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Abstract

We study the problem of differentially private continual counting in the unbounded
setting where the input size n is not known in advance. Current state-of-the-art
algorithms based on optimal instantiations of the matrix mechanism [33]] cannot
be directly applied here because their privacy guarantees only hold when key
parameters are tuned to n. Using the common ‘doubling trick’ avoids knowledge
of n but leads to suboptimal and non-smooth error. We solve this problem by
introducing novel matrix factorizations based on logarithmic perturbations of the
function 117'2 studied in prior works, which may be of independent interest.
The resulting algorithm has smooth error, and for any « > 0 and ¢ < n it is
able to privately estimate the sum of the first ¢ data points with O(log®"2(t))
variance. It requires O(t) space and amortized O(log t) time per round, compared
to O(log(n) log(t)) variance, O(n) space and O(n logn) pre-processing time for
the nearly-optimal bounded-input algorithm of Henzinger et al. [27]. Empirically,
we find that our algorithm’s performance is also comparable to theirs in absolute
terms: our variance is less than 1.5 x theirs for ¢ as large as 224.

1 Introduction

Differentially private counting under continual observation |11} 18] refers to the problem of main-
taining accurate running totals over streams of sensitive data. It has attracted a great deal of attention
in recent years [3l 4} 16, [7, 14} [16} 23] 27, 28| [35]] for its wide-ranging applications in optimiza-
tion [13} 112} 141211132/ 136]], as well as online learning and the private analysis of streaming data more
broadly [L} 110} 130} 138} 140]. It has also been used in many large-scale deployments of differential
privacy, such as Google’s private next-word prediction [34] and Smart Select models [26]. To a
large extent, this flurry of activity has been prompted by recent algorithmic improvements in matrix
factorizations for streaming data [[14} 23} [27, [33]], which have dramatically improved privacy/utility
tradeoffs compared to classical approaches based on binary trees [11} 18] 29].

One challenge when applying matrix-based algorithms to streaming settings is that they largely
assume access to the input size n as a parameter. While this is a very natural assumption in contexts
like private model training, researchers from the beginning have also motivated their work with
appeals to applications like public health [18]] where it is much less clear how the assumption could
hold. In fact, it is known that difficulties related to unbounded inputs have influenced practical
deployments of DP [2]: famously, after Apple announced that it planned to use differential privacy to
collect user data, Tang et al. [[39] discovered that their implementation achieved this by guaranteeing
privacy only over a single day while allowing privacy loss per-user to grow without bound over time.

Simple solutions to this problem all carry fundamental tradeoffs. Lifting a bounded-input algorithm
to the unbounded case with some form of doubling trick [L1] asymptotically preserves performance,
but it also leads to non-smooth growth in error over time, undermining one of the major selling points
of matrix methods over binary trees [27]. Using a bounded matrix mechanism alongside the classical
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query model [17, [19] and refusing to produce additional outputs once our privacy budget is exhausted
preserves performance and smoothness, but is not truly unbounded and is unlikely to be satisfying
in practice. Finally, simple algorithms like adding independent noise to each data point are trivially
unbounded with smooth noise, but have extremely sub-optimal error. Our main contribution in this
paper is a matrix-based algorithm that overcomes this trilemma: to the best of our knowledge, it is the
first private counting algorithm that is simultaneously smooth and unbounded with almost-optimal
asymptotic error. It is also practical to implement, with essentially the same complexity as the
foundational algorithm of Henzinger et al. [27]], and we show empirically that it enjoys small error
for realistic input sizes and not just asymptotically.

2 Background and Related Work

2.1 Background

Continual (Binary) Counting. In continual counting [[18|[11]], the input consists of a (potentially
unbounded) stream of data z1,xs,.... At each time step t, the algorithm receives x; and then
produces an estimate of the partial sum S; = 22:1 x;. For the sake of simplicity, we will assume
that z; is a single bit, but our results are easy to generalize to z; € R%.

Differential Privacy under Continual Observation. Define two (potentially unbounded) streams
X1,Ta,... and x), 2, ... to be neighboring if there is at most one time step ¢ where z; # x}.
Let X,, (resp. X)) denote the first n data points in each stream. We say that a mechanism M
satisfies (g, dpriy)-differential privacy (DP) [20] in the continual observation model [18] if for all
neighboring streams X, X', all n € ZT, and all measurable events S, we have P(M(X,,) € S) <
efP(M(X])) + Oprin. Here, M(X) represents the full sequence of outputs produced by M on input
X. This reduces to the standard definition when the streams are finite; the additional quantification
over n is necessary to make sense of the definition for unbounded streams. The mechanisms we
study all use additive Gaussian noise, and so can readily be shown to satisfy other notions of
indistinguishability as well, such as Rényi DP [37], zCDP [9]], or Gaussian DP [[15]]. By virtue of
using Gaussian noise, they also automatically satisfy DP in the stronger adaptive setting where x; is
permitted to depend on earlier outputs, which is important for learning applications [14]].

