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Abstract

Large language models (LLMs) with enormous001
pre-training tokens and parameters emerge di-002
verse abilities, including math reasoning, code003
generation, and instruction following. These004
abilities are further enhanced by supervised005
fine-tuning (SFT). While the open-source com-006
munity has explored ad-hoc SFT for enhancing007
individual capabilities, proprietary LLMs ex-008
hibit versatility across various skills. Therefore,009
understanding the facilitation of multiple abil-010
ities via SFT is paramount. In this study, we011
specificially focuses on the interplay of data012
composition between mathematical reasoning,013
code generation, and general human-aligning014
abilities during SFT. We propose four intrigu-015
ing research questions to explore the associa-016
tion between model performance and various017
factors such as data amount, composition ratio,018
model size and SFT strategies. Our experiment019
reveal that distinct capabilities scale differently020
and larger models generally show superior per-021
formance with same amount of data. Math-022
ematical reasoning and code generation con-023
sistently improve with increasing data amount,024
whereas general abilities plateau after roughly025
a thousand samples. Moreover, we observe026
data composition appears to enhance various027
abilities under limited data conditions, yet can028
lead to performance conflicts when data is plen-029
tiful. Our findings also suggest the amount030
of composition data influences performance031
more than the composition ratio. In analysis of032
SFT strategies, we find that sequentially learn-033
ing multiple skills risks catastrophic forgetting.034
Our proposed Dual-stage Mixed Fine-tuning035
(DMT) strategy learns specialized abilities first036
and then learns general abilities with a small037
amount of specialized data to prevent forget-038
ting, offering a promising solution to learn mul-039
tiple abilities with different scaling patterns.040

1 Introduction041

Recent research has demonstrated the remarkable042

and versatile proficiency of large language mod-043

els (LLMs) in dealing with a variety of real-world 044

tasks expressed in natural languages (Ouyang et al., 045

2022a; Anil et al., 2023; OpenAI, 2023). Among 046

the tasks, LLMs especially emerge with three out- 047

standing abilities in reasoning (Cobbe et al., 2021; 048

Wei et al., 2022), coding (Chen et al., 2021), and 049

aligning general human intentions (Ouyang et al., 050

2022a), which have drawn much attention from 051

the LLM research community. In order to further 052

incentivize such abilities, it necessitates supervised 053

fine-tuning (SFT) stages on annotated task data. 054

However, existing research has mostly con- 055

ducted separate SFT investigations on each of the 056

three tasks, where reasoning and coding abilities 057

require SFT on in-domain human-annotated or aug- 058

mented data (Yuan et al., 2023b; Luo et al., 2023) 059

while diverse and complex human instructions are 060

applauded for aligning human intentions (Wang 061

et al., 2023c; Taori et al., 2023; Xu et al., 2023; 062

Zhou et al., 2023; Wang et al., 2023a; Lu et al., 063

2023). As shown by the strong performance of pro- 064

prietary LLMs such as GPT-4 (OpenAI, 2023) and 065

Claude, LLMs have the potential to master all the 066

tasks in one model. Therefore, it is of paramount 067

importance to investigate the versatile performance 068

of SFT with composite task data, and understand- 069

ing and addressing the challenges posed by the data 070

composition problem in the SFT stage is crucial 071

for further enhancing the capabilities of LLMs in a 072

comprehensive manner. 073

In essence, the tasks of reasoning, coding, and 074

aligning human intentions are of different charac- 075

teristics. Reasoning and coding tasks require ad- 076

hoc abilities of complex and detailed logic in de- 077

composing task instructions and dealing with non- 078

linguistic and symbolic features (Chen et al., 2021; 079

Huang and Chang, 2023), whereas aligning human 080

intentions requires versatility and understanding 081

obscure intentions expressed in human instructions 082

(Lu et al., 2023). Given the fundamental difference 083

among the tasks, multi-task learning with compos- 084
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ite data fine-tuning for small-scaled pre-trained lan-085

guage models is prone to catastrophic forgetting086

(De Lange et al., 2022), hindering the fine-tuned087

performance of one model on separate tasks. Many088

efforts have been made to compensate for the phe-089

nomenon (Liang et al., 2021; Xu et al., 2021; Yuan090

et al., 2023a). There has also been research dis-091

covering that scaling up the pre-trained language092

model scale and the fine-tuning data scale are bene-093

ficial for zero-shot out-of-domain generalization on094

various linguistic tasks while leaving out the assess-095

ment of in-domain performance (Sanh et al., 2022;096

Chung et al., 2022a; Longpre et al., 2023). Given097

the increased capacity of LLMs, the multi-task per-098

formance by SFT on composite data of essentially099

different downstream tasks is less studied. Under-100

standing the SFT performance with composite data101

and corresponding scaling patterns is of great utility102

in practice.103

In this study, we focus on the data composition104

problem among mathematical reasoning, code105

generation, and general human-aligning abili-106

ties in SFT. We aim to comprehensively investi-107

gate the relationship between model performance108

and different factors including data amount, data109

composition ratio, model scales, and SFT training110

strategies. We also investigate how the relationship111

varies under different scales. Specifically, we focus112

on the following four research questions:113

1. How do math reasoning, coding, and general114

abilities scale with SFT data amounts?115

2. Are there performance conflicts when com-116

bining these three abilities in SFT?117

3. What are the key factors that induce the118

performance conflicts?119

4. What are the impacts of different SFT strate-120

gies for composite data?121

To answer these questions, we conduct exper-122

iments on three benchmarks, which are GSM8K123

(Cobbe et al., 2021) for mathematical reasoning,124

HumanEval (Chen et al., 2021) for coding, and125

MT-Bench (Zheng et al., 2023) for general human126

alignment. We fine-tune LLMs on the related train-127

ing data to activate these abilities. Furthermore, we128

conduct extensive analysis regarding model param-129

eter scales ranging from LLaMA 7B to 33B (Tou-130

vron et al., 2023) and explore four different SFT131

strategies shown in Figure 1: multi-task learning,132

sequential training, mixed sequential training, and133

dual-stage mixing fine-tuning (DMT), providing134

empirical guidance for learning a versatile LLM135

with composite SFT. The key findings of this paper136

can be summarized as follows: 137

• Different SFT abilities exhibit distinct scal- 138

ing patterns, while larger models show better 139

performances with the same data amount gen- 140

erally. 141

• Compared to single ability learning, multi- 142

task learning multiple abilities exhibits im- 143

provement in low-resource and decline in 144

high-resource. Additionally, as the model size 145

increases, there is a greater performance gain 146

in low-resource settings for math and general 147

abilities. 148

• Data amounts directly influence each ability, 149

while the data ratio is insignificant. 150

• Multi-task learning lead to conflicts, while se- 151

quential training results in catastrophic forget- 152

ting. Our proposed DMT effectively alleviates 153

both performance conflicts and catastrophic 154

forgetting in the SFT phrase, achieving a bal- 155

ance between general and specialized abili- 156

ties. 157

2 Related Works 158

Supervised fine-tuning in Large Language Mod- 159

els Large language models (LLMs) undergo the 160

SFT stage to further unlock the performance in 161

task solving and aligning human instruction. We 162

slightly abuse the term SFT to refer to general 163

sequence-to-sequence fine-tuning, including but 164

not limited to SFT for human alignment, instruc- 165

tion fine-tuning, and downstream task fine-tuning. 166

Recent research explored multi-task instruction 167

fine-tuning of pre-trained LLMs to enable better 168

zero-shot performance on various downstream NLP 169

tasks (Sanh et al., 2022). (Chung et al., 2022a; 170

Longpre et al., 2023) attempted to exhaust ex- 171

isting NLP tasks and curated a massive dataset, 172

FLAN, for instruction fine-tuning. Open-sourced 173

(Chung et al., 2022b) and proprietary LLMs (Sing- 174

hal et al., 2022) fine-tuned on FLAN exhibited 175

improved zero-shot downstream performance on 176

various held-out NLP tasks. However, the influ- 177

ence of multi-task training of LLMs on in-domain 178

performance is less studied. With the success of 179

proprietary LLMs, especially ChatGPT, there has 180

been increasing attention on SFT to align LLMs to 181

human intentions (Ouyang et al., 2022b). Instead 182

of generating SFT data from crowd-resourcing, re- 183

cent research explored to generate data from pro- 184

prietary LLM user logs (Chiang et al., 2023; Wang 185
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Figure 1: The illustration of four different training strategies in this paper.

