
Interactive Explanations of Agent Behavior

Abstract

As reinforcement learning methods increasingly amass ac-
complishments, the need for comprehending their solutions
becomes more crucial. Most explainable reinforcement learn-
ing (XRL) methods generate a static explanation depicting
their developers’ intuition of what should be explained and
how. In contrast, literature from the social sciences proposes
that meaningful explanations are structured as a dialog be-
tween the explainer and the explainee, suggesting a more ac-
tive role for the user and her communication with the agent.
In this paper, we present ASQ-IT – an interactive tool that
presents video clips of the agent acting in its environment
based on queries given by the user that describe temporal
properties of behaviors of interest. Our approach is based on
formal methods: queries in ASQ-IT’s user interface map to a
fragment of Linear Temporal Logic over finite traces (LTLf),
which we developed, and our algorithm for query processing
is based on automata theory. We provide experimental results
from a user-study aimed at testing ASQ-IT’s usability, and re-
port positive outcomes from both objective performance and
self-reported ability of participants to use our tool.

Introduction
Reinforcement Learning (RL) has shown impressive suc-
cess in recent years; e.g., mastering Go or achieving human-
level performance in Atari games (Silver et al. 2016; Mnih
et al. 2015). However, current training techniques are com-
plex and rely on implicit goals and indirect feature repre-
sentations, and thus largely produce black-box agents. In or-
der for such trained agents to be successfully deployed, in
particular in safety-critical domains such as healthcare, it is
crucial for them to be trustworthy; namely, both develop-
ers and users need to understand, predict and assess agents’
behavior. This need has led to an abundance of “explainable
RL” (XRL) methods (Dazeley, Vamplew, and Cruz 2021) de-
signed to elucidate black-box agents.

Following Miller (2018), we argue in favor of interactive
XRL methods that proceed as a dialog between the explainer
(system) and the explanee (user): the user repeatedly poses
queries for the system to answer. Nearly all research in ex-
planation systems make two deterring assumptions regard-
ing this definition. Firstly, that the question does not arrive

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from the explainee, i.e. the user does not construct the query,
rather the researchers designed the explanation through their
perceived lens of what a viable question is. Secondly, that
the output is static, i.e. a single answer as an explanation,
instead of a dialog.

Interactive explanations have recently been perceived as
a significant future direction for system intelligibility and
enhancing user engagement (Abdul et al. 2018). Increas-
ing evidence also points towards interaction and explo-
ration as means to reduce over-reliance on AI recommen-
dations, which occurs even when explanations are provided
(Buçinca, Malaya, and Gajos 2021). Insights from this line
of work justify the need to not only strive for improved AI
performance and techniques but also increase people’s mo-
tivation for cognitively engaging with the explanations and
the system, as can be achieved by promoting interaction and
exploration.

A unique challenge in XRL is the ongoing nature of the
agents. Nearly all current XRL methods are state based;
namely, they attempt to explain a single decision made at
a specific time-point. However, a recent study showed that
clinicians, for example, prefer understanding the model as a
whole, rather than being provided with explanations for each
decision Jacobs et al. (2021).

The approach for global explanations that we follow pro-
duces a policy summary in the form of clips of the agent
interacting with its environment (Amir, Doshi-Velez, and
Sarne 2019). These approaches use different criteria to de-
termine which traces of agent behavior to show, such as state
importance (Amir and Amir 2018; Huang et al. 2018), abil-
ity to generalize a policy (Huang et al. 2017; Lage et al.
2018) or agent disagreements (Amitai and Amir 2022). It
has been shown that using such tools is helpful for users to
understand an agent’s behavior. Since the users’ attention
span is very limited, the challenge is choosing which hand-
ful of clips to present to the user. We note that all of these
methods are static; namely, they do not allow user input and
their choice of which clips to present is based on a heuristic.

In this work, we develop an interactive XRL tool that aims
to assist users to comprehend an agent in a global manner.
Our tool generates clips of the agent interacting with its envi-
ronment. The user controls which clips will be presented by
feeding queries that specify properties of clips of interested.
The interaction with the tool resembles a dialogue: the user

enters a query, receives a handful of clips that answer it, the
user can then refine her query, and the process continues.

As the name suggests, the main challenge in developing
an interactive tool is the interaction with human users (espe-
cially laypeople). Indeed, unless constrained, study partic-
ipants pose vague and informal queries that are hard for a
tool to process. A tool’s interface must strike the right bal-
ance between expressivity and usability. We address these
challenges as follows. i) We develop a simple logic that can
express common properties of clips. Note that clips are on-
going, thus our logic must reason about temporal behaviors.
An established logic to reason about such properties is Lin-
ear Temporal Logic (Pnueli 1977), and our logic relies on
its finite counterpart called LTLf (De Giacomo, De Masel-
lis, and Montali 2014). ii) Laypeople cannot be expected to
produce logic formulas, thus we develop a simple user inter-
face that maps directly to our logic. iii) We assume access to
a library of agent execution traces. We develop an efficient
automata-based algorithm to search this library for clips that
answer a user’s query.

Our paper presents the following contributions:
It introduces ASQ-IT, an Agent System Quries Interactive
Tool that enables users to describe and generate queries
towards an agent and receive answers as explanations-
through-demonstration of their behavior. We develop an in-
termediate temporal logic: queries in the tool’s user interface
map directly to our logic and in turn, our logic constitutes a
fragment of LTLf. Our logic constitutes a specification pat-
tern for querying finite traces. To the best of our knowledge,
while specification patterns are common for verification pur-
poses (Dwyer, Avrunin, and Corbett 1999), this is the first
pattern designed for querying.We present preliminary results
from a user-study showing that laypeople, with no training
in logic or RL, are able to comprehend and generate mean-
ingful queries to ASQ-IT.

