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Abstract

We consider the problem of time-optimal control for a three-level quantum system where one level is coupled
by the control field to the lowest two, which are not coupled to each other. A bound is assumed on the norm
of the control at every time. Such a problem belongs to the class of KP sub-Riemannian problems for which
we can perform a symmetry reduction and reduce to a Riemannian problem on the associated quotient space.
We prove several properties of such a quotient space in our case, including the fact that it is an example of
an almost-Kähler manifold which is not Kähler. We provide the explicit form of the optimal controls for any
unitary transformation on the lowest two levels and discuss the geometric and practical implications of this
result.

Keywords: Time optimal control of quantum systems, sub-Riemannian geometry, Lambda systems, symmetry
reduction

1 Introduction

Optimal control of quantum systems has a long and successful history [14], [20], [27] but explicit, analytic, solutions
of optimal control problems are rare. The optimal control of two-level quantum systems has been treated in detail
in several papers (see, e.g., [3], [10], [11], [19]) and there are some results on the three level case [5], [8], [9]. These
studies are motivated by the implementation of quantum information processing. In particular, two-level quantum
systems represent quantum bits in the circuit model of quantum computation [25]. On the other hand, three-level
quantum systems may also represent quantum bits when only two of the levels are used as carriers of information.
A common scenario is the one of Lambda systems where the energy level diagram takes the form reported in Figure
1 with only the lowest two levels coupled to the third level via an electromagnetic field. The lowest two levels may
be used to implement a quantum bit. Besides quantum computation, the Lambda configuration is very common
in several additional applications of quantum mechanics [16], [29], including, for example, electromagnetic induced
transparency [7], [18]. From a control perspective, Lambda systems have been investigated mostly in the context
of adiabatic techniques (see, e.g., [6]).The time-optimal control of three-level quantum systems in the Lambda
configuration is the subject of this paper.

The model we consider is a Schrödinger operator equation of the form

U̇(t) = ÂU(t) +

m∑
j=1

BjU(t)ûj(t), U(0) = 1, (1)

where U is the evolution operator varying in the Lie group SU(3) of 3×3 unitary matrices with determinant equal
to 1, and 1 is the 3× 3 identity. We choose units in which the Planck constant ~ is equal to 1 and Â is diagonal

Â :=

iλ0 0 0
0 iλ1 0
0 0 iλ2

 , (2)
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Figure 1: Energy level diagram for a Lambda system

with λ0, λ1, λ2 the energy levels corresponding to eigenstates |0〉, |1〉, |2〉, respectively (with λ0 + λ1 + λ2 = 0). In
(1), we will have m = 4 and the controls û1,2,3,4 represent electromagnetic fields coupling the levels |0〉 and |2〉 and
the levels |1〉 and |2〉. The matrices Bj are the orthonormal (under the inner product 〈B,C〉 := Tr(BC†)) matrices
in su(3),

B1 :=
1√
2

 0 1 0
−1 0 0
0 0 0

 , B2 :=
1√
2

0 i 0
i 0 0
0 0 0

 , B3 :=
1√
2

 0 0 1
0 0 0
−1 0 0

 , B4 :=
1√
2

0 0 i
0 0 0
i 0 0

 . (3)

The general optimal control problem for system (1) we shall consider is to find the control functions û = û1,2,3,4
driving the state U from the identity 1 to a desired final condition in Uf ∈ SU(3) subject to the constraint that
‖û‖ ≤M , for a given bound M . In particular, we shall completely solve such a problem for the case where Uf has
the form

Uf :=

(
e−iφ 0

0 Ûf

)
, (4)

with Ûf ∈ U(2) and det(Ûf ) = eiφ, i.e., the desired final condition Uf in (4) is an arbitrary transformation on the
lowest two levels with an arbitrary phase shift with the level |2〉.

The problem for system (1) has a KP structure as it was introduced in [22] [8]. This is because the Lie algebra
of SU(3), su(3), has a Cartan decomposition [21], su(3) = K ⊕ P with K and P satisfying the commutation
relations

[K,K] ⊆ K, [K,P] ⊆ P, [P,P] ⊆ K, (5)

and the matrix Â in (1) belongs to K while the matrices B1,2,3,4 form an orthonormal basis of P. In fact, the
relevant Cartan decomposition for system (1) is the one where K is spanned by block diagonal matrices in su(3)
with blocks of dimension 1 and 2, i.e., matrices of the form

K :=

(
if 0
0 Q

)
(6)
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with Q ∈ u(2) and f in R. The matrices in P are the corresponding block anti-diagonal matrices, i.e., matrices

of the form P :=

 0 α β
−α∗ 0 0
−β∗ 0 0

 with arbitrary complex numbers α and β, that is, linear combinations of the

matrices in (3). This KP structure of the problem allows us to use several properties which we shall describe in the
next section. Among these, we have that we can effectively transform the system into a driftless one, i.e., eliminate
the term ÂU in (1), displaying only the part that contains the control and that belongs to the P portion of the

Lie algebra su(3). By defining X := e−ÂtU , we obtain for X the Schrödinger operator equation in the interaction
picture

Ẋ =

m∑
j=1

BjujX, X(0) = 1, (7)

where the new controls uj are related to the controls ûj in (1) by a (time varying) transformation (cf. (8) in the
next section), which is orthogonal and therefore does not modify the norm. We shall focus on the time-optimal
control problem to drive X to a desired final condition for system (7) and then explain in Section 5 how to obtain
from this the result for the original problem of equation (1).

The contribution of this paper is organized as follows. In Section 2, we recall the main facts on KP problems,
including the fact that the optimal trajectories have an explicit form. Because of the KP property, the problem
admits a symmetry reduction and can be treated on a quotient space which has the structure of a stratified space.
The regular part of such a stratified space (see Section 2 for definitions) is a Riemannian manifold with a metric
related to the sub-Riemannian metric of the original problem. We describe this correspondence. In Section 3 we
specialize to the problem on SU(3) which is the main topic of this paper. We describe the structure of the quotient
space in this case and prove several properties of the corresponding regular part and in particular the fact that it
is an example of an almost-Kähler mainfold which is not Kähler. From a practical perspective, the main results
are presented in Section 4 where we give a method to determine the parameters of the optimal control for any final
condition of the form (4). We obtain therefore the complete optimal synthesis for this type of final condition. The
connection between the complete optimal synthesis and the geometry of the reachable sets allows us to extend the
method to find the optimal control for the system with drift (1). This is done in Section 5 where we also present
some numerical examples and simulations.

This paper can be seen as a continuation of the research presented in [5] and in fact we shall use several results
from that paper. With respect to [5], we present a new characterization of the sub-Riemannian problem as a
Riemannian problem on the quotient space, we prove several properties of this Riemannian manifold, and, in the
solution of the optimal control problem, we remove the restrictions on the eigenvalues of the final condition used
in [5] so as to give the general solution. This also allows us to generalize the results to the system with drift (1).

