3 1.00 1.00 1.00 1.00 - 6 1.00 0.95 1.00 0.90 -
Floortile FAMA 5 0.84 0.80 0.79 0.80 18 9 0.87 0.82 0.80 0.83 60
(10,7,2,4) PI-SAM 5 1.00 0.87 1.00 0.87 15 9 1.00 0.85 1.00 0.85 50

EPI-SAM* 5 1.00 0.89 1.00 0.90 - 9 1.00 0.87 1.00 0.87 -
Gripper FAMA 5 1.00 1.00 1.00 1.00 8 10 1.00 1.00 1.00 1.00 30
(4,3,2,3) PI-SAM 5 1.00 1.00 1.00 1.00 5 10 1.00 1.00 1.00 1.00 24

EPI-SAM* 5 1.00 1.00 1.00 1.00 - 10 1.00 1.00 1.00 1.00 -
Hanoi FAMA 1 0.85 1.00 1.00 1.00 1 1 0.81 1.00 1.00 1.00 60
(3,1,2,3) PI-SAM 1 1.00 1.00 1.00 1.00 1 1 1.00 1.00 1.00 1.00 15

EPI-SAM* 1 1.00 1.00 1.00 1.00 - 1 1.00 1.00 1.00 1.00 -
Npuzzle FAMA 1 1.00 1.00 1.00 1.00 1 1 0.83 1.00 1.00 1.00 23
(3,1,2,3) PI-SAM 1 1.00 1.00 1.00 1.00 1 1 1.00 1.00 1.00 1.00 17

EPI-SAM* 1 1.00 1.00 1.00 1.00 - 1 1.00 1.00 1.00 1.00 -
Parking FAMA 6 0.85 0.85 1.00 1.00 13 8 0.83 0.85 0.90 1.00 60
(5,4,2,3) PI-SAM 6 1.00 0.88 1.00 1.00 8 8 1.00 0.83 1.00 1.00 49

EPI-SAM* 6 1.00 0.88 1.00 1.00 - 8 1.00 0.85 1.00 1.00 -
Sokoban FAMA 2 1.00 1.00 1.00 1.00 8 5 1.00 1.00 1.00 1.00 40
(4,2,3,5) PI-SAM 2 1.00 1.00 1.00 1.00 6 5 1.00 1.00 1.00 1.00 33

EPI-SAM* 2 1.00 1.00 1.00 1.00 - 5 1.00 1.00 1.00 1.00 -
Transport FAMA 5 0.77 0.80 0.80 0.90 14 9 0.80 0.80 0.84 0.90 60
(5,3,2,5) PI-SAM 5 1.00 0.83 1.00 0.90 9 9 1.00 0.80 1.00 0.90 48

EPI-SAM* 5 1.00 0.85 1.00 0.92 - 9 1.00 0.83 1.00 0.92 -

Table 1: Empirical precision and recall results under random masking with η = 0.1 and η = 0.3.

Theorem 4.4. EPI-SAM returns a safe plan.

Theorem 4.5 (Strength). The problem ΠSAM returned by EPI-SAM is the strongest safe problem
formulation, in the sense that if an action model A is not safe with respect to ΠSAM, then there exists
an action model A′ consistent with T such that A is not safe with respect to A′.

Theorem 4.6. Given a set of trajectories T , EPI-SAM runs in time O
(
|A| · |F| ·

∑
a∈A |T (a)|

)
.

5 Experiments

We evaluate our algorithms’ performance experimentally on the IPC [McDermott, 2000] domains
listed in Table 1. The tuple listed under each domain details the number of lifted fluents, lifted actions,
maximal arity of fluents, and maximal arity of actions in that domain. For each domain, we generated
problems using the generators provided by the IPC learning tracks and solved them using the true
action model and an off-the-shelf planner. In the resulting trajectories, we masked some states using
random masking with masking probability η = 0.1 and η = 0.3.

