
Chain of LoRA:
Efficient Fine-tuning of Language Models via Residual Learning

Wenhan Xia * 1 Chengwei Qin * 2 Elad Hazan 1

Abstract
Fine-tuning is the primary methodology for tai-
loring pre-trained large language models to spe-
cific tasks. As the model’s scale and the diversity
of tasks expand, parameter-efficient fine-tuning
methods are of paramount importance. One of
the most widely used family of methods is low-
rank adaptation (LoRA) and its variants. LoRA
encodes weight update as the product of two low-
rank matrices. Despite its advantages, LoRA falls
short of full-parameter fine-tuning in terms of gen-
eralization error for certain tasks.

We introduce Chain of LoRA (COLA), an it-
erative optimization framework inspired by the
Frank-Wolfe algorithm, to bridge the gap between
LoRA and full parameter fine-tuning, without in-
curring additional computational costs or memory
overheads. COLA employs a residual learning
procedure where it merges learned LoRA mod-
ules into the pre-trained language model param-
eters and re-initialize optimization for new born
LoRA modules. We provide theoretical conver-
gence guarantees as well as empirical results to
validate the effectiveness of our algorithm. Across
various models (OPT and Llama-2) and 11 bench-
marking tasks, we demonstrate that COLA can
consistently outperform LoRA without additional
computational or memory costs.

1. Introduction
Pre-trained language models have become instrumental in
natural language processing, demonstrating remarkable per-
formance across various fields. Fine-tuning these models for
specific tasks enhances their performance in downstream

*Equal contribution 1Department of Computer Science, Prince-
ton University 2School of Computer Science and Engineering,
Nanyang Technological University. Correspondence to: Wenhan
Xia <wxia@princeton.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

applications (Lewis et al., 2019; Wang et al., 2021; Qin
et al., 2023). However, full parameter fine-tuning is com-
putationally expensive and demanding, especially given the
increasing size of large language models.

For this reason, parameter-efficient fine-tuning (PEFT)
methods, such as Low-Rank Adaptation (LoRA), have
gained popularity (Houlsby et al., 2019; Lester et al., 2021;
Hu et al., 2021). LoRA updates only a small portion of the
model’s weights by adding trainable low-rank matrices to
the model, reducing computational costs and time. How-
ever, it is inferior to full parameter fine-tuning in terms of
generalization error.

This paper explores reducing the generalization gap be-
tween LoRA and full fine-tuning while maintaining the
computational efficiency. We propose ”Chain of LoRA”
(COLA), which learns a higher rank augmentation of the
LLM weights by the method of residual learning. Inspired
by the Frank-Wolfe algorithm for matrix completion, COLA
iteratively adds low-rank structures to improve the model’s
generalization performance. In this paper, we formalize the
relationship between COLA and the Frank-Wolfe method
from mathematical optimization. We provide theoretical
analyses and demonstrate empirical effectivess of COLA
via extensive experiments across datasets and models.

2. Related Work
Full-parameter fine-tuning faces practical challenges for
increasingly larger models and tasks. Recent advancements
in parameter-efficient fine-tuning address this by modifying
only a small portion of parameters.

Adapter based methods: Adapter-based approaches in-
troduce compact modules between transformer layers and
train only these lightweight adapters while keeping the pre-
trained model frozen (Houlsby et al., 2019; Bapna & Firat,
2019; Mahabadi et al., 2021).

Prefix tuning methods: Alternative research explores
adding tunable lightweight parameters, called prefixes, to
the input and hidden layers (Li & Liang, 2021). Efficient
prompt tuning simplifies this by adding a trainable tensor
(“soft prompt”) to input embeddings (Lester et al., 2021).

1



Submission and Formatting Instructions for ICML 2023

LoRA and its variants: The most closely related work to
ours is LoRA (Hu et al., 2021), which introduces trainable
low-rank matrices to approximate weight updates during
fine-tuning. Followup work explores variants quantization,
context sizes extension, and multi-task adaptation (Dettmers
et al., 2023; Chen et al., 2023; Wang et al., 2023). Lialin
et al. (2023) 1 explores pre-training with multiple low rank
matrices.