2 Generalities on KP problems

KP problems are a class of control problems with dynamics taking place on a given real, finite-dimensional
semisimple4 Lie group G which we shall assume to be compact. We denote the corresponding Lie algebra by g.
These control problems are defined in terms of a Cartan decomposition of the Lie algebra g, that is a decomposition
g = K ⊕ P with K,P vector subspaces satisfying (5). The subspaces K and P are orthogonal with respect
to the Killing form5 on g. For g = su(n), the Killing form coincides (up to a proportionality constant) with
〈B,C〉 := Tr(BC†) and therefore we shall denote it with 〈·, ·〉 in the following for a general semisimple Lie algebra
g. We shall also assume that eK, the Lie group associated with the Lie algebra K, is compact.

A KP problem is the problem to drive the state U of a system of the form (1) from the identity to a desired final
condition Uf with Euclidean norm of the control, ‖û‖, bounded at ever time t, in minimum time. The elements

{Bj} are assumed to form an orthonormal basis of P in the Cartan decomposition of g, and Â is assumed to belong

to the corresponding K. Often one can consider the special case with Â = 0 and the system takes the form (7)

with the state in G now denoted by X and the control denoted by u. The transformation X := e−ÂtU allows

4A Lie group is said to be semisimple if its Lie algebra may be decomposed into a direct sum of simple Lie subalgebras, none of
which is abelian.

5Recall that the Killing form on a Lie algebra g is defined as follows: Fix X ∈ g and let adX : g → g be the linear map
adX(Y ) = [X,Y ] for any Y ∈ g. Then the Killing form K(X,Y ) := Tr(adX ◦ adY ). This quadratic form has the property from
Cartan’s semisimplicity criterion [21] that it is non-degenerate if and only if g is semisimple.
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us to transform system (1) to system (7). With this transformation, we get Ẋ(t) =
∑m
j=1 e

−ÂtBje
Âtuj(t)X(t),

X(0) = 1. Since {Bj} form an orthonormal basis of P and eÂtPe−Ât ∈ P for any P ∈ P and Â ∈ K, from (5), we
may write:

e−ÂtBje
Ât :=

m∑
k=1

ajk(t)Bk, (8)

so that we obtain (7) with

uk(t) :=

m∑
j=1

ajk(t)ûj(t). (9)

Moreover, since the matrix a(t) with entries ajk(t) is orthogonal for every t, we have ||û(t)|| = ||u(t)||. Therefore
the constraint on the norm of û translates to the same constraint on the norm of u. Also, given the fact that {Bj}
is an orthonormal basis of P, the constraint ‖u‖ ≤M is equivalent to

∥∥∥∑j Bjuj

∥∥∥ ≤M where the norm is now the

one induced by the (Killing) inner product 〈·, ·〉 on g.

2.1 Sub-Riemannian geometry

KP problems can be treated in the setting of sub-Riemannian geometry [1] [24]. A sub-Riemannian manifold
(G,∆, g) is a smooth manifold, G, together with a sub-bundle ∆ of the tangent bundle TG and a positive-definite,
symmetric, bilinear form g defined on ∆. When ∆ = TG, this is the usual definition of a Riemannian manifold [17],
and often, for a sub-Riemannian manifold, the metric g is taken as the restriction to ∆ ⊆ TG of a Riemannian metric
defined on all of TG. For KP problems, we may define a sub-Riemannian structure by taking ∆ =

⊔
x∈GRx∗P

where Rx∗ is the push-forward of the right-multiplication map on G, i.e. Rx(y) = yx for x, y ∈ G, where we have
used the fact that the tangent bundle of any Lie group is parallelizable, i.e. TG '

⊔
x∈GRx∗g;6 We define the

sub-Riemannian metric as g(Rx∗P,Rx∗Q) := 〈P,Q〉 for any P,Q ∈ P and x ∈ G. A trajectory γ : [0, T ]→ G for a
sub-Riemannian manifold is called horizontal if γ̇(t) ∈ ∆γ(t) for every t ∈ [0, T ]. The length of a horizontal curve
γ from p to q is defined using the sub-Riemannian metric g as

l(γ) :=

∫ T

0

√
g(γ̇(t), γ̇(t))dt. (10)

The length of the curve does not change with a reparametrization of the time t. Thus we can assume that T = 1
in (10). Furthermore, we can reparametrize the time so that

√
g(γ̇(t), γ̇(t)) is constant in (10) [1], [4]. The

sub-Riemannian distance between two points p and q in G is defined as

d(p, q) := inf
γ

∫ 1

0

√
g(γ̇(t), γ̇(t))dt, (11)

where the infimum is taken over all horizontal trajectories γ with γ(0) = p, γ(1) = q. Under the assumption that
1) G is connected 2) ∆ is bracket generating, i.e., (repeated) Lie brackets of vector fields with values in ∆ span all
of the tangent space TxG for every x ∈ G, the Chow-Raschevskii theorem guarantees that there exists a horizontal
trajectory attaining the infimum in (11) (c.f. [1] [24]). Such a curve is called a sub-Riemannian geodesic.

The relation between the time-optimal control for a control system (7) and the corresponding sub-Riemannian
optimal distance is as follows (c.f., e.g., [1] and [4](Theorem 1)): The horizontal curve γ is a sub-Riemannian
geodesic with constant speed

√
g(γ̇, γ̇) equal to M joining the points p and q in G in time T if and only if γ is the

time optimal trajectory joining p and q with optimal control u, bounded by ‖u‖ ≤M and T is the minimum time.
The time-optimal trajectories for KP problems (7) were explicitly described in [22] by utilizing the Pontryagin

Maximum Principle [2] of optimal control. In particular, the optimal control satisfies

m∑
k=1

Bkuk(t) = eAtPe−At, (12)

6Here, as it is customary, we identify the Lie algebra g with the tangent space of G at the identity.
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for some fixed A ∈ K and P ∈ P with ||P || = M , the bound on the norm of the control. Furthermore, plugging
this into equation (7) and integrating yields that the optimal trajectories for KP systems with initial condition at
the identity are given by:

γ(t) = eAte(−A+P )t. (13)

So, given a fixed final condition Xf ∈ G, in order to drive the system (7) to Xf in optimal time, subject to the
bound on the controls, one must find a matrix A ∈ K (so dim(K) parameters); a matrix P ∈ P with ||P || = M
(so dim(P) − 1 parameters); and a minimum time T ≥ 0 (so one further parameter dimension) so that γ(T ) =
eAT e(−A+P )T = Xf . That is, in order to find the optimal trajectory joining 1 to Xf , one must search through a
parameter space with dimension: dim(K) + (dim(P)− 1) + 1 = dim(g). Symmetry reduction can be used to reduce
the number of parameters.