Metrics A common approach to comparing action models is by computing the precision and recall
of the learned action model with respect to which literals appear in the real action model. However,
this syntactic measure has three limitations. First, it requires the evaluated action models to use
the same fluents and action names. Second, it gives the same “penalty” for every mistake in the
learned model. Third, domains may have distinct but semantically-equivalent action models. For
example, in Npuzzle, we could have a precondition that the tile we are sliding into the empty position
is not an empty position. This precondition is not necessary, as there is only ever one empty position
in any puzzle. Thus, either formulation of the domain is adequate for planning purposes, but a
syntactic measure of correctness will penalize one of the two formulations. Instead, we introduce and
use empirically-based precision and recall measures, which are based on comparing the number of

|T | = 3 |T | = 5 |T | = 7
PI-SAM FAMA PI-SAM FAMA PI-SAM FAMA

P(pre) 1.00 0.90 1.00 0.87 1.00 0.90
R(pre) 0.90 0.90 0.92 0.88 0.93 0.90
P(eff) 1.00 1.00 1.00 0.95 1.00 1.00
R(eff) 0.95 0.89 0.96 0.87 0.96 0.90

SAM PI-SAM
Alg. (η = 1.0) (η = 0.3) (η = 0.1)

Hanoi 1 10 95
Npuzzle 1 9 92
Ferry 4 42 355
Gripper 5 51 476
Sokoban 6 55 563

Table 2: (Left) Results on Blocks with η = 0.3. (Right) # of transitions needed to learn the preconditions
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transitions that are valid or invalid according to the learned action model (Â) and the true action model
(A). The empirical precision and recall measures are defined according to the number of true/false
positives/negatives (TP,FP,TN,FN) but compute TP, FP, TN, and FN differently. For preconditions, TP
is the number of transitions that are valid according to both Â and A, FP is the number of transitions
that are valid according to Â but not A, TN is the number of transitions that are invalid according to
Â and A, and FN is the number of transitions that are valid according to A and but not Â. TP, FP, TN,
and FN for effects are computed similarly.

Results and Discussion We performed experiments using PI-SAM and EPI-SAM*, a simplified
(unsafe) version of EPI-SAM. Recall that EPI-SAM does not return a classical action model, and the
conformant planning formulation it produces involves explicitly reasoning about the various possible
states that could occur in trajectories using the uncertain action model. As such, it does not make
sense to apply state-wise measures of precision and recall directly to EPI-SAM. EPI-SAM* uses
unit propagation to determine the effects of every action in the CNF returned by Algorithm 1, by
checking if assuming literal l is an effect of action a if the CNF formula extended by ¬IsEff(a, ℓ) is
satisfiable. EPI-SAM* outputs a classical action model instead of a conformant plan. Nevertheless,
observe that the inferences obtained by unit propagation are sound and are a subset of those obtainable
in EPI-SAM’s formulation. Thus, since EPI-SAM is safe, the precision and recall for EPI-SAM*
provide a lower bound on the performance of EPI-SAM.

As a baseline, we compared our algorithms to FAMA [Aineto et al., 2019], a modern algorithm for
learning action models under partial observability. We ran those three algorithms on our benchmark
domains. For each domain, we computed the empirical precision (P) and recall (R) separately for
the preconditions (pre) and effects (eff ). Table 1 lists the results of our experiments, averaged over
three independent runs. Columns “P (pre)”, “R(pre)”, “P (eff)”, and “R(eff)” show the empirical
precision and recall for preconditions and effects for every evaluated algorithm. |T | is determined as
the point that FAMA started decreasing performance (i.e. precision-recall) or reaching the time limit.
We limited the running time of each algorithm to 60 seconds. Column “T” is the runtime of each
algorithm in seconds. Since EPI-SAM* is unsafe, we do not report its runtime. Since PI-SAM and
EPI-SAM*, by definition, never remove a literal that is an actual precondition from the preconditions
or add a literal that is not an actual effect, their empirical precision is perfect for both preconditions
and effects, as opposed to FAMA, which does not always achieve this. PI-SAM tends to have a
higher empirical recall under lower masking probability (high η), while FAMA tends to obtain higher
recall under higher masking probability (low η). EPI-SAM* generally outperforms both. Note that
FAMA’s performance may decrease as more input is given, while PI-SAM cannot. To demonstrate
this, we picked a domain (Blocks) and recorded their performance as given an increasing number
of trajectories as input. The results are shown in Table 2(left). We also compared the number of
transitions required to correctly learn the preconditions (i.e., P (pre) and R(pre) = 1.0) when using
PI-SAM with η ∈ {0.1, 0.3} and when having full observability and using SAM. The results are
shown in Table 2 (right). As expected, the number of transitions required scales inversely with the
random masking probability η2, which verifies the tightness of the bound in Theorem 3.5. The source
code of the experiments will be made available upon acceptance.

