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2 Figure 1: Overview: MotionGlot is a model that can generate motion trajectories that obey user instructions
across multiple embodiments with different action dimensions, such as (a) quadruped robots, and (b) humans.
The figures (a,b) depict the qualitative benchmark of MotionGlot against the adapted templates (A.T) of [1] on
the text-to-robot motion (Section 4.1.1), Q&A with human motion (Section 4.3) tasks respectively. The overall
quantitative performance across tasks is shown in (c). In (a,b), increasing opacity indicates forward time.

Abstract:3

This paper introduces MotionGlot, a model that can generate motion across multiple4

embodiments with different action dimensions, such as quadruped robots and5

human bodies. By leveraging the well-established training procedures commonly6

used in large language models (LLMs), we introduce an instruction-tuning template7

specifically designed for motion-related tasks. Our approach demonstrates that8

the principles underlying LLM training can be successfully adapted to learn a9

wide range of motion generation tasks across multiple embodiments with different10

action dimensions. We demonstrate the various abilities of MotionGlot on a set of11

6 tasks and report an average improvement of 35.3% across tasks. Additionally,12

we contribute two new datasets: (1) a dataset of expert-controlled quadruped13

locomotion with approximately 48,000 trajectories paired with direction-based text14

annotations, and (2) a dataset of over 23,000 situational text prompts for human15

motion generation tasks. Finally, we conduct hardware experiments to validate the16

capabilities of our system in real-world applications.17

1 INTRODUCTION18

Large Language Models (LLMs) [2, 3, 4, 5, 6, 7] have seen tremendous success recently with models19

that can produce text indistinguishable from human-generated text. These models have also shown to20

be useful in applications beyond just text generation, for example, in multi-lingual translation [5, 8],21

multi-task learning [5, 3, 4, 5, 6, 7], or instruction following [9].22
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LLMs use transformers [2] to model language as a sequence of tokens and are trained in a next-23

token or masked-token prediction framework. Indeed, some research has looked into modeling24

other forms of sequential data using the same machinery, for example, in audio [10] and weather25

data [11]. Unsurprisingly, recent work has also modeled motion and action as a sequential generation26

problem [12, 1, 13]. However, these approaches have thus far been limited to a single embodiment [14,27

15, 16] or embodiments with the same number of action space dimensions [13, 1].28

In this paper, we investigate the problem of building models of action that can cover multiple29

embodiments with different action spaces (e.g., humans vs. quadrupeds). This is a hard problem30

because (1) motion data is not always plentifully available for all embodiments (e.g., quadrupeds31

vs. humans), and (2) the templates used in training [13, 1] involves discretizing each action dimension32

into uniform bins and contacting the string to obtain the target for the transformer. Such a training33

template is suitable only for single embodiments and not easily extendable to create a model for34

motion generation across multiple embodiments.35

We overcome these limitations with MotionGlot, a motion generation model that can span mul-36

tiple embodiments with different action spaces. MotionGlot builds on top of the well-established37

instruction-tuning techniques from multilingual LLMs [8, 9, 17, 18] and proposes an instruction38

template to train a GPT [5] for motion generation.39

While our insights and framework can be generalized and extended to multiple morphologies, we are40

primarily interested in two embodiments with different action spaces: human bodies and quadruped41

robots. MotionGlot is a single model that exhibits core capabilities such as text-conditioned motion42

generation for different embodiments, and captioning motion across multiple embodiments Figure 1.43

To overcome the challenges due by limited data availability for quadrupeds, we propose QUAD-44

LOCO , a dataset of expert-controlled quadruped locomotion with direction-based text annotation45

Figure 2 (c). Furthermore, we propose an additional dataset of text captions for human motions,46

where we leverage the few-shot learning abilities of GPT-4 [4] to create a dataset with more than47

23000 situational descriptions of human actions, this data would be used for the Q&A with human48

motion task (Section 4.3).49

QUAD-LOCO not only enables our core capability such as text-conditioned locomotion for quadruped,50

but also additional capabilities such as goal-conditioned motion generation for quadrupeds. Our ex-51

periments (Section 4) demonstrate that MotionGlot is a generalist method can generate motion across52

multiple embodiments, handle unseen user instructions, and express the multi-modal distribution in53

motion trajectories. MotionGlot also performs better than existing methods as shown in Figure 1 and54