Related Work
This work relates to two main areas of research, which
we discuss in this section: (1) explanations in sequential
decision-making settings and (2) interactive explanations.

Explanations in sequential decision-making settings. In
this paper, we focus on the problem of explaining the behav-
ior of agents operating in sequential decision-making set-
tings. Work in this area is typically concerned with explain-
ing policies learned through Reinforcement Learning.

RL explanation methods can be roughly divided into
two classes. Local explanations focus on explaining spe-
cific agent decisions (Krarup et al. 2019; Khan et al. 2011;
Hayes and Shah 2017; Booth, Muise, and Shah 2019; An-
derson et al. 2020), e.g., by showing what information a
game-playing agent attends to in a specific game state (Grey-
danus et al. 2017), or generating causal explanations (Mad-
umal et al. 2020). In contrast, global explanations aim to
convey the agent’s policy rather than explain particular de-
cisions. One approach to global explanations is to generate
a proxy model of the policy that is more interpretable, e.g.,
through policy graphs (Topin and Veloso 2019) or decision
trees approximating the policy (Coppens et al. 2019). In this

paper, we utilize the idea of extracting demonstrations of
agent behavior as a global explanation (Amir, Doshi-Velez,
and Sarne 2019) to answer queries posed by users, such that
they can interactively explore the agent’s policy and its char-
acteristics.

Interactive Explanations Some early works on decision-
support systems provided users with interactive explana-
tion methods. For example, MYCIN (Davis, Buchanan, and
Shortliffe 1977), a system for clinical decision-support, al-
lowed its users to pose “why” and “how” questions and re-
sponded by revealing the rules that led to a particular in-
ference. Such explanations are more difficult to provide in
current systems that do not use a logic-based representa-
tion. Few works in interpretable machine learning also de-
signed interactive explanations for supervised learning mod-
els. For instance, TCAV is a method that enables users to test
whether the model relies on a user-determined concept in its
decision-making (Kim et al. 2018). Recently, this approach
has been applied to analyzing the chess knowledge of Al-
phaZero (McGrath et al. 2021). Interactive XRL has been
flagged as a promising research direction in interactive RL
research (Arzate Cruz and Igarashi 2020) Most closely re-
lated to the problem we discuss are the works of Hayes and
Shah (2017) and Cruz and Igarashi (2021) both of which
introduce systems to help their users debug agent behavior
through interactive interfaces. Both works shape the user’s
interaction through a limited set of action-related questions
such as “when a particular action will be taken?” or “why
wasn’t an alternative action chosen?”, while our focus seeks
to bestow more freedom for expressivity and exploration.

Preliminaries
We first describe the domain used in this work so as to pro-
vide a running example.

Highway Domain. The domain, shown in Figure 1, con-
sists of a busy highway with numerous cars, represented as
blue rectangles, moving along multiple highway lanes (num-
bered from top to bottom). Cars can accelerate, decelerate,
and change lanes. The agent controls and navigates a green
car. As there are no defined targets in this domain, we can
observe the agent’s general behavior and preferences instead
of focusing on its progression towards some goal. The be-
havior of the agent is determined by its reward function (e.g.,
getting rewards for driving fast, driving in the right lane,
etc.) and its training process.

Figure 1: Highway domain.

Markov Decision Process For the purpose of this work
we assume an MDP setting, formally defined as a tuple
⟨S,A, Tr,R⟩ where S is the set of states, A the set of ac-
tions, R the reward function mapping states to numerical
values, and Tr : S ×A× S the transition function mapping
transitions between two states via an action to a probability.
A solution to an MDP is a policy π.

Abstracting the MDP Consider an MDP A over a
state space S. A predicate p is a function p : S →
{True,False} denoting whether some attribute exists in
s. For example, given a state s in the highway domain, the
predicate lane-1 returns True iff the agent (green car) is
in Lane 1 in s and the predicate behind returns True iff
the agent is driving behind some blue car. Note that there
are possibly many states for which a predicate can answer
True. For example, behind returns True both in a state
in which the agent is driving in the top lane and in the bottom
lane as long as it is driving behind a blue car.

We assume a domain expert both chooses P , and produces
a mapping from S to an abstract-state space Σ = 2P . the
mapping f : S → Σ, implies that for a state s ∈ S, the
function f(s) returns the set of predicates that are true at s,
thus f(s) = σ = {p ∈ P | p(s) = True}.

Next, consider an abstract-trace η = σ1 . . . , σk ∈ Σ∗ that
answers some query. The tool’s output to the user will be any
trace τ = s1, . . . , sk ∈ S∗ that maps to the abstract trace η,
i.e. any τ such that f(si) = σi, for every 1 ≤ i ≤ k.

For example, suppose that P = {lane-1,behind}.
In a state s1 for which f(s1) = {lane-1,behind},
necessarily the agent is traveling in Lane 1 and behind
a blue car. On the other hand, in a state s2 for which
f(s2) = {lane-1}, the agent is traveling in Lane 1, but
since behind(s2) = False, the lane in front of it is nec-
essarily empty.