3. Our Method
3.1. Preliminary: Low Rank Adaptation (LoRA)

Given a pre-trained weight matrix Wfrozen, LoRA (Hu
et al., 2021) approximates the weight update ∆W for task
adaptation with trainable low-rank decomposition matri-
ces BA. The forward pass is: Wfrozenx + ∆Wx =
Wfrozenx + BAx. Here Wfrozen,∆W ∈ Rd×k, A ∈
Rr×k, B ∈ Rd×r and r ≪ min(d, k). During training,
Wfrozen is frozen and only B, A are optimized. At deploy-
ment, the learned BA merge with the pre-trained weights.

3.2. Chain of LoRA

The key idea of our method is to form a chain of LoRAs
and iteratively learn the low-rank adaptation LoRA modules.
As illustrated in Figure 1, our method involves three steps:
Tune LoRA, Tie a knot, Extend the chain. We present the
detailed procedure in Algorithm 2 in Appendix A.1.

Pretrained
weights
(frozen)

A

B

LoRA Tuning

Merged 
weights
(frozen)

Tie a knot
(Merge)

Extend Chain
(ReInit)

Merged 
weights
(frozen)

A

B

Chain of LoRA

...Frozen LLM

Figure 1: Chain of LoRA learns a sequence of low-rank
matrices to approximate a high-rank augmentation in three
steps: (1) LoRA Tuning, (2) Tie a Knot - merge LoRA
weights into the model, and (3) Extend the Chain - add a
new LoRA module and reset the optimizer. These steps are
repeated in the residual learning paradigm.

For a pre-trained LLM weight matrix Wpretrained ∈ Rd×k,
we denote the weights update during fine-tuning as ∆W .
Ideal task adaptation yields the optimal final weights

1this is independent and concurrent work to our paper.

W ⋆ and the optimal weight update ∆W ⋆, as in W ⋆ =
Wpretrained +∆W ⋆.

In COLA, we propose to approximate ∆W ⋆ with
a chain/sequence of low-rank matrix decompositions
{(A1, B1), . . . , (AM , BM )}, where Ai ∈ Rri×k, Bi ∈
Rd×ri and ri ≪ min(d, k) for 1 ≤ i ≤ M .
Each low-rank tuple (Ai, Bi) is obtained by optimizing
argminBiAi L(Wpretrained+

∑i
j=1 BjAj), whereL is the

task-specific objective function.

COLA follows an iterative residual learning paradigm.
Fine-tuning each (Ai, Bi) can be viewed as learning the
residual of ∆W ⋆ −

∑i−1
j=1 BjAj . We hypothesize that∑M

i=1 BiAi approximates ∆W ⋆ better than a single LoRA
update BA, and we design a framework to achieve this with
less computation compared to the baseline LoRA. Below,
we describe in detail the three steps involved in Figure 1.

Tune LoRA: This step entails standard LoRA tuning, where
(Ai, Bi) are fine-tuned on fixed model weights at the i-th
iteration. The fixed weights integrate previously learned
LoRA weights, represented as Wpretrained +

∑i−1
j=1 BjAj .

Tie a knot: After the LoRA modules (Ai, Bi) are learned,
we merge them with the frozen LLM weights to incorporate
the weight update into the frozen model. This allows learn-
ing only the residual information ∆W ⋆ −

∑i
j=1 BjAj for

the next iteration.

Extend the chain: We extend the chain by initializing
new LoRA modules (Ai+1, Bi+1) to learn residual weight
updates needed for task adaptation. We reset all optimizer
states, including parameters and gradient history.

4. Convergence of COLA and the Nonconvex
Frank-Wolfe method

The COLA algorithm described in Algorithm 2 is motivated
by and closely related to the Frank Wolfe algorithm (Frank
et al., 1956). To see this, notice that COLA is an itera-
tive algorithm whose iterations are succinctly described by
W ←W + argminBA L(W +BA).

