
Teaching Robots with Show and Tell: Using
Foundation Models to Synthesize Robot Policies from

Language and Visual Demonstrations

Michael Murray Abhishek Gupta Maya Cakmak
Paul G. Allen School of Computer Science and Engineering

University of Washington
{mmurr, abhgupta, mcakmak}@cs.washington.edu

Abstract: We introduce a modular, neuro-symbolic framework for teaching
robots new skills through language and visual demonstration. Our approach,
SHOWTELL, composes a mixture of foundation models to synthesize robot ma-
nipulation programs that are easy to interpret and generalize across a wide range
of tasks and environments. SHOWTELL is designed to handle complex demonstra-
tions involving high level logic such as loops and conditionals while being intu-
itive and natural for end-users. We validate this approach through a series of real-
world robot experiments, showing that SHOWTELL out-performs a state-of-the-art
baseline based on GPT4-V, on a variety of tasks, and that it is able to generalize to
unseen environments and within category objects. Supplementary materials and
videos are available on our webpage: https://robo-showtell.github.io

Keywords: learning from demonstration, language model planning, neuro-
symbolic reasoning

1 Introduction

General purpose robots have the potential to enhance productivity and reliability in human-centric,
task-oriented settings such as kitchens, warehouses, and offices, but one of the key challenges to
achieving this potential is that each environment, user, and task combination demands tailored be-
havior from the robot. Programming by Demonstration (PbD) is a popular approach to this chal-
lenge, enabling end-users to program robots for personalized tasks and environments by providing
demonstrations of the desired behavior. However, existing PbD techniques typically require a large
number of demonstrations or are unable to extract high-level task information related to control
flow and action parameterization from the demonstrations. Natural language is another popular
method for personalizing robot behavior, but low-level details can be cumbersome and error prone
to communicate with language alone, and most works assume a fixed set of low-level primitives are
available to be composed by the language instructions, limiting the scale and complexity of tasks
that can be programmed.

Studies in human observational learning show that humans use both language and demonstration
when teaching each other new tasks, with both communication modalities playing important roles
[1, 2]. Language allows us to transmit abstract information, while demonstrations instantiate that
information in concrete examples [3]. Inspired by this insight, we envision a more natural and
intuitive PbD system, where end-users can program robots for personalized tasks and environments
by flexibly using both language and visual demonstrations.

In this work, we propose SHOWTELL – a system that enables end-users to teach robots new tasks
the same way they would teach another person, by visually demonstrating and verbally describing
what they are doing as they demonstrate. SHOWTELL is modular, composing a set of pre-trained
large language models (LLMs) and vision-language models (VLMs) to synthesize robot policies that

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://robo-showtell.github.io

can jointly reason about the language and visual components of the demonstrations and execute the
demonstrated behavior in novel scenes. SHOWTELL is designed to be generalizable across a wide
range of tasks and environments, and to be intuitive and natural for end-users to use, while requiring
only a single demonstration with no additional training or fine-tuning.

While both language and demonstration are traditionally popular interfaces for task planning, there
has been comparatively little attention paid to combining the two. Most existing works attempt to
train end-to-end models, an approach that is difficult to scale because it requires enough training
examples to implicitly learn to understand all demonstrations and perform all tasks within the for-
ward pass of a neural network. In contrast, our approach requires no additional training, utilizing
the vast knowledge encoded in off-the-shelf foundation models. Our approach is neuro-symbolic
in that it aims to combine the strengths of neural networks, which excel at learning from data, with
symbolic reasoning, which excels at manipulating symbols and logical rules, to create a more robust
robot PbD system that is modular, allowing us to scale to new tasks by composing existing mod-
ules in novel ways, and also also interpretable, allowing us to understand the reasoning behind the
generated policies and to easily modify or extend them.

Through real-world robot experiments, we validate our approach, showing that SHOWTELL is able
to synthesize robot policies from language and visual demonstrations including tasks that require
high level logic such as conditions, iteration, and segmentation. We show that our approach out-
performs a state-of-the-art baseline on a variety of tasks, and that it is able to generalize to new
objects and environments, while requiring only a single demonstration with no additional training
or fine-tuning. We believe that our approach has the potential to significantly improve the usability
and performance of robot PbD systems, and to enable robots to learn from demonstrations that are
more natural and intuitive for end-users.

2 Related Work

Programming by Demonstration. Programming by Demonstration, also referred to as Learning
from Demonstration or Imitation Learning, has been the subject of four decades of robotics research
[4, 5]. Approaches are often categorized based on the method of providing demonstrations and in
contrast to methods that require moving the robot (e.g. through teleoperation [6, 7, 8] or kinesthetic
teaching [9, 10, 11]), or the use of specialized demonstration hardware [12], in this work we focus
on programming by passive observation, where the robot is programmed by observing a human
perform the desired behavior [13, 14, 15, 16, 17, 18]. Most existing works attempt to train end-
to-end models, an approach that is difficult to scale because it requires enough training examples
to implicitly learn to understand all demonstrations and perform all tasks within the forward pass
of a neural network. Instead, we propose to leverage the prior knowledge encoded in pre-trained
foundation models to synthesize programs that can both reason about demonstrations and execute
the demonstrated behavior on a robot with novel scenes and objects.

LLMs for Task and Motion Planning. With the advent of large-scale pre-trained language models,
there has been growing interest in using these models for robotics tasks. A large body of work has
focused on planning and reasoning from text-based natural language instructions [19, 20, 21, 22, 23].
These works typically output their plans as a sequence of robot actions, but recent approaches show
the benefits of using LLMs to synthesize code with logical constructs that can be executed by a
robot [24, 25, 26]. While much progress has been made in synthesizing code policies from text-
based instructions, there has been comparatively little work on synthesizing code policies from
visual demonstrations. Wang et al. [27] assume that a demonstration has been converted to a textual
description, and focus on generating policies from the text. In contrast, we focus on generating
policies directly from visual demonstrations. Most similar to our work, Wake et al. [28] propose to
use a VLM to summarize visual demonstrations and generate policies from the resulting summaries.
In contrast, we propose to synthesize programs that can reason about the visual demonstration,
which allows us to handle more complex demonstrations, better align the language with the visual