2.2 Symmetry reduction for KP systems

Let us examine the action of eK on G via conjugation. That is, for K ∈ eK and X ∈ G, K ·X := KXK−1; this
action is a proper action [12] because eK is compact. Furthermore, it is such that it fixes the identity 1 ∈ G; the
induced conjugation action of eK on g has as invariant subspaces K and P; moreover, this action preserves the
length of a horizontal curve. To see this, write γ̇ in terms of a curve P = P (t) in P, i.e., γ̇ = P (t)γ. For K ∈ eK,
we have

l(KγK−1) =

∫ 1

0

√
〈KP (t)K−1,KP (t)K−1〉dt =

∫ 1

0

√
〈P (t), P (t)〉dt = l(γ). (14)

In particular, this length preservation property implies that γ(t) is an optimal sub-Riemannian geodesic joining 1
to Xf if and only if Kγ(t)K−1 is an optimal sub-Riemannian geodesic joining 1 to KXfK

−1 for each K ∈ eK.
Using the form of the optimal trajectories (13), we have,

Kγ(t)K−1 = KeAte(−A+P )tK−1 = eKAK
−1te(−KAK

−1+KPK−1)t. (15)

It is therefore reasonable to consider the minimum length problem in the lower-dimensional quotient space G/eK,
the space of equivalence classes under the conjugation action of eK on G.7 We can first find the minimal length
trajectory joining 1 ∈ G to any element in the same class as Xf , say X̂f , that is, find the matrices A and P and

minimum time t in (13), for X̂f . After that, we can find K ∈ eK so that Xf = KX̂fK
−1, so that the corresponding

optimal matrices for Xf , will be KAK−1, KPK−1 and the minimum time t will be the same. Since the matrices
A and P to be found in the first step of this procedure can be ‘rotated’ via a matrix K ∈ eK, they are defined up
to a shared conjugation by K and therefore can be assumed to be in a special form. This reduces the number of
the unknown parameters of the problem in A and P .

Since the optimal sub-Riemannian problem on G is reduced to a problem on G/eK, it is natural to investigate
this space. The conjugation action of eK is not a free action. Therefore G/eK is not guaranteed to be a manifold
but it has, in general, the structure of a stratified space [26]. Denote by π the natural projection π : G → G/eK.
The theory of transformation groups (see, e.g., [12]) says that the strata S making up such a space can be classified
according to the isotropy group of the elements in π−1(S). This is the so-called stratification by isotropy type.
Also the theory says that exists a ‘minimal’ subgroup Kmin ⊆ eK such that 1) Every element X ∈ G has isotropy
group containing a subgroup of eK of the form KKminK

−1 for some K ∈ eK 2) The set elements of G having
as isotropy group exactly KKminK

−1 for some K ∈ eK, called Greg, is such that Greg/e
K is an open and dense

connected smooth manifold in G/eK. The set Greg (Greg/e
K) is called the regular part of G (G/eK) while G−Greg

((G−Greg)/eK) is called the singular part of G (G/eK) .

2.3 Riemannian geometry on Greg/e
K

We have seen above that conjugated curves from the identity to conjugated final conditions have the same length
and can be projected to a single curve on G/eK. Moreover, an open and dense subset of G/eK, Greg/e

K, has
the structure of a connected manifold. It is therefore natural to investigate whether we can put a Riemannian
metric on Greg/e

K, so that the length of curves is preserved by the projection π, and, in particular,the portion
in Greg of optimal sub-Riemannian geodesics in G is mapped by π to Riemannian geodesics in Greg/e

K, with
the same length. This can be done [15] [28] under the assumption that the minimal isotropy group Kmin is

7Notice this is not the usual left or right coset space considered in the thoery of Riemannian symmetric spaces [21].
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discrete. In particular, consider the map π : Greg → Greg/e
K and, for a point x ∈ Greg, the induced push-forward

π∗ : TxGreg → Tπ(x)Greg/e
K between the tangent spaces. Then, if we restrict π∗ to Rx∗P, π∗ can be proven to be

an isomorphism, and for a tangent vector V ∈ Tπ(x)Greg/eK we denote by π−1∗ V its preimage in Rx∗P. Then we
define the metric gQ on Greg/e

K by

gQπ(x)(V,W ) := gx(π−1∗ V, π−1∗ W ) = 〈Rx−1∗π
−1
∗ V,Rx−1∗π

−1
∗ W 〉, (16)

where g is the sub-Riemannian metric on G which we have defined in terms of the (Killing) inner product 〈·, ·〉
on P. This can be seen to be independent of the representative x taken for π(x) [15] [28]. With this definition,
sub-Riemannian geodesics γ in G which are defined in [0, T ] and such that γ(0) = 1 and γ(t) ∈ Greg for every
t ∈ (0, T ) are such that π ◦ γ defined for t ∈ (0, T ) is a Riemannian geodesic in Greg/e

K. Therefore, for KP
problems, sub-Riemannian geodesics in G are mapped to Riemannian geodesics in Greg/e

K and viceversa they can
be obtained as the ‘lift’ of certain geodesics in Greg/e

K. We refer to [15], [28] for details.

3 The KP problem SU(3)/S(U(2)× U(1))

The problem we consider in this paper, which was described in the introduction, is a KP problem where the
Lie algebra g is su(3) and K is the Lie subalgebra of matrices in su(3) of the form (6) and P is spanned by the
orthonormal basis in (3). The Lie group G is SU(3) and the Lie subgroup eK is S(U(2) × U(1)), which is the
Lie group of block diagonal matrices of the form (4) with determinant equal to 1. As we have mentioned in the
previous section, the problem of finding the matrices A and P in (13) can be simplified by assuming a canonical
form for these matrices which can be defined up to a conjugation by an element K ∈ eK. Furthermore, we can,
without loss of generality, assume a fixed value for the norm of P . This is the same value as the norm of the control
from (12) and once one has found the optimal control for a value of the bound M in ‖u‖ ≤ M , one can simply
scale the control and time accordingly for any other bound [4]. Using [5] ( Proposition II.I) , we take the unknown
A and P as

A := i

a+ b 0 0
0 −a −c
0 −c −b

 , P := i

0 1 0
1 0 0
0 0 0

 , (17)

for unknown real parameters a, b, and c. In the next section, we shall solve the problem to find the parameters in
A and the optimal time t to drive the state X of (7) to a final condition of the form (4) in minimum time. This
will solve the problem of optimal control for a quantum lambda system on the lowest two energy levels.

The rest of this section is devoted to describing the Riemannian geometry of SU(3)reg/S(U(2)×U(1)). While
the results here are of mostly mathematical interest, the properties we shall describe might be useful in the case
one wants to find optimal sub-Riemannian geodesics leading to a final condition different from the form (4). This
is due to the correspondence, described in the previous section, between the Riemannian geodesics of Greg/e

K and
the sub-Riemannian geodesics of the KP problem.