Taking the linear Taylor approximation we can write

L(W +BA) ≈ L(W ) +∇L(W )×BA,

and thus, a constrained minimization over a set K ⊆ Rd

can be seen to be approximately

arg min
BA∈K

L(W +BA) ≈ arg min
BA∈K

∇L(W )×BA.

This is reminiscent of the Frank-Wolfe algorithm. Below we
analyze a variant of the Frank Wolfe algorithm, presented in
Algorithm 1, for stochastic non-convex smooth optimization.
The stochasticity is captured in equation (1), where it is

2



Submission and Formatting Instructions for ICML 2023

Table 1: Results on OPT-1.3B with 1,000 test examples across diverse tasks. Test score is reported over five random seeds.

Task SST-2 WSC CB WIC BoolQ MultiRC RTE DROP SQuAD COPA ReCoRD

LoRA 93.16 56.53 75.35 63.47 70.70 68.94 72.49 30.89 83.23 75.80 70.80
COLA (ours) 93.32 60.19 76.42 64.26 72.08 70.63 74.15 31.49 83.56 76.80 71.02
relative gains 0.17% 6.47% 1.42% 1.24% 1.95% 2.45% 2.29% 1.94% 0.39% 1.31% 0.31%

Finetune 93.33 60.00 72.50 62.73 68.44 70.36 71.62 31.34 83.07 77.50 72.14

assumed that the direction of the gradient is approximated
up to ε using a stochastic gradient method.

Algorithm 1 Idealized COLA

Input: step sizes {ηt ∈ (0, 1], t ∈ [T ]}, initial W1 ∈ K.
for t = 1 to T do

Approximate via stochastic optimization

Vt ∈ε arg min
W∈K

{
W⊤∇L(Wt)

}
(1)

Wt+1 ←Wt + ηt(Vt −Wt).
end for

Specifically, we assume that COLA performs gradient up-
dates such that after every epoch we have that

V⊤
t ∇L(Wt) ≤ arg min

W∈K

{
W⊤∇L(Wt)

}
+ ε.

Notice that we have replaced the low rank matrices A,B
with a single matrix W . This can be justified by the follow-
ing intuition: linear optimization over the trace norm ball
results in a rank one solution, as shown in the context of
the Frank Wolfe method in Hazan (2008); Allen-Zhu et al.
(2017). In COLA, we perform non-convex optimization
over A,B directly, and their rank can be larger than one.

Below we give an analysis of this algorithm which in-
corporates the stochastic approximation of the iterates
At, Bt. Henceforth, let ht = L(Wt) − L(W ∗), and
gt ≜

{
maxV∈K∇L(Wt)

⊤(V −Wt)
}
. The latter quan-

tity is a convergence metric in non-convex optimization,
which is sometimes called the Frank-Wolfe gap. Notice that
gt is zero if and only if the projected gradient of L at Wt is
zero.

The following theorem establishes that Algorithm 1 guar-
antees average duality gap approaching zero for stochastic
smooth non-convex optimization, as long as the distribution
shift is bounded sublinearly with time.
Theorem 4.1. Algorithm 1 applied to a sequence of stochas-
tic gradients of β-smooth non-convex functions that are
bounded in K by M , with step sizes ηt =

√
M

D
√
βT

attains the
following convergence guarantee

1

T

T∑
t=1

gt ≤
2
√
MβD√
T

+ ε

Table 2: Results on Llama2-7B with 1,000 test examples
over five random seeds.

Task WSC CB RTE Copa SQuAD

LoRA 57.30 91.78 85.70 84.59 90.66
COLA (ours) 59.80 93.21 86.21 85.60 90.76
relative improvement 4.36% 1.56% 0.59% 1.19% 0.11%

Finetune 62.30 90.35 86.35 86.40 91.19
ICL 62.50 82.14 72.56 91.00 86.81
0-shot 36.53 32.14 62.09 79.00 55.84

The proof is provided in Appendix A.2

5. Experimental Results
5.1. Experimental Setup

Models:We experiment with OPT-1.3B (Zhang et al., 2022)
and Llama2-7B (Touvron et al., 2023).