et al., 2023a), prompting proprietary LLM (Wang186

et al., 2023c; Taori et al., 2023; Lei et al., 2023;187

Xu et al., 2023). Various analyses and methods188

have also been proposed to increase the SFT data189

quality (Zhou et al., 2023; Wang et al., 2023b; Lu190

et al., 2023) to achieve better alignment of open-191

resourced LLMs with humans. Besides, LLMs can192

also benefit from SFT for mathematical reasoning193

(Cobbe et al., 2021; Hendrycks et al., 2021; Yuan194

et al., 2023b; Yue et al., 2023) and code generation195

tasks (Chaudhary, 2023; Luo et al., 2023). 1196

3 Experiments197

We have SFT datasets {D1, D2, ..., Dk} where198

each Di = {qi,j , ri,j}j contains queries and re-199

sponses from one source. We consider each SFT200

dataset to correspond to one ability and we also201

have k in-domain metrics to measure them. We202

investigate the performances of in-domain met-203

rics with different dataset compositions (D ⊂204

∪1≤i≤kDi) and training strategies on different sizes205

of LLMs.206

3.1 Experiment Setup207

We collect three SFT datasets {D1, D2, D3} in-208

cluding GSM8K RFT (Yuan et al., 2023b), Code209

Alpaca (Chaudhary, 2023), and ShareGPT (Chiang210

et al., 2023) to represent math reasoning, coding,211

and general human-aligning ability SFT dataset re-212

spectively. We will integrate a new SFT dataset D213

1The related work of "Scaling Laws in Large Language
Models" can be found in Appendix K

by these three datasets to investigate how data com- 214

position affects the model performances. We use 215

GSM8K test set (Cobbe et al., 2021), HumanEval 216

(Chen et al., 2021), and MT-Bench (Zheng et al., 217

2023) to measure abilities including math reason- 218

ing, coding, and general human-aligning. We use 219

LLaMA (Touvron et al., 2023) series as our pre- 220

trained language models and use FastChat frame- 221

work (Zheng et al., 2023) for fine-tuning. We fine- 222

tune models with 3 epochs and a peak of 2e-5 learn- 223

ing rate. The batch size during SFT is 16. More 224

details about SFT datasets, evaluation metrics, im- 225

plementations and Training FLOPs can be found 226

in Appendix A, B, C and D. 227

3.2 RQ1. Individual Ability Performance vs. 228

Data Amount 229

The instruction following ability can be activated 230

via SFT on datasets like ShareGPT which contain 231

around 100 thousand samples. However, (Zhou 232

et al., 2023) demonstrates that strong base models 233

can achieve human alignment with just 1000 sam- 234

ples. Specialized abilities such as math reasoning 235

require a large amount of data (Cobbe et al., 2021; 236

Yuan et al., 2023b), unlike general abilities. There- 237

fore, it is crucial to investigate how each ability 238

improves as the data amount increases. 239

Experimental Design: We conduct SFT on 240

LLaMA of various sizes using {1, 1/4, 1/16, 1/64, 241

1/256} proportions of the training set obtained from 242

GSM8K RFT, Code Alpaca, and ShareGPT seper- 243

ately. This allowed us to evaluate each ability with 244
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Figure 2: The scaling curve of different sizes of LLaMA
in three individual domains.

various data sizes and model sizes.245

Results and Analysis. Figure 2 shows the in-246

dividual data scaling curves for different abilities247

after SFT. We find that: Different abilities ex-248

hibit different scaling curves. To be more spe-249

cific, mathematical reasoning capability shows a250

positive correlation with the data amount across251

various model sizes which is consistent with (Yuan252

et al., 2023b). Similarly, general human-aligning253

ability demonstrates an almost monotonically in-254

creasing scaling curve. However, it is noteworthy255

that general ability emerges with only around 1k256

data samples (ranging from 1/256 to 1/64), and257

after reaching a certain threshold (1/64), their per-258

formances improve slowly. This further supports259

(Zhou et al., 2023), indicating that a small amount260

of high-quality SFT data is possible for the emer-261

gence of general human-aligning ability in LLMs.262

On the other hand, code ability exhibits an irregular263

scaling curve when the model’s parameter count264

is small (7B & 13B). However, when the parame-265

ter count increases to 33B, its coding performance266

shows an approximately log-linear trend with the267

data amount. One possible explanation is that Code268

Alpaca and the samples in HumanEval have differ-269

ent distributions. Larger models can capture shared270

knowledge across code data distributions in the271

in-domain samples, which enables them to exhibit272

some level of generalization to out-of-distribution273

(OOD) samples. Another observation is larger274

models show better performances with the same275

data amount generally. The outlier is with very276

little data (1/256), smaller models may outperform277

larger models. If there is enough data, larger mod-278

els have stable better performances.279

3.3 RQ2. Performance Difference vs. Mixed280

Data Amount281

We should deliver a versatile model that requires282

us to mix various SFT datasets and apply SFT. We283

want to ask how each ability varies due to SFT284

dataset mixtures. We investigate it with different285

amounts of mixed data and compare them with286

individual ability performance.287
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Figure 3: Comparative experiments between mix do-
mains and individual domains for LLaMA.

Experimental Design: For the individual source 288

setting, consistent with the setup in RQ1, we per- 289

formed fine-tuning on LLaMA models of different 290

sizes using {1, 1/4, 1/16, 1/64, 1/256} amounts 291

of training data from GSM8K, Code Alpaca, and 292

ShareGPT separately. For the mixed source setting, 293

we sampled {1, 1/4, 1/16, 1/64, 1/256} amounts 294

of training data from GSM8K, Code Alpaca, and 295

ShareGPT, and directly mixed them according to 296

the corresponding proportions. In this way, we con- 297

structed datasets with fixed proportions of differ- 298

ent ability domains, while varying the total data 299

amount. These datasets are then used for fine- 300

tuning the LLaMA models 2. 301

Results and Analysis. Figure 3 presents results 302

of LLaMA of different sizes on three benchmarks 303

under the individual source and mixed source set- 304

tings. The following observations are made: Abil- 305

ities are improved with low-resource and are 306

decreased with high-resource compared to indi- 307

vidual source abilities. In the case of LLaMA-7B, 308

compared to the data scaling curve of the individual 309

source setting, the models fine-tuned with mixed 310

source data consistently demonstrated performance 311

conflicts among the three ability domains at high 312

resources (100%). However, as the data volume de- 313

creased, a turning point in performance is observed 314

between the two settings in the data range of 1/64 315

to 1/16. Notably, the models fine-tuned with mixed 316

source data exhibited performance gains at low re- 317

sources (1/256), indicating that SFT data from dif- 318

ferent sources benefit each other in a low-resource 319

setting. However, when there is enough data, data 320

2We also conduct "Equal Data Amount VS. Equal Data
Proportion" experiments in Appendix H
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Figure 4: Different data ratio (k) between specific abili-
ties and general abilities on three benchmarks.