2

obs = GetObservation()
bottles = DetectObjects("bottle", obs.rgb)
for bottle in bottles:
 targ_seq = TransferContactSequence(contact_seqs[0],
 target_obj_mask=bottle.mask)
 for ee_cfg in targ_seq.ee_configs:
 AdjustGripperWidth(ee_cfg.width)
 MoveEEToPose(ee_cfg.pose)

at

D ot

“Do this for every
bottle on the table”

L

src_seq = GetContactSequences()[0]
obs = GetObservation()
bottles = DetectObjects("bottle", obs.rgb)
for bottle in bottles:
 targ_seq = TransferContactSequence(contact_seqs[0],
 target_obj_mask=bottle.mask)
 for ee_cfg in targ_seq.ee_configs:
 AdjustGripperWidth(ee_cfg.width)
 MoveEEToPose(ee_cfg.pose)
 MoveEEHome()

Figure 1: An overview of the SHOWTELL framework. First, the visual and spoken components of
the demo are processed and fed into an LLM. The LLM synthesizes a modular program that can
jointly reason about the provided demonstration and novel observations to transfer the demonstrated
skill to new scenes.

components of the demonstration, and more easily interpret the reasoning behind the generated
policies.

LLMs for Visual Reasoning. Visual reasoning approaches have typically used end-to-end trained
models, but recent works have shown that pre-trained LLMs can be leveraged to accomplish state-of-
the-art for many visual reasoning tasks. Early iterations represent the visual information from images
as text via captions, objects, and attributes and feed this textual representation to LLMs along with
task instructions and in-context examples [29]. Zeng et al. [30] propose a modular approach wherein
the LLM leverages other pre-trained models such as vision-language models (VLMs) and audio-
language models through program generation. More recent works have scaled this idea to additional
tasks including knowledge tagging, image editing, and causal/temporal reasoning over videos [31,
32]. In this work we seek to leverage LLMs for visual reasoning in the context of robot PbD by using
the LLM to generate modular programs that jointly reason over video demonstrations and spoken
language instructions to understand the task being demonstrated and ground that understanding to
robot actions in new scene observations.

3 Method

We present SHOWTELL, a neuro-symbolic robot PbD framework for synthesizing modular, gen-
eralizable, and interpretable robot manipulation programs from visual demonstrations and natural
language. Our approach, illustrated in Figure 1, requires only a single demonstration with no ad-
ditional training or fine-tuning, as it utilizes a combination of pre-trained foundation models and
hand-engineered components to reason about observed demonstrations and to transfer learned skills
to new scenes. In the following sub-sections we first formalize the problem setting, then we provide
a high-level overview of the approach, and finally we describe each phase of the approach.

3.1 Problem Formulation

In this work, we consider multi-modal PbD for robotic manipulation tasks. Let A be the set of robot
actions, and S the set of world states. We assume access to a human demonstration consisting of
visual demonstration component D = ⟨d0, d1, . . . , dTD

⟩, where each demonstration frame dt is an
RGB-D image at time t, and a spoken language component L. Given the demonstration D, language
L, and an initial state s0 ∈ S, the goal is to generate an execution ξ =

〈
s0, a0, s1, a1, . . . , sTξ

, aTξ

〉
,

where at ∈ A is an action taken by the robot at time t, st ∈ S is the state before taking at, and
st+1 = T (st, at) under environment dynamics T : S × A → S . The state st is defined by the
environment layout, the poses and states of all objects, and the pose and state of the robot. The
robot does not directly have access to the state st, but only to an observation ot. An observation
ot = (It,Kt) includes an RGB-D camera image It and the robot’s proprioceptive state Kt. The task

3

is considered successful if the goal-conditions corresponding to the demonstration D and spoken
language L are true at the final state sTξ

.

3.2 Overview

Our method utilizes a mixture of pre-trained foundation models and hand-engineered modules to
both understand the provided demonstration and to transfer that understanding to new scenes. We
first pre-process the demonstration to make relevant information readily accessible for program syn-
thesis. Next, an LLM is used to compose a set of modules into a program. The modules available
to the LLM include tools for visual and spatio-temporal reasoning about the video demonstration
frames, tools for aligning the spoken language of the demonstration with the visual demonstration,
tools for transferring the demonstrated skill to the current environment, and tools for controlling the
robot.

3.3 Pre-processing

The first step in our approach is to pre-process the demonstration to make relevant information
readily accessible to the LLM. The spoken component of the demonstration, L, is transcribed using
the Whisper speech-to-text model [33]. The transcription is saved and uttered words are indexed by
their timestamp relative to the start of the demonstration. The visual component of the demonstration
is processed to detect human hands and their interactions with objects in the scene. We utilize the
Mediapipe [34] hand landmark detection model, and detect the human hand pose represented as 21
landmarks following the topology in [35]. The two landmarks on the thumb and another two on the
index finger are used to represent a parallel jaw robot gripper.

For robot manipulation tasks, timesteps in which the end-effector interacts with objects in the envi-
ronment are particularly important, so we seek to identify and extract contiguous contact sequences,
or clusters of timestamps where the hand is in contact with an object, from the demonstration D.
We extract information about the hands in the scene and the objects that they contact using 100DOH
[36], a hand-object interaction model that has been pre-trained on 100K images extracted from a
large-scale video dataset of humans interacting with objects. We use 100DOH to extract, for each
demonstration frame, a hand bounding box, in-contact object bounding box, and a boolean contact
variable indicating whether the hand is in contact with an object or not. We obtain fine grained
masks for both hands and objects using Segment Anything Model (SAM) [37] with bounding boxes
provided as prompts. 3D perception of the scene is crucial for manipulation tasks, so we additionally
produce a point cloud for each demonstration frame using the RGB-D image and camera intrinsics.

3.4 Program Synthesis

GetHandLandmarks, GetHandObjContactSequences,
GetGestureRef, DetectObjects, TrackMask, VQA

Perception

GetTimestampOfSpeechStart, GetTimestampOfSpeechEnd

Speech Alignment

GetObservation, TransferBBox, TransferMask,
TransferEEConfig, TransferContactSequence, AnyGrasp

Novel Scene Transfer

MoveEEToPose, MoveEERel, MoveEEGuarded,
MoveEEHome, RotateEE, AdjustGripperWidth

Robot Control

Figure 2: Taxonomy of modules available to the
synthesized neuro-symbolic programs.