Datasets: We follow the benchmark selection in Malladi
et al. (2023). We consider classification, multiple-choice
and generation tasks.

Methods Compared: We compare COLA with LoRA and
full parameter fine-tuning. For Llama2-7B experiments, we
also add in-context learning (ICL) and 0-shot performance.

Implementation details are provided in Appendix A.3.

5.2. Main Results

We report the test performance of our method and baseline
across various tasks in this section. The experiment results
on OPT-1.3B are detailed in Table 1, and the results for
Llama2-7B are provided in Table 2. Notably, our method
consistently outperforms LoRA on all datasets under the
same training budget and inference cost, showcasing its
superior performance.

Specifically, for OPT-1.3B experiments, COLA brings a
performance boost to LoRA by 3.66 (relative improvement
of 6.47%), 1.38 (relative improvement of 1.95%), 1.66 (rel-
ative improvement of 2.29 %) on tasks WSC, BoolQ and
RTE, respectively. For Llama2-7B experiments, COLA
boosts the test score on WSC from 57.30 to 59.80, which
corresponds to a 2.5 gain and 4.36% relative improvement.

For our reported results in Table 1 and Table 2, we maintain

3



Submission and Formatting Instructions for ICML 2023

Table 3: COLA rank step-down experiments. Test scores and train FLOPs saved compared to LoRA are reported. Method
COLA (r1, r2) indicates that the first iteration learns LoRAs with rank r1, and the second iteration learns LoRAs with rank
r2. COLA (8,8) uses the same amount of training FLOPs as the baseline, as denoted by “-”.

CB WSC WIC

Methods test score train FLOPs saved test score train FLOPs saved test score train FLOPs saved

LoRA 75.35 - 56.53 - 63.47 -

COLA (8, 8) 76.78 - 59.81 - 63.51
COLA (8, 6) 76.43 3.60×1011 58.26 4.28×1010 63.85 5.21×1011
COLA (8, 4) 75.35 7.20×1011 57.30 8.56×1010 64.04 1.04×1012
COLA (8, 2) 76.07 1.08×1012 57.30 1.28×1011 63.19 1.56×1012

consistency by setting the rank of all injected modules in
the sequence to 8, aligning with the baseline LoRA setup.
We set the fine-tuning epochs to 5 for all methods.

5.3. Ablation Study

Chain length: We denote the length of COLA as the number
of LoRAs involved in the fine-tuning process. To investigate
the effect of the chain length of COLA on task adaptation
performance, we conduct experiments by varying the length
of COLA. Specifically, we studied chain length of 1, 2, 3
and present the findings in Figure 2.

Figure 2: Performance of COLA with varying chain length.

Figure 2 shows a growing trend of test score with increasing
chain length, which supports our hypothesis that residual
learning of LoRA modules better approximates the optimal
weight update for task adaptation.

Rank step-down: Instead of using a chain of LoRAs with a
fixed rank, we conduct further studies on lowering the rank
progressively. We consider a simple setting of COLA with
length of two. We fix the rank to 8 for the first three epochs
and set the rank for the remaining epochs to either 2, 4, 6,
or 8. Table 3 shows the test performance and training cost
between COLA of different rank step-down configurations
and the baseline.

Table 4: Experiments of COLA with different base optimiz-
ers: SGD and AdaGrad.

WSC CB WIC Copa SQuAD

SGD LoRA 52.31 69.29 58.97 76.60 82.19
COLA (ours) 55.0 70.71 60.40 77.40 82.63

AdaGrad LoRA 56.73 69.29 63.42 76.60 83.09
COLA (ours) 61.92 73.21 64.23 76.60 83.24

Here, COLA starts with rank 8 and continues with lower
ranks in the residual learning phase. As expected, stepping
down the rank in the chain results in higher FLOPs sav-
ings. Some rank step-down configurations show superior
test scores over the baseline albeit using less training FLOPs.
Overall, COLA offers lower generalization error with less
compute.