Two measures of utility are standard in the literature: the root mean squared additive error and the
expected maximum additive error, defined respectively as the maximums over X, of:

ertt? (M) = \/;EMZ(M ~ M(X)[B) el (M) i= Eaq (max 1S, — M(X) )

t<n

When M uses additive Gaussian noise, both expectations and matching high-probability bounds can
be derived from V(M (X)), the (non-asymptotic) variance of the noise added as a function of time.
This is the main metric we will report when comparing the performance of different algorithms. We
additionally say that a mechanism has smooth error if V(M (X})) is a smooth function of ¢. This is a
desirable property because err’>~ depends on the maximum variance across all time steps, which can
be significantly higher than the average variance when error is non-smooth [3].

2.2 Related Works

Differential privacy under continual observation was introduced by Dwork et al. [18]] and Chan et al.
[L1], who independently proposed the binary mechanism. Conceptually, this algorithm computes
partial sums with the help of a binary tree where leaf nodes contain private estimates of individual
data points, and internal nodes contain independent estimates of the subsequences spanned by their
children. The binary mechanism of Dwork et al. [18] used Laplacian noise to satisfy (¢, 0)-DP with
err’” = O(log*®(n)), which was improved to O(log®®(t)) by Chan et al. [T1]]. This was later
reduced to O(log(t)+/log n) by Jain et al. [30] by using Gaussian noise instead. A straightforward
optimization of the algorithm follows from the observation that at a given time step, it is only necessary
to store log,(n) nodes of the tree in memory. Subsequent work by Honaker [29] additionally showed
that it is possible to reduce the error by roughly a factor of 2 by making efficient use of multiple
independent estimates for the same partial sum.



Table 1: Asymptotic Comparison of Private Counting Algorithms

Mechanism V(M(Xy)) - W Time for Space  Smooth  Unbounded
t outputs

Binary [11][30]* O(log(t) log(n)) O(t) O(logt) No No

Hybrid Binary [L1]* O(log® t 4 log t) O(t) O(logt) No Yes

Smooth Binary [3] O((logn + loglogn)?) O(t) O(logt) Yes No

Sqrt Matrix [27]23] O(log(t) log(n)) O(nlogn)  O(n) Yes No

Algorithm 1 O(log® ™ t) O(tlogt) O(t) Yes Yes

Hybrid Matrix O(log® t +1og®™“logt)  O(tlogt) O(t) No Yes

(*) Originally satisfied e-DP with Laplacian noise; numbers reported are for the Gaussian variant.
A mechanism is smooth if its variance is a smooth function of t, and it is unbounded if it doesn’t

require n as input. Algorithms with bolded names are original to this work. Constant factors differ
significantly between algorithms — we investigate this more closely in[section S|and|Figure 2|

Both the original binary mechanism and Honaker’s variant have very uneven noise scale across time
steps. Recently, Andersson and Pagh [3]] proposed a smooth variant of the binary mechanism which
equalizes the noise distribution across time steps, further improving err>~ by a constant factor.

The binary mechanism can be seen as a special case of the general matrix method [33]. Given a
dataset x and a matrix A = LR, the matrix method estimates Az by L(Rx + z) = Ax + Lz. This
satisfies DP when z is a Gaussian scaled to || R||1—2, the maximum £2 norm over the columns of
R. The final error also scales with || L||2— 0, the maximum ¢5 norm over the rows of L, and so by
choosing L and R carefully we can achieve error depending on the factorization norm ~,(A) =
min{||L||2—ol|Rll1»2 | LR = A}. This is often much more accurate than calibrating z to A
directly. In the case of continual counting, A = M., the all-ones lower-triangular matrix.

This matrix-based approach has rapidly become the standard in the field. Edmonds et al. [22] proved
a lower bound of Q(logn) on the per-time-step £, error of continual counting by lower-bounding
Yo (Meouns)- Denisov et al. [14] approached the problem of finding optimal decompositions as a
convex optimization problem, building on earlier work in the offline setting [41]]. They proved that,
for lower-triangular matrices like M, it is sufficient to consider only decompositions where L and
R are both lower-triangular. This is a particularly nice result because it implies there is no extra cost
for using the matrix method in streaming settings. Subsequently, Fichtenberger et al. [23]] provided an

explicit factorization L = R = Mcl,,/u?,, and studied its err’e error, and Henzinger et al. [27] proved
that the same decomposition is simultaneously nearly optimal in terms of err’2. More recent work
has investigated various computational modifications of this factorization, trading a small amount
of accuracy for efficiency by approximating the optimal decomposition in more compact ways, e.g.
through finite recurrences [16} 5] or by binning together similar values [4].