ASQ-IT
We develop ASQ-IT, Agent System Quries Interactive Tool,
an interactive explainability tool, allowing users to itera-
tively query an agent regarding its behavior and interaction
with its surroundings until achieving their desired level of
understanding and trust. The following section describes the
three main components of ASQ-IT:
i) Query interface: Allows users to express their queries in
layperson terms with no coding background required,
ii) Back-end: Processes the input query and produces rele-
vant answer, and
iii) Explanation Interface: Presents answers to the user’s
queries in a meaningful and clear manner.
We now provide an overview of the tool’s usage for clarity.

Tool Usage, An Illustration. The first interaction users
have with ASQ-IT is through the Query Interface (Figure
2, left) where they are able to define scenarios and behav-
iors they wish to observe in the agent’s interaction with the
environment. To do this, users define a start and end state
for the agent using predefined predicates available through
drop-down menus, along with constraints on the behaviors
they wish to see. Once selected, these specifications con-
struct a query that is passed to the back-end process, which

then searches and retrieves compatible trajectories from a
database of the agent’s execution traces. These are made into
video clips and presented to users in the Explanation Inter-
face (Figure 2, right).
Example 1. Say we would like to understand how the agent
would go about crossing multiple lanes. We can specify the
agent’s start state as Lane 1 and the end state as Lane 4. The
resulting output would be all the sequences which depict the
agent crossing these lanes.

Figure 2: Interactive Explanation Tool - Highway domain.
Left: Query Interface; Right: Explanation Interface.

A Logic For Expressing Queries
At a high-level, the goal of ASQ-IT is to provide traces that
answer a user’s query. The tool is based on two components:
(1) a language with which users can express the traces that
they would like to observe, and (2) an algorithm that finds
traces that answer a user’s query. In this section we describe
the theory behind (1) and the algorithm for (2) is described
in the following section. We start by surveying Linear Tem-
poral Logic on Finite Traces (LTLf), on which our query
language is based. We then introduce our intermediate logic
based on LTLf. Each query in the user interface maps to a
formula in our logic.

Linear Temporal Logic on Finite Traces
An LTLf formula is defined with respect to a set of predi-
cates P . It consists of the standard propositional logical op-
erators, i.e., ∧, ∨, and ¬, together with temporal operators:
X read “next”, U read “until”, F read “eventually”, and G
read “always”. Formally, the syntax of a formula is:

ϕ → P | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ

We use the temporal abbreviations Fϕ ≡ TrueUϕ and
Gϕ ≡ ¬F¬ϕ in addition to the standard ∨.
Example 2. We describe examples of formu-
las together with their intuitive semantics. Let
P = {lane-1,behind}.
• The formula G lane-1 (read “always Lane 1”) specifies

traces in which the agent travels only in Lane 1.
• The formula G ¬lane-1 specifies traces in which the

agent is never in Lane 1.
• The formula X lane-1 specifies traces in which the

agent is driving in Lane 1 in the second position of the
trace. Similarly, the formula Xm lane-1, for m ∈ N,
is short-hand for a sequence of m X operators, specifies

traces in which the agent is driving in Lane 1 in the m-
th position of the trace. The formula Xm True specifies
traces of length at least m.

• The formula lane-1U behind (read “Lane 1 until be-
hind”) specifies traces in which initially, the agent drives
in Lane 1, and it does so continuously until it is behind
some blue car. After that point, there are no restrictions.
Note that the trace might contain only one position in
which the agent is in Lane 1 and behind a blue car.

• The formula F lane-1 (read “eventually Lane 1”) spec-
ifies finite traces in which the agent visits Lane 1 at least
once.

We turn to formalize the semantics of LTLf. Consider an
LTLf formula ϕ, which recognizes a set of finite traces over
Σ = 2P . Consider a trace η = σ1, . . . , σk ∈ Σ∗. The def-
inition of when η satisfies ϕ, denoted η |= ϕ, is done by
induction on the structure of ϕ:

• If ϕ = p ∈ P , then η |= ϕ iff p ∈ σ1.
• If ϕ = ϕ1 ∧ ϕ1 then η |= ϕ iff η |= ϕ1 and η |= ϕ2.
• If ϕ = ¬ϕ1 then η |= ϕ iff η ̸|= ϕ1.
• If ϕ = Xϕ1 then η |= ϕ iff (σ2, . . . , σk) |= ϕ1.
• If ϕ = ϕ1Uϕ2 then η |= ϕ iff there is an index 1 ≤ i ≤ k

such that (σi, . . . , σk) |= ϕ2 and for each 1 ≤ j ≤ i, we
have (σj , . . . , σk) |= ϕ1.

The Query Language
Let P be a set of predicates and let Σ = 2P . A simple query
is based on the following components:

• A description of the start and end state of the trace. These
are given as propositional formulas ϕs and ϕe over the
predicates P . For example, when ϕs = ¬lane-1 ∧
behind, in any trace returned to the user, in the first po-
sition of a trace the green car is not on Lane 1 and behind
some car.

• A constraint on the trace between ϕs and ϕe, which is
given as a third propositional formula ϕc over P . We
elaborate below on specific constraints.

Stays constant The constraint ϕc stays constant between
ϕ and ϕe is written in LTLf as

(ϕs ∧ ϕc)
∧

X(ϕcUe).

For example, let ϕe = lane-1, ϕe = lane-4, and
ϕc = behind. Then, the formula represents traces in which
initially the agent is driving in Lane 1. The trace ends with
the agent driving in Lane 4, and during the whole trace, there
is a car behind the agent.