Different base optimizer: We conduct ablation study with
different base optimizers to show COLA’s effectiveness. We
consider swapping the default AdamW optimizer with the
SGD and AdaGrad (Duchi et al., 2011). We experiment
with OPT-1.3B following the experiment setup in Appendix
A.3 and report test scores over five random seeds in Table 4.
For both SGD and AdaGrad as the base optimizer, COLA
outperforms the baseline LoRA across tasks, demonstrating
the robustness of our framework.

6. Conclusions and future work
In this work, we introduce Chain of LoRA (COLA) for
efficient fine-tuning of large language models. The idea
is to use an iterative low-rank residual learning procedure
to approximate the optimal weight update needed for task
adaptation. Experimental results show that COLA consis-
tently outperforms LoRA albeit using the same, or less,
computational resources.

Future work may explore automating the selection of hyper-
parameters involved in the optimization procedure such as
the location to extend the COLA chain and the learning rate
schedule. For example, one direction is to use the conver-

4



Submission and Formatting Instructions for ICML 2023

gence behavior of the loss to determine where and whether
to introduce additional LoRAs.

References
Allen-Zhu, Z., Hazan, E., Hu, W., and Li, Y. Linear conver-

gence of a frank-wolfe type algorithm over trace-norm
balls. Advances in neural information processing systems,
30, 2017.

Bapna, A. and Firat, O. Simple, scalable adaptation for
neural machine translation. In Inui, K., Jiang, J., Ng, V.,
and Wan, X. (eds.), Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 1538–1548,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1165.
URL https://aclanthology.org/D19-1165.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. arXiv preprint arXiv:2309.12307,
2023.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. Qlora: Efficient finetuning of quantized llms. arXiv
preprint arXiv:2305.14314, 2023.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Frank, M., Wolfe, P., et al. An algorithm for quadratic
programming. Naval research logistics quarterly, 3(1-2):
95–110, 1956.

Hazan, E. Sparse approximate solutions to semidefinite
programs. In LATIN, pp. 306–316, 2008.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
Bart: Denoising sequence-to-sequence pre-training for

natural language generation, translation, and comprehen-
sion. arXiv preprint arXiv:1910.13461, 2019.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continu-
ous prompts for generation. In Proceedings of the 59th
Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics, August 2021.

Lialin, V., Shivagunde, N., Muckatira, S., and Rumshisky, A.
Stack more layers differently: High-rank training through
low-rank updates. arXiv preprint arXiv:2307.05695,
2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In 7th International Conference on Learning
Representations (ICLR), 2019.

Mahabadi, R. K., Ruder, S., Dehghani, M., and Hender-
son, J. Parameter-efficient multi-task fine-tuning for
transformers via shared hypernetworks. arXiv preprint
arXiv:2106.04489, 2021.

Malladi, S., Gao, T., Nichani, E., Damian, A., Lee,
J. D., Chen, D., and Arora, S. Fine-tuning lan-
guage models with just forward passes. arXiv preprint
arXiv:2305.17333, 2023.

Qin, C., Xia, W., Jiao, F., and Joty, S. Improving in-context
learning via bidirectional alignment. arXiv preprint
arXiv:2312.17055, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. Codet5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

Wang, Y., Lin, Y., Zeng, X., and Zhang, G. Multilora:
Democratizing lora for better multi-task learning. arXiv
preprint arXiv:2311.11501, 2023.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on em-
pirical methods in natural language processing: system
demonstrations, pp. 38–45, 2020.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng,
Y., Chen, W., and Zhao, T. Adaptive budget alloca-
tion for parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512, 2023.