from other sources could be viewed as noise for321

in-domain generalization. As the model size in-322

creases, the performance gain in low-resource323

settings also increases for math and general abil-324

ities. In the case of the 13B and 33B models, it is325

obvious that the scaling curve for the mix source326

setting follows a similar trend observed in previous327

analyses, with the presence of performance inter-328

section points as the data volume scales. However,329

a crucial distinction arises, whereby larger models330

exhibit more pronounced performance gains under331

low resources as the size of model parameters in-332

creases. The outlier is the LLaMA-7B (code only,333

1/256). A possible reason is the introduction of a334

small amount of unseen code data easily disrupts335

the original code ability of the pretrained model, as336

supported by its low HumanEval score (less than337

6). In conclusion, our finding implies that larger338

language models excel in acquiring general and339

specialized abilities from diverse data sources un-340

der low-resource conditions 3.341

3.4 RQ3. Performance Difference vs. Data342

Composition Ratio343

We observe ability conflicts in high-resource set-344

tings, and we want to investigate the reasons why345

the conflicts occur. Two possible factors are the346

data amount of other abilities is too high or the347

data ratio of other abilities is too high. Here we348

conduct experiments to investigate the data ratio349

factor.350

Experimental Design: We consider coding and351

mathematics as a combined specialized data source,352

and the ShareGPT as the general data source. We353

designed three setups as follows which control the354

amount of one source of data and vary the ratio355

between general and specialized data.356

3To validate the generalizability of our conclusions, we
further conduct the more experiments on World Knowledge,
Language Understanding and Translation in Appendix E.

1. Fixed general data, scaling specialized data: 357

We use a full training set of ShareGPT and sampled 358

different proportions {1, 1/4, 1/16, 1/64, 1/256} of 359

GSM8K RFT and Code Alpaca as a mixture. 360

2. Fixed specialized data, scaling general data: 361

We use a full training set of GSM8K RFT and 362

Code Alpaca and sample different proportions of 363

ShareGPT as a mixture. 364

3. Fixed 1/64 general data, scaling specialized 365

data: Motivated by LIMA’s setup (Zhou et al., 366

2023), we used a 1/64 ShareGPT set (about 1500 367

examples) and sampled different proportions of 368

GSM8K RFT and Code Alpaca as a mixture. 369

Results and Analysis. Q1: Does the perfor- 370

mance of the model vary with different ra- 371

tios of general and specialized data? As illus- 372

trated in the top three graphs of Figure 4, we 373

conduct ablation studies of the data ratio (k) be- 374

tween specialized and general abilities. To be no- 375

ticed ratio is normalized by data amount, for ex- 376

ample, k = 1 means specialized use data amount
general use data amount = 377

specialized all data amount
general all data amount . We utilize a fixed spe- 378

cialized data setting (directly mixing 100% code & 379

math data for training) and a fixed general data set- 380

ting (100% general data for training) as the baseline 381

and observe: 382

(1) With the increase in the ratio of general data 383

from 1/256 to 1/1, Fixed specialized data, scaling 384

general data setup exhibits similar performance to 385

the setup that Fixed specialized abilities in terms 386

of math reasoning. This suggests that variations in 387

the data ratio k have minimal impact on math abil- 388

ity. We consider the reason that math and general 389

abilities are non-conflict since they are too differ- 390

ent in the semantic space. However, when con- 391

sidering HumanEval, the Fixed specialized data, 392

scaling general data setup displays noticeable fluc- 393

tuations compared to the baseline. We attribute 394

this to the inclusion of a certain proportion of code 395

data in ShareGPT. Due to the differences in data 396

format and distribution, the presence of similar 397

data features exacerbates the performance conflicts 398

between abilities when the data ratio k increases. 399

Further analysis of the distribution of different abil- 400

ities is discussed in Section 4.1. 401

(2) With the increase in the ratio of specialized 402

data from 1/256 to 1/1, the setup that Fixed gen- 403

eral data, scaling specialized data displayed no 404

significant performance changes compared to the 405

baseline. This echoes our hypothesis that when 406

there are significant differences in task formats 407
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and data distributions between different SFT408