A distinct line of work has investigated the unbounded case. In their seminal work, Chan et al.
[L1] proposed a ‘hybrid’ mechanism which uses a variant of the classic doubling trick to match the
asymptotic err’> rate of the binary mechanism when n is unknown. Their technique is generic and
can be used to ‘lift’ any fixed-size algorithm into one that works on unbounded streams with the help
of a (potentially inefficient) unbounded algorithm — in we investigate a version of this
mechanism instantiated with[Algorithm 1] An alternative strategy for handling unbounded inputs is to
only permit queries based on sliding windows or decaying sums [8}40]. The dual approach, proposed
by Bolot et al. [8] and recently extended by Andersson et al. [6]], instead relaxes the classical privacy
definition to allow DP guarantees for past data points to gradually expire over time.

Our work is most directly inspired by the rational approximation methods of Dvijotham et al. [[16],
and in particular by their use of the equivalence between certain matrix factorizations and generating
functions. While they search for simple approximations of functions to derive computationally
efficient factorizations, we take the opposite approach by searching for more complicated functions
to derive matrix factorizations that are usable in the unbounded setting. Because we are not directly
concerned with reducing computational complexity below O(n) space and O(nlogn) time, we will

generally take the Mclo/ui, mechanism of Henzinger et al. [27] and Fichtenberger et al. [23] (“Sqrt
Matrix” in [Table 1|and [Figure 2) as the baseline against which our algorithm is compared.




3 Overview of Results

3.1 Preliminaries and Notation

The lower-triangular Toeplitz matrix corresponding to a sequence ag, a1, . . . is defined as the square
matrix whose ¢, j entry is a;—; when ¢ > j and O otherwise. For a given sequence, we will denote
the corresponding matrix as LT Toep(ag, a1, . . .). All matrices we consider will be infinite, but for
practical computations we will work with [A],,, the leading submatrix formed by the first n rows and
columns of A. The special matrix M.,y is defined as LT Toep(1, 1,1, ...).

LTToep matrices are closed under multiplication, and LT Toep(.S) LT Toep(S’) = LTToep(S xS’),
where S * S’ denotes the convolution of the sequences S and S’. This means that multiplication of
LT Toep matrices is commutative and can be performed in O(nlogn) time using the Fast Fourier
Transform (FFT). Given an analytic function f(z) with Taylor coefficients a,, = [z"]f(2), we will
abuse notation and write LTToep(f) for LT Toep(ag, a1, ...). With this notation, applying the
Cauchy product to their Taylor series gives us that LT Toep( f) LT Toep(g) = LTToep(fg). We
refer the curious reader to the full version of Dvijotham et al. [16] for an excellent and detailed
introduction to LT Toep matrices in this context, including proofs of the properties just described.

Finally, we note that we reserve the symbol d to refer to the exponent of the log log term in
When we need to refer to the privacy parameter of a DP algorithm, we will use d,y;y.

3.2 Main Result
Our main result is the following theorem and its associated algorithm (Algorithm TJ):

Theorem 1. For all o > 0, there exists an infinite lower-triangular Toeplitz matrix factorization
L, R € R*®* with the following properties:

* Joint Validity: For alln € 7%, [L],[R]n = [Meoun)n

* Bounded Sensitivity: lim,,_, . ||[R] |12 = C < oo for some computable constant C

* Near-Optimal Asymptotic Error: ||[L],||2—0. = O(log't*(n))

o Computability: There exists an unbounded streaming algorithm that at each time step t
takes as input z; and outputs (Lz); using O(t) memory and amortized O(logt) time

Corollary 1. For all €, 6priy, > 0 there exists an unbounded streaming algorithm for continual

counting, described in which has the same complexity as in and satisfies

(€, Opriv)-DP in the continual release model. At each time step t, the algorithm adds Gaussian noise
with scale O(log' ™ (t)C. s), where C. 5 = O(e™1\/10g(1/Spriv)) is independent of the input.

We prove [Theorem 1]in[section 4} [Corollary I|then follows from existing results. [33}14].

3.3 Technical Overview

The matrix decompositions we consider are of the form L = LTToep(f(z;—v,—0)), R =
LTToep(f(z;7,9)), where:

f(257,6) = f1(2) f2(2;7) f3(2; ) )

fi(z) = 11—27 fa(z;7y) = (éln(liz))v7 f3(2;6) := (§1n<§1n<1iz>>)5

As motivation for why one might study such matrices, recall that the first column of M,,,,, corre-
sponds to the Taylor coefficients of (1 — z)~!. This implies that for any pair of functions g, go
analytic on the open unit disc with product (1 — 2)~1, we have M_,,, = LTToep(g1) LTToep(gz).
Conversely, any non-pathological decomposition of M,,,,; into LTToep matrices will correspond to
such a pair of functions. So, rather than searching for arbitrary sequences of real numbers (which are
complicated to represent and reason about), we can instead take the approach of searching for nice
analytic functions with the hope of translating their functional properties into statements about the
sequences we’re ultimately interested in.