SHOWTELL uses a powerful code-generating
language model (GPT-4 [38]) to synthesize pro-
grams that can both reason about a demonstra-
tion and execute the demonstrated behavior in a
new scene. The LLM is provided with a prompt
that consists of import statements and API doc-
umentation that specifies the available func-
tions, a brief summary of contact sequences ex-
tracted during the pre-processing phase, and the
full transcribed narration. The program is run
with the Python interpreter, allowing the use of
control flow tools like for loops, conditionals
like if/else, built in functions like sort, and built
in modules such as datetime or math. All of the
information extracted during the pre-processing phase is made available in addition to a suite of
modules. The additional modules made available to the program include a mixture of pre-trained

4

foundation models and hand-engineered modules, including modules for perception, speech align-
ment, transferring to novel scenes, and controlling the robot. In the following sections we describe
each of the custom modules and their APIs and a taxonomy of the modules is provided in Figure 2.

3.4.1 Perception

The perception modules made available to the neuro-symbolic program enable extracting informa-
tion about both the visual demonstration, D, and the new scene observations,

〈
o0, o1, . . . , oTξ

〉
.

The perception modules include APIs for accessing visual information made available in the pre-
processing step via GetHandObjectContactSequences. The perception modules also include
APIs for free-form visual reasoning, DetectObjects, TrackMask, and VQA. The DetectObjects
module uses ViLD [39], a pre-trained open-world object masking VLM. Detected masks can be
tracked to new frames and scenes with the TrackMask module, which uses the XMem mask track-
ing model under the hood [40]. The VQA module is a pre-trained visual question answering VLM,
BLIP-v2 [41], that can be used to answer questions about the visual scene.

3.4.2 Language Alignment

To understand a multi-modal demonstration, the robot must align the spoken language of the demon-
stration with the visual demonstration. For this purpose, we provide the LLM with two modules,
GetTimestampOfSpeechStart and GetTimestampOfSpeechEnd, which are used to extract the
start and end timestamps of spoken words from the language component of the demonstration, L,
and enable the program to align the language with timestamps corresponding to frames in the visual
demonstration, D.

3.4.3 Novel Scene Transfer

Ultimately, the goal is to transfer the policy generated from the demonstration to new environments.
To do this, the robot must match the visual demonstration D to the current environment observed
in ot. The TransferBBox, TransferMask, TransferEEConfig, TransferContactSequence
modules are used to transfer detections to new scene observations. These modules find correspond-
ing reference points by leveraging features from Stable Diffusion [42], a pre-trained image diffusion
model which have been shown to implicitly encode rich information about the structure of objects
within an image, and have been shown to be highly effective for finding corresponding points for
visual reasoning tasks [43, 44, 45]. Using these features, we can match similar points on within-
category objects in addition to exact points. For example, after demonstrating how to pick up a mug
by its handle, the robot should be able to repeat this skill for visually distinct mugs and mugs of
different sizes.

In order to facilitate grasping of objects in the new scene, we provide the AnyGrasp module, which
is used to find the best grasp configuration for a particular object mask in the scene. This module
uses a pre-trained grasp prediction model [46] to predict the best grasp configuration for a particular
object based on its point cloud, and can be used to find grasp configurations for objects that were
not present in the demonstration.

3.4.4 Robot Control

To control the robot we provide a set of modules to specify end-effector goal poses and configu-
rations. The modules MoveEEToPose is used to specify a goal EE pose in 3D space, MoveEERel
is used to specify a goal relative to the current EE pose, and MoveEEGuarded performs a guarded
movement along a given vector until contact occurs. The module RotateEE is used to specify a goal
EE rotation. And finally, AdjustGripperWidth is used to specify a desired gripper width to open
and close the gripper. These modules are used to specify the robot’s end-effector goal poses and con-
figurations, which are used to generate the robot’s actions during program execution as described in
Section 3.5.

5

Reference Point CLIP DINOv2 Diffusion Features

Figure 3: We evaluate SHOWTELL using a Stretch RE2 robot to perform 16 real world manipulation
tasks across 5 visually distinct environments including a conference room, a kitchen, a classroom,
an office lounge, and a cluttered workbench. We show that this approach is effective for teaching
manipulation tasks requiring high level logic such as conditions, iteration, and segmentation.

3.5 Skill Execution

After program synthesis, the resulting program is run with a Python interpreter and its execution is
a simple Python call. During execution, correspondence matching modules are evaluated to transfer
reference points identified in the demonstration to the new scene observation, and all waypoints are
redefined relative to the reference points in the new scene. To interpolate robot motion between
end-effector goal poses, we use a collision-free motion planner to generate a trajectory of robot
actions for reaching the next desired waypoint goal. Specifically, we use the GPU accelerated motion
generation library cuRobo [47].

4 Experimental Setup

Hardware and Environments: To evaluate our approach, we conduct a series of real world exper-
iments with a Stretch RE2 robot [48] across 5 indoor environments as illustrated in Figure 3. The
robot’s mobile base, arm lift, and telescoping arm are moved in conjunction to reach 6-DOF target
waypoints. The robot’s end effector is a parallel-jaw gripper with rubber fingertips. An Intel Re-
alSense D435i RGB-D camera is mounted to the frame which is used both to record demonstrations
and to provide observations during execution.

Baselines and Experiments: We evaluate our approach against GPT4-V-Robot [28], a state-of-the-
art method for robot task planning from language and visual demonstrations using LLMs. In this
baseline approach, demonstration frames are directly fed to a VLM (GPT4-V [38]), which generates
a summary that is used by the LLM to generate a policy. To study the contribution of the visual
and spoken components of the demonstration we perform a series of ablation experiments. First
we evaluate a language-only baseline, ShowTell-NoVis, with no access to the visual demonstration,
similar to the approach proposed by Liang et al. [24]. We also include a vision-only baseline,
ShowTell-NoLang, which uses the visual demonstration only to generate policies without access to
the language component.