abilities, the impact of data ratio is minimal.409

However, when there is some degree of similari-410

ties, the data ratio can lead to noticeable perfor-411

mance fluctuations.412

Q2: Under extremely limited general data re-413

sources, does the ratio of specialized data have414

an impact on the model’s performance? We415

further explore the impact of different ratios of416

specialized data when the model has just acquired417

a certain level of general human-aligning ability418

(k = 1/64). The bottom 3 graphs of Figure 4419

present comparative experiments between two set-420

tings. We observe that regardless of whether the421

data amount for general capabilities is abundant422

(k = 1) or scarce (k = 1/64), the performance on423

MT-Bench shows no significant fluctuations with424

varying proportions of specialized data. Further-425

more, in mathematical reasoning, 1/64 general data426

setup exhibited a scaling trend that is almost iden-427

tical to the full general data setup. However, for428

coding ability, with the same amount of code data429

and different ratios, code abilities are different in430

the two settings. We still consider the reason is431

code data are partly related to ShareGPT data and432

cause the performance difference and provide an433

analysis in Discussion 4.2.434

3.5 RQ4. Performance Difference vs.435

Training Strategies436

We could feed these SFT datasets into models with437

different training strategies. In this section, We438

experiment with these settings and investigate how439

they influence each ability’s performance.440

Experimental Design: Firstly, we introduce441

three kinds of naive training strategies as follows:442

1. Multi-task learning: We directly mix differ-443

ent SFT data sources D = ∪1≤i≤kDi and applying444

SFT. If we view each data source as a different task,445

this can be viewed as multi-task learning.446

2. Sequential Training: We sequentially apply447

SFT on each dataset. Specifically, we sequentially448

trained on coding, math reasoning, and the gen-449

eral ability dataset. Since the general ability is the450

most important one for human alignment, we put451

ShareGPT as our last dataset.452

3. Mixed Sequential Training: We apply multi-453

task learning on specialized datasets(code, math)454

first and apply SFT on the general ability dataset.455

These three approaches are presented in Figure 1.456

Results and Analysis: Table 1 presents perfor- 457

mances under different training strategies in terms 458

of mathematical reasoning, code generation, and 459

general human-aligning ability. Multi-task learning 460

preserves specialized abilities among these strate- 461

gies while hurting the general ability most among 462

them. Sequential training and mixed sequential 463

training preserve general ability while losing too 464

many specialized abilities. The observed outcome 465

is in accordance with expectations, as during the 466

final fine-tuning phase, the mixed sequential train- 467

ing strategy remains unaffected by specialized data, 468

thereby effectively preserving its generalization ca- 469

pability. However, an inherent drawback of multi- 470

stage training is the occurrence of catastrophic 471

forgetting of prior knowledge, which motivates 472

us to further explore methods that can alleviate 473

catastrophic forgetting of specialized abilities while 474

maximizing the preservation of general capability. 475

4. Dual-stage Mixed Fine-tuning (DMT): 476

Based on our observation from RQ1 to RQ4, we 477

propose a new training strategy that can reduce 478

the ability conflict during multi-task learning and 479

relieve the issue of catastrophic forgetting during 480

sequential training. From RQ1, the model needs 481

large data amounts to activate specialized abilities. 482

From RQ2, multi-task learning with all amounts 483

of specialized data and general data will hurt each 484

ability. From RQ3, a small amount of specialized 485

data will not affect the general ability performance. 486

From RQ4, (mixed) sequential training forgets spe- 487

cialized abilities. So the model needs to learn large 488

amounts of specialized data and should not forget 489

them during learning general ability. A natural 490

choice is to learn full amounts of specialized data 491

first and add a small amount of specialized data 492

to general data during the last stage of sequential 493

training to prevent forgetting. As shown in Figure 494

1, we first apply SFT on the specialized dataset 495

which is same as the first stage of the mixed se- 496

quential training strategy. For the second stage, we 497

perform SFT with a mixed data source compris- 498

ing a combination of the general data and varying 499

proportions k (1, 1/2, 1/4, 1/8, 1/16, 1/32) of code 500

and math data. Adding code and math data in the 501

second stage helps models to recall the specialized 502

ability. The results of DMT (k = 1/256) are pre- 503

sented in Table 1 and the detailed scaling analysis 504

of proportion k can be found in the discussion. 505

Model Accuracy vs. DMT Strategies. In Table 506

1, LLaMA-7B with DMT (k = 1/256) strategy per- 507

form significant improvement in mathematical rea- 508
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Methods
LLaMA -7B LLaMA -13B LLaMA -33B

GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Individual domain
General only 11.10 10.42 5.88 14.02 16.40 6.13 26.06 24.30 6.63
Math only 49.10 6.71 2.53 51.40 12.8 2.54 57.91 15.5 3.18
Code only 4.51 18.40 4.30 5.15 17.1 3.53 6.06 26.82 4.18

Different Training Strategies
Multi-task learning 47.53 14.63 5.76 50.94 19.50 5.73 56.69 18.9 6.07
Sequential Training 31.39 15.85 5.72 39.12 20.12 5.93 47.27 24.80 6.73
Mixed Sequential Training 32.60 15.24 6.02 40.48 18.30 5.93 44.24 24.4 6.43
DMT(k=1/256) 41.92 17.68 6.08 46.47 19.50 6.03 56.36 25.00 6.73

Table 1: The results of LLaMA-7B, 13B, 33B under different training strategies on three benchmarks. The top two
results across different strategies are marked with bold and underlined.

soning (32.6 to 41.92) and code generation (15.24509

to 17.68) compared to the mixed sequential training510

strategy, which indicates a significant alleviating ef-511

fect of mixing specialized capability data in the last512

fine-tuning stage on catastrophic forgetting. Sur-513

prisingly, DMT (k = 1/256) even exhibits a slight514

improvement on MT-Bench, further highlighting515

its ability to alleviate catastrophic forgetting while516

effectively preserving general capability.517

Regarding the 13B and 33B models, DMT (k =518

1/256) demonstrates noticeable alleviation of catas-519

trophic forgetting in mathematical reasoning (13B:520

40.48 to 46.47 / 33B: 44.24 to 56.36) and code521

generation (13B: 18.3 to 19.5 / 33B: 24.4 to 25.5)522

compared to the mixed sequential training strat-523

egy. Additionally, it significantly retains its gen-524

eral capability (13B: 5.93 to 6.03 / 33B 6.43 to525

6.69). Therefore, these results serve as additional526

validation of the efficacy of DMT in mitigating527

catastrophic forgetting while maintaining general528

capability 4.529

4 Discussion530

4.1 Visualization of Different SFT Abilities531

In the aforementioned analysis of data composition,532

we observed a significant performance degradation533

when different data sources are directly mixed. In534

this section, our aim is to explore the potential535

mutual influence of semantic representation distri-536

butions among different data sources. Specifically,537

we randomly sampled 100 queries from CodeAl-538

paca, GSM8k RFT, and ShareGPT datasets and539

extracted the hidden layer representations located540

in the Middle layer (15th) of the model. Subse-541

quently, we employed the t-SNE toolkit (Van der542

4To verify the effectiveness of DMT strategy on relatively
OOD benchmarks, we further evaluate it on MBPP and MATH
in Appendix F.

Maaten and Hinton, 2008) to visualize the repre- 543

sentations of the three types of capabilities. The 544

results in Figure 5 illustrate a notable collapse phe- 545

nomenon in the semantic representations of both 546

the original LLaMA-13b and LLaMA-13b with 547

DMT (k=1/256). While both models exhibit a cer- 548

tain level of separation in the mathematical data 549

representations, there remains a certain degree of 550

overlap between the representations of code and 551

general samples. In Appendix G, we further discuss 552

the visualization of semantic spaces at different lay- 553

ers of LLaMA 7B & 13B. 554

4.2 Ablation of the Specialized Domains in 555

ShareGPT 556

In RQ2, we observe using mixed data sources re- 557

sulted in improved abilities under low-resource con- 558

ditions but diminished abilities under high-resource 559

conditions when compared to single data sources. 560

However, the presence of coding and mathemat- 561

ical samples within the ShareGPT introduces un- 562

certainty regarding whether the performance gain 563

under low resources is solely attributed to these 564

specific coding & mathematical data or other or- 565

thogonal samples in the general dataset (e.g., trans- 566

lation or extraction). Hence, the objective of this 567

section is to investigate whether the conclusions 568

drawn in Section 3.3 remain valid after removing 569

the code and math samples within ShareGPT. 570

Experimental Design: We employed an open- 571

set tagger InsTag (Lu et al., 2023) to annotate sam- 572

ples in ShareGPT. To filter out data related to cod- 573

ing and mathematical abilities, we conduct regular 574

expression matching to eliminate instances where 575

the tags contain keywords “code” or “math”. Fi- 576

nally, we obtain a ShareGPT dataset devoid of any 577

code or math-related information (reducing from 578

86K to 63K). In alignment with the settings in Sec- 579

tion 3.3, we sampled different proportions of train- 580
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Figure 5: The left two figures show the t-SNE plots of LLaMA-13B and LLaMA-13B with the DMT strategy. The
two right figures show the performance scaling of LLaMA-7B & 13B with DMT under different k values.
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Figure 6: The scaling curve after ablating code and
math-related samples from ShareGPT.