Algorithm 1 Logarithmic Matrix Method

Require: Matrix parameters v < —1/2 and ¢, privacy parameter C; ;
Compute A « ||[LTToep(f(z;7,0)|l1-2 > See "Bounded Sensitivity” in
fort=1,...,ndo
Receive input x; € [0,1]
Set St — 22:1 Tt
if £ = 2™ for some integer m then
Sample z, ~ N(0, C’iéAQ) fort <s<2t—1
Compute next ¢ coefficients of L = LTToep(f(z; —y, —9d)) in O(tlogt) time
> See *Computability” in[section 4]

Compute next ¢ terms of the sequence Lz in O(t logt) time with an FFT
Output S; + (Lz),

To understand why these functions in particular are good candidates, consider the special case where
v = = 0. This gives us R = LTToep((1 — z)~'/2), which is exactly M2 [16]. The key issue
that makes this sequence inapplicable to unbounded inputs is that it is not square-summable. By
Parseval’s theorem, this is equivalent to the statement that the function f is not square-integrable. To
fix this, we would like to ‘nudge’ f so that it becomes square-integrable while still being as ‘close’
to the original function as possible. A plausible first attempt in this direction would be to choose
R = LTToep((1 — z)~/?*%) for some o > 0, but this gives O(t*) error; the key issue is that
(1 — z)~« diverges very quickly as z — 1~ even when « is small. To obtain logarithmic overhead,
we require functions like In(1/(1 — z)) that diverge more slowly. Multiplying by f5 turns out to be
sufficient to prove but we show in [section 3|that incorporating f3 can further improve our
variance by a constant factor. Finally, the inclusion of the 1/z and 2/~ terms in eliminates
the 0 of In(1/(1 — 2)) at z = 0, which ensures that f is always analytic with f(0) = 1.

To study the asymptotic growth of |[[L],|l2— oo and ||[R],|l1—2, we draw on the classic work of
Flajolet and Odlyzko [24]], whose Theorem 3B (reproduced fully in[Theorem 2) provides the following
asymptotic expansion for the coefficient of z” in the Taylor series of f:
) (z.8) ~ =) @Ialan)’ - (14 0(n™ ()

In particular, this implies that if v = —1/2—q for some o > 0, then the series > - ([2™]f(2;7,9))?
converges, which is equivalent to R having bounded column norm. This is the crucial step that
allows us to operate on unbounded time streams without the use of doubling tricks — by calibrating
our noise scale to this limit, which can be computed exactly by integrating | f(z;+, d)|? over the
unit circle using Parseval’s theorem, we can guarantee privacy for all finite inputs. Using the same
asymptotic expansion, we can also show that the row norm of the corresponding L matrix grows like

O(log't*(n)) when 6 > 0 or O(log' ™M) (n)) when 6 < 0.
Finally, we can compute the first ¢ coefficients of f7, and its convolution with z in O(tlogt) time

and O(t) space using FFTs. [Algorithm 1|combines all of these ideas together alongside a standard
doubling trick on ¢, which allows us to achieve O(n logn) time complexity even when n is unknown.

4 Proof of

We will begin by fixing o > 0, and choosing fr(z) = f(z;—1/2 — «,9), fr(z) = f(z;1/2 +

a, —06) with f defined as in Our goal is to show that the matrix decomposition L =
LTToep(fr), R = LTToep(fr) satisfies all four properties listed in

Joint Validity. We have that LR = LT Toep(fL fr) = LTToep(i) = M ouns-

Bounded Sensitivity. We begin by showing that the column norm of R is finite, or equivalently
that fr € L?. Recall that ||R[|3_,, = > ,([2"]fr)?. By Theorem 3B of Flajolet and Odlyzko

[24], we know that ([z"]f)2 = O(n~log™*72%(n) log?’ (logn)) = O(n"'log~*~(n)), and the
series therefore converges by the integral test.



To actually compute this sensitivity, we make use of Parseval’s theorem, a classic result in Fourier
analysis which relates square-summable sequences to functions that are square-integrable over the
unit circle. Specifically, it gives us:

oo

S = 5 [ 1fn(e ) dt

m=0

In we simplify the right-hand side into two integrals over smooth, real-valued functions
that can be integrated numerically to high precision.

Near-Optimal Asymptotic Error. We first consider the case when 6 > 0. Once, again Theo-
rem 3B of Flajolet and Odlyzko [24] tells us that ([2"]fz)? = O(n~'(Inn)'*2*(Inlnn)~2°) =
O(n=t(Inn)**2%). So, by the definition of big-O, there are constants ng, C' such that for all
n > ng, we have 330 ([z™]fr)? < CYo) _, a(lnm)' T2 < C 7 L(lnz) 2 de =
55m (In(n) 272 —In(ng — 1)272¢). Therefore, /3", _([z7]f1)? = O(In(n)**) as desired.