Evaluation Tasks: We evaluate SHOWTELL using a set of 16 real world manipulation tasks across
5 visually distinct environments. We group evaluation tasks based on the challenge conditions they
present. First we evaluate with simple demonstrations that are straightforward to follow, including
pick and place, stacking cubes, and opening drawers. Next we evaluate tasks involving control flow
including iterative tasks, for example ”move all of the blocks over to this container”, and tasks with
conditionals, for example ”open the drawer only if it is closed”. Finally, we evaluate tasks that
require segmenting the demonstration, for example if the demonstrator makes an error and corrects
themselves, the robot is required to segment the demonstration into correct and incorrect segments
to generate a policy that correctly imitates only the desired behavior. All of the tasks, including the
simple tasks, can require the robot to jointly reason about the visual and spoken components of the
demonstration to resolve ambiguities. For example, an instruction like ”pick up this mug and move
it over here” requires aligning the spoken instruction with the visual demonstration to determine
which mug to pick up and where to move it.

6

“Open the drawer like this, but only if the
drawer is not already open”

src_seq = GetContactSequences()[0]
obs = GetObservation()
drawer_bbox = TransferBBox(src_seq.obj_bbox, src_seq.init_frame)
if not VQA("Is the drawer open?", obs.rgb, bool, drawer_bbox):
 targ_seq = TransferContactSequence(src_seq)
 for ee_cfg in targ_seq.ee_configs:
 AdjustGripperWidth(ee_cfg.width)
 MoveEEToPose(ee_cfg.pose)
 MoveEEHome()

Human Demonstration Synthesized Program

(a)

“Pick all of the bottles up like this and put
them in this container”

src_seq = GetContactSequences()[0]
obs = GetObservation()
bottles = DetectObjects("bottle", obs.rgb)
for bottle in bottles:
 targ_seq = TransferContactSequence(contact_seqs[0],
 target_obj_mask=bottle.mask)
 for ee_cfg in targ_seq.ee_configs:
 AdjustGripperWidth(ee_cfg.width)
 MoveEEToPose(ee_cfg.pose)
 MoveEEHome()

(b)

“Grab the mug like this. Wait, actually, that
was a mistake. Grab it like this instead”

first_valid_time = GetTimestampOfSpeechEnd("that was a mistake")
contact_seq = [cs for cs in GetContactSequences()
 if cs.start_time > first_valid_time][0]
targ_seq = TransferContactSequence(contact_seq)
for ee_cfg in targ_seq.ee_configs:
 AdjustGripperWidth(ee_cfg.width)
 MoveEEToPose(ee_cfg.pose)
MoveEEHome()

(c)

Figure 4: Qualitative examples of code synthesized by SHOWTELL for a set of representative
demonstrations. The representative demonstrations show the ability to follow high level logic in-
cluding (a) conditionals (b) iteration and (c) segmentation.

ShowTell-NoLang ShowTell-NoVis GPT4-V-Robot [28] ShowTell (ours)
Demo Type GCR SR GCR SR GCR SR GCR SR
Simple 0.89 0.85 0.86 0.81 0.88 0.85 0.96 0.94
Iterative 0.31 0.12 0.61 0.59 0.43 0.22 0.94 0.85
Conditional 0.41 0.39 0.64 0.64 0.41 0.41 0.93 0.93
Segmented 0.12 0.06 0.48 0.42 0.20 0.18 0.93 0.91

Table 1: Real-world robot manipulation task performance across different task families.

Metrics: We use two primary metrics to evaluate system performnace: Success Rate (SR) and Goal
Condition Recall (GCR). The task-relevant goal conditions are the set of state changes that must
be satisfied at the end of an episode for the task to be considered successful. SR is the fraction of
rollouts for which the object positions and state changes completely satisfy the task goal-conditions
at the end of the action sequence. GCR is the fraction of goal-conditions successfully completed at
the end of an episode to those necessary to have finished a task.

5 Results

In our experiments we seek to answer the following research questions: 1) Is SHOWTELL practi-
cal for teaching a range of robot manipulation skills including those that require high level logic
like conditions, iteration, and segmentation? 2) How does SHOWTELL compare to existing state-
of-the-art methods for generating robot policies from language and visual demonstrations? 3) Is
SHOWTELL able to generalize to unseen environments and within category objects? 4) To what
extent do the visual and spoken components of the demonstration contribute to the performance?

To evaluate the performance of SHOWTELL, we perform a total of 50 rollout trials per task: 10
demonstrations are provided (2 demonstrations in each environment) and 5 rollouts are performed
for each demonstration, resulting in a total of 50 rollouts per task. We group tasks based on challenge
conditions as described in section 4 and for each task family, we report the average SR and GCR
across all rollouts.

The results summarized in Table 1 show that SHOWTELL outperforms existing state-of-the-
art methods for generating robot policies from language and visual demonstrations. Even for

7

simple tasks, SHOWTELL outperforms the baseline methods, as the modular, neuro-symbolic
programs are more easily able to reason about the demonstration and to resolve ambigui-
ties than the monolothic VLM used to summarize demonstrations in the baseline method.

Rollout SR
Canonical 0.92
Unseen environment 0.84
Unseen objects 0.88

Table 2: Performance across roll-
outs: in the canonical scene, with
unseen objects, and in unseen en-
vironment.

This advantage is even more pronounced for the other task
families as the purely sequential structure of the baseline
method is not well suited to tasks that require high level logic
like conditions, iteration, and segmentation. The qualitative
examples in Figure 4 illustrate the ability of SHOWTELL to
synthesize programs from such demonstrations. Comparing
the ablation experiments, we see that the visual and spoken
components of the demonstration are both important for gener-
ating effective policies, as the ablation experiments ShowTell-
NoVis and ShowTell-NoLang perform poorly compared to the
full SHOWTELL approach, even for simple tasks. This is be-
cause the visual and spoken components of the demonstration are often complementary, and help
to resolve ambiguities present in the individual components of the demonstration. To better un-
derstand the failure cases, we analyze the failures in Section C of the appendix and illustrate the
distribution of failures in Figure 7. We finally evaluate the performance of SHOWTELL across roll-
outs in the canonical scene (the scene used for demonstration), with unseen objects, and in unseen
environments. The results summarized in Table 2 indicate that SHOWTELL is able to generalize to
unseen environments and within category objects, while requiring only a single demonstration with
no additional training or fine-tuning.