Section 4.55

Overall, our contributions are: (1) MotionGlot, a model that learns to generate motions across56

multiple embodiments with different action spaces. (2) an instruction tuning template that uses a57

single decoder-only transformer to generate motion across multiple embodiments and operate as a58

multi-task learner, and (3) The QUAD-LOCO dataset which consists of 48000 quadruped trajectories59

with direction-based textual descriptions for robot motion and the QUES-CAP dataset which consists60

of more than 23000 prompts that enable Q&A with motion Section 4.3.61

2 Related Works62

In this brief review, we focus on the closest work in language, robotics, motion generation, and63

captioning. Please see Table 1 for a summary of related works.64

Language and Robotics: There has been an explosion of recent work at the intersection of language65

and robotic navigation or manipulation [19, 20, 21, 12] that treat language as an additional modality66

and have separate branches in the network to process text instructions.67

Methods such as RT-2 [1] or OpenVLA [13] have attempted to unify language and action into a68

common vocabulary to train models69



for manipulation tasks. However, their instruction tuning template is largely limited to embodiments70

with the same action dimension (e.g., 7DoF action space of a manipulator). Driven by insights from71

multi-lingual instruction tuning [9, 8, 17, 22] our proposed method enables us to build a common72

vocabulary across embodiments with very different action spaces, specifically, human motions and73

quadruped motions.74

Works such as Gato [23, 24] leverage autoregressive transformers to create a common controller75

policy for multiple embodiments. Unlike these methods, MotionGlot serves a different objective76

and caters towards generative tasks. While RoboCat [25] attends towards building a common model77

across different output dimensions, their approach is demonstrated only on manipulators, whereas78

MotionGlot explores diverse embodiments such as quadrupeds and human bodies. Additionally,79

our proposed training procedures bring the instruction-following and multi-task learning abilities of80

LLMs into motion motion generators.81

Human and Robot Motion Generation: Motion generation for human bodies and mobile robots has82

been largely studied in separate communities. Human motion generation methods can be classified83

into two categories [26]: (1) methods that use pre-trained vision-language models like CLIP [27]84

for motion generation [14, 28, 29, 30], and (2) methods such as [15, 16], which jointly learn a85

text and motion representation. Works related to robot motion generation have largely focused on86

embodiments with the same action dimensions such as [31, 32, 1, 13]. MotionGlot belongs to the87

second category, and unlike the aforementioned models, it is a multi-embodied motion generator.88

Method M-E M-T H/R M-G H/R M-C

Adapted templates of [1, 13] ✗ ✓ ✗/ ✓ ✗/ ✗
RoboCat [25] ✓ ✓ ✗/ ✓ ✗/ ✗
T2MGPT [14] ✗ ✗ ✓/ ✓ ✗/ ✗
T2MT [15] ✗ ✗ ✓/ ✓ ✓/ ✗
MotionGPT [16] ✗ ✓ ✓/ ✗ ✓/ ✗
MDM [30] ✗ ✗ ✓/ ✗ ✗/ ✗
Ours ✓ ✓ ✓/ ✓ ✓/ ✓

Table 1: Acronyms: M-T: Multi task ability, H/R M-G: Human/
Robot motion generation ability. H/R M-C: Human / Robot Motion
captioning ability. Robot refers to a quadruped robot whose loco-
motion can be controlled with SE2 velocity commands. M-E refer
to the ability to perform generative tasks on multiple embodiements
with different action dimensions. refer to Sec. 4.1.1 for adapted
templates of [13, 1].

Datasets: While there exist large89

pools of data for manipulation [33]90

and navigation [34, 35, 36], there are91

no large data sources for quadruped lo-92

comotion paired with text. While [37]93

proposes to model quadruped gaits us-94

ing their feet-floor contact pattern, the95

dataset largely ignores direction based96

annotation such as the captions shown97

in Figure 2 (c). Therefore, to expand98

the text-conditioned motion genera-99

tion capabilities to robots, we propose100

QUAD-LOCO , a dataset with over101

48000 (after data-augmentation) pairs of expert-controlled real-world quadruped motion trajectories102

with direction-based text annotation (Section 3.3).103

For human body motion, the AMASS [38] dataset, which includes text annotations from [39], has104

been a key resource [28, 16, 14, 15, 39]. While [39] offers a broad range of action descriptions, it105

often lacks the contextual details of specific situations where these actions occur. To address this,106

we utilized GPT-4 [] to expand the [39] descriptions into 23000 situation-based text descriptions,107

rephrasing them as questions (see Section 3.3). This new data enables applications like Q&A with108

human motion task (see Section 4.3).109

Motion Captioning: Motion captioning is the task of generating a text description for the input110

motion. T2MT [15] uses an Encoder-Decoder transformer to caption human motion, however, such111

approaches are constrained to a single task of bidirectional translation between text and motion.112