The case where § < 0 is similar, except we have —20 > 0 and so it is no longer true that our

coefficients are O(n~!(Inn)'+2%). But for any o > «a, (Inlnn)~2% = o((Inn)* ~%), and so by
the same basic argument we can derive an asymptotic error bound of O(In(n)!***+°(1)) instead.

Computability We formalize the problem we are trying to solve as a game: first, an adversary
secretly fixes some integer n > 0. Then, at each time step ¢ = 1, ..., n, our algorithm is required
to output (LTToep(fr,)z):, where z ~ N(0,1,,). The algorithm’s goal is to achieve an optimal
asymptotic dependence on the unknown value n with respect to the total memory and computation
used. We will model computation in units of M (t), the cost of multiplying two polynomials of degree
t. Because polynomial multiplication can be implemented through divide-and-conquer algorithms,
we assume that for any k& > 0, M (kt) ~ kM (t) asymptotically as t — oco.

Initially, we disregard the challenge of not having access to n and consider the intermediate
problem of computing [LTToep(fr,)]: for some constant ¢ that we choose ourselves. As a pre-
view of our eventual strategy for handling unbounded inputs, we assume that we have access
to a pre-computed solution of size ¢/2. From here, we observe that LTToep f(z; —y, —0) =
LTToep(f1(z)) LTToep( f2(z;v)) LTToep( f3(z;d)). So, it suffices to compute each of these ma-
trices in isolation. The final product can then be computed using 2M (t) (or just M (¢) if 6 = 0).

To compute LT Toep(f1(z)), we use the fact that f; = Y ~_ (—z)™ (7717{2). This can be used to
derive the recurrence relation [2°]f; = 1, [z™]f; = (1 — 5-)[2™ '] f1 presented in prior works
(27, 23]]. This recurrence lets us compute the coefficients of this matrix in O(¢) time and space.

To compute the cofficients of LT Toep(f2(z;7), we begin with the fact that [2™] f2(2;1) = 5,

which can be derived from the Taylor expansion of In(1 + z). This intermediate sequence can also
clearly be computed in linear time and space. To account for the power of —~, we use the identity
fa(z; =) = exp(—yIn(f2(2;1))). To compute In(f2(z; 1)), we use the fact that In(f2(2;1)) =

JfEEi,B . The coefficients of f4(z; 1) can be directly computed from the coefficients of fo(z; 1) through

term-by-term differentiation, and using the division algorithm of Hanrot and Zimmermann [25] lets
us compute the ratio f4(z;1)/ f2(z) using 2.25M (¢). Term-by-term integration then allows us to
recover all but the constant term of In(f2(z; 1)) in linear time, but this is sufficient because we know
In(f2(0;1)) =1n(1) = 0.

Having shown that we can efficiently compute the Taylor coefficients of —v In(f2(z;1)), it remains
to find the coefficients of fo(z; —v) = exp(—vIn(f2(2;1)). We achieve this by using the algorithm
also presented in [25]] that takes an order ¢/2 approximation of exp(h) as input and produces an
order ¢ approximation using 2.25M (t).

Finally, we can rewrite f3(z;0) as (2 In(f2(2;1))°. The allows us to reuse our earlier computation of
the Taylor coefficients of In(f2(z;1)). Dividing by z corresponds to a simple shift of the coefficients.
All that remains is to account for the power of ¢, which can be done in 4.5M () using the same
technique described above for v. We can improve this to just 2.25M (t) if 6 = —v by computing the
quotient f5(z;1)/f3(z; 1) before applying the power operation. Doing so also saves us an extra M (t)
by removing the need to multiply LT Toep( f2(z; ) and LT Toep( f3(z; d) at the end.



In total, we require 11M (¢) to compute [L]¢, plus one more M (¢) to compute [L];z. To extend to the
case of general n, we initialize =2 and double it when we are asked to output the ¢ 4 1st estimate.
This gives us a total cost over the entire input of 12 ZQE? "l M(2F) ~ 12 Z,Lli? nl 2710 (n) <
24 M (n), which can be cut down to 17.5M (n) if § = —~, or 13M (n) when § = 0. When polynomial
multiplication is implemented with FFTs, we arrive at O(nlogn) time and O(n) space complexity,
asymptotically matching the algorithm of Henzinger et al. [27]. But note that because we have
to adjust ¢ on the fly, our algorithm requires amortized O(logt) time at each step, compared to
O(nlogn) pre-processing and O(1) time per step for Henzinger et al. [27]].