Changes The constraint ϕc stays constant between ϕs and
ϕe is written in LTLf as

(ϕs ∧ ϕc)
∧

X F (¬ϕc ∧ Fϕe).

For example, let ϕs = lane-1, ϕe = lane-4, and
ϕc = behind. Then, the formula represents traces in which
initially the agent is driving in Lane 1 behind some car. At

some point during the trace, the agent is not behind any car.
The trace ends with the agent driving in Lane 4.

As a second example, let ϕs = ϕe = ϕc = lane-1.
This formula represents traces in which initially as well as
at the end of the trace, the agent drives in Lane 1. However,
the constraint requires there to be a point in which the agent
does not drive in Lane 1.

Changes into Let ϕ′
c be a second propositional formula

over P . The constraint ϕc changes into ϕ′
c between ϕs and

ϕe is written in LTLf as

(ϕs ∧ ϕc ∧ ¬ϕ′
c)
∧

X F (¬ϕc ∧ ϕ′
c ∧ Fϕe).

For example, let ϕc = lane-1, ϕ′
c = lane-4, and

ϕe = lane-1. Then, the formula represents traces in which
initially the agent is driving in Lane 1. At some point in the
trace, the agent drives in Lane 4. The trace ends with the
agent driving in Lane 1.

Compositional queries
As we will see in the next section, our algorithm to answer
queries takes as input a general LTLf formula. Thus, allow-
ing composition of the queries from the previous section, as
long as the composition produces an LTLf formula, comes
at no cost.

Consider two queries φ1 and φ2 in their LTLf form. Ap-
plying propositional operators on φ1 and φ2 results in an
LTLf formula. For example, let φ1 be the query lane-2
stays constant and φ2 be the query behind changes. Then,
the query φ1 ∧φ2 asks for traces in which the agent stays in
Lane 2, and the situation in front of it changes: at the begin-
ning of the trace it is behind a car and during the trace, the
lane empties.

As a second example, often, users like to see long traces
since they contain “more information” regarding the agent.
This is easily implemented using conjunction. Recall that
the query XmTrue is satisfied by traces of length at least
m. Consider some query φ. Then, the query φ ∧XmTrue,
asks for traces of length at least m that answer φ.

Concatenation is another useful operation. It allows to de-
vise queries that ask for traces that visit “intermediate states”
between s and e. We describe how to concatenate queries.
Let φ2 be a query between states ϕi and ϕe. Consider a
second query φ1 between ϕs and ϕ′

e. Now, replace the in-
stance of ϕ′

e in φ1 with φ2. We call the resulting query
φ1 · φ2. A trace that answers φ1 · φ2 consists of a trace
that starts at ϕs, visits the intermediate state ϕi, and ends
in ϕe, all the while satisfying the required constraints be-
tween ϕs and ϕi and between ϕi and ϕe. For example, let
ϕs = behind ∧ lane-2, ϕi = above ∧ lane-1, and
ϕe = in-front-of∧lane-2. A trace in which the agent
is in Lane 2 and overtakes a car from above (Lane 1) satisfies
this query.

Query-Answering Algorithm
In this section we describe an algorithm to answer queries.
We assume that in a pre-processing step, the domain ex-
pert collects simulations of the agent in the domain. For

ease of presentation, we assume that one (long) trace w =
w1, . . . , wn ∈ S∗ is collected and its abstraction η =
σ1, . . . , σn ∈ Σ∗ is generated. We solve the following prob-
lem.
Problem: Given an LTLf query φ, find a sub-trace
σℓ, . . . , σm that satisfies φ.

Before describing the algorithm, we state its guarantees.
Theorem 3. Given an LTLf formula φ and a trace η of
length n over the alphabet Σ, the algorithm return a sub-
trace that satisfies φ, if one exists. The algorithm processes
η at most twice, thus its running time is O(n).1

The algorithm is based on automata. For completeness,
we survey the required definitions and results.

Nondeterministic Finite Automata A nondeterminis-
tic automaton (NFA, for short) is a tuple A =
⟨Σ, Q, δ,Q0, Acc⟩, where Σ is an alphabet, Q is a set of
states, δ : Q × Σ → 2Q is a transition function, Q0 ⊆ Q
is an initial state, and Acc ⊆ Q is a set of accepting
states. A run of A on a word w = σ1σ2 . . . σk ∈ Σ∗ is
r = r0, r1, . . . , rk ∈ Q∗, where r starts in an initial state,
i.e., r0 ∈ Q0, and respects the transition function, i.e., for
each i ≥ 1, we have ri ∈ δ(ri−1, σi). We say that r is ac-
cepting iff it ends in an accepting state, i.e., rk ∈ Acc. We
say that A accepts w if there is a run on w that is accepting.
The language of A, denoted L(A), is the set of words that it
accepts.

Consider an NFA A = ⟨Σ, S, δ,Q0, Acc⟩. Our algorithm
simulates the execution of automata on words. That is, the
algorithm feeds letters to A one at a time while keeping track
of which states the automaton can be in. More formally,
we think of A as an object with a field CurrentStates
and two functions. The function A.init() initiates a new
run by setting CurrentStates = Q0. The function
A.step(σ) reads the letter σ by updating the current states
to CurrentStates′ = ∪s∈CurrentStatesδ(s, σ). We as-
sume that A.step(σ) returns True iff one of the current
states is accepting.
Lemma 4. Suppose that the automaton reads the word w
one letter at a time. Then, the last call to step returns True
iff w ∈ L(A).