MotionGPT [16] leverages a T5 [40] model for motion captioning and motion synthesis, however,113

[16] is constrained to a single embodiment. [41] performs captioning of robot actions, however, they114

are single-task, single embodiment models. In contrast, our model natively supports text captioning.115

3 Method116

We intend to build a model capable of motion generation across multiple embodiments with different117

action spaces. We approach this problem as a next-token prediction problem similar to LLMs.118
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Figure 2: (a) Trajectories from different embodiments are tokenized using their associate VQ-VAE [42]
(Section 3.1). (b) The proposed instruction template (Section 3.2) is used to train GPT for motion and text
generation. Note that the tokenizer and de-tokenizer operate on the expanded vocabulary Section 3.2 (V) (c) The
preview of the QUAD-LOCO dataset, the captions indicate the direction-based text annotation.

Figure 2 shows an overview of our approach. Below, we describe individual components. Our119

training procedure involves two steps, in the first stage a VQ-VAE [42] learns a discrete latent120

codebook that represents a motion vocabulary per embodiment. This process, known as motion121

tokenization, is similar to text tokenization [43]. The motion vocabulary across embodiments are then122

appended to the existing vocabulary of GPT2 [3] creating a unified motion and text vocabulary. In123

the second step, our proposed instruction template is used to train the autoregressive GPT [2, 3, 5].124

3.1 Trajectory Parameterization & Tokenization125

For a given embodiment, a motion trajectory of length T is parameterized as xe = [pe0, p
e
1, · · · , peT ],126

where p denotes motion represented as the embodiment’s pose, and e denotes different embodiments127

– in our case either the quadruped robot (r) or human (h). The quadruped trajectory is parameterized128

by a sequence of 2D linear (ẋz) and angular velocities (ṙa) where a pose at a discrete time t is given129

by prt = (ẋz, ṙa) ∈ RSE2. Here, we assume that the y-axis is perpendicular to the ground plane130

(xz). The human pose is parameterized using the canonical representation from SMPL [44, 39] as131

pht = (ṙa, ṙxz, ry, jp, jv, jr, cf ) ∈ R263, where ṙxz ∈ R2 is the root velocity along the ground plane,132

ṙa ∈ R1 is the root angular velocity along the y-axis, ry ∈ R1 is the height of root from ground,133

jp, jv ∈ R3k and jr ∈ R6k refer joint positions, joint velocities and joint angles represented as134

continuous 6D vectors, and cf ∈ R4 are the foot contact features, the number of joints k = 22 for135

the [39] dataset.136

The goal of the tokenizer is to develop representations that allow a trajectory to be expressed as a137

series of discrete tokens, where each token is a unique element belonging to a finite vocabulary. We138

employ a VQ-VAE Figure 2 (a) [42] which consists of an autoencoder with a learnable codebook139

C ∈ RN×d with N tokens each of embedding dimension d. A separate VQ-VAE [42] is maintained140

for each embodiment, where the codebook represents the learned vocabulary for that embodiment.141

The motion trajectories (xe) are first passed through the encoder that applies 1D convolutions to142

create a latent code z ∈ Rd×T/l, where l is the temporal down-sampling from the encoder. The143

quantization process substitutes each entry of the latent space zi ∈ Rd with the closest element in144

the codebook ẑi ∈ Rd given by Equation (1). The quantized embeddings ẑi, are then fed into the145

decoder to reconstruct the input signal x̂ ∈ Rde×T as146

ẑi = argmin
ck∈C

||zi − ck||2. (1)

147
The tokenizer is trained using three loss functions [42, 14]: L = Lr + Le + Lc, where Lr represents148

the reconstruction loss, Le is the embedding loss, and Lc denotes the commitment loss. Following149

the approach outlined in [14], all loss functions are L1 loss with smoothing, velocity regularization,150

and EMA with codebook reset techniques [42] are included.151

Note, that in contrast to discrete binning-based tokenization used in [13, 1] where N tokens are used152

to represent a single pose of N − DOF output space, using the VQ-VAE based tokenization one153

token would return l poses. Leading to a total compression of the order of O(lN), thereby, improving154

the use of the finite context window of the transformer [2, 3, 6].155



3.2 Instruction Tuning156

To enable multi-embodiment motion synthesis we leverage insights from instruction tuning for157

multi-lingual models [9, 17, 8]. The process involves two steps, first, we merge the motion and text158

vocabularies to create a unified vocabulary suitable for generating motion and text. In the second159

step, we propose an instruction template for motion synthesis is proposed. We first define various160

vocabularies and their objectives.161

Vocabulary Definition: We choose GPT-2 [3] as the backbone model for training, its vocabulary162