6 Conclusion and Future Work

We proposed two algorithms for learning safe action models in domains with partial observability.
The first algorithm, PI-SAM, extends the SAM learning algorithm [Juba et al., 2021] to partially
observable domains and outputs classical planning action models. The second algorithm, EPI-
SAM, provides the outputs in the form of conformant planning problems, but can work on general
observations. In practice, we can choose either PI-SAM or EPI-SAM, depending on the specific
observation sets (e.g., whether they satisfy the bounded concealment assumption or not). For future
work, we aim to extend safe action model learning to more complicated domains, such as domains
with stochastic effects, numeric state variables, etc.

References
Diego Aineto, Sergio Celorrio, and Eva Onaindia. Learning action models with minimal observability.

Artificial Intelligence, 275:104–137, 05 2019.

9



Alexandre Albore, Héctor Palacios, and Hector Geffner. A translation-based approach to contingent
planning. In International Joint Conference on Artificial Intelligence (IJCAI), 2009.

Blai Bonet. Conformant plans and beyond: Principles and complexity. Artificial Intelligence, 174(3):
245–269, 2010.

Ronen Brafman and Guy Shani. A multi-path compilation approach to contingent planning. In AAAI
Conference on Artificial Intelligence, 2012.

Stephen Cresswell and Peter Gregory. Generalised domain model acquisition from action traces. In
International Conference on Automated Planning and Scheduling (ICAPS), pages 42–49, 2011.

Stephen N Cresswell, Thomas L McCluskey, and Margaret M West. Acquiring planning domain
models using locm. The Knowledge Engineering Review, 28(2):195–213, 2013.

Alban Grastien, Enrico Scala, and Fondazione Bruno Kessler. Intelligent belief state sampling for
conformant planning. In IJCAI, pages 4317–4323, 2017.

Jörg Hoffmann and Ronen Brafman. Contingent planning via heuristic forward search with implicit
belief states. In ICAPS, volume 2005, 2005.

Brendan Juba and Roni Stern. Learning probably approximately complete and safe action models for
stochastic worlds. In AAAI Conference on Artificial Intelligence, 2022.

Brendan Juba, Hai S. Le, and Roni Stern. Safe learning of lifted action models. In International
Conference on Principles of Knowledge Representation and Reasoning (KR), pages 379–389,
2021.

Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W Durham, TK Satish Kumar, and Sven Koenig.
Lifelong multi-agent path finding in large-scale warehouses. In International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), pages 1898–1900, 2020.

Stephen M Majercik and Michael L Littman. Contingent planning under uncertainty via stochastic
satisfiability. Artificial Intelligence, 147(1):119–162, 2003.

Drew McDermott. The 1998 AI planning systems competition. AI Magazine, 21(2):13, June 2000.

Loizos Michael. Partial observability and learnability. Artificial Intelligence, 174(11):639–669, 2010.

Argaman Mordoch, Daniel Portnoy, Roni Stern, and Brendan Juba. Collaborative multi-agent
planning with black-box agents by learning action models. In Learning with Strategic Agents
(LSA) Workshop in the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2022.

Roni Stern and Brendan Juba. Efficient, safe, and probably approximately complete learning of action
models. In the International Joint Conference on Artificial Intelligence (IJCAI), pages 4405–4411,
2017.

Kangheng Wu, Qiang Yang, and Yunfei Jiang. ARMS: An automatic knowledge engineering tool for
learning action models for ai planning. The Knowledge Engineering Review, 22(2):135–152, 2007.

Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan examples using
weighted MAX-SAT. Artificial Intelligence, 171(2-3):107–143, 2007.