Finally, our algorithm is based on a translation between
LTLf and NFAs, formally stated as follows.
Theorem 5. (Giacomo and Vardi 2013) Consider an LTLf
formula φ over a set of predicates P . There is an NFA Aφ

over the alphabet Σ = 2P whose language is the set of
traces that φ recognizes. That is, for every trace η ∈ Σ∗

we have η ∈ L(A) iff η |= φ. The number of states in Aφ is
2O(|φ|).

The algorithm Consider an LTLf formula φ and a trace
η = σ1, . . . , σn over Σ = 2P . Our goal is to find a sub-trace
of η that satisfies φ.

We describe a first attempt at solving the problem. Gen-
erate an NFA Aφ whose language consists of the traces that

1We assume that n, the length of the trace, is much larger than
sizes of the queries. For short traces, the running time needs to take
into account also the size of the queries.

satisfy φ. For each index ℓ ≥ 1, decide if there is a sub-
trace of η starting from position ℓ that satisfies φ by itera-
tively feeding the suffix σℓ, σℓ+1, . . . , σn of η into Aφ. If
Aφ accepts at an index m, we simply return the sub-trace
σℓ, . . . , σm as an answer to the query. This sub-trace is in
the language of Aφ, thus by Theorem 5, it answers the query
φ.

While this algorithm is correct, it is not efficient: since
for each index ℓ, in the worst case, we read the whole suffix
σℓ, . . . , σn, the running time of the algorithm is Θ(n2). Re-
call that we assume that n is very large, thus such a high run-
ning time will cause significant lag when answering queries.

Our algorithm to answer queries traverses the trace η at
most twice, thus its running time is O(n). The algorithm
operates as follows. In addition to Aφ, we obtain an NFA
for Fφ (read “eventually φ”). We execute AFφ on η until
we find an index m such that AFφ accepts σ1, . . . , σm. That
is, when AFφ accepts, by Lemma 4, we are guaranteed that
the trace has a suffix that satisfies φ.

We are not done. Since our goal is to find a sub-
trace that satisfies φ, we still need to find an index ℓ
such that σℓ, . . . , σm satisfies φ. To do that, we read the
trace backwards (starting from σm and until σ1) and ex-
ecute Aφ “backwards”, i.e., starting from the accepting
states and accepting once an initial state is reached. For-
mally, let Aφ = ⟨Σ, Qφ, δφ, Q

0
φ, Fφ⟩. We initiate the

run of Aφ by setting CurrentStates = Fφ. We ex-
ecute Aφ backwards. Suppose that the letter σi is read.
Then, we update CurrentStates′ = {s ∈ Sφ :
∃s′ ∈ CurrentStates s.t. s′ ∈ δ(s, σi)}. We accept if
CurrentStates contains an initial state. It is not hard
to show that σm, . . . , σℓ is accepted in this manner iff
σℓ, . . . , σm satisfies φ. Moreover, it is clear that η is read
(forward) once by AFφ and read at most once (backwards)
by Aφ, thus the running time is linear in n.

Implementation Design
This section describes the implementation of ASQ-IT which
utilizes the query language and the algorithm described in
the previous sections.

Query Interface.
The main point of contact between users and ASQ-IT is
through the Query interface. We conducted several pilot
studies and iteratively revised the design of the query in-
terface. In the first pilot studies, we let users specify open-
ended queries in natural language. This step helped reveal
the types of questions users were interested in, but was both
hard for participants (did not always know what they could
ask) and would also make answering queries infeasible.
Once we identified the question types and determined the
language for queries (specifying start and end states and con-
straints), we tried several designs for inputting this informa-
tion. We began with more free-form designs, such as teach-
ing users how to form queries through text-boxes. Finally,
in order to constrain the query-space and reduce cognitive
load, a restricted drop-down based interface was adopted.

The drop-down menu is designed to clearly and simply

LTLf → DFA Search for Traces Video Generation
1.155 ±.153 0.191 ±.121 3.268 ±.39

Table 1: Algorithm component runtime in seconds, averaged
over 10 queries varying in complexity.

guide users towards possible state specifications for con-
structing their queries. Predicates, i.e. state attributes, are
grouped into types for reducing cognitive load and to avoid
excessive options. For instance, all lane specifications ap-
pear under one drop-down, as these are mutually exclusive,
due to the agent being only present in one at a time. Initially
the interface also included the option to add intermediate
states, however, this option was not used by most users and
made the interface more complex. Therefore, we removed it
from the current interface.

Back-end
The workings of ASQ-IT’s back-end was described in detail
in preceding sections. An minor change that was added to
the algorithm’s implementation for user convenience was a
lower and upper bound on the length of the traces retrieved.
This was used to prune long traces (videos) that fit the query
in terms of start and end state but do not actually reflect the
user’s intention, due to many different behaviors occurring
throughout the trace. It is interesting to note that in practice,
the running time of the algorithm to search for traces is neg-
ligible compared to the system’s external components2 such
as generating videos or producing the automata by LTLf to
DFA conversion, as seen in Table 1.

Explanation interface.
Once the query has been submitted to ASQ-IT and all rele-
vant traces have been retrieved, users are shown up to four
3 of these traces in video format, through the explanation
interface (Figure 2). Additionally, users can select to load
more videos in order to see more of the agent’s interaction
with the environment. An indicator at the top of the inter-
face displays the number of additional traces that have been
found and can be viewed upon request. Currently, the order
of videos shown to users is random due to no specific prior-
ity being restricted. Ordering the videos by some dedicated
heuristic or by user-specified choice is a prospect for future
work.