3.1 Riemannian geometry of SU(3)reg/S(U(2)× U(1))

The stratified space SU(3)/S(U(2)× U(1)) was described in [5] (Section III) . Such a description is based on the
fact that, via conjugation by an element K ∈ S(U(2)×U(1)), any matrix in SU(3) can be placed in the canonical
form

U =

 x
√

1− |x|2 0

−
√

1− |x|2 x∗ 0
0 0 1

1 0 0

0 z
√

1− |z|2
0 −

√
1− |z|2 z∗

 , (18)

for complex parameters x and z, with |x| ≤ 1 and |z| ≤ 1. If |x| < 1 and |z| < 1, then U , and every matrix conjugate
to U , belong to the regular part of SU(3) and x and z can be taken as complex coordinates in SU(3)reg/S(U(2)×
U(1)). The isotropy subgroup of S(U(2) × U(1)) for matrices U in (18) with |x| < 1, |z| < 1, is the finite (and

therefore discrete) group of scalar 3 × 3 matrices {ei 2πk3 1}, for integer k.8 Therefore we can apply the reduction

8In order to see this, write a general matrix F ∈ S(U(2)×U(1)) in the form of Uf in (4). Comparing the first column of FU = UF

(and using the fact that |x| < 1) we get that F = diag(eiφ, eiφ, e−2iφ). From this, comparing the second columns and using the fact
that |z| < 1, we obtain that F must be a scalar matrix.
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to a Riemannian manifold SU(3)reg/S(U(2)×U(1)) described in the previous section. To extract the coordinates
x and z from a matrix U which belongs to the regular part SU(3)reg but which is not necessarily in the canonical
form (18), we notice that by denoting by uj,k the entries of U , T1 := u1,1 and T2 := u2,2 + u3,3 are invariant under
conjugation by an element of S(U(2)× U(1)) and they are related to x and z by T1 = x and T2 = x∗z + z∗ which

can be inverted as z =
T∗
2−xT2

1−|x|2 .

3.1.1 Expression of the metric on SU(3)reg/S(U(2)× U(1))

We calculate now the induced metric on SU(3)reg/S(U(2)×U(1)). We shall see that it takes a simple block-diagonal
form in the coordinates (xR, xI , zR, zI), real and imaginary parts of x and z, respectively.9 It is convenient to do
the calculations in the coordinates {T1R, T1I , T2R, T2I} first and then perform a change of coordinates to obtain the
expression in the coordinates (xR, xI , zR, zI). Therefore a general tangent vector in Tπ(U)SU(3)reg/S(U(2)×U(1))
has the form

V = V1
∂

∂T1R
+ V2

∂

∂T1I
+ V3

∂

∂T2R
+ V4

∂

∂T2I
, (19)

while a general tangent vector in RU∗P can be written in terms of the orthonormal basis (3) of P as RU∗P , with

P =
∑4
j=1 bjBj . Since π∗ is an isomorphism from RU∗P onto Tπ(U)SU(3)reg/S(U(2)×U(1)), we seek to compute

the corresponding matrix which transforms the vector [b1, b2, b3, b4]T to the vector [V1, V2, V3, V4]T in the above
definition. Denoting by Πl,k, the l, k entry of such a matrix, we have,

Πl,k = π∗(RU∗Bk)T̂l =
d

dt
|t=0(T̂l(π(eBktU))), (20)

where the functions T̂l are defined as (T̂1, T̂2, T̂3, T̂4) := (T1R, T1I , T2R, T2I). This gives the following matrix, which
we also denote, with some abuse of notation, by π∗:

π∗ =
1√
2


u2,1R −u2,1I u3,1R −u3,1I
u2,1I u2,1R u3,1I u3,1R
−u1,2R −u1,2I −u1,3R −u1,3I
−u1,2I u1,2R −u1,3I u1,3R

 . (21)

From the definition (16), since the matrix associated with g is the identity in the basis (3), the matrix G̃ giving
the metric is G̃ = π−T∗ π−1∗ . It is easier to compute G̃−1 = π∗π

T
∗ first and then find the inverse. If we do that, using

in (21) the form of the matrix U in (18) and the fact that the metric does not change within equivalence classes,
that is, it is well-defined, we obtain

G̃−1 =
1− |x|2

2


1 0 zR zI
0 1 zI −zR
zR zI 1 0
zI −zR 0 1

 G̃ =
2

(1− |x|2)(1− |z|2)


1 0 −zR −zI
0 1 −zI zR
−zR −zI 1 0
−zI zR 0 1

 . (22)

Using G̃ given by (22) we can write the expression of the metric tensor in the coordinates T1R, T1I , T2R, T2I .
Moreover, using the relations, T1 = x and T2 = x∗z + z∗, we have dT1R = dxR, dT1I = dxI , dT2R = zRdxR +
xRdzR + xIdzI + zIdxI + dzR, dT2I = zIdxR + xRdzI − zRdxI − xIdzR − dzI . Using this in the expression of the
metric tensor we obtain the metric in the x and z coordinates

GQ =
2

1− |x|2


1 0 0 0
0 1 0 0

0 0 1+|x|2+2xR
1−|z|2

2xI
1−|z|2

0 0 2xI
1−|z|2

1+|x|2−2xR
1−|z|2 .

 . (23)

The metric GQ is singular when |x| or |z| approaches 1. It has a block-diagonal structure where the first block

is a scalar matrix. The second block can be written in the form 2
1−|z|2

(
â b̂

b̂ d̂

)
, with â := 1+|x|2+2xR

1−|x|2 , b̂ := 2xI
1−|x|2

9We always follow the convention of indicating by yR and yI the real and imaginary part, respectively, of a variable y.
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d̂ := 1+|x|2−2xR
1−|x|2 , and we have âd̂ − b̂2 = 1. Using this expression, one can write down the geodesic equations or,

equivalently, the Euler-Lagrange equations for the geodesics. Optimal geodesics in the regular part have to satisfy
these equations and this, together with the correspondence between sub-Riemannian and Riemannian geodesics, is
an alternative description of the sub-Riemannian optimal trajectories as compared to (13).

3.2 SU(3)reg/S(U(2)× U(1)) is an almost-Kähler manifold

We can define on SU(3)reg/S(U(2) × U(1)) the structure of an almost-Kähler manifold [23] as follows: Working
in the coordinates (xR, xI , zR, zI), we define a linear operator, J , on each point of the tangent space at (x, z), by

J :=

(
J1 0
0 J2

)
with

J1 :=

(
0 1
−1 0

)
, J2 :=

(
b̂ d̂

−â −b̂

)
. (24)

From âd̂ − b̂2 = 1, we have J2 = −1. Therefore, J gives an almost complex structure. Furthermore, since

JT1 1J1 = 1, and JT2

(
a b
b d

)
J2 =

(
a b
b d

)
, for any V,W ∈ T(x,z)Greg/K, we have

gQ(V,W ) = gQ(JV, JW ),

i.e. compatibility with the metric is verified. Lastly, the 2−form ω(X,Y ) := g(JX, Y ), in the {xR, xI , zR, zI}
coordinates, is given by

ω = − 2

1− |x|2
dxR ∧ dxI −

2

1− |z|2
dzR ∧ dzI

and is closed, since dω = 0. Therefore we have an almost complex structure and compatible Riemannian and
symplectic structure on SU(3)reg/S(U(2) × U(1)). However, this is not a Kähler structure as it may be checked
using one of the equivalent conditions for an almost-Kähler manifold to be Kähler [23]. In particular if ∇ is the
Levi-Civita connection, then one can compute ∇J 6= 0.