(Vl) size of 50,257 primarily consists of tokens from the English language. The VQ-VAE [42] results163

in a motion vocabulary denoted as Vr,Vh for the robot and human motion respectively. Additionally,164

the ground plane is divided into uniform cells and each cell is treated as a token, the complete set165

of these cells forms the vocabulary Vg. Furthermore, a vocabulary of gait tokens Vgait are defined166

that indicate the choice of gait the quadruped must choose while executing the trajectory, the gait167

tokens are associated with an RL-controller trained using proximal policy optimization (PPO) [45],168

which execute the trajectory with the chosen gait. Following works from machine translation [8],169

task-specific special tokens are included that indicate the start and end of the response, the vocabulary170

of special task identification tokens is given by Vs.171

Vocabulary Expansion: Following insights from instruction tuning strategies from multi-lingual172

LLMs [46, 9, 17, 18], we merge all the vocabularies, to create a single vocabulary given as V =173

{Vl,Vr,Vh,Vs,Vg,Vgait}. Performing next-token prediction on such a unified vocabulary (V),174

across text, human, robot trajectories, and 2D ground plane enables the generation of motion across175

embodiments with different action dimensions in the same way text is generated.176

Training Template: Given a corpus M of input-output (xi, yi) pairs, a prefix (l) and the177

corresponding task-specific start (tist) and end (tied) special tokens, the dataset is represented as178

M = {(tist, tied, xi, yi, li)}. For a given sample pi ∈ M, we leverage a template T̂ to create a task179

instruction di, i.e. di = T̂ (pi). The template T̂ is defined in Eq. 2, where < g > is an optional field180

for the gait indicator token, which would only be active for robot trajectory generation. This stage is181

depicted in Figure 2 (b).182

T̂ := li : x
i tist < g > yi tied (2)

Note that unlike the training strategies used [1, 13] our template is not restricted to a single embodi-183

ment. The standard next-token prediction objective from [3, 2] on the vocabulary V is used to train184

the GPT. The task-specific substitution for li, xi, yi are detailed in Sec. 4.185

3.3 Dataset Creation186

3.3.1 QUAD-LOCO Dataset187

Motion generation has largely been limited to single human embodiments due to the lack of data188

beyond human bodies [38, 39, 47]. Therefore, we propose the QUAD-LOCO dataset with around189

48000 pairs (with data augmentation) of trajectories and direction-based text annotation. A preview190

of the QUAD-LOCO dataset is displayed in Fig. 2 (c). Here, an expert operator remotely controls a191

spot quadruped robot to follow direction-based text-based instructions. The resulting movements of192

the robot are recorded, creating a dataset with quadruped motion and textual command correspon-193

dences. More than 1000 trajectories have been recorded over 2.5 hours from the expert teleoperator.194

Furthermore, the mirroring strategies from [39] are used to augment, furthermore we time-scale these195

trajectories as an additional augmentation strategy. The QUAD-LOCO dataset has been crucial in196

enabling text-to-robot motion (Sec. 4.1.1) and goal-conditioned motion generation (Sec. 4.2).197

3.3.2 QUES-CAP Dataset198

Datasets like [39, 47] have advanced human motion generation, however, the captions typically lack199

the situational context in which the action can be performed.To enable human motion generators to200

synthesize motion based on situational queries, we propose the QUES-CAP dataset. We leverage201



GPT-4’s [4] few-shot learning [48] capabilities to generate situational questions based on everyday202

scenarios and rewrite the provided text descriptions from [39] to serve as potential answers. For203

example, for a description like ’a person is boxing; they throw an uppercut, then dodge, and throw a204

few right jabs’, a corresponding situational question might be ’What sequence of movements describes205

a beginner learning basic boxing techniques?’. Similarly, for a description like ’a man raises his206

right arm, wiggles it, and then brings it back down’, a relevant situational question could be ’How207

would someone look if they were trying to get someone’s attention from across a noisy room using208

only their arm?’. With similar examples we prompt gpt-4-turbo to rewrite 23000 prompts from209