6 Limitations

Our approach has several limitations. Most crucially, the approach is constrained by the limitations
of the pre-trained models it uses, although we note that the modularity of the framework allows
for easy integration of new models as they become available. As parallel fields progress and new
models are developed, we expect that the performance of SHOWTELL will improve and the variety
of applicable skills will expand. Additionally, fine-tuning of pre-trained models to mitigate this lim-
itation and reduce the need for explicit pre-processing is an exciting direction for future work. Our
approach is also limited by the quality of the demonstrations provided, assumes demonstrated grasps
can be mapped to a robot gripper, and may struggle with demonstrations that are incomplete or dif-
ficult to perceive due to occlusion or poor quality. Future work could leverage the interpretability
of the approach to mitigate this limitation through interactive program repair. The inclusion of both
visual and language inputs may introduce ambiguities that could complicate the approach. Future
works could incorporate interactive dialog with the user to disambiguate inputs that are ambiguous
or unclear. Finally, the approach uses closed loop execution to reach each goal waypoint and may
struggle with dynamic disturbances or changes in the environment during execution.

7 Conclusion

In this work, we present SHOWTELL, a neuro-symbolic robot PbD framework for synthesizing mod-
ular, generalizable, and interpretable robot manipulation programs from visual demonstrations and
natural language. Our approach can teach robot manipulation skills from a single demonstration,
without requiring any additional training or fine-tuning, by utilizing a combination of pre-trained
foundation models and hand-engineered components to reason about observed demonstrations and
to transfer learned skills to new scenes. We evaluate SHOWTELL on a set of 16 real world ma-
nipulation tasks across 5 visually distinct environments and show that this approach is effective for
teaching a wide range of manipulation tasks. We show that SHOWTELL is able to reason about
demonstrations that require high level logic like conditions, iteration, and segmentation, and that it
outperforms existing state-of-the-art methods for generating robot policies from language and visual
demonstrations.

8

Acknowledgments

This research is partially funded by the UW + Amazon Science Hub. We would like to thank Entong
Su for help with cuRobo, Varad Dhat for robot hardware maintenance, Sylvia Dai, Michael Wolf,
Joshua Smith, Markus Grotz, and Nick Walker for helpful discussions.

References
[1] S. A. Al-Abood, K. Davids, and S. J. Bennett. Specificity of task constraints and effects of

visual demonstrations and verbal instructions in directing learners’ search during skill acquisi-
tion. Journal of motor behavior, 33(3):295–305, 2001.

[2] T. R. Sumers, M. K. Ho, R. D. Hawkins, and T. L. Griffiths. Show or tell? exploring when
(and why) teaching with language outperforms demonstration. Cognition, 232:105326, 2023.

[3] G. Csibra and R. Shamsudheen. Nonverbal generics: Human infants interpret objects as sym-
bols of object kinds. Annual review of psychology, 66:689–710, 2015.

[4] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Survey: Robot programming by demon-
stration. Technical report, Springrer, 2008.

[5] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[6] W. Si, N. Wang, and C. Yang. A review on manipulation skill acquisition through teleoperation-
based learning from demonstration. Cognitive Computation and Systems, 3(1):1–16, 2021.

[7] Y. Zhu, A. Joshi, P. Stone, and Y. Zhu. Viola: Imitation learning for vision-based manipulation
with object proposal priors. 6th Annual Conference on Robot Learning (CoRL), 2022.

[8] Y. Zhu, Z. Jiang, P. Stone, and Y. Zhu. Learning generalizable manipulation policies with
object-centric 3d representations. In 7th Annual Conference on Robot Learning, 2023.

[9] T. Lozano-Perez. Robot programming. Proceedings of the IEEE, 71(7):821–841, 1983.

[10] M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dynamical system modulation for robot
learning via kinesthetic demonstrations. IEEE Transactions on Robotics, 24(6):1463–1467,
2008.

[11] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz. Trajectories and keyframes for kines-
thetic teaching: A human-robot interaction perspective. In Proceedings of the seventh annual
ACM/IEEE international conference on Human-Robot Interaction, pages 391–398, 2012.

[12] N. M. Mahi Shafiullah, A. Rai, H. Etukuru, Y. Liu, I. Misra, S. Chintala, and L. Pinto. On
bringing robots home. arXiv e-prints, pages arXiv–2311, 2023.

[13] Y. Liu, A. Gupta, P. Abbeel, and S. Levine. Imitation from observation: Learning to imitate
behaviors from raw video via context translation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1118–1125. IEEE, 2018.

[14] J. Huang, D. Fox, and M. Cakmak. Synthesizing robot manipulation programs from a single
observed human demonstration. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4585–4592. IEEE, 2019.

[15] S. Bahl, A. Gupta, and D. Pathak. Human-to-robot imitation in the wild. arXiv preprint
arXiv:2207.09450, 2022.

[16] M. Xu, Z. Xu, C. Chi, M. Veloso, and S. Song. Xskill: Cross embodiment skill discovery. In
Conference on Robot Learning, pages 3536–3555. PMLR, 2023.

9

[17] S. A. Sontakke, J. Zhang, S. M. Arnold, K. Pertsch, E. Bıyık, D. Sadigh, C. Finn, and
L. Itti. Roboclip: one demonstration is enough to learn robot policies. arXiv preprint
arXiv:2310.07899, 2023.

[18] V. Jain, M. Attarian, N. J. Joshi, A. Wahid, D. Driess, Q. Vuong, P. R. Sanketi, P. Sermanet,
S. Welker, C. Chan, et al. Vid2robot: End-to-end video-conditioned policy learning with cross-
attention transformers. arXiv preprint arXiv:2403.12943, 2024.

[19] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.
Ruano, K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,
S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,
P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,
M. Yan, and A. Zeng. Do as i can and not as i say: Grounding language in robotic affordances.
In arXiv preprint arXiv:2204.01691, 2022.

[20] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language
models. arXiv preprint arXiv:2207.05608, 2022.

[21] A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu, L. Takayama, F. Xia,
J. Varley, et al. Robots that ask for help: Uncertainty alignment for large language model
planners. arXiv preprint arXiv:2307.01928, 2023.

[22] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz, and
T. Funkhouser. Tidybot: Personalized robot assistance with large language models. Au-
tonomous Robots, 2023.

[23] P. Liu, Y. Orru, C. Paxton, N. M. M. Shafiullah, and L. Pinto. Ok-robot: What really matters
in integrating open-knowledge models for robotics. arXiv preprint arXiv:2401.12202, 2024.

[24] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code
as policies: Language model programs for embodied control. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 9493–9500. IEEE, 2023.