5

https://aclanthology.org/D19-1165


Submission and Formatting Instructions for ICML 2023

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

A. Appendix
A.1. COLA algorithm

Algorithm 2 Chain of LoRA (COLA)

Input: frozen pre-trained weights W , chain knots
{τ1, . . . , τm}, fine-tuning dataset D, training objective
L, total training iterations T.
Initialize LoRA params to A0, B0

for t = 1, . . . , T do
Sample minibatch Bt ⊂ D
if t ∈ {τ1, . . . , τm} then

Tie knot: Merge LoRA to backbone weights W =
W +BtAt

Extend chain: Re-initialize LoRA parameters At =
A0, Bt = B0 and optimizer states

end if
forward pass with LoRA
backward pass and update LoRA parameters

(At, Bt) = (At−1, Bt−1)− ηt ∗ ∇̂A,BL(W )

end for

A.2. Proof of Theorem 4.1

Proof. We denote∇t = ∇L(Wt). For any set of step sizes,
we have

ht+1 = L(Wt+1)− L(W ⋆)

= L(Wt + ηt(Vt −Wt))− L(W ⋆)

≤ L(Wt)− L(W ⋆) + ηt(Vt −Wt)
⊤∇t

+η2t
β
2 ∥Vt −Wt∥2 smoothness

≤ L(Wt)− L(W ⋆) + ηt(Vt −Wt)
⊤∇t

+η2t
β
2D

2

≤ ht + ηt(gt + ε) + η2t
βD2

2 . Vt choice.

Here we denoted by D the diameter of the setK. We reached
the equation gt + ε ≤ ht−ht+1

ηt
+ ηt

βD2

2 . Summing up over
all iterations and normalizing we get ,

1

T

T∑
t=1

gt + ε ≤ h0−hT

ηT + ηβD2

≤ M
ηT + ηβD2

≤ 2
√
MβD√
T

,

which implies the Theorem.

A.3. Implementation Details

We implemented our method with the PyTorch and Trans-
formers library (Wolf et al., 2020). All experiments are
carried out on NVIDIA A100 (80G) GPU.

We adopt the experimental setup outlined in Malladi et al.
(2023), where we randomly select 1000 examples for train-
ing, 500 for validation, and another 1000 for testing across
each dataset under consideration. In COLA training, we
use AdamW (Loshchilov & Hutter, 2019) as the default
base optimizer and train for a total of 5 epochs. For a
fair comparison, we keep the total epoch number con-
sistent with our baseline. A linear learning rate sched-
ule is applied with the initial learning rate selected from
{1×10−3, 8×10−4, 5×10−4, 1×10−4, 5×10−5} for both
COLA and LoRA experiments. The batch size is set to 8 for
OPT-1.3B experiments and 4 for Llama2-7B experiments.
For the Llama2-7B full parameter fine-tuning baseline, we
report the best results by searching the learning rate from
{1 × 10−7, 5 × 10−7, 8 × 10−7, 1 × 10−6, 5 × 10−6, 8 ×
10−6, 1 × 10−5, 5 × 10−5, 8 × 10−5}. For full parame-
ter fine-tuning of OPT-1.3B, the learning rate grid is set to
{1×10−6, 5×10−6, 8×10−6, 1×10−5, 5×10−5, 8×10−5}.
The reported results represent the best score after hyperpa-
rameter grid-search for all experiments, conducted over five
random seeds.

In implementing LoRA, we adhere to the practice outlined
in Hu et al. (2021), introducing trainable linear low-rank
modules to both query and value projections within all self-
attention layers. While some research has explored the
application of LoRA to all projection matrices or all weight
matrices, the specific choice of where to apply LoRA is not
a pivotal aspect of our work (Zhang et al., 2023). For OPT
experiments, we incorporate bias into the injected LoRA
modules, aligning with the approach taken in Mahabadi et al.
(2021). Conversely, in Llama-2 experiments, we deliber-
ately disable bias in LoRA to ensure module key matching
with the pre-trained checkpoint ”meta-llama/Llama-2-7b-
hf.” We set the rank of LoRA (denoted as ”r”) to 8 and α
to 16, where the ratio α/r is employed to scale the weight
updates.

6