10



Algorithm 3 Partial Information SAM Learning Algorithm (PI-SAM)
Input :Partially Observed Trajectories T
Output :(pre, eff) for a safe action model

29 foreach action a do
30 eff(a)← ∅

pre(a)← all parameter-bound literals
foreach transition ⟨s, a, s′⟩ do

31 foreach literal l ∈ pre(a) do
32 if ¬l is unmasked and ¬l ∈ s then
33 Remove l from pre(a)
34 end
35 foreach literal l ∈ s′ \ s that is unmasked in s and in s′ do
36 Add l to eff(a)
37 end
38 end
39 end
40 Return ⟨pre, eff⟩

7 Supplementary Material

7.1 PI-SAM Sample Complexity Analysis

Definition 7.1 (Bounded Concealment Assumption). A masking function satisfies the η-bounded
concealment assumption in an environment if for every literal that is not a precondition of an action,
when that action is taken and the literal is false, then the corresponding fluent is observed in both the
pre- and post-states with probability at least η.
Theorem 7.2. Under η-bounded concealment, given

m ≥ 1

ϵ · η
(2 ln 3|A|.|F|+ ln

1

δ
)

trajectories sampled from TD, with probability at least 1 − δ, PI-SAM Learning Algorithm (Algo-
rithm 3) returns a safe action model MPI-SAM such that a problem drawn from PD is not solvable
with MPI-SAM with probability at most ϵ.

To prove the theorem, we use the following definition of an adequate action model:
Definition 7.3 (Adequate). An action model M is ϵ-adequate if, with probability at most ϵ, a
trajectory T sampled from TD contains an action triplet ⟨s, a, s′⟩ where either

1. s does not satisfy preM (a) or
2. there is a literal in s′ \ s but not in effM (a).

Proof of Theorem 7.2. We first argue that PI-SAM returns an ϵ-adequate action model with probabil-
ity 1− δ: indeed, consider any action model M̃ that is not ϵ-adequate: then either

1. with probability at least ϵ, trajectories sampled from TD contain a triplet ⟨s, a, s′⟩ for which
s does not satisfy preM̃ (a), or

2. with probability at least ϵ, trajectories sampled from TD contain a triplet ⟨s, a, s′⟩ for which
there is a literal in s′ \ s but not in effM̃ (a).

In the first case, note that since ⟨s, a, s′⟩ is a valid transition under the true action model M∗, the
literal for which preM̃ (a) is violated cannot be in preM∗(a). Therefore, by η-bounded concealment,
the violated precondition literal in preM̃ (a) is observed with probability at least η when such a
transition occurs; thus, with probability at least η · ϵ overall, the literal is observed and deleted from
preMPI-SAM

(a). Since PI-SAM never adds precondition literals back, this ensures that MPI-SAM ̸= M̃ .

Similarly, in the second case, if l ∈ s′ \ s, l ∈ effM∗(a). Thus, η-bounded concealment ensures that l
is observed in both s and s′ with probability at least η when such a transition occurs. So, overall with
probability η · ϵ, the trajectory contains a triple ⟨s, a, s′⟩ where l is observed and l ∈ s′ \ s. When
this happens, l is added to effPI-SAM(a), and we again get MPI-SAM ̸= M̃ since PI-SAM never removes
literals from the effects.
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Algorithm 4 EPI-SAM: Learning Effects
Input :Partially observed trajectories T
Output :CNFeff(ℓ) for each literal l

1 foreach literal ℓ do
2 CNFeff(ℓ)← ∅

foreach action a do
3 Add to CNFeff(ℓ): {¬IsEff(ℓ, a) ∨ ¬IsEff(¬ℓ, a)}
4 end
5 foreach trajectory T ∈ T do
6 foreach index i ∈ {1, . . . , |T |} where ℓ ∈ T.si do
7 T ′ ← max. prefix of T.si where ℓ is masked

if ℓ /∈ T ′.s0 then
8 Add to CNFeff(ℓ):

{
IsEff(ℓ, T ′.a1) ∨ · · · ∨ IsEff(ℓ, T ′.a|T ′|)