[25] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. Progprompt: Generating situated robot task plans using large language models.
In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 11523–
11530. IEEE, 2023.

[26] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d value
maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973, 2023.

[27] Y. Wang, G. Gonzalez-Pumariega, Y. Sharma, and S. Choudhury. Demo2code: From summa-
rizing demonstrations to synthesizing code via extended chain-of-thought. Advances in Neural
Information Processing Systems, 36, 2024.

[28] N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, and K. Ikeuchi. Gpt-4v (ision) for robotics:
Multimodal task planning from human demonstration. arXiv preprint arXiv:2311.12015, 2023.

[29] Z. Yang, Z. Gan, J. Wang, X. Hu, Y. Lu, Z. Liu, and L. Wang. An empirical study of gpt-
3 for few-shot knowledge-based vqa. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 3081–3089, 2022.

[30] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit,
M. Ryoo, V. Sindhwani, et al. Socratic models: Composing zero-shot multimodal reasoning
with language. arXiv preprint arXiv:2204.00598, 2022.

10

[31] T. Gupta and A. Kembhavi. Visual programming: Compositional visual reasoning without
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 14953–14962, 2023.

[32] D. Surı́s, S. Menon, and C. Vondrick. Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 11888–11898, 2023.

[33] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever. Robust speech
recognition via large-scale weak supervision. In International Conference on Machine Learn-
ing, pages 28492–28518. PMLR, 2023.

[34] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays, F. Zhang, C.-L. Chang,
M. Yong, J. Lee, et al. Mediapipe: A framework for perceiving and processing reality. In Third
workshop on computer vision for AR/VR at IEEE computer vision and pattern recognition
(CVPR), volume 2019, 2019.

[35] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection in single images using
multiview bootstrapping. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 1145–1153, 2017.

[36] D. Shan, J. Geng, M. Shu, and D. F. Fouhey. Understanding human hands in contact at internet
scale. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 9869–9878, 2020.

[37] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023.

[38] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[39] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui. Open-vocabulary object detection via vision and lan-
guage knowledge distillation. arXiv preprint arXiv:2104.13921, 2021.

[40] H. K. Cheng and A. G. Schwing. Xmem: Long-term video object segmentation with an
atkinson-shiffrin memory model. In European Conference on Computer Vision, pages 640–
658. Springer, 2022.

[41] J. Li, D. Li, S. Savarese, and S. Hoi. Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In International conference on machine
learning, pages 19730–19742. PMLR, 2023.

[42] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image syn-
thesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684–10695, 2022.

[43] L. Tang, M. Jia, Q. Wang, C. P. Phoo, and B. Hariharan. Emergent correspondence from image
diffusion. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=ypOiXjdfnU.

[44] G. Luo, L. Dunlap, D. H. Park, A. Holynski, and T. Darrell. Diffusion hyperfeatures: Searching
through time and space for semantic correspondence. In Advances in Neural Information
Processing Systems, 2023.

[45] E. Hedlin, G. Sharma, S. Mahajan, H. Isack, A. Kar, A. Tagliasacchi, and K. M. Yi. Un-
supervised semantic correspondence using stable diffusion. Advances in Neural Information
Processing Systems, 36, 2024.

11

https://openreview.net/forum?id=ypOiXjdfnU

[46] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie, and C. Lu. Anygrasp:
Robust and efficient grasp perception in spatial and temporal domains. IEEE Transactions on
Robotics, 2023.

[47] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. V. Wyk, V. Blukis, A. Millane,
H. Oleynikova, A. Handa, F. Ramos, N. Ratliff, and D. Fox. curobo: Parallelized collision-free
minimum-jerk robot motion generation, 2023.

[48] C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich. The design of stretch: A com-
pact, lightweight mobile manipulator for indoor human environments. In 2022 International
Conference on Robotics and Automation (ICRA), pages 3150–3157. IEEE, 2022.

Appendix

A Implementation Details

A.1 Perception APIs

The perception APIs provide access to the visual information made available in the pre-processing
step, in addition to open world perception of both the demonstration scene and the novel scene via
pre-trained foundation models. The APIs include:

• GetContactSequences() Returns all of the hand-object contact sequences detected in
the demo by 100DOH [36] during the preprocessing step.

• GetHandLandmarks(timestamp) Returns the thumb and index finger hand landmarks
detected in the demo by Mediapipe [34] during the preprocessing step.

• GestGestureRef(timestamp) Returns a mask of the object being referred to at the given
timestamp of the demo. Any in-hand object is used, otherwise a vector is produced from
the hand landmarks and the closest object to the vector is used.

• DetectObjects(obj_class, rgb_frame) Returns a mask of the object class in the
given RGB frame using ViLD [39].

• TrackMask(mask, origin_frame, new_frame) Tracks the given mask to the given
RGB frame using XMem [40].

• VQA(query, rgb_frame, output_type, bbox) Returns the answer to the given query
about the given RGB frame using BLIP-v2 [41].

A.2 Speech Alignment APIs

The speech alignment APIs provide access to the spoken language of the demonstration and the
timestamps of the spoken words. The spoken language is transcribed using the Whisper speech-to-
text model [33]. The transcription is saved and uttered words are indexed by their timestamp relative
to the start of the demonstration. The APIs include:

• GetTimestampOfSpeechStart(speech, occurance) Returns the timestamp of the
start of the given occurance of the given speech in the spoken language of the demo.

• GetTimestampOfSpeechEnd(speech, occurance) Returns the timestamp of the end
of the given occurance of the given speech in the spoken language of the demo.

A.3 Scene Transfer APIs

The scene transfer APIs provide access to the tools necessary to transfer the demonstrated skill to
the current environment observed in the new scene. The APIs include:

12

Reference Point Predicted Corresponding Points

Figure 5: During scene transfer, corresponding reference points are found in a new observation using
features from a pre-trained image diffusion model. On the left, reference points are shown in the
demonstration scene. On the right, corresponding reference points are shown as detected in novel
viewpoints, scenes, and with novel within category objects.

• TransferContactSequence(contact_seq, target_mask) Transfers the given con-
tact sequence to the new scene. Points corresponding to each reference point in the contact
sequence are identified in the new scene by using features from a pre-trained image diffu-
sion model. This process can be performed over the entire scene or optionally guided by
semantic/instance masks.