ing data (1, 1/4, 1/16, 1/64, 1/256) from GSM8K,581

Code Alpaca, and the modified ShareGPT dataset582

(without code math). These samples were directly583

mixed according to the corresponding proportions.584

Subsequently, the LLaMA models were fine-tuned585

by using this mixed dataset.586

Results and Analysis. Figure 6 shows the587

results of our experiment. Removing the code588

and math from ShareGPT not only mitigates the589

performance conflicts among different abilities to590

some extent under high-resource conditions but591

also maintains stable gains in low-resource settings.592

We propose that the potential reason behind these593

findings lies in the differences in the distribution of594

code and math data between ShareGPT, CodeAl-595

paca, and GSM8K RFT datasets. This distribu-596

tion gap introduces an extra noise during the SFT597

phrase, while its removal enables the model to bet-598

ter generalize coding and mathematical abilities.599

Furthermore, in low-resource scenarios, this phe-600

nomenon indicates that the code and math samples601

in ShareGPT are not the key factor contributing to602

performance improvements, but rather the diversity603

and variability of the data (Longpre et al., 2023).604

In summary, the presence of code math data within605

ShareGPT does not emerge as a key factor impact-606

ing the performance gains identified in Section 3.3,607

highlighting the generalization of our conclusions.608

4.3 Specialized Data Amount in DMT609

We investigate how different values of k influence610

model performance and results shown in Figure 5.611

When we adjust k from 0 to 1/256 (k = 0 is equal612

to mixed sequential training), the SFT models show 613

significant improvements in both specialized abil- 614

ity and general human-aligning ability. On the 615

contrary, as k increased from 1/4 to 1, the model 616

exhibited a decline in general ability. We believe 617

this is in line with the findings in RQ2, which con- 618

cluded that high-resource settings lead to conflicts 619

while low-resource settings lead to gains in mixed 620

sources. Furthermore, as k increased from 1/256 621

to 1/4, we observe a linear inverse trend between 622

general ability and specialized ability, especially 623

an increase in general ability coincided with a de- 624

crease in specialized ability. This suggests k needs 625

to be tuned based on specific requirements in order 626

to achieve a balance between multiple abilities. 627

5 Conclusion 628

We explore the data composition in the SFT phase, 629

focusing on mathematical reasoning, code genera- 630

tion, and general human-aligning abilities. We for- 631

mulate four research questions to guide our investi- 632

gation and analyze the scaling trends between dif- 633

ferent abilities and factors (e.g. data amount, data 634

ratio, model parameters, and training strategies). 635

Our findings reveal distinct scaling patterns among 636

different abilities, with larger models demonstrat- 637

ing superior performance when trained with the 638

same amount of data. Moreover, mixing data 639

sources in the SFT phase improves performance 640

in low-resource scenarios but diminishes in high- 641

resource scenarios. Interestingly, the phenomenon 642

of low-resource gain becomes more prominent as 643

the model parameter size increases. Furthermore, 644

our observations indicate that data amount directly 645

influences performance conflicts, whereas the im- 646

pact of data ratio is insignificant within our experi- 647

mental setup. Finally, regarding the SFT strategies, 648

we demonstrate our proposed DMT strategy effec- 649

tively alleviates performance conflicts, offering a 650

promising solution to activate multiple abilities. 651
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Limitations652

Due to our use of the large language model653

LLaMA-33B, the extensive computational re-654

sources and time required for both training and655

inference may limit its applicability. The datasets656

used in this article are all open source, so there are657

no ethical or moral issues; However, inappropri-658

ate prompts and noisy training corpora can poten-659

tially lead to privacy and bias issues with LLMs.660

Furthermore, the evaluation benchmark MT-Bench661

relies on GPT-4 for scoring, which may result in662

some variability in the results, and these may not663

always align perfectly with human judgment stan-664

dards. In this paper, we primarily focus on three665

SFT capabilities that are of great interest in the666

LLMs community, including mathematical reason-667

ing, code generation, and general human-aligned668

ability. To verify the generality of our conclusions,669

we further explore three additional SFT capabilities670

in the appendix. Nevertheless, there are still many671

other SFT capabilities (such as creative generation)672

within the LLMs community that have data compo-673

sition issues waiting to be explored by researchers,674

which will also be the focus of our future research675

efforts.676
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A SFT Datasets957

We investigate the data composition issues of math-958

ematical reasoning, coding, and general capabil-959

ities in the SFT stage from the following SFT960

datasets.961

• Code Alpaca (Chaudhary, 2023) aims to962

build and share an instruction-following963

LLaMA model for code generation. which is964

fully based on Stanford Alpaca and contains965

20K data used for fine-tuning the model. The966

Code Alpaca dataset has been open-sourced5.967

• GSM8K RFT (Yuan et al., 2023b) is a math-968

ematical dataset enhanced by integrating mul-969

tiple reasoning paths based on the original970

GSM8K dataset (Cobbe et al., 2021) through971

the rejection sampling. It contains 7.5K ques-972

tions and 110K responses in the training set.973

The GSM8k RFT dataset has been open-974

sourced 6.975

• ShareGPT refers to the multi-turn chatting976

histories used by Vicuna (Chiang et al., 2023).977

ShareGPT includes 86K human queries and978

responses from ChatGPT and other chatbots.979

The GSM8k RFT dataset has been open-980

sourced 7.981

The following table 2 presents the statistics of982

three datasets at different subset proportion (k).983

Data Ratio GSM8K RFT CodeAlpaca ShareGPT
K=1/1 110142 20022 86060
K=1/4 27535 5005 21515
K=1/16 6883 1251 5378
K=1/64 1720 312 1344
K=1/256 430 78 336

Table 2: Data statistics of three datasets at different
subset proportion (k).

B Evaluation metrics984

We use the following metrics to measure the985

aligned large language models.986

5https://github.com/sahil280114/codealpaca
6https://github.com/OFA-Sys/gsm8k-ScRel
7Exact dataset of ShareGPT (https://sharegpt.com/)

has not been released. We instead use a repro-
duced version from https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_unfiltered cleaned
raw dataset, and follow Vicuna preprocess.

• HumanEval (Chen et al., 2021) consists of 987

164 original programming problems, with 988

an average of 9.6 test cases allocated to 989

each problem. To ensure a thorough assess- 990

ment of the functional correctness of LLM- 991

synthesized code, HumanEval+ extends the 992

number of test cases significantly, averaging 993

at 774.8 test cases per problem. We use the 994

same method as (Chen et al., 2021)to obtain 995

unbiased estimates of Pass@k under greedy 996

decoding. To facilitate the reproducibility of 997

our results, we use the open-source github 998

repository BigCode (Ben Allal et al., 2022) 999

to evaluate all the HumanEval scores in this 1000

paper 8. 1001

• GSM8K (Cobbe et al., 2021) is a math word 1002

problem dataset used to measure large lan- 1003

guage model math reasoning ability. We use 1004

the default test set to measure the model. We 1005

calculate the score based on greedy decoding 1006

accuracy (maj@1). In this paper, we use the 1007

open-source github repository gsm8k-ScRel 9 1008

to evaluate all the GSM8k scores. 1009

• MT-Bench (Zheng et al., 2023) is a signif- 1010

icant benchmark that contribute to the eval- 1011

uation and advancement of chatbot models 1012

and LLMs in different contexts. MT-Bench10 1013

evaluates LLMs on multi-turn dialogues using 1014

comprehensive questions tailored to handling 1015

conversations. It provides a comprehensive 1016

set of questions specifically designed for as- 1017

sessing the capabilities of models in handling 1018

multi-turn dialogues. 1019

We also supplement more benchmark evaluation 1020

results in the appendix F to verify the generaliza- 1021

tion of our conclusions: 1022

• MATH (Hendrycks et al., 2021) is a dataset 1023

with challenging high-school math problems. 1024

Problems are classified into the following top- 1025

ics: Prealgebra, Algebra, Number Theory, 1026

Counting and Probability, Geometry, Interme- 1027

diate Algebra, and Precalculus. Problems in 1028

MATH are harder and more diverse than in 1029

GSM8K. In this paper, we use the open-source 1030

github repository gsm8k-ScRel to evaluate all 1031

8https://github.com/bigcode-project/
bigcode-evaluation-harness

9https://github.com/OFA-Sys/gsm8k-ScRel
10https://huggingface.co/spaces/lmsys/mt-bench
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the MATH scores. We use 500 test problems1032

from (Lightman et al., 2023) as out-of-domain1033

math benchmark.1034

• MBPP (Austin et al., 2021) consists of around1035

1,000 crowd-sourced Python programming1036

problems, designed to be solvable by entry-1037

level programmers, covering programming1038

fundamentals, standard library functionality,1039

and so on. Each problem consists of a task1040

description, code solution and 3 automated1041

test cases. To facilitate the reproducibility of1042

our results, we use the open-source github1043

repository BigCode (Ben Allal et al., 2022) to1044

evaluate all the MBPP scores in this paper.1045

C Implementation Details1046

We fine-tune all the SFT datasets with 3 epochs and1047

a batch size of 16 on NVIDIA A100 GPUs. We use1048

8 GPUs for 7B and 13B models, 16 GPUs for 33B1049

models during fine-tuning. We use a peak learning1050

rate of 2e-5 with a 3% learning rate warmup. We1051

evaluate the results on the final epoch. We use1052

greedy decode to calculate Pass@1 and maj@1.1053

Since the scores of MT-bench will fluctuate, we1054

conducted three experiments and took the average.1055

All experiments are conducted using the default1056

template of the FastChat framework (Zheng et al.,1057

2023), as shown in the figure below:1058

Prompt Template

A chat between a curious user and an arti-
ficial intelligence assistant. The assistant
gives helpful, detailed, and polite answers
to the user’s questions. USER: {Query}
ASSISTANT:

1059

To facilitate the replication of our results, all1060

datasets and evaluation benchmarks used in our1061

experiments have been open-sourced and their de-1062

tailed sources are indicated. We will also open-1063

source our code after the blind review process.1064

D Estimating FLOPs of SFT1065

Training FLOPs. We mainly follow the nota-1066

tions of (Kaplan et al., 2020) here.1067

For each input sample of length nctx in SFT1068

dataset (GSM8K, CodeAlpaca, ShareGPT), we can1069

split it into two parts:1070

nctx = nQ + nR (1)1071

Model size 7B 13B 33B

GSM8k RFT

SFT FLOPs 2.4× 1018 4.3× 1018 1.1× 1019

SFT GPI hrs 6.1 12.1 37.4

Code Alpaca

SFT FLOPs 4.7× 1017 7.8× 1017 2.0× 1018

SFT GPI hrs 1.2 2.5 8.2

ShareGPT

SFT FLOPs 2.2× 1018 3.9× 1018 9.7× 1019

SFT GPI hrs 5.4 10.9 34.0

Table 3: The statistics of FLOPs and GPU hours re-
quired for SFT. For 33B, we use DeepSpeed ZeRO3
(Rasley et al., 2020) for distributed training. All the
GPU hours are based on NVIDIA A100 80GB GPU.
Note we use non-embedding parameters to compute
FLOPs in our experiments.

Ctrain ≈ 6NnctxNs (2) 1072

where nQ, nR denotes the length of question 1073

and generated answers respectively. N ,Ns denotes 1074

the non-embedding parameters and the numbers of 1075

samples. 1076

Therefore, We estimate the SFT FLOPs follow- 1077

ing (Kaplan et al., 2020) and GPU times in Table 3. 1078

E Validation Experiments in More SFT 1079

Abilities 1080

To validate the generalization of our conclusions, 1081

we selected representative datasets to evaluate 1082

the capabilities of large models across different 1083

dimensions. These dimensions include World 1084

Knowledge : WebQuestionsSP (Yih et al., 2016), 1085

Language Understanding: CoNLL 2003 (Tjong 1086

Kim Sang and De Meulder, 2003), and Transla- 1087

tion: IWSLT14 (Cettolo et al., 2014) 1088

Experimental Design: Align the settings of RQ1 1089

and RQ2, we introduce two settings as follows: 1090

1. Individual Domain: We conduct SFT on 1091

LLaMA of various sizes using {1, 1/2, 1/4, 1/8} 1092

proportions 11 of the training set obtained from 1093

WebQSP, CoNLL 2003, and IWSLT14 seperately. 1094

This allowed us to evaluate each ability with vari- 1095

ous data sizes and model sizes. 1096

2. Mixed Domain: We sampled {1, 1/2, 1097

1/4, 1/8} amounts of training data from WebQSP, 1098

11Because these three datasets have relatively small
amounts of data (a few thousand), the scaling range is from
1/1 of the data volume to 1/8 of the data volume.

13



1/8 1/4 1/2 1
Data Amount

80

82

84

86

88

90

92
F1

 S
co

re
CONIL03

Individual
Mixed

1/8 1/4 1/2 1
Data Amount

15

20

25

30

35

F1
 S

co
re

WebQSP
Individual
Mixed

1/8 1/4 1/2 1
Data Amount

40.0

42.5

45.0

47.5

50.0

52.5

55.0

Sa
cr

eB
LE

U
 S

co
re

IWSLT14(DE-EN)
Individual
Mixed

1/8 1/4 1/2 1
Data Amount

40.0

42.5

45.0

47.5

50.0

52.5

55.0

Sa
cr

eB
LE

U
 S

co
re

IWSLT14(DE-EN)
Individual
Mixed

Figure 7: The scaling curve of LLaMA-7B in WebQSP, CoNLL 2003, IWSLT14(de-en), IWSLT14(de-en).

CoNLL 2003, and IWSLT14, and directly mixed1099

them according to the corresponding proportions.1100

In this way, we constructed datasets with fixed pro-1101

portions of different ability domains, while varying1102

the total data amount. These datasets are then used1103

for fine-tuning the LLaMA models.1104

Analysis. As shown in Figure 7 and Table 4, we1105

have following observations.1106

For the individual domain, the performance (P,1107

R, F1) of the model in the language understanding1108

(NER) task shows a positive correlation with the1109

scaling curve of data volume. These two abilities1110

exhibit similar scaling curve trends as the mathe-1111

matical ability performance in RQ1. In the case1112

of world knowledge (WebQSP), a similar positive1113

correlation trend is observed in terms of F1 and1114

Hits@1. However, when the data ratio is reduced1115

from 1/4 to 1/8, there is a significant performance1116

fluctuation, particularly in the performance of trans-1117

lation ability, which shows a relatively irregular1118

trend. These conclusions further support the core1119

conclusion of RQ1 that different data exhibit dif-1120

ferent scaling curves.1121

For the mixed domains, the findings align with1122

the conclusions in RQ2, where abilities are im-1123

proved with low-resource and decreased with high-1124

resource compared to individual source abilities.1125

This consistent conclusion holds for world knowl-1126

edge, language understanding, and translation abil-1127

ities.1128

F Results on OOD Benchmarks in Math1129

and Code1130

To validate the generalization of our findings on1131

other benchmarks, we utilized GSM8K and Code1132

Alpaca as the training sets. We further evaluated1133

the results on the individual domain, mixed domain,1134

and different training strategies on other specialized1135

ability benchmark, including MATH and MBPP,1136

which is illustrated in Table 5 and Figure 8. We1137

have the following findings:1138

(1) In the individual domain, LLaMA shows1139

1/256 1/64 1/16 1/4 1
Data Amount

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
MATH

Individual
Mixed

1/256 1/64 1/16 1/4 1
Data Amount

15

16

17

18

19

20

21

22
MBPP

Individual
Mixed

Figure 8: The scaling curve of LLaMA-7B on MATH
and MBPP benchmarks.