}
9 Add to CNFeff(ℓ): {¬IsEff(¬ℓ, T ′.a|T ′|)}

foreach j = 1 to |T ′| − 1 do
10 Add to CNFeff(ℓ): {¬IsEff(¬ℓ, T ′.aj) ∨ IsEff(ℓ, T ′.aj+1) ∨ · · · ∨ IsEff(ℓ, T ′.a|T ′|)}
11 end
12 end
13 end
14 end
15 return {CNFeff(ℓ)}ℓ

Thus, in either case, the probability of obtaining a trajectory that ensures that M̃ is not output is at
least η · ϵ on each example. Since the examples are drawn independently, the probability that we do
not obtain such an example after m draws is at most (1− η · ϵ)m ≤ e−η·ϵ·m. For m as stated in the
claim, this is at most

e−2 ln 3|A|.|F|−ln 1
δ

=
δ

32|A|.|F| .

Note that there are only 32|A|.|F| possible consistent sets of fluents for the action a (for each fluent,
each precondition or effect will either contain that fluent, or its negation, or neither of them), and
hence 32|A|.|F| possible action models, given by effects and preconditions for each action. There are,
in particular, at most this many action models that are not ϵ-adequate. So, by a union bound over all
such action models, the probability that PI-SAM returns any of them is at most δ.

We note that PI-SAM only deletes a literal from pre(a) when a triplet ⟨s, a, s′⟩ is observed where l is
false in s, and hence cannot be a precondition of a in M∗. Thus, whenever action a can be taken in
some state under MPI-SAM, it can also be taken in M∗. Conversely, when MPI-SAM is ϵ-adequate, we
have that with probability at least 1− ϵ the sequence of actions appearing in the trajectory associated
with a draw from TD is a valid plan in MPI-SAM: the first condition ensures that the preconditions
of MPI-SAM allow the given action to be executed, and the second condition guarantees that MPI-SAM
obtains the same states on each transition. Thus, with probability 1− ϵ, the goal is achievable under
MPI-SAM using the plan.

7.2 EPI-SAM Theoretical Properties with Proofs

Observation 7.4 (EPI-SAM Rules). For any sub-trajectory T ′ of a trajectory in T that ends in a
state where literal l is not masked, i.e., where T ′.s−1[l] ̸= ?, then

• Rule 1 [an effect]. If l ∈ T ′.s−1 and l /∈ T ′.s0 then ∃a ∈ T ′.a that has l as an effect.
• Rule 2 [not an effect]. If l ∈ T.s−1 then ¬l is not an effect of T ′.a−1

• Rule 3 [must not delete]. If l ∈ T ′.s−1 and ¬l is an effect of some action T ′.ai then ∃i′ > i
that has l as an effect.

Next, we show that EPI-SAM is safe, runs in polynomial time, and it is the strongest algorithm for
solving safe model-free planning problems, in the sense that any algorithm able to solve a problem
that cannot be solved by EPI-SAM cannot also be safe. Throughout this analysis, we denote by A∗ the
action model of the underlying problem, and denote by preA(a) and effA(a) the set of preconditions
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Algorithm 5 EPI-SAM: Learning Preconditions
Input :Partially observed trajectories T
Output :Precondition pre(a) for each action a

16 foreach action a do pre(a)← all literals
17 foreach action a, literal ℓ do
18 if ∃ ⟨s, a, s′⟩ ∈ T ∈ T where ¬ℓ ∈ s then
19 Remove ℓ from pre(a)

Continue to the next (a, ℓ) pair
20 Ta,ℓ ← AssumePrecondition(a, ℓ, T )

Airr ← ∅
while ∃a′ /∈ Airr where Irrelevant(a′,ℓ,Ta,ℓ) do

21 foreach ⟨s, a′, s′⟩ in T ∈ Ta,ℓ do
22 if s[ℓ] and s′[ℓ] are inconsistent then
23 Remove ℓ from pre(a)

Continue to the next (a, ℓ) pair
24 else
25 if s[ℓ] = ? then s[ℓ]← s′[ℓ]
26 Remove ⟨s, a′, s′⟩ from T
27 end
28 end
29 end
30 end
31 return {pre(a)}a

and effects, respectively, of an action a according to an action model A. Observe that every classical
action model A corresponds to an assignment σA to the formula Φeff =

∧
ℓ CNFeff(ℓ), by setting

IsEff(ℓ, a) to true if ℓ is an effect of a for each literal ℓ and action a. Similarly, every satisfying
assignment of Φeff describes the effects of a classical action model.