3.3 About the cut locus and the curvature

In Riemannian and sub-Riemannian geometry, the cut locus is defined as the set of points in the manifold where
geodesics, starting from a given point of interest, for example the identity of the group in KP problems, stop being
optimal. Describing the cut locus is of both theoretical and practical importance. From a mathematical point
of view, the cut locus gives important information about the geometry of the manifold under consideration (see,
e.g., [17] (Chapter 13)). From a more practical point of view, if one wants to obtain all the optimal geodesics one
can obtain only the geodesics leading to the points in the cut locus (cut points). This is sufficient to obtain all
the optimal geodesics, since such geodesics are optimal before reaching their final point in the cut locus, and by
existence theorems, the optimal geodesics exist for every point. Therefore, one way to approach the problem to
obtain the complete optimal synthesis is to first describe the cut locus and then obtain the optimal trajectory for
any point in it.

For KP problems, properties of the cut locus were shown in [4]:10 The cut locus is the inverse image under
the natural projection π of a set in G/eK. Furthermore, every trajectory which crosses the regular part Greg and
reaches the singular part Gsing, has to lose optimality at the final singular point. Therefore if there is no cut point
in Greg, then the whole cut locus belongs to the singular part of the space. Given the correspondence between
sub-Riemannian geodesics in G and Riemannian geodesics in Greg/e

K, such a property would be proven if we
proved that there are no cut points in Greg/e

K for geodesics γ = γ(t) with limt→0+ γ(t) = π(1). This was proven
in [15] for the case where G = SU(2) and eK is the one dimensional subgroup of diagonal matrices in SU(2). The
proof was based on the fact that the sectional curvature of Greg/e

K is negative. We believe that the property that
the cut locus is a subset of Gsing is more general, and it applies, for example, to the SU(3)/S(U(2)×U(1)) treated
in this paper. However the proof of [15] does not extend directly to this case because a calculation of the sectional
curvature for SU(3)reg/S(U(2)× U(1)) shows that it changes sign at different points.

10The cut locus was called critical locus in [4] reserving the name cut locus for points where two different geodesics meet.
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4 Complete optimal synthesis for Lambda systems

A desired final condition of the form Uf in (4) is characterized up to similarity transformations in eK by two

parameters: the eigenvalue e−iφ and one eigenvalue of the matrix Ûf (the other eigenvalue being determined by the
condition on the determinant). In this section we shall scale all the angles by a factor 2π and the times t also by
a factor 2π in order to avoid carrying the 2π factor in all the calculations. Therefore the problem is characterized
by two real numbers x and φ both in [0, 1) such that the eigenvalues of Uf in (4) are e−iφ, eix and ei(φ−x). The
parameters φ and x determine the equivalence class for the desired final condition. Given the simplifications due
to the symmetry reduction described in the previous sections, the problem is to find three real parameters a, b, c
in (17) and a smallest time t > 0 such that eAte(−A+P )t ∈ eK with eigenvalues e−iφ, eix and ei(φ−x).

We shall assume in (17) that c 6= 0. If c = 0, the desired final condition must be necessarily in the same class as
diag(e−iφ, eiφ, 1), that is, x = 0. We shall show in Remark 4.2 that this is done without loss of generality. Under

the condition c 6= 0, it follows from Proposition II.3 in [5] that e(−A+P )t must be a scalar matrix ei
2πk
3 1, for some

integer k. We now quote one of the main results of [5] (cf. section IV in that paper) which transforms the optimal
problem into an integer optimization problem. We then proceed to the solution of this integer optimization problem
and show how this gives the minimum time and the optimal parameters a, b and c in (17). Our solution is simpler
than the one in [5] and more general since it avoids assumptions on the eigenvalues of Uf which were made in [5].

4.1 Relation to an integer optimization problem

Consider the following submatrix of −iA in (17): C̃ =

(
−a −c
−c −b

)
, and denote by M̂ and m̂ its largest and

smallest eigenvalues (which are real since the matrix is symmetric), respectively. These depend on a, b, and c.

Since e(−A+P )t = ei
2πk
3 1, for the optimal time t, we must have (recall we scale t and angles by 2π) M̂t = α̂− k

3 + l̂,

and m̂t = β̂ − k
3 + r̂, where α̂ is equal to φ− x and β̂ = x or viceversa and l̂ and r̂ are integer numbers. We define

α and β, and l and r so that

φl := M̂t = α̂− k

3
+ l̂ = α− k

3
+ l, (25)

ψr := m̂t = β̂ − k

3
+ r̂ = β − k

3
+ r (26)

with α and β in [0, 1) and l and r integers.11 We summarize one of the main results of [5] (cf. formulas (40) and
(45) in that paper) in the following theorem:

Theorem 1. Given α, β ∈ [0, 1) consider the minimum of

t2 =
k2

12
+ s2 − (φ2l + ψ2

r + φlψr), (27)

for k, l, r integer and s integer if k is even and half integer if k is odd subject to

k

6
− s < ψr < −

k

3
< φl <

k

6
+ s. (28)

Then the minimum time of the time optimal control problem is the minimum t > 0 in (27) for values of α and β
consistent with the values of x and φ (as from definition (25) (26)).

Therefore the solution of the optimal control problem is found once we know the solution of the problem to
minimize (27) with the constraint (28), for any value of α and β in [0, 1). Once we know such a solution we replace
for α and β the values deriving from the prescribed eigenvalues for Uf in (4) according to (25) and (26). We choose
the values of α and β consistent with the values of x and φ, which give the smallest t (see subsection 4.3 below).
The values of a, b, and c, once we have the minimum t and φl and ψr for the optimal l and r and the optimal k
and s, are obtained as follows. One obtains b from

bt3 =
k

3

(
s2 − k2

36

)
+ (φl + ψr)(φlψr), (29)

11It is not necessarily true that α̂ = α, l̂ = l, β̂ = β, r̂ = r, because φ− x may be negative. Thus, if, for instance α̂ = φ− x < 0 we
choose α = φ− x+ 1 and l = l̂ − 1.
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then a from
(a+ b)t = −(φl + ψr), (30)

and then c (c can be chosen positive or negative) from

c2t2 = abt2 − φlψr. (31)

Remark 4.1. In [5], formulas (27) and (29) come from the requirement that e(−A+P )t = ei
2πk
3 1, using the relation

between the coefficients of the characteristic polynomial and the eigenvalues of the 3 × 3 matrix (−A + P )t [13]
and using (31) which also follows from such a relation but for the matrix C̃. Formulas (30) and (31) also come
from the relation between the eigenvalues and the coefficients of the characteristic polynomial for the matrix C̃.
The inequality (28) follows from c2 > 0, the fact that by definition φl ≥ ψr (in fact it can be shown in [5] that
strict inequality holds) and the fact which is proven in [5] (cf. Lemmas V.1, V.2 and V.3) that, in the search of

the values (k, s, l, r) we can always reduce ourselves to the region in the (k, s) plane where s > |k|
2 .