a positive correlation between performance in 1140

MATH and MBPP and the data volume (consis- 1141

tent with RQ1). 1142

(2) Comparing the individual and mixed do- 1143

mains, LLaMA-7B exhibits a trade-off between 1144

high-resource performance conflict and low- 1145

resource performance gain in both MATH and 1146

MBPP (consistent with RQ2). 1147

(3) Considering the general ability results shown 1148

in Table 1, we can observe that DMT maintains 1149

competitive results in MATH and MBPP while pri- 1150

oritizing general abilities. This further validates the 1151

effectiveness of DMT (consistent with RQ4). 1152

G Visualization of Different Layers 1153

In this section, we compared the visualization re- 1154

sults of the baseline model of LLaMA-13B and 1155

DMT (k=1/256) in the starting layer (Layer1), mid- 1156

dle layer (Layer15), and ending layer (Layer31) in 1157

Figure 9 and 10. 1158

The visualization result of the starting layer are 1159

relatively chaotic, while the visualization results of 1160

the middle layer and the ending layer are clearer. 1161

And the results of the middle layer and the last 1162

layer are consistent in pointing out that both base 1163

model and model with DMT strategy exhibit a cer- 1164

tain level of separation in the mathematical data 1165

representations, there remains a certain degree of 1166

overlap between the representations of code and 1167

general samples. 1168
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Datasets CONIL03 WebQSP IWSLT14
P R F1 F1 Hits@1 de-en en-de

Single Domain(1/1) 91.89 89.33 90.59 33.51 64.12 50 52
Single Domain(1/2) 90.59 87.15 88.83 27.10 61.87 46 43
Single Domain(1/4) 85.24 79.46 82.25 22.56 61.38 42 40
Single Domain(1/8) 83.22 80.42 81.79 13.63 49.05 41 40

Mixed Domains(1/1) 91.74 87.79 89.72 32.10 63.70 46 49
Mixed Domains(1/2) 90.69 86.93 88.77 29.98 62.29 45 45
Mixed Domains(1/4) 88.81 85.62 87.18 25.42 58.02 43 43
Mixed Domains(1/8) 86.47 81.18 83.74 21.36 56.86 45 45

Table 4: Results in other domains for single and mixed source settings based on LLaMA-7B.

Methods Math Benchmarks Code Benchmarks

GSM8K MATH HumanEval MBPP

Individual domain (Scaling)

Single Domain(k=1/1) 49.10 4.4 18.4 21.6
Single Domain(k=1/4) 43.37 3.9 11.58 18.8
Single Domain(k=1/16) 35.90 3.2 12.19 16.6
Single Domain(k=1/64) 22.71 3.2 9.14 15.8
Single Domain(k=1/256) 12.7 2.0 5.48 15.8

Mixed domain (Scaling)

Mixed Domain(k=1/1) 47.53 3.6 14.63 19.4
Mixed Domain(k=1/4) 41.98 3.2 9.14 18.8
Mixed Domain(k=1/16) 32.97 2.4 9.16 18.4
Mixed Domain(k=1/64) 25.77 2.4 14.63 17.2
Mixed Domain(k=1/256) 14.78 3.0 11.37 16.6

Individual domain

General only 11.1 2.9 10.4 1.0
Math only 49.10 4.4 6.71 9.0
Code only 4.51 1.0 18.40 21.6

Different Training Strategies

Multi-task learning 47.53 3.6 14.63 19.4
Sequential Training 31.39 2.0 15.85 15.8
Mixed Sequential Training 32.6 2.5 15.24 16.6
DMT (k=1/256) 41.92 3.6 17.68 19.8

Table 5: The detailed results of LLaMA-7B, 13B with different training strategies on OOD benchmarks.

H Equal Data Amount VS. Equal Data1169

Proportion1170

In a realistic SFT phrase for training general LLM,1171

the data amount for different abilities is likely to1172

differ. Therefore, instead of controlling the same1173

amount of data, we select to mix datasets with the1174

same proportion of subsets to better simulate real-1175

world scenarios in above experiments. In addition,1176

We further supplement the experimental results us-1177

ing different abilities mixed with the equal data1178

amount and compare them with the results using1179

the equal subset proportion in Table 6.1180

Equal Data amount Setting: we utilize the1181

data amount of GSM8k RFT as the baseline. We1182

sampled data with proportions of 1/16, 1/64, 1/256, 1183

and mixed samples of the same data amount from 1184

Code alpaca and ShareGPT. 1185

Equal Proportion Setting: we sampled data 1186

with proportions of 1/16, 1/64, 1/256 according to 1187

the subset proportions of each dataset and mixed 1188

them, which is aligned with the setup in RQ2. 1189

It can be observed that there is not a significant 1190

difference in the results of the three benchmark 1191

tests between the two settings. Therefore, these 1192

findings do not significantly impact the main exper- 1193

imental conclusions presented in the paper. 1194
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Figure 9: From left to right are the visualization results of starting layer (Layer1), middle layer (Layer15), and
ending layer (Layer31) on LLaMA-7B.
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Figure 10: From left to right are the visualization results of starting layer (Layer1), middle layer (Layer15), and
ending layer (Layer31) on LLaMA-7B with DMT(k=1/256) strategy.

I Comparison Experiment of Different1195

Training Sequences1196

To investigate the impact of training order on dif-1197

ferent SFT abilities, we have conducted additional1198

experiments with six different training orders. The1199

results and analysis of these experiments are pro-1200

vided in Table 7. Based on our findings, we con-1201

clude the following:1202

1. The SFT ability trained in the final stage tend1203

to retain relatively good performance.1204

2. If general and code abilities are trained in the1205

first two stages, there is a noticeable performance1206

decrease in code capability, while math capability1207

does not show significant impact. One possible1208

reason is that the task format of code generation1209

and general ability exhibits similar data distribu-1210

tions (as discussed in RQ3 and Discussion1). This1211

can result in a more severe catastrophic forgetting1212

phenomenon during continuous fine-tuning.1213

J Detailed Results of experiments1214

J.1 Results of Different Random Seeds1215

For each dataset, we employed random selection1216

by utilizing a random function with three distinct1217

seeds for sampling. Subsequently, we conducted a1218

comparative analysis of the results obtained from1219

different subsets on the three benchmark tests. The1220

specific details are presented in Table 8. It can be 1221

observed that DMT maintains its superiority under 1222

three different random seed settings. The influence 1223

of different subsets on experimental results is not a 1224

key factor and does not affect the overall trend. 1225

J.2 Results of Single Source and Mixed 1226

Source 1227

In Table 9 and Table 10, we report the detailed 1228

comparative results between mix domains and in- 1229

dividual domains for LLaMA-7B, 3B and 33B, as 1230

the supplemental results in RQ2. 1231

J.3 Results of Data Ratio (k) 1232

In Table 11, we report The detailed results of the 1233

data ratio (k) between specific abilities and general 1234

abilities on three benchmarks, as the supplemental 1235

results in RQ3. 1236

J.4 Results of Specialized Data Amount of 1237

DMT 1238

In Table 12, we report The detailed results of 1239

LLaMA-7B, 13B, 33B with different training strate- 1240

gies on three benchmarks, as the supplemental re- 1241

sults in RQ4. 1242

J.5 Results of MT-Bench 1243

In Figure 11, we report detailed results of LLaMA- 1244

7B, 13B, 33B with different training strategies on 1245
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Methods GSM8K HumanEval MT-Bench

Mixed Domain(k=1/16, Equal Amount) 34.49 9.14 5.49
Mixed Domain(k=1/64, Equal Amount) 25.02 13.54 5.21
Mixed Domain(k=1/256, Equal Amount) 16.7 11.54 4.63

Mixed Domain(k=1/16, Equal Proportion) 32.97 9.16 5.52
Mixed Domain(k=1/64, Equal Proportion) 25.77 14.63 5.24
Mixed Domain(k=1/256, Equal Proportion) 14.78 11.37 4.41

Table 6: Comparative experiment between equal data amounts and equal subset proportions of different SFT abilities
on LLaMA-7B