At any point during their interaction with the explanation
interface, users may select to return to the query interface to
construct new queries or alter their previous ones in order to
refine the traces retrieved such as to better fit their intentions.

Empirical methodology
To evaluate ASQ-IT, we conducted a user-study designed to
examine the usability of the tool for a layperson.

Agent. The Highway agent was trained for 2000 episodes
using double DQN architecture (Hasselt 2010) and rewarded

2FFmpeg (Tomar 2006), MONA (Klarlund and Møller 2001)
LTLf2DFA (Fuggitti 2019)

3Configurable parameter.

Figure 3: Movie to Query (M2Q) task, question 2.
Top: Start State; Mid: End State; Bot: Multiple Choice.
Full Video: https://bit.ly/3KuHbQf

for avoiding collisions. For the experiment we generated a
database of 900 execution traces with varying domain at-
tributes such as number of lanes and car density.

Experiment
Hypotheses. We hypothesize that using our interface, users
will be able to quickly grasp the mechanism for generating
queries to the agent, thus allowing them to explore its be-
havior in an interactive fashion. We acknowledge here that
a full evaluation of ASQ-IT should include users’ benefits
from its explanations, and that this work does not yet cover
that aspect.

Participants. Forty participants were recruited through
Prolific (20 female, mean age = 34.7, STD = 11.29), each
receiving $4.5 for their completion of the Task. To incen-
tivize participants to make an effort, they were provided
a bonus of 15 cents for each correct answer. Participants
whose overall task duration were lower than the mean by
more than two standard deviations were filtered out.

Procedure. First, participants were introduced to the
Highway domain and the concept of AI agents. Then com-
menced an introduction to the ASQ-IT’s interface and the
process of generating queries for the system. Each expla-
nation was followed by a short quiz to ensure understand-
ing before advancing. As a final step before the task, par-
ticipants were provided a link to ASQ-IT’s interface where

Figure 4: User-Study Results.

they could interact and explore both the interface and the
agent. In the task section, participants were tested on their
understanding of the interface, query generation and output
through three types of tasks. i) Movies to Queries (M2Q):
Given an output video, select the correct query that would
result in its generation (example in Figure 3). ii) Free Text to
Queries (T2Q): Given textual descriptions of desired behav-
ior, select the correct query. iii) Queries to Free Text (Q2T):
Given a query, select the correct textual description of the
desired behavior. All questions were multiple-choice with
four possibilities and a single correct answer and each task
type included two questions in ascending difficulty. Figure
3 denotes an example M2Q question4. Upon task comple-
tion, participants were prompted to provide textual feedback
regarding their experience with the system & interface and
complete a usability survey.

Evaluation Metrics and Analyses. The empirical evalua-
tion consisted of three elements. Firstly, the success rate in
answering the task questions. Secondly, the usability sur-
vey, based on the system usability scale (Brooke 1996), to
measure participants’ perception of ASQ-IT in terms of ef-
fectiveness & efficiency. Survey questions measured partic-
ipants’ agreement for each item and were rated on a 7-point
Likert scale ranging from 1 - “Strongly disagree” to 7 -
“Strongly agree”. The full study, including all survey items
is provided as supplementary. To compare the usability rat-
ings, we averaged the values of the different items normal-
izing such that higher values always indicate positive judg-
ment of the system. Lastly, as a analysis was done of partic-
ipants’ textual responses regarding their experience in order
to extract significant insights or common themes.

Results
In this section, we describe the user-study results, report-
ing the main observations made regarding participant expe-
rience and use of ASQ-IT.

Comprehending & Formulating Queries. We assess
participants’ ability to understand and to formulate queries
based on their performance int the task section of the study,

4Full user study available at https://bit.ly/3JjfKZy

where participants were tested on inferring the correct query
syntax or outcome. We first note that the success rate was
higher than a random guess baseline for all questions, as de-
picted by the dotted line in the left-most plot in Figure 4.
Apart from two questions which seemed to be harder for
participants, approximately 90% success rate was observed.
This supports our hypothesis, that participants are able to
meaningfully comprehend and formulate queries in a bidi-
rectional manner, be it by translation to a query or from one.

Upon closer examination, we identified two fundamental
causes for incorrect participant answers: i) Agent relations
(position): Confusing the position of the agent compared to
other cars such as mixing “Behind” with “In Front Of” (e.g.
is the agent behind another car or is there one behind the
agent?), and i) Misunderstanding constraints: Participants
that were not able to comprehend or grasp the effect or pur-
pose of enacting constraints on the agent’s trace and most
often chose to ignore these specifications. These alone were
responsible for ≈ 90% of all incorrect answers. An example
of such a case can be seen in Figure 3 where the start state
(top) depicts the agent in lane 1, above a blue car and the end
state shows the agent below a blue car, in lane 2. All mul-
tiple choice answers have a specification which is plausible
given these two states, and only the constraint specification
dictates the correct answer.

We were also able to see improvement throughout the
task, where participant who struggled with simple ques-
tions regarding constraints would manage to solve correctly
harder questions that appeared later on in the task. Some
participants self-reported that elements of the interface be-
came clearer when asked to answer questions about them.
One participant wrote “I found the instructions quite hard to
understand. When a description was provided and you had
to complete what you thought was the correct specification,
I found this a better way to learn the process.” It should be
noted that participants had access to the tool while complet-
ing the task section, such that they could keep exploring and
learning about it had they chosen to. The tool itself operates
in a “Query to Movie (Q2M)” format, such that it could not
have been directly used to answer the questions posed in the
task.