4.2 Solution of the integer optimization problem

We now show how to solve the optimization problem of Theorem 1. Here our derivation differs from the one in [5].
It is simpler and it generalizes it. As in [5], we shall make use of the functions SI and LI. The number SI(y) is
the smallest integer which is strictly greater than y, i.e., the integer part of y+1, while LI(y) is the largest integer
which is strictly smaller than y, i.e., the integer part of y-1. If p is an integer we have SI(y + p) = SI(y) + p and
LI(y + p) = LI(y) + p.

Using the definitions (25) and (26) in (28) and subtracting −k3 in all terms we obtain

k

2
− s < β + r < 0 < α+ l <

k

2
+ s,

which gives the two inequalities

k

2
− s− β < r < −β, −α < l <

k

2
+ s− α. (32)

This gives, using the definition of SI and LI,

SI

(
k

2
− s− β

)
≤ r ≤ LI(−β), SI(−α) ≤ l ≤ LI

(
k

2
+ s− α

)
. (33)

We are going to assume that α ∈ (0, 1), β ∈ (0, 1), i.e., a range for these parameters with open interval on the left.
We will discuss in Remark 4.2 why this is not a restriction.

With this assumption, and using the properties of the functions SI and LI with the fact that k
2 ± s is always

an integer number, we arrive at the inequalities

k

2
− s ≤ r ≤ −1, 0 ≤ l ≤ k

2
+ s− 1. (34)

The function t2 to be minimized subject to the constraint (34) is the function (27) where we substitute the
expressions of φl and ψr in (25) (26). This gives

t2 = s2 − k2

4
− α2 − β2 − αβ + (α+ β)k − Fk(l, r), (35)

where Fk(l, r) := l2 + r2 + lr+ l(2α+ β− k) + r(2β+α− k) and we have separated the part that depends on (l, r)
from the part that depends only on k and s. The minimum is found as

min
k,s

s2 − k2

4
− α2 − β2 − αβ + (α+ β)k −max

l,r
Fk(l, r),

where, for every k and s, the maxl,r Fk(l, r) is taken over the box defined in the inequalities (34). Because of the
(quadratic) form of the function Fk such a maximum is attained at one of the corners. In particular, if we define
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p1 :=
(
0, k2 − s

)
, p2 := (0,−1), p3 :=

(
k
2 + s− 1, k2 − s

)
, and p4 =

(
k
2 + s− 1,−1

)
, this is the maxp=p1,p2,p3,p4 Fk(p).

Therefore the minimum time t2 is calculated as the

min
p=p1,p2,p3,p4

min
k,s

Yp(k, s),

for the function Yp(k, s) := s2 − k2

4 − α
2 − β2 − αβ + (α + β)k − Fk(p). Let us calculate Yp(k, s) for the values

of p = p1, p2, p3, p4. We have Yp1(k, s) = α
(
s+ k

2

)
+ 2βs − α2 − β2 − αβ, Yp2(k, s) = s2 − k2

4 − α2 − β2 −
αβ + (α + β − 1)k + 2β + α − 1, Yp3(k, s) = −α2 − β2 − αβ + (s − 1) + k

2 (1 − α − β) + (β − α)s + 2α + β,

Yp4(k, s) = −α2 − β2 − αβ + 3(s− 1) + k
2 (β − 1)− s(2α + β) + 3α + 3β. To minimize these functions over k and

s, it is convenient to write s = |k|
2 + j with j ≥ 1 an integer (recall that s > |k|

2 and is an integer if k is even and
a half integer if k is odd (cf. Remark 4.1)). We can then minimize over j and k. This process leads to the fact
that, for all the values p1, p2, p3, p4, the minimum is achieved when k = 0 and j = s = 1. Furthermore the minima
coincide, and we have

min
p=p1,p2,p3,p4

min
k,s

Yp(k, s) = Yp1(0, 1) = Yp2(0, 1) = Yp3(0, 1) = Yp4(0, 1) = 2β + α− α2 − β2 − αβ. (36)

Using the values k = 0 and s = 1 in (34), we find that the optimal l and r are l = 0 and r = −1. We arrive
therefore at the solution of the integer optimization problem of Theorem 1. We have the following

Theorem 2. For every α and β in (0, 1) with the definition of φl and ψr in (25) (26) the minimum over (l, r, k, s)
of the function (27) subject to (28) is attained for l = 0, r = −1, k = 0, s = 1 and it is equal to

t2min = −α2 − β2 − αβ + 2β + α. (37)

From the theorem we also obtain the optimal values of φl and ψr. They are φl = α and ψr = β − 1.

4.3 Optimal Synthesis

Our goal is now to translate the above solution of the optimization problem of Theorem 1 to the solution of the
minimum time optimal control problem where we are given the two angles φ and x in [0, 1). This involves finding
the correct corresponding values of α and β and then finding the optimal time and the corresponding φl and ψr,
from which we can find the parameters a, b and c in (17) for the optimal synthesis.

We shall assume x 6= 0 and φ− x 6= 0 and refer to Remark 4.2 below to remove these assumptions. There are
a few cases to consider. Recall that x is always assumed ≥ 0. Assume first φ− x > 0. There are two possibilities
to choose α and β in (25) (26) both of them in principle possible: α = x, β = φ − x or α = φ − x and β = x. In
both cases α, β ∈ (0, 1) and therefore we can use (37). In the first case (37) gives

t2min = V3(x, φ) := 2φ− x− φ2 + φx− x2. (38)

In the second case, it gives
t2min = V4(x, φ) := x+ φ− φ2 + xφ− x2. (39)

We make the choice which gives the smallest value for t2 which depends on the value of x and φ. In particular if
φ > 2x we choose V4 otherwise we choose V3. The two values coincide when φ = 2x. Assume now that φ−x < 0. In
order to define α or β we need to add +1 to make this positive. Therefore, in this case, we can choose α = 1+φ−x
and β = x or, viceversa, α = x and β = 1 +φ− x. In both cases α, β ∈ (0, 1) and therefore we can use (37). In the
first case (37) gives

t2min = V1(x, φ) := −φ2 − x2 − φ+ xφ+ 2x. (40)

In the second case, it gives
t2min = V2(x, φ) := 1− x2 + φx− φ2.

We choose the minimum of the two which depends on the point (x, φ). In particular if φ < 2x− 1 the minimum is
given by V2, if φ > 2x− 1 it is given by V1. The two values coincide when φ = 2x− 1. The situation is summarized
in the Figure 2 which represents the box {(x, φ)|0 ≤ x ≤ 1, 0 ≤ φ ≤ 1}. According to the region where the desired
final condition (x, φ) is in the box, we choose the function V1, V2, V3 or V4 to calculate the minimum time. Also
the corresponding values for φl and ψr are found by the corresponding values of α and β as φl = α, ψr = β − 1.
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Remark 4.2. In the above discussion to find the minimum for the optimal control problem we have assumed
x 6= 0 and φ− x 6= 0. This was done for us to be able to use formula (37) which was derived under the assumption
of α, β ∈ (0, 1), i.e., α, β ∈ [0, 1) which is the case in Theorem 1, and α, β 6= 0. However, from standard results in
sub-Riemannian geometry (see, e.g., Chapter 3 in [1]), we know that the sub-Riemannian distance and therefore
the minimum time function is continuous and therefore the values of the minimum time extend by continuity to
the set φ = x as well as to the set x = 0. Furthermore the box {(x, φ) | 0 ≤ x < 1, 0 ≤ φ < 1} should be seen as a
torus, i.e., with the segments corresponding to φ = 0 and φ = 1 identified, as well as the segments corresponding
to x = 0 and x = 1 identified. A direct verification shows that the minimum time function is indeed continuous on
this segments as well as on the line φ = x, as expected.