• TransferEEConfig(timestamp, reference_point, mask) Transfers the end-
effector configuration from the given timestamp to the new scene using the given reference
point as an anchor. A corresponding reference point in the contact sequence is identified
in the new scene by using features from a pre-trained image diffusion model. This process
can be performed over the entire scene or optionally guided by semantic/instance masks.

• TransferBBox(bbox, frame) Transfers the given bounding box to the given RGB frame
by using SAM [37] to acquire a mask from the bounding box and XMem [40] to transfer
the mask to the new frame before converting back to a bounding box.

• AnyGrasp(mask) Returns the best grasp configuration for the given object mask using
AnyGrasp [46].

A.4 Robot Control APIs

The robot control APIs provide access to the tools necessary to specify end-effector goal poses and
configurations. All motion is generated using the motion planner implemented by cuRobo [47]. The
APIs include:

• MoveEEToPose(pose) Moves the end-effector to the given pose in 3D space.

• MoveEERel(rel_pose) Moves the end-effector to the given pose relative to the current
end-effector pose.

• MoveEEGuarded(direction) Moves the end-effector along the given direction until con-
tact occurs.

• MoveEEHome() Moves the end-effector to the home position.

• RotateEE(rotation) Rotates the end-effector to the given rotation.

• AdjustGripperWidth(width) Adjusts the gripper width to the given width.

13

B Experimental Details

B.1 Benchmark Tasks

We design our evaluation tasks to cover a wide range of contact-rich manipulation behaviors involv-
ing prehensile and non-prehensile motions. The tasks range from rearranging objects, to multi-step
extraction from cluttered scenes, to tool use, to manipulation of deformable and articulated objects.
The tasks are grouped based on reasoning challenge conditions they present, including simple tasks,
iterative tasks, conditional tasks, and segmented tasks. This taxonomy can be seen in Table 3. Be-
low we provide a brief description of each task and the conditions used to determine successful
completion of the task.

• Pick-and-place: In this task, the robot picks up a bottle by its top and places it into a
bowl. The task is successful if the robot grasps from the top of the bottle and the bottle is
contained inside of the bowl at the end of execution.

• Open drawer: In this task, the robot is required to open a drawer. This requires a precise
grasp of the drawer handle and careful imitation of the demonstrated trajectory to open the
drawer. The task is successful if the drawer is open at the end of execution.

• Stack blocks: This task demonstrates a manipulation program with a multi-step horizon.
The robot must stack a set of three colored blocks in the same order as the demonstration.
The task is successful when the blocks are stacked in a stable column following the order
given by the demonstration.

• Fold towel: This task demonstrates a manipulation program with deformable objects. The
robot must first grasp the corner of a towel, then follow the demonstrated trajectory to fold
the towel. The task is successful when the towel is folded.

• Wipe whiteboard: This task demonstrates a manipulation program with tool use. The robot
must first grasp a cloth, then follow the demonstrated trajectory to clean a marking off of a
whiteboard using the cloth. The task is successful when the whiteboard is cleaned.

• Unplug charger: In this task the robot must first grasp a charger, then follow the demon-
strated trajectory to unplug the charger from a wall outlet. The task is successful when the
charger is unplugged.

• Move all bottles to container: This task demonstrates an interative manipulation program
with variable number of objects. For each bottle in the scene, the robot must grasp the
bottle and move to the receptacle as demonstrated. The task is successful when all bottles
are contained inside of the container.

• Clear table: This task demonstrates an iterative manipulation program with variable num-
ber of objects. For each object on the table, the robot must grasp the object and move it to
the receptacle as demonstrated. The task is successful when the table is clear.

• Sort items: This task demonstrates an iterative manipulation program with variable number
of objects and conditional logic. The robot must sort the objects on the table into two
groups based on their color. The task is successful when all objects are sorted correctly.

• Mechanical search: This task demonstrates an iterative manipulation program with variable
number of objects and conditional logic. The robot must search for a target object among
a set of distractor objects. The task is successful when the target object is found.

• Unstack to grasp: This task demonstrates an iterative manipulation program with variable
number of objects and conditional logic. The robot must unstack a set of blocks to reveal a
target object, then grasp the target object. The task is successful when the target object is
grasped.

• Conditional pick and place: This task demonstrates a manipulation program with condi-
tional logic. The robot must move an object to a receptacle only if the receptacle is empty.
The task is successful when the object is contained inside of the receptacle.

14

Figure 6: Benchmark items used in the evaluation of SHOWTELL.

• Open drawer if not opened: This task demonstrates a manipulation program with condi-
tional logic. The robot must open a drawer only if it is closed. The task is successful when
the drawer is open.

• Conditional grasp: This task demonstrates a manipulation program with conditional logic.
The robot must grasp an object in one of two ways based on the object’s color. The task is
successful when the object is grasped correctly.

• Assemble bento: This task demonstrates a manipulation program with segmentation. The
robot must assemble a bento box by placing each item in the correct compartment. The
task is successful when the bento box is assembled correctly.

• Fixed grab mug: This task demonstrates a manipulation program with segmentation. The
robot must grasp a mug by its handle. The task is successful when the mug is grasped
correctly.

B.2 Evaluation Details

We evaluate the performance of SHOWTELL with a total of 50 rollout trials per task: 10 demon-
strations are provided (2 demonstrations in each environment) and 5 rollouts are performed for each
demonstration, resulting in a total of 50 rollouts per task. For tasks that require iteration we vary the
number of objects in the scene for each demonstration. For tasks that require conditionals we vary
the state of the environment for each demonstration. To evaluate the performance of SHOWTELL
across rollouts with unseen objects we perform an additional 10 rollouts each for the pick-and-place,
clear table, and conditional grasp tasks with objects that were not present in the demonstration. To
evaluate the performance of SHOWTELL across rollouts in unseen environments we perform an ad-
ditional 10 rollouts each for the pick-and-place and open drawer tasks in a distinct environment
from the demonstration.

15

Task Name Simple Iterative Conditional Segmented
Pick and place ✓
Open drawer ✓
Stack blocks ✓
Fold Towel ✓
Wipe whiteboard ✓
Unplug charger ✓
Move all bottles to container ✓
Clear table ✓
Sort items ✓ ✓
Mechanical search ✓ ✓
Unstack to grasp ✓ ✓
Conditional pick and place ✓
Open drawer if not opened ✓
Conditional grasp ✓ ✓
Assemble bento ✓
Fixed grab mug ✓

Table 3: Real-world robot manipulation tasks across different task families.