Methods GSM8K HumanEval MT-Bench

Code → Math → General 31.39 15.85 5.72
Math → Code → General 29.71 15.85 5.65
Code → General → Math 48.21 9.75 4.7
General → Code → Math 48.21 7.9 4.59
General → Math → Code 37.60 15.85 3.79
Math → General → Code 26.45 16.46 3.68

Table 7: Results of different sequential training for LLaMA-7B

MT-Bench, which include coding, extraction, hu-1246

manities, math, reasoning, roleplay, stem and writ-1247

ing abilities.1248

J.6 Supplemental Results for Discussion1249

In Figure 12, we report the t-SNE visualizations of1250

LLaMA-7B and LLaMA-7B with DMT(k=1/256)1251

strategy. What’s more, the bottom figure repre-1252

sents the scaling relationship of LLaMA-7B with1253

DMT(k=1/256) under different values of K.1254

Moreover, in Table 13, we report The detailed re-1255

sults of LLaMA-7B, 13B, 33B with different train-1256

ing strategies on three benchmarks, as the supple-1257

mental results in RQ4.1258

K Related Work1259

Scaling Laws in Large Language Models The1260

exceptional performance of LLMs comes from1261

scaling up model sizes, data amounts, and com-1262

putational costs to massive scales. Therefore, it is1263

crucial to explore the model performance across1264

an exponential range of scales. Many endeavors1265

have been made to discuss the scaling laws for pre-1266

training (Anil et al., 2023; Hoffmann et al., 2022),1267

transfer learning (Chronopoulou et al., 2019), pref-1268

erence modeling (Gao et al., 2022) and mathemat-1269

ical reasoning (Yuan et al., 2023b). In this paper,1270

we also explore the SFT performance with compos-1271

ite data from the perspective of different scales of1272

model sizes and data amounts.1273
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Methods
LLaMA -7B LLaMA -13B LLaMA -33B

GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Different Training Strategies

Multi-task learning 47.53 14.63 5.76 50.94 19.50 5.73 56.69 18.9 6.07

Sequential Training 31.39 15.85 5.72 39.12 20.12 5.93 47.27 24.80 6.73
Mixed Sequential Training 32.60 15.24 6.02 40.48 18.30 5.93 44.24 24.4 6.43

DMT(k=1/256,random seed=1) 41.92 17.68 6.08 46.47 19.50 6.03 56.36 25.00 6.73
DMT(k=1/256,random seed=2) 41.31 17.68 6.02 45.85 18.90 6.08 55.64 24.80 6.71

DMT(k=1/256,random seed=3) 42.03 18.21 6.13 46.22 20.52 6.10 56.12 25.30 6.73

Table 8: The results of LLaMA-7B, 13B, 33B under different training strategies on three benchmarks. We tested the
results of DMT on randomly sampling k proportion of specified data under three random seeds.

Methods LLaMA-7B LLaMA-13B

GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Single(k=1) 49.10 18.4 5.88 51.4 18.4 6.13
Single(k=1/4) 43.37 11.58 5.85 48.59 13.41 6.03
Single(k=1/16) 35.90 12.19 5.61 43.00 12.80 5.66
Single(k=1/64) 22.71 9.14 5.11 27.40 12.20 5.24
Single(k=1/256) 12.70 5.48 4.00 18.40 10.36 2.95
Mix(k=1) 47.53 14.63 5.76 50.49 17.10 5.73
Mix(k=1/4) 41.98 9.14 5.48 48.52 14.00 5.61
Mix(k=1/16) 32.97 9.16 5.22 40.63 14.60 5.52
Mix(k=1/64) 25.77 14.63 5.27 33.2 17.68 5.24
Mix(k=1/256) 14.78 11.37 4.11 24.94 12.19 4.4

Table 9: Comparative experiments between mix domains and individual domains for LLaMA-7B, 13B.

Methods GSM8K HumanEval MT-Bench

Single(k=1) 57.91 26.82 6.63
Single(k=1/4) 56.10 25.61 6.66
Single(k=1/16) 54.60 21.95 6.17
Single(k=1/64) 44.60 18.59 5.99
Single(k=1/256) 29.21 14.02 2.3
Mix(k=1) 56.69 18.9 6.07
Mix(k=1/4) 54.54 22.56 5.92
Mix(k=1/16) 53.33 26.82 6.26
Mix(k=1/64) 46.66 18.6 5.73
Mix(k=1/256) 36.54 17.68 4.58

Table 10: Comparative experiments between mix domains and individual domains for LLaMA-33B.
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Figure 11: The detailed results of LLaMA-7B, 13B, 33B with different training strategies on MT-Bench.
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Model size GSM8K HumanEval MT-Bench

Mix[(code,math),1 general] 47.53 14.63 5.76

Mix[(code,math),1/4 general] 48.44 15.85 5.73

Mix[(code,math),1/16 general] 47.99 15.24 5.27

Mix[(code,math),1/64 general] 47.23 14.63 5.16

Mix[(code,math),1/256 general] 48.52 16.46 4.69

Mix[1(code,math),general] 47.53 14.63 5.76

Mix[1/4(code,math),general] 41.31 10.97 5.81

Mix[1/16(code,math),general] 33.20 11.58 5.76

Mix[1/64(code,math),general] 25.17 12.19 5.84

Mix[1/256(code,math),general] 16.52 9.14 5.82

Mix[1(code,math),1/64general] 47.68 14.63 5.09

Mix[1/4(code,math),1/64general] 43.29 12.19 5.07

Mix[1/16(code,math),1/64general] 33.81 12.19 5.17

Mix[1/64(code,math),1/64general] 26.23 12.19 5.12

Mix[1/256(code,math),1/64general] 18.27 10.36 5.12

Table 11: The detailed results of the data ratio (k) between specific abilities and general abilities on three benchmarks.

Methods LLaMA-7B LLaMA-13B

GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Individual domain
General only 11.1 10.4 5.88 14.02 16.4 6.13
Math only 49.1 - - 51.4 - -
Code only - 18.4 - - 17.1 -

Different Training Strategies
Multi-task learning 47.53 14.63 5.76 50.94 19.5 5.73
Sequential Training 31.39 15.85 5.72 39.12 20.12 5.93
Mixed Sequential Training 32.6 15.24 6.02 40.48 18.30 5.93

DMT (k=1) 45.79 14.02 5.63 50.49 16.46 5.76
DMT (k=1/4) 48.37 13.41 5.69 50.18 18.9 5.83
DMT (k=1/16) 43.3 15.24 5.78 48.59 18.9 5.96
DMT (k=1/64) 42.53 15.85 6.01 47.61 15.24 6.03
DMT (k=1/256) 41.92 17.68 6.08 46.47 19.5 6.03

Table 12: The detailed results of LLaMA-7B, 13B with different training strategies on three benchmarks.

Model size GSM8K HumanEval MT-Bench

1/1 Mix(code,math,general(w/o code math)) 49.05 17.68 5.80

1/4 Mix(code,math,general(w/o code math)) 43.13 15.85 5.71

1/16 Mix(code,math,general(w/o code math)) 36.23 10.36 5.38

1/64 Mix(code,math,general(w/o code math)) 25.62 10.97 5.21

1/256 Mix(code,math,general(w/o code math)) 15.31 11.37 4.38

Table 13: The scaling curve after ablating code and math-related samples from ShareGPT
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Figure 12: Figures show the t-SNE visualizations of LLaMA-7B and LLaMA-7B with DMT(k=1/256) stategy.
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