5 Implementation and Extensions

In this section, we investigate various practical considerations in the implementation of
We also consider relaxing the assumption that n is completely unknown by giving the algorithm
access to (possibly unreliable) side information on its value, and propose an approximate variant
(Algorithm 2)) which sacrifices some theoretical rigor for a greater than 5x improvement in running
time for large inputs. Finally, we show that can be used as a subcomponent of the
hybrid mechanism of Chan et al. [11] to achieve exactly O(log2 t) variance with improved constants
compared to their original approach. [1_-]

Choosing the value of . While it is in principle possible to set «v arbitrarily small, this would be
unwise. To see why, observe that for the purposes of bounding sensitivity, there is a stark qualitative
gap between the matrix LT Toep(f(z; —1/2 — 107190 §)), which has finite column norm, and the
matrix LT Toep(f(z; —1/2,d)) whose column norm diverges. But at the same time, the row norms
of the matrices LT Toep(f(z;1/2+ 107100 —§)) and LTToep(f(z;1/2, —6)) both diverge at pretty
much the same rate. This asymmetry implies that reducing « past a certain point does little to improve
our actual error while inviting numerical instability.

So, how should o be chosen? We observe that, as of mid-2025, the world’s population is estimated to
be about 8.2e9. If every single one of those people contributed 100 data points to our algorithm, then
we would have In’°! (n) = 1.03. We conclude that setting @ = 0.01 is likely a safe and practical
choice for most applications.

Choosing the value of §. There are three natural choices for setting the value of §, representing
different tradeoffs in speed and accuracy. Setting § = 0 is the fastest option computationally, but leads
to a sub-optimal rate of growth in error. Choosing § = —~ is roughly 1.5x slower, but substantially
improves error when n is greater than 1,000 or so. Finally, the special value 6 = —6+/5 is notable
because it causes the first two Taylor coefficients of both f1, and fx to match the function (1 — z)~1/2

exactly. For a fixed ~, this gives us the L and R matrices that are closest to Mcloﬁ,, subject to the
intuitively reasonable constraint that L > R. This option is the most expensive, but empirically leads
to improved error for n greater than 22°, which is shown in

Exploiting imperfect information about n. Up to this point we have assumed that n is unknown
and impossible to predict, but in practice, history or expert knowledge might suggest a range of
plausible values. We model this side information with the double-inequality ng < n < Cnyg for some
ng, C > 0, which is given to the algorithm. We allow these bounds to be unreliable in two senses —
the upper bound might be loose, or it might be entirely wrong. We show that our algorithm can make
efficient use of this information when it is reliable without incurring any additional error when it isn’t.

Our basic strategy is to simply pre-compute Lz out to Cng terms. Provided that the upper bound
is true, we recover the same O(nlogn) pre-processing time and O(1) work per-iteration as the
Mclo/,ﬁl, algorithm. Moreover, we suffer no performance cost if the upper bound turns out to be loose

because our error at each round depends only on ¢. In contrast, if we used the Mcl,,/ui, algorithm
with input Cng, we would be forced to calibrate its noise scale to the sensitivity of the larger matrix
[Mcl(,/ui,]cno. In the unlucky event where it turns out that n = nyg, this would produce a uniform
~ 1+1log C/(1 + log ng) multiplicative scaling of variance across the entire input.

'Our code is available at Ihttps://github.com/ben-jacobsen/central-dpolo/l




In the other direction, if the upper bound turns out to be false then our algorithm can recover gracefully

using the same doubling trick described in But by that point, the Mclo/ui, algorithm will
have completely exhausted the privacy budget of the first data-point, forcing it to either weaken its
privacy guarantees post-hoc or restart entirely with a new estimate for the input size! Even if this new
estimate is perfectly correct, the initial mistake will still lead to O(log(C'ng)) additive error.

Constant-factor speedups through asymptotic expansions. Flajolet and Odlyzko [24] derive the
following asymptotic expansion for the Taylor coefficients of f, which we used earlier in a weaker
form to derive the asymptotic error rate of our mechanism:

Theorem 2 (Paraphrased from Flajolet and Odlyzko [24] Theorem 3B). Let v, and 6 be complex
numbers not in {0,1,2,...}. Then the Taylor coefficients of f(z;~,d) satisfy:

1 eg/’é) (Inlnm) )

2 f( 2 ~ nm)?Y (Inlnm)?
[2™]f(2;7,9) \/m(l )7 (Inlnm) (1+Icz>:1 (In(m) In(In(m)))*

@

where egf’é) (z) is a polynomial of degree k:

dk:
6?’6) (CL’) = ﬁ@ (ﬁ) ‘32_1/2 . Ek(l‘)

and Ey, () is the k'™ Taylor coefficient of the function g(u) = (1 — zu)?(1 — L In(1 — xu))(s.