[39] as questions. This dataset has been used in the Q & A with human motion task (Sec. 4.3).210

4 Experiments211

We conduct experiments to specifically answer the following questions related to the generative212

abilities of MotionGlot: Q1: Can the same machinery that is used to generate text be used to generate213

diverse motion across embodiments? Q2: Can MotionGlot generalize to unseen user instructions?214

Q3:Can MotionGlot express multi-modal action distribution? Experiments in Sec. 4.1, 4.3, 6.1.2215

address Q1 they are motion equivalent tasks of classical language problems. Sec. 4.1.1, and Sec.216

4.2 answers Q2, Q3 respectively.217

Implementation Details: We choose GPT-2 (small) [3] as our base model, the codebook size of the218

human motion tokenizer and robot motion tokenizer are R512×512 and R128×512 respectively. For219

the goal-reaching task, we divide the 14m× 14m ground plane into cells with a uniform resolution220

of 0.5× 0.5m. The downsampling rate (l) of the VQ-VAE [42] is set to 4 ((l = 4). Our model is221

trained on eight NV IDIA− A5000, for about 20k steps with a per-device batch size of 16 and 4222

steps of gradient accumulation. Adam optimizer [49] with an initial learning rate of 5× 10−4, that223

decays with a cosine schedule has been used during training.224

Evaluation Metrics: Protocols and procedures from [39] have been used, global text and motion225

features are extracted to compute the metrics below. Pre-trained models (Mh) and (Mr) are motion226

feature extractors for human and robot motion, respectively. (Mh) is pre-trained model from [39]227

and similarly we train another feature extractor (Mr) which produces close features for matched text228

and robot-motion pairs, and vice versa. Furthermore, 95% confidence is reported similar to [39].229

(1) Diversity (Div): N pairs are randomly sampled from a set of global-motion features and the230

average distance between them is computed. (2) Multimodality(MMod): For a given query 20231

motion samples are generated forming 10 pairs of motion and the average distance between them is232

computed. (3) FID: is the distribution distance between the features of generated and real motion233

[50]. (4) Translation Metrics: BERT-score [51] (BS), Rouge [52], Cider [53], Bleu@N [54]234

(B@N) measure similarity between the ground truth and the generated text. (5) Success %: 40235

trajectories are sampled per goal cell and a trajectory is successful if it terminates within the target236

cell. (6) R-precision (RP): For every generated output ŷ, 32 input conditions (either text or motion)237

are sampled {x̃}32i=1 (1 ground truth and 31 randomly sampled from dataset). The Euclidian distance238

between the features of ŷ and {x}32i=1 are ranked to measure the retrieval accuracy.239

4.1 Translation240

4.1.1 Text-to-Robot Motion241

This experiment evaluates the ability of MotionGlot to follow unseen user instructions, the task is to242

generate trajectories that semantically follow the input direction-based text description from the test243

QUAD-LOCO dataset. While [1, 13] are primarily meant for manipulation tasks, here we adapt their244

instruction template to perform text-to-robot motion generation. Here we briefly detail the performed245

modifications to [1]. Following [13] the data has been cleaned from outliers by selecting samples246

between 1st and 99 quantiles. Each of the continuous dimensions has been uniformly discretized247

into 256 bins, where each bin represents an action token. The target for the LLM is obtained by248

concatenating the action tokens for each dimension with a space character as given in Eq. 3. The249

string is given below where ∆x,∆y,∆ψ represent the 2D linear and angular velocities. [13, 1]250

further requires observation as the input, here we project the global SE(2) position through a linear251

layer to serve as the observation.252 terminate∆x∆y∆ψ (3)



The performance results are summarized in Table. 2. To quantitatively evaluate the performance253

in the text-to-robot motion task, we translate the input text instruction to a robot motion and back-254

translate the resulting motion tokens to get the text caption (refer to Sec. 6.1.1 for the evaluation of255

the robot motion captioning ability), the metrics B@4, B@1 and BS are then used to measure the256

cycle consistency between the user text instruction and back-translation. Text and motion feature257

vectors from Mr, are used in the measurement of RP. A higher value of these metrics indicates258

greater consistency and adherence to the input text instruction. Div and MMod are used to evaluate259

the generative abilities of the model260

For this task "give robot motion: " is substituted as the prefix li in Eq. 2, similarly, xi is261

the sequence of text tokens and yi is the sequence of robot motion tokens. MotionGlot outperforms262

competitors by 31.2% on average across all back translation metrics. The qualitative results are263

shown in Figure 1 (a), it can be observed while MotionGlot follows the user instructions, the adapted264

version of [13, 1] only execute the backward motion and does not turn right and walk forward.265