Usability. Overall there was large variation in partici-
pants’ responses to the usability survey questions. However,
several themes and trends emerged from participants’ open-
ended responses.

Effectiveness. Participants found ASQ-IT, on average,
more effective than not, in all effectiveness questions (see
Figure 4 middle panel). Multiple responses mentioned its
usefulness for testing and observing how the agent acts. Oth-
ers described positively the fact that it was clear to them
what videos would be generated by ASQ-IT, so long as the
specification was not very complex, and after some initial
trial and error phase. Most complaints targeted the many
options available and the complexity in understanding the
interface, albeit, many participants went on to report that
after some exploration, their experience and understanding
greatly improved, suggesting that there is a learning curve in
using the tool: “Yes these seem to become clearer the longer
I use the system.”

Efficiency. Many participant described some level of un-
certainty upon initial interaction with the interface, mainly
given the lengthy explanations prior to using it. However, the
lion’s share of participants reported quickly understanding
once access to ASQ-IT was given and some exploration with
the interface was conducted. When asked what would help
them interact with the tool, many participants responded that
they would prefer the interface to have fewer options and
more visual aid for the existing ones. Needless to say, there
is a trade-off between the simplicity of the interface and its
expressivity.

Expressivity. When asked to describe what features or be-
haviors were missing or desired for the highway domain,
participants mostly requested the ability to control for the
agent’s speed and distance from other cars, along with the
option to specify the positions of other cars and the output
video length.

When asked what agent behaviors and situations were of
interest to them, specifiable or not using ASQ-IT’s current
interface, participants mostly referred to observing the agent
react to critical situations such as obstacles on the road, lane
merges or interaction of other cars such as emergency vehi-
cles or evasion of accelerating or braking cars.

Discussion and Future Work
With the growing integration of AI systems in sequential
decision-making domains, the need for meaningful and en-
gaging explanations is crucial. One method for increas-
ing trust while reducing over-reliance on these systems is
through interactive interfaces and explanations.

We designed and developed ASQ-IT – an XRL interactive
tool for querying AI agents using user-constructed queries.
These are translated to LTLf and used to search agent exe-
cution traces for sub-sequences adhering to them. Relevant
sequences are then returned as video-clips to the user, act-
ing as explanation-by-demonstration of the agent in the user
specified scenarios.

To explore and assess our tool’s usability, several user-
studies were iteratively constructed and carried-out, and
changes to ASQ-IT’s interfaces were made in accordance

with user feedback we collected. The primary axis on which
adjustments were made was the trade-off between interface
complexity and query expressivity. By broadening the range
of components users could specify, or adding the ability to
define intermediate states, we enabled greater manipulation
of the domain and more specific agent behavior, i.e., in-
creasing expressivity. However, we noticed that the more
options our interface presented, the more criticism our par-
ticipants displayed towards complexity and cognitive load
which were paired with lower success rates in study tasks.
Our iterative, feedback-based approach guided our inter-
face design towards a more constrained direction, presenting
users only with the dominant domain features to control.

The results of our user-study indicate that, using our cur-
rent interface design, users are able to learn and use our
query based approach in order to explore and investigate
deep reinforcement learning agents all the while reporting,
on-average, positive ratings for both the effectiveness and
efficiency of ASQ-IT.

We intend to keep pursuing additional means for increas-
ing expressivity while balancing the cognitive complexity.
Further future work will be dedicated to validating our re-
sults through additional domains while also expanding the
scope of our studies to test the explanation benefits of using
ASQ-IT. Finally, we also intend to keep iteratively updating
and improving both the query and explanation interfaces of
ASQ-IT through additional user feedback.

References
Abdul, A.; Vermeulen, J.; Wang, D.; Lim, B. Y.; and
Kankanhalli, M. 2018. Trends and trajectories for explain-
able, accountable and intelligible systems: An hci research
agenda. In Proceedings of the 2018 CHI conference on hu-
man factors in computing systems, 1–18.

Amir, D.; and Amir, O. 2018. HIGHLIGHTS: Summarizing
Agent Behavior to People. In Proc. of the 17th International
conference on Autonomous Agents and Multi-Agent Systems
(AAMAS).

Amir, O.; Doshi-Velez, F.; and Sarne, D. 2019. Summariz-
ing agent strategies. Autonomous Agents and Multi-Agent
Systems, 33(5): 628–644.

Amitai, Y.; and Amir, O. 2022. ”I Don’t Think So”: Sum-
marizing Policy Disagreements for Agent Comparison.

Anderson, A.; Dodge, J.; Sadarangani, A.; Juozapaitis, Z.;
Newman, E.; Irvine, J.; Chattopadhyay, S.; Olson, M.; Fern,
A.; and Burnett, M. 2020. Mental Models of Mere Mortals
with Explanations of Reinforcement Learning. ACM Trans-
actions on Interactive Intelligent Systems (TiiS), 10(2): 1–
37.

Arzate Cruz, C.; and Igarashi, T. 2020. A survey on interac-
tive reinforcement learning: design principles and open chal-
lenges. In Proceedings of the 2020 ACM designing interac-
tive systems conference, 1195–1209.