While this expression is messy, the cost of computing it is independent of m: for fixed approximation
order K, the derivatives of the reciprocal gamma function can be precomputed and the remaining
terms can be calculated in O(K log K) time using the same techniques described in
This idea naturally suggests [Algorithm 2] which switches from exact computations to order K
approximations once the relative error of the approximation falls below some threshold 1. We plot

relative error as a function of ¢, and K in

We highlight a potential pitfall with this approach,
which is that if we approximfite L~L Qirectly, then 2° am

we are implicitly choosing R = Mg, L~ and can -“~-______

no longer calibrate our noise to || R||;—,2 as normal. —1
Ideally we would like to be able to prove a bound
like ||Mcoum‘L71||1~>2 S (1 + O(ﬂ))HR”1~>2’ but
this appears to be non-trivial. We therefore take the
opposite approach, which is to directly approximate

Relative Error
N
L
N

-16
R ~ R and calibrate our noise to (1 + 7)|| R|[1-2 2 — 6=0,K=2 ==G=-y,K=2-__
with L = R~ M_,,,,. This version of the algorithm 2720 T g:gﬁ:g — g:z&:g

is provably valid and private, and for large enough in-
puts it reduces the computational cost at each power
of 2 from 12M (t) to 2.25M (t) (the cost of one se- 20 2° 2t“ 2
ries division), closing over 80% of the computational

gap between our algorithm and a standard doubling  Fjgyre 1: Plots the relative error |7, — 7| /1y

N
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trick. The tradeoff is a multiplicative (1+47) increase  from [Algorithm 2] as a function of ¢ when
in error prior to the switch, and the loss of tight, prov- , — 0.51. The asymptotic expansion con-

able bounds on error after the switch. In[Figure T we  yerges much more quickly when § = 0.
compare the performance of the two algorithms, and

find that after switching around ¢ = 2'!, the performance of|Algorithm 2|remains indistinguishable
from out to t = 224,

Asymptotic improvements through hybrid mechanisms. In their seminal paper, Chan et al. [11]
propose a generic ‘Hybrid Mechanism’ for continual counting of unbounded streams. The schema

requires one (possibly inefficient) unbounded counting algorithm, which operates on the condensed
k+ 1 — . . . .
sequence Y, = Zf:zk ' 2,, and a bounded algorithm, which is restarted whenever ¢ is a power of 2.

The privacy budget is divided between these two algorithms, and the partial sum at time ¢ = 2% + 7

is given by adding together estimates for Zf;ol y; and Zfi;r[ 2. The resulting hybrid mechanism is
unbounded and typically preserves the exact asymptotic error rate of the chosen bounded algorithm.



Algorithm 2 Approximate Logarithmic Matrix Method

Require: Matrix parameters v, 0 ¢ {0, 1,...}, order K, error tolerance 7, privacy parameter C; s
fort=1,...,ndo
if ¢ = 2™ for some integer m then
Sample z, ~ N(0, (14 7)*CZ5) fort <s <2t —1
r = [2'71] fr using[section 4]’ Computability’)
7 < Degree K approximation of [2~!] fr from
if ="l ;) then

Use [section 4]to compute next ¢ entries of LT Toep(fr)
else

Use [Equation 2|to approximate the next ¢ entries of LT Toep(fr)
Save computed sequence as [R]o;

Compute [RJQtl (Meount)2t2
OUtPUt (McountR_ ! Z)t

2—1
2
-4
100 G 2
; il ¢
5 g 27
= O
> 50 [T x5 10
©
z2—13
0
20 26 212 218 224 20 26 212 218 224
t t
— Hybrid (Alg 1; y=-0.55) = Alg 1; y=-0.51 —— Smooth Binary
— Hybrid (Independent noise) - Alg 1; y=-0.51, 6=0.51 — Sqgrt Matrix
—Alg 2; y=-0.51, n=1e-04 Alg 1; y=-0.51, 6=0.61

Figure 2: Left: Comparison of the exact variance of different algorithms and parameter choices.

Contrast with asymptotics in The Hybrid mechanism using [Algorithm | for the unbounded
component outperforms the variant using independent noise as in Chan et al. [[11]], but both variants

exhibit very erratic performance when ¢ is close to a power of 2. For[Algorithm I} the parameters
§ = —yand § = —6/5 give similar performance, but the latter is slightly better once ¢t > 220, and

both outperform § = 0 when ¢ > 2!, Note that the performance of [Algorithm 2| with § = 0 is
visually indistinguishable from that of |Algorithm 1} Right: Coefficients of the matrices LT Toep(fr,)
(upper) and LTToep(fr) (lower) for various choices of 4. The choice § = —6-/5 produces lines

that are as close as possible to that of Mcl(,{ﬁ,, without crossing it, which we hypothesize explains its
good performance.