Hand-Object Perception (35%)

Scene Transfer (19%)

Other Perception (8%)

Motion Planning (4%)

Execution (23%)

Failed Task (12%)

Figure 7: The distribution of failures across SHOWTELL benchmark tasks. Executions can fail due to
errors in hand-object perception, errors in scene transfer correspondence matching, other perception
failures, failure to motion plan, control execution failures, or failure to meet the task requirements.

C Failure Analysis

We analyze the failures of SHOWTELL across the benchmark tasks. The distribution of failures
across the tasks is shown in Figure 7. We divide failures into six categories:

• Hand-Object Perception: Errors in hand-object perception, where the robot fails to cor-
rectly identify the hand or hand-object contact.

• Scene Transfer Correspondence Matching: Errors in scene transfer correspondence
matching, where the robot fails to correctly match reference points in the demonstration
to the new scene.

• Other Perception Failures: Errors in object detection, tracking, or other perception tasks.

16

• Failure to Motion Plan: Errors in motion planning, where the robot fails to plan a
collision-free trajectory.

• Control Execution Failures: Errors in control execution, where a motion plan is generated
but the robot fails to execute the plan correctly.

• Failure to Meet Task Requirements: Errors in the manipulation program, incorrect exe-
cution, or other factors that prevent the robot from successfully completing the task.

The most common failure mode is due to errors in hand-object perception, indicating that improve-
ments in hand-object perception could lead to significant improvements in overall performance.
Execution is another common source of failure, typically due to imprecise control of the robot’s
wheeled base. More dynamic control involving visual servoing could mitigate this failure mode in
future work. The other failure modes are less common, but still contribute to overall performance.

17

You are writing Python code to control a robot based on a natural language instruction and a visual demonstration. The
natural language instruction is provided in the comments and you can query information about the visual demonstration.
You must write code to understand what is being demonstrated in the input video and execute the demonstrated behavior
with the robot. Please output only valid Python code with no other explanations. Do not output markdown or comments,
just the executable python code.

The APIs available are:
- GetContactSequences()
 Description: Returns all of the hand-object contact sequences detected in the demo. Each contact sequence has (start_time,
end_time, ref_frame, ee_configs)
- GetHandLandmarks(timestamp)
 Description: Returns the hand landmarks detected at the given timestamp, one (u,v) point for the index finger and one for the
thumb.
- GetObservation()
 Description: Returns the current observation frame from the robot's camera, one RGB array and one depth.
- GetGestureRef(timestamp)
 Description: Returns a mask of the object being referenced at the given timestamp, either in-hand or being gestured to.
- DetectObjects(obj_class, rgb_frame)
 Description: An open-world object detector that returns a mask and bounding box of the object detected in rgb_frame
- TrackMask(mask, origin_frame, new_frame)
 Description: track a mask from one frame to another frame
- VQA(query, rgb_frame, output_type, bbox=None)
 Description: answers a visual question about the rgb_frame. output_type can be bool, number, or string. bbox is optional.
- GetTimestampOfSpeechStart(speech, occurence_idx)
 Description: returns the timestamp when the given speech started for the occurence_idx time
- GetTimestampOfSpeechEnd(speech, occurence_idx)
 Description: returns the timestamp when the given speech ended for the occurence_idx time
- TransferContactSequence(contact_sequence, target_obj_mask=None)
 Description: Transfer the given contact sequence to the new scene. Optionally provide a mask of the target object in the new scene.
- TransferBBox(bbox, frame)
 Description: Transfer the bounding box in the given frame to the new scene observation.
- TransferEEConfig(timestamp, reference_point, mask=None)
 Description: Transfer the end effector pose at the given timestamp to the new scene observation.
- AnyGrasp(point_cloud)
 Description: Chooses a grasp configuration for an arbitrary point cloud
- MoveEEToPose(pose)
 Description: Move the EE to the specified goal pose
- MoveEERel(delta_pose)
 Description: Move the EE to the specified relative pose
- MoveEEGuarded(vector)
 Description: Move EE along a given vector until contact
- MoveEEHome()
 Description: Return EE to home position. Usually done at the end of the task.
- AdjustGripperWidth(width)
 Description: Adjust the gripper width (used to grasp or ungrasp)

You can use color_frames[timestamp] to access the RGB frame for any timestamp in the demo video
You can use depth_frames[timestamp] to access the depth frame for any timestamp in the demo video
You can use pointclouds[timestamp] to access the point cloud for any timestamp in the demo video
You can use obs = GetObservation() to get the current observation frame from the robot's camera

Do not output markdown (e.g. "```python") or add any code comments, just the executable python code.

For example, if the recorded demo has the following contact sequences:
(1) PICK_AND_PLACE, target_object=“pill bottle”, target_receptacle=“bowl”

And the natural language narration of the demo is as follows:
Grasp the pill bottle and move it to the bowl.

You can write code to execute the demonstrated behavior with the robot similar to this:
src_seq = GetContactSequences()[0]
obs = GetObservation()
targ_seq = TransferContactSequence(src_seq)
for ee_cfg in targ_seq.ee_configs:
 AdjustGripperWidth(ee_cfg.width)
 MoveEEToPose(ee_cfg.pose)
MoveEEHome()

The recorded demo has the following contact sequences
{contact_sequence_summary}

The natural language narration of the demo is as follows:
{demo_narration}

System Prompt:

User Message:

Figure 8: The prompt includes API documentation that specifies the available functions, a brief
summary of contact sequences extracted during the pre-processing phase, and the full transcribed
narration of the demonstration.

18

	Introduction
	Related Work
	Method
	Problem Formulation
	Overview
	Pre-processing
	Program Synthesis
	Perception
	Language Alignment
	Novel Scene Transfer
	Robot Control

	Skill Execution

	Experimental Setup
	Results
	Limitations
	Conclusion
	Implementation Details
	Perception APIs
	Speech Alignment APIs
	Scene Transfer APIs
	Robot Control APIs

	Experimental Details
	Benchmark Tasks
	Evaluation Details

	Failure Analysis