The condition x 6= 0 was also used to rule out c = 0 in (17). If x = 0, we have to consider the case c = 0 as well,
since Theorem 1 assumes that c 6= 0. In fact if x = 0 the optimal is achieved with c = 0. To prove this, assume by
contradiction that the optimal time is obtained with c 6= 0. Therefore using Theorem 1 and the formula for t2 in
(39), t2min = φ − φ2. The parameters φl and ψr are chosen according to Figure 2 (with x = 0) to be φl = φ and
ψr = −1. With these values, we can find b, a, and c in sequence according to (29) (30) and (31). In particular, from
(29) (recall k = 0), we get b = 1

tmin
. Using this in (30), we get a = − φ

tmin
, and using the expressions of a and b in

(31) we obtain c2t2min = 0, which is a contradiction with the assumption that c 6= 0. Therefore for x = 0, we have
to assume c = 0. We now show how to find the optimal control and time in this case, when the final condition is
in the same class as diag(e−iφ, eiφ, 1). With c = 0 we can write A in (17) as A = B + S where B = diag(i b2 , i

b
2 , 0)

S = diag(ia+ i b2 ,−ia− i
b
2 , ib). We have (see (13)) that we have to find the matrix S and the minimum t such that

eAte(−A+P )t = eSte(−S+P )t, with P given in (17), is in the same class as diag(e−iφ, eiφ, 1), which, given the form
of eSte(−S+P )t is equivalent to eSte(−S+P )t = diag(e−iφ, eiφ, 1). Defining η := a + b

2 , this means that we have to
find the minimum t and a real parameter η such that

eŜte(−Ŝ+P̂ )t = diag(e−iφ, eiφ), Ŝ :=

(
iη 0
0 −iη

)
, P̂ :=

(
0 i
i 0

)
. (41)

This is the same as the KP problem on SU(2) treated in [3] and the solution can be found in that paper. In
particular, this is a special case of Theorem 1 in [3] as the final condition is in the singular part of the quotient
space associated with the KP problem in the SU(2) case. Using the results of that paper, we obtain t2min = φ−φ2

and η =
√

1
φ(1−φ) − 4 = a + b

2 .12 We remark that the value of the minimum time coincides with the limit x → 0

of the minimum time obtained when c 6= 0 as expected from the continuity of the sub-Riemannian distance (and
therefore the minimum time function).

We give a simple example of application of the above technique and postpone to the next section more compli-
cated examples, further discussion and generalizations.

Example 4.3. Assume we want to reach a final condition of the form Xf =

(
1 0
0 Xf

)
, that is, φ = 0. Choose

0 < x ≤ 1
2 . We are in the region of V3 and the minimum time is t2min = 2x − x2. We have α = 1 − x and β = x

so that φl = 1 − x, ψr = x− 1. Application of the formulas (29), (30) and (31) give a = b = 0 and c2 = 1−x
2x . As

expected if we repeat the process for replacing x with 1 − x, which represents the same equivalence class of final
conditions, we obtain the same values for the minimum time and parameters, a, b and c.

5 Extensions and examples

We start with an example of optimal synthesis for a system without drift such as (7).

12To translate the result in [3] the notation η in this paper corresponds to ω
2

in that paper; T
2π

in [3] is t for us; and γ in [3] has to

be taken equal to 2. Then one refers to formulas (18) and (19) in [3] calculated for |ω| =
√

4π2

T2 − γ2, i.e., at the endpoints of the curve

FT defined in [3] which simplifies the formulas. Imposing x+ iy = e−iφ one obtains the condition on T which gives the minimum time,
and, from that, one derives the value of ω.
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Figure 2: Functions to be used according to the point (x, φ) to calculate square of the minimum time (normalized
by 2π). In the region of V1 the choice of (α, β) is α = 1 + φ− x, β = x, so that φl = 1 + φ− x, ψr = x− 1. In the
region of V2 the choice of (α, β) is α = x, β = 1 + φ− x, so that φl = x, ψr = φ− x. In the region of V3 the choice
of (α, β) is α = x, β = φ− x, so that φl = x, ψr = φ− x− 1. In the region of V4 the choice of (α, β) is α = φ− x,
β = x, so that φl = φ − x, ψr = x − 1. These values along with k = 0 are used in (29), (30) and (31) in order to
obtain the parameters a, b, and c of the optimal control.

5.1 Example 1

Let us assume that we would like to reach a final condition given by the following Hadamard-like gate:

Uf =

 −i 0 0
0 − 1

2 + i
2 − 1

2 + i
2

0 − 1
2 + i

2
1
2 −

i
2

 . (42)

The eigenvalues of Uf are e−i
π
2 , ei

3π
4 and e−i

π
4 . Therefore, using the notation in Section 4, after scaling by 2π, we

choose

φ =
1

4
, x =

3

8
, φ− x = −1

8
,

and we are in the region V1 of Figure 2. According to the caption of Figure 2, we have

α =
7

8
, β =

3

8
, φl =

7

8
, ψr = −5

8
.

Using (40), we obtain the value of the minimum time

tmin =
5

8
.

With the values of tmin, φl and ψr, by equation (29), we obtain b = − 14
25 and using (30), (31), we obtain a = 4

25 ,

c = 3
√
91

25 . Therefore, the matrix A in (17) is

A = i

−
2
5 0 0

0 − 4
25 − 3

√
91

25

0 − 3
√
91

25
14
25

 .
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Going back to the original time scale, let t = 2πtmin = 5π
4 , one then computes the final condition to be

eAte(−A+P )t = eAt =


−i 0 0

0 − 3
10
√
2

+ 3i
10
√
2

(
− 1

10 + i
10

)√
91
2

0
(
− 1

10 + i
10

)√
91
2

3
10
√
2
− 3i

10
√
2

 := Ûf ,

since e(−A+P )t = 1. This is not the same as the desired final condition Uf in (42) but, as expected, it is in the
same equivalence class. The matrix

K =


1 0 0

0 1
2

√
2 + 3+

√
91

5
√
2

− 1
2

√
2− 3+

√
91

5
√
2

0 1
2

√
2− 3+

√
91

5
√
2

1
2

√
2 + 3+

√
91

5
√
2

 ∈ eK, (43)

is such that KÛfK
−1 = Uf . Therefore the matrices A and P for the optimal synthesis (12) have to be changed to

KAK−1 and KPK−1, with K in (43).