The original hybrid mechanism used a simple unbounded algorithm that adds independent noise to
each input (corresponding to the matrix decomposition L = My, R = I). Our work enables a
more powerful instantiation using as the unbounded algorithm instead (‘Hybrid Matrix’
in[Table TJ), which we compare against the original. For both implementations, we improve on the
original presentation by using Mcl(,{;, for the bounded algorithm and allocating 75% of the privacy
budget to the bounded learner, which reduces the constant of the leading O(log2 t) term. In the spirit

of Honaker [29]], we also reuse the outputs of the bounded mechanism on earlier subsequences to
optimize the variance of the final estimate. Our results are visualized in [Figure 2}



6 Conclusion

We have shown for the first time that the classic matrix factorization method [33]] can be efficiently
extended to online settings with unknown input size without the use of doubling tricks. The resulting
algorithm is the first that we are aware of that is simultaneously unbounded and smooth with
almost-optimal asymptotic error. Empirically, we have also shown that it enjoys excellent constants
when its parameters are set correctly, with variance that is uniformly less than 1.5x that of Henzinger
et al. [27]] for inputs as large as n = 224,

Many interesting questions remain unanswered, however. For instance: the only algorithms we are
aware of that exactly achieve asymptotically optimal O(log2 t) variance in the unbounded setting
rely on some form of doubling trick, and despite a great deal of effort, we were not able to find a
LTToep decomposition with this property. Our suspicion is that no such decomposition exists, and
that this is related to the classic result that the sequence a,, = (n - logn - loglogn - ... - log®" n)~1
diverges for any k. We believe that a formal proof of this conjecture would be very interesting as
it would constitute a clean separation between the power of LT Toep and general lower-triangular
matrices in online learning. We therefore conclude by posing the following open question:

Open Question 1. Do there exist LTToep matrices L, R such that [L],[R]n, = [Mecouni|n,
limy, o0 ||[R]n |12 < 00, and ||[L]n]|2—s00 = ©(log® n)?
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction are exactly the content
of which we prove.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Our work has two main limitations: the computational cost of computing the
matrices we consider, and the slightly-suboptimal asymptotic error growth. These issues are
discussed in detail in[section 4Jand the conclusion, respectively.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Our primary theoretical result is which is proved fully in[section 4]
Other minor results in are presented with justification. One computational proof,

related to the sensitivity calculation, is deferred to the appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experiments all relate to non-random numerical quantities that are explic-
itly defined in the paper, and we offer a very thorough description of the algorithm used to

compute them in|section 4

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released our code as open-source software, including scripts to
reproduce all figures in the paper. It is available at fhttps://github.com/ben-jacobsen/central{

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We only conduct two small experiments, which are described in and
We provide all parameters for our own algorithm, and explicitly describe the
construction of the hybrid mechanisms. The Smooth Binary and Sqrt Matrix algorithms
have no hyperparameters.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: Our experiments are all exact and involve no randomness.
Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: There are no special computational resources required to reproduce our
experiments. All of them were carried out in python using a single commercial CPU in a
few seconds or minutes.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work is largely theoretical and defensive in nature, and does not involve
any human subjects or sensitive datasets.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
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11.

12.

Justification: The work is largely theoretical and not tied to any concrete application. We do
not anticipate any particular negative societal impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper does not release any data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We do not use any existing data or models. The primary package we use is
mpmath, which we cite in[Appendix A]

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper did not use LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Details for Computing Sensitivity

To actually compute the sensitivity, we make use of Parseval’s theorem, which gives us:

oo

S = 5 [ 1Fn(e at

(2sin ()~ (w?(2sin () + @)ﬁma [i ? (?(2sin (3)) + (”_479)2))

225 2m

=% )
+ (atan? (WT_G, —In (2sin (g))) + atan2(—sin 6, cos 9))2 ] 5 de

Where atan2(y, z) = arctan(y/x), possibly shifted by +7 to fall within (—7, r]. With the change
of variables w = (7 — ) /2, this simplifies to:

920 /2 —-1/2—a |1
— (2 cosw)_1(1n2(2 cosw) +w2> ~ In? (1n2(2 cosw) —|—w2)
Vi _71./2 4

5
2
+ (atanQ(w, —1In(2cosw)) + atan2(— sin(2w), — cos(2w))) ] dw
From here, we define the functions:
1
L(w)=2cosw I(w)=I*(w))+w? Iw)= I In*(Ir(w)) Is(w) = arctan (—w/In(I1(w))) + 2w)

By using symmetry and splitting the interval based on the offset of atan2, we finally arrive at:

21+25

w/3
IRI 2 = /O L(w) " Rw) P (W) + Li(w)?) dw

w/2
+/ L(w) ™ ()72 (Is(w) + (La(w) = 1)) dw
/3

Expressed in this way, both integrands are sufficiently smooth to be numerically integrated to high

precision. We use mpmath [31] for this purpose in our experiments, which supports arbitrary-precision
floating point computations and numerical integration.
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