Lemma 7.5. If a classical action model A is consistent with T then σA is a satisfying assignment of
Φeff. Conversely, every satisfying assignment σ to Φeff describes the effects of at least one classical
action model that is consistent with T .

Sketch of proof. Consider the clausal encoding of the STRIPS axioms, instantiated at each step of each
trajectory in T . This CNF, denoted CNFT is defined over variables of the form IsEff(l, a), IsPre(l, a),
and State(l, i, T ), representing that l is a precondition of a, l is an effect of a, and l = true in the
ith state of trajectory T , respectively. This CNF includes the following clauses for every transition
⟨si−1, ai, si⟩ in every trajectory T ∈ T :

• (C1) ¬IsPre(l, ai) ∨ State(l, i− 1, T )
• (C2) ¬IsEff(l, ai) ∨ State(l, i, T )
• (C3) IsEff(l, ai) ∨ ¬State(l, i− 1, T ) ∨ State(l, i, T )

By construction, a satisfying assignment to CNFT corresponds to the effects of an action model and
the complete trajectories for this action model, given the values observed in the trajectories of T .
Moreover, the action model with these effects and no preconditions is consistent with T .

Let CNFT (ℓ) be the formula containing all the clauses in CNFT containing literals for a single fluent
literal ℓ. Note that the clauses of CNFT only contain literals for a single fluent literal, so CNFT
is satisfiable iff for every ℓ the formula CNFT (ℓ) is satisfiable. The final part of our proof will
show that the CNF returned by EPI-SAM, CNFeff(ℓ), is satisfiable iff CNFT (ℓ) is satisfiable. To this
end, we rely on the refutation-completeness of resolution and examine which clauses may appear
in a refutation of CNFT (ℓ). The IsPre(a, ℓ) literals, appearing only negatively, cannot appear in a
refutation. Thus, any refutation will be based on clauses of types C2 and C3. Two types of proofs can
be created from such clauses. The first requires observing the value of ℓ in enough states such that
we have contradicting unit clauses with IsEff literals for some action ai. That is, we have transitions
⟨si, ai, s′i⟩ and

〈
sj , ai, s

′
j

〉
where l is observable in states s′i, sj−1, and sj with values false, true, and

false, respectively. This option is implemented in line 19 of Algorithm 5. The second type of proof
requires using resolution to eliminate at least one State literal. Reordering the applications of the
resolution rule on these literals to the beginning of the proof, we see that we must create clauses
that correspond to consecutive runs of unobserved literals using the resolution rule on clauses of
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type C3 for each step, beginning with either an observed literal or with using clauses of type C2 to
eliminate the first State(ℓ, i, T ) literal. These are, respectively, the clauses of CNFeff(l) created on
lines 8 and 10 in Algorithm 4.

Lemma 7.6. For every action a in ASAM and literal ℓ, it holds that ℓ ∈ preASAM
(a) if and only if there

exists an action model A consistent with T where ℓ ∈ preA(a).

Proof. We first prove that if EPI-SAM removes a literal ℓ from pre(a), then there exists a transition
⟨s, a, s′⟩ in T where ℓ is false, and hence cannot be in preA∗(a). EPI-SAM removes ℓ from pre(a)
in two places in Algorithm 5: line 19 and line 23. The correctness of line 19 is immediate: if ℓ is
observed to be false in a state where a has been applied then it cannot be a precondition of a (PI-SAM
Rule 1). Before removing a precondition due to line 23, EPI-SAM creates a set of trajectories Tℓ,a
that assumes ℓ was true whenever a was taken, and detects the set of actions Airr that cannot affect
the value of ℓ in any action model consistent with Tℓ,a. Because of the frame axioms, the value of ℓ
gets propagated in any transition that includes an action in Airr. ℓ is only removed in line 23 if this
propagation results in a state where ℓ has contradicting values. As this occurs for any action model
consistent with Tℓ,a, this implies that ℓ cannot be true in every state where a was applied, and thus
cannot be a precondition of a in any action model consistent with T .