5.2 Extension of the procedure to systems with drift

The treatment for the case of a system without drift (7) also gives the solution for the optimal control problem
for the original system with drift (1). This is due to the fact that in Section 4 we have constructed the function
tmin which gives the minimum time for any final condition in eK. Recall also, from Sections 1 and 2, that there is
an explicit relation between the trajectory X = X(t) of the driftless system (7) and the corresponding trajectory

of the system with drift (1), U = U(t), given by X(t) = e−ÂtU(t), and a one-to-one correspondence between the
controls given by (8) (9). In view of these facts, we have the following observation.

Proposition 5.1. The minimum time to reach the final condition Uf for system (1) is the smallest t such that

t = tmin(e−ÂtUf ). (44)

Proof. Consider the continuous function s(t) := t− tmin(e−AtUf ) which is negative when t = 0 (assuming Uf 6= 1)
and positive for large t since tmin is bounded. Therefore there is at least one point t such that s(t) = 0, i.e., (44)
is verified. Consider the first point t = t̂ where s(t) = 0. We have s(t) < 0 for t < t̂. The value t = t̂ is such that
there exists an admissible control driving the system (1) to Uf , in time t̂. This is the (modified) control used to

drive the driftless system to e−Ât̂Uf . Therefore the minimum time for the system with drift td has to be such that

td ≤ t̂. However if td < t̂ we have s(td) < 0, that is td − tmin(e−ÂtdUf ) < 0. The control driving the system with

drift in time td will drive (after modification) the system without drift to e−ÂtdUf in time less than tmin(e−ÂtdUf )
which contradicts the minimality of tmin. Thus, equality must hold.

The proof of this proposition also gives us information about the optimal control synthesis for the system with
drift. Once we know the minimum time, the control for the system without drift gives us the control for the system
with drift, using the modification described in (8) (9). We illustrate the procedure with an example.

5.3 Example of application to a system with drift (1)

Suppose that matrix Â in (1) is given by

Â =

 2πi 0 0
0 πi 0
0 0 −3πi

 , (45)

and assume that the desired final condition is a NOT gate on the lowest two energy levels, with a phase shift
between these two levels and the highest level:

Uf =

 e−i
π
4 0 0

0 0 ei
π
4

0 −1 0

 . (46)
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We have

e−ÂtUf =

 e−i
π
4−i2πt 0 0
0 0 ei

π
4−iπt

0 −ei3πt 0

 . (47)

The eigenvalues of e−ÂtUf are e−i
π
4−i2πt, iei

π
8 +iπt and −ieiπ8 +iπt. We scale the phases by 2π. Using the notation

in Section 4, we denote these eigenvalues by e−iφ, eix and ei(φ−x). We have

φ = φ(t) =
1

8
+ t (mod 1),

x =
5

16
+
t

2
(mod 1).

The initial point, x = 5
16 , φ = 1

8 is in the region V1 in Figure 2. As t increases the trajectory x = x(t), φ = φ(t)
crosses into the region V3 when t = 3

8 and x = φ = 1
2 . Then the points stay in the region V3 until t = 7

8 , crossing
into region V2 when x = 3

4 , φ = 1. Let us look for a t < 7
8 first. Replacing x = 5

16 + t
2 , φ = 1

8 + t in the expression
of tmin in (40), we obtain, for 0 ≤ t ≤ 3

8 ,

tmin =

√
109

256
− 3

4
t2 − 3

16
t.

However there is no t ∈ (0, 38 ] such that t = tmin with the above expression of tmin. We consider then the next
interval ( 3

8 ,
7
8 ), where we use the expression (38) for tmin, with x = 5

16 + t
2 , φ = 1

8 + t. This gives tmin =√
21
16 t−

3
4 t

2 − 35
256 . With this expression of tmin, the condition (44) gives

t =

√
21

16
t− 3

4
t2 − 35

256
,

which is solved for t ∈ ( 3
8 ,

7
8 ) by t = 5

8 . This is the minimum time we were looking for.
As a result,

φ =
1

8
+ t =

3

4
, x =

5

16
+
t

2
=

5

8
, φ− x =

1

8
,

and using the prescription for region V3 from figure 2 we have

φl =
5

8
, ψr = −7

8
.

With these values, by solving (29), (30) and (31) (with k = 0), we obtain that

a = − 4

25
, b =

14

25
, c =

3
√

91

25

The matrix A in (17) is

A = i


2
5 0 0

0 4
25 − 3

√
91

25

0 − 3
√
91

25 − 14
25

 .

Therefore, we obtain that, with t = 5
8 ,

X(t) = e2πAte2π(−A+P )t =


i 0 0

0 − 3
10
√
2
− 3

10
√
2
i
(

1
10 + i

10

)√
91
2

0
(

1
10 + i

10

)√
91
2

3
10
√
2

+ 3
10
√
2
i

 , (48)

with e2π(−A+P )t = 1.
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This is in the same class as (47) with t = 5
8 . In fact, the two matrices differ by by conjugation with

K =

 1 0 0

0
(
− 1

20 + i
20

) (√
35 +

√
65
)
e

15πi
8

√
35−
√
65

10
√
2

0
(

1
20 −

i
20

) (√
35−

√
65
)
e

15πi
8

√
35+
√
65

10
√
2

 ∈ eK.
The optimal synthesis for the system without drift is obtained using (12) with A replaced by KAK† and P replaced
by KPK† with the above K. Formulas (8) (9) give the corresponding optimal control for the system with drift.

5.4 Some more generalizations and remarks

As we have mentioned in the Introduction, Lambda systems have been mostly treated in the context of adiabatic
control. In particular the STIRAP protocol [6] achieves population transfer between the lowest two levels by
minimizing the average population in the highest level. In its basic formulation, it consists of a sequence of two
pulses with slowly varying amplitudes and achieves its goal in a large (theoretically infinite) amount of time.

Minimizing the population in the highest level is required because this is the population mostly subject to
decaying to lower (un-modeled) levels, thus causing de-coherence. In this paper, we have taken a different approach
to counteract de-coherence, namely we have looked for the fastest possible transfer. In this sense, our protocol is
the opposite of adiabatic protocols, such as STIRAP, which take a large amount of time. However, our scheme
does not consider any constraint in the population in the highest level. In fact a direct calculation shows that such
a population must be nonzero in the control interval.13 Given the explicit nature of our solution however we can
calculate the actual cost in terms of the average population in the highest level for any state transfer. We also
know that the optimal time is inversely proportional to the bound on the control and we can study how to find the
best compromise between population in the highest level and the time of transfer.

Finally we remark that our protocols can be used not only for Lambda systems but for any three-level quantum
system where we want to transfer population between two states that are connected only through a third one.
In fact, many of our results, in particular the ones of Sections 2 and 3 are valid for general three level quantum
systems in the KP configuration and can be potentially used in the future to find optimal protocols for state
transfers different from the ones considered in Sections 4 and 5.
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