Booth, S.; Muise, C.; and Shah, J. 2019. Evaluating the In-
terpretability of the Knowledge Compilation Map: Commu-
nicating Logical Statements Effectively. In Proceedings of

the Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI-19, 5801–5807. International Joint
Conferences on Artificial Intelligence Organization.
Brooke, J. 1996. Sus: a “quick and dirty’usability. Usability
evaluation in industry, 189(3).
Buçinca, Z.; Malaya, M. B.; and Gajos, K. Z. 2021. To trust
or to think: cognitive forcing functions can reduce overre-
liance on AI in AI-assisted decision-making. Proceedings
of the ACM on Human-Computer Interaction, 5(CSCW1):
1–21.
Coppens, Y.; Efthymiadis, K.; Lenaerts, T.; Nowé, A.;
Miller, T.; Weber, R.; and Magazzeni, D. 2019. Distilling
deep reinforcement learning policies in soft decision trees.
In Proceedings of the IJCAI 2019 workshop on explainable
artificial intelligence, 1–6.
Cruz, C. A.; and Igarashi, T. 2021. Interactive Explanations:
Diagnosis and Repair of Reinforcement Learning Based
Agent Behaviors. In 2021 IEEE Conference on Games
(CoG), 01–08. IEEE.
Davis, R.; Buchanan, B.; and Shortliffe, E. 1977. Production
rules as a representation for a knowledge-based consultation
program. Artificial intelligence, 8(1): 15–45.
Dazeley, R.; Vamplew, P.; and Cruz, F. 2021. Explainable
reinforcement learning for Broad-XAI: a conceptual frame-
work and survey. arXiv preprint arXiv:2108.09003.
De Giacomo, G.; De Masellis, R.; and Montali, M. 2014.
Reasoning on LTL on finite traces: Insensitivity to infinite-
ness. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 28.
Dwyer, M. B.; Avrunin, G. S.; and Corbett, J. C. 1999. Pat-
terns in property specifications for finite-state verification.
In Proceedings of the 21st international conference on Soft-
ware engineering, 411–420.
Fuggitti, F. 2019. LTLf2DFA.
Giacomo, G. D.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In Rossi,
F., ed., Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence, 854–860. IJCAI/AAAI.
Greydanus, S.; Koul, A.; Dodge, J.; and Fern, A. 2017. Vi-
sualizing and Understanding Atari Agents. arXiv preprint
arXiv:1711.00138.
Hasselt, H. 2010. Double Q-learning. Advances in neural
information processing systems, 23: 2613–2621.
Hayes, B.; and Shah, J. A. 2017. Improving Robot Con-
troller Transparency Through Autonomous Policy Explana-
tion. In Proceedings of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction, 303–312. ACM.
Huang, S. H.; Bhatia, K.; Abbeel, P.; and Dragan, A. D.
2018. Establishing Appropriate Trust via Critical States.
In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 3929–3936. IEEE.
Huang, S. H.; Held, D.; Abbeel, P.; and Dragan, A. D.
2017. Enabling robots to communicate their objectives. Au-
tonomous Robots, 1–18.

Jacobs, M.; He, J.; Pradier, M.; Lam, B.; Ahn, A.; McCoy,
T.; Perlis, R.; Doshi-Velez, F.; and Gajos, K. 2021. Design-
ing AI for Trust in Collaboration in Time-Constrained Med-
ical Decisions: A Sociotechnical Lens. In proceeding at the
Conference on Human Factors in Computing Systems (CHI),
volume 1, 1–14.
Khan, O.; Poupart, P.; Black, J.; Sucar, L.; Morales, E.; and
Hoey, J. 2011. Automatically generated explanations for
Markov decision processes. Decision Theory Models for Ap-
plications in AI: Concepts and Solutions, 144–163.
Kim, B.; Wattenberg, M.; Gilmer, J.; Cai, C.; Wexler, J.; Vie-
gas, F.; et al. 2018. Interpretability Beyond Feature Attribu-
tion: Quantitative Testing with Concept Activation Vectors
(TCAV). In International Conference on Machine Learn-
ing, 2673–2682.
Klarlund, N.; and Møller, A. 2001. MONA Version 1.4 User
Manual. BRICS, Department of Computer Science, Uni-
versity of Aarhus. Notes Series NS-01-1. Available from
http://www.brics.dk/mona/.
Krarup, B.; Cashmore, M.; Magazzeni, D.; and Miller, T.
2019. Model-based contrastive explanations for explainable
planning.
Lage, I.; Chen, E.; He, J.; Narayanan, M.; Gershman, S.;
Kim, B.; and Doshi-Velez, F. 2018. An Evaluation of the
Human-Interpretability of Explanation.
Madumal, P.; Miller, T.; Sonenberg, L.; and Vetere, F. 2020.
Explainable reinforcement learning through a causal lens.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, 2493–2500.
McGrath, T.; Kapishnikov, A.; Tomašev, N.; Pearce, A.;
Hassabis, D.; Kim, B.; Paquet, U.; and Kramnik, V. 2021.
Acquisition of Chess Knowledge in AlphaZero. arXiv
preprint arXiv:2111.09259.
Miller, T. 2018. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial Intelligence.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529.
Pnueli, A. 1977. The Temporal Logic of Programs. In Proc.
18th FOCS, 46–57. IEEE Computer Society.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484–489.
Tomar, S. 2006. Converting video formats with FFmpeg.
Linux Journal, 2006(146): 10.
Topin, N.; and Veloso, M. 2019. Generation of policy-level
explanations for reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
2514–2521.