Next, we prove that if ℓ has not been deleted from pre(a) by EPI-SAM, then there exists an action
model A consistent with T where ℓ ∈ preA(a). Consider the subset of Airr that includes only actions
that have been in a transition where the value of ℓ is not masked. For each action a′ in this set, we are
guaranteed that this value of ℓ is always the same, denoted v(a′, ℓ). Otherwise a′ would have been
added to Airr. The action model created by assigning v(a′, ℓ) as an effect of a′ for each of these
actions is consistent with Tl,a. Therefore, there exists an action model where ℓ is a precondition of a
that is consistent with T .

Theorem 7.7. EPI-SAM returns a safe action model.

Proof. Let A∗ denotes the action model of the underlying planning problem. Due to Lemma 7.6,
every action applicable according to ASAM is also applicable according to A∗. Consider a goal G and
a (strong) plan to achieve it πSAM created by a conformant planner given ASAM. This means πSAM
achieves G for any action model that satisfies the {CNFℓ}ℓ. Due to Lemma 7.5, we know that this
means πSAM achieves G according to any action model consistent with T . Thus, πSAM also achieves
G according to A∗, as required.

Theorem 7.8 (Strength). The action model ASAM returned by EPI-SAM is the strongest safe action
model, in the sense that if an action model A is not safe with respect to ASAM, then there exists an
action model A′ consistent with T such that A is not safe with respect to A′.

Proof. By contradiction, assume that Abad is an action model that is not safe with respect to ASAM,
but it is safe with respect to any action model consistent with T . This means that either there exists
a literal ℓ that is in preASAM

but not in preAbad
or a plan πbad that achieves some goal G according

to Abad but not according to ASAM. The first condition cannot hold due to Lemma 7.6: for any
precondition assumed by ASAM there exists an action model consistent with T that requires it. For
the second condition, suppose that there is a plan under Abad that is allowed by the EPI-SAM action
model, but for which EPI-SAM does not achieve the goal. This means (by Lemma 7.5) that there was
some action model consistent with T under which the goal was not achieved. The other action model
is therefore not safe.

Theorem 7.9. Given a set of trajectories T , the EPI-SAM learning runs in time

O
(
|A| · |F| ·

∑
a∈A

|T (a)|
)

where A is the set of actions, F is the set of literals.

Proof. The EPI-SAM algorithm consists of two parts: learning the effects and learning the precondi-
tions. For learning the effects (algorithm 4), the algorithm has to iterate over all literals to create a
CNF formula for each literal. The first inner loop (line 3-4) iterates through all actions to add mutually
exclusive clauses for each action to the CNF, while the second inner loop (line 5-12) goes through
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every transition in each trajectory to add clauses to the CNF based on Rule 1, 3 of Observation 7.4.
Thus, the total time complexity of Algorithm 4 is O

(
|F|(|A|+

∑
a∈A |T (a))|

)
.

The second part, learning the preconditions (Algorithm 5), iterates over all actions and literals to
build the precondition (in form of conjunction) for each action. In each inner loop, each literal in each
transition of each trajectory is examined O(1) times—in the first loop we create one clause for each
step, and it is set to true or deleted at most once in the second loop. We can perform the bookkeeping
in the second loop in linear time overall by suitable data structures: we maintain a linked list over the
occurrences of a given action, all with a reference to a common structure for the action that records
which settings of l appear in the post-state, and we record each of the unobserved runs of a literal
with a linked list. Then checking if an action should be deleted takes O(1) time and deleting the
occurrences of an action takes O(1) time per occurrence. The data structures likewise take O(1) time
per each occurrence of a literal to initialize. The algorithm has to go through every transition in each
trajectory to build the data structures and perform the check/delete operations. Thus, the total time
complexity of Algorithm 5 is O

(
|A| · |F| ·

∑
a∈A |T (a)|

)
.
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