Method B@4 ↑ B@1 ↑ BS ↑ RP@1/2/3 ↑ Div → MMod ↑
Real - - - 0.26/0.47/0.579±.001 4.10±.003 -
Ours 36.5±.002 64.7±.002 57.5±.003 0.18/0.35/0.48

±.005
3.74±.011 2.35±.022

[1]A.T 23.4±.003 51.1±.002 35.9±.003 0.045/0.095/0.156±.002 3.35±.012 3.18±.015

Table 2: Results on the QUAD-LOCO test set. A.T: Adapted templates. ↑, ↓ indicate higher, lower the better
respectively and → indicates closer to the real value the better. Bold indicates the best method, ± indicates the
95% confidence interval as [39] defines.

4.1.2 Text-to-Human Motion266

We evaluate the model’s ability to generate motion across various embodiments with different action267

dimensions by conducting text-to-human motion on the test set of [39]. text-to-human motion268

generation literature falls into two main categories. The first category (Cat I) includes methods269

such as [14, 28, 29, 30], which use CLIP [27] embeddings for motion generation. Techniques270

[29, 28], also use privileged information, such as ground-truth trajectory length, during evaluation.271

The second category (Cat II) consists of methods like MotionGlot and [15, 16] which don’t use272

privilege information like CLIP or ground-truth trajectory length, instead jointly learn both the text273

and motion representations. While Cat I are better than Cat II on metrics like FID, R-Precision,274

and MMDist, they are single-task specialized models. Conversely, Cat II methods offer greater275

versatility but trade-offs some performance in favor of their multi-tasking capabilities.276

For this task, "give human motion: " is the task-specific prefix li in Eq. 2, xi and yi are277

seuqnce of text and human motion tokens respectively. Tab. 3 summarizes the performance in278

text-human motion task. Where we compare to methods within Cat II, as they are directly compa-279

rable when privileged information is not used, however, Tab 3 mentions Cat I for completeness.280

MotionGlot demonstrates a competitive performance against competing SOTA baselines.281

Txt.Rep Methods RPrecision↑ FID↓ MMDist↓ Diversity→ MMod↑
Top1 Top2 Top3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
MDM [29]∆ 0.32±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

Cat I T2M-GPT [14] 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

MO-MASK [28]∆ 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 - 1.241±.040

T2MT [15] 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 8.589±.076 2.424±.093

Cat II MotionGPT [16]δ1 0.402±.003 0.567±.002 0.649±.002 0.19±.0056 4.18
±.001

9.33±.008 3.43±.11

Ours 0.406±.005 0.571±.007 0.652±.007 0.1618±.005 3.969±.008 9.724±.065 3.48±.098

Table 3: Text to Human Motion Benchmark on the HumanML3D [39] dataset. ∆ indicates results evaluated
with ground truth motion length. All values for the baselines are extracted from the paper, apart from δ1 which
is from the pre-trained open source model. underline is the second best method. Real data is deterministic
therefore MMod is "-", and the Diversity value of [28] is not available.



Embodiment Methods RPrecision↑ MMDist↓ Lengthavg ↑ Bleu@1↑ Bleu@4↑ Rouge↑ Cider↑ BertScore↑
Top1 Top3

Real 0.523 0.828 2.901 12.75 - - - - -
TM2T [15] 0.516 0.823 2.935 10.67 48.9 7.00 38.1 16.8 0.32

Human MotionGPT [16] 0.543 0.827 2.821 13.04 48.2 12.47 37.4 29.2 0.324
Ours 0.508 0.805 2.78 14.42 50.1 13.5 41.8 33.6 0.339

Table 4: Motion Captioning Benchmark on HumanML3D [39] dataset.

4.1.3 Motion Captioning282

This task involves generating a text description for the input motion trajectory, the experiment further283

demonstrates the multi-task learning ability of MotionGlot, the results are given in Table 4. The284

task-specific prefix li in Eq. 2 is "give text description: , xi is the sequence of human285

motion tokens and yi is the sequence of text tokens. We evaluate the performance of MotionGlot286

against the current SOTA human motion captioning techniques, our method delivers an average287

improvement of 6.5 % on the motion captioning tasks across Bleu [54], Cider [53] and BertScore288

[51] . The results indicate that the captions generated by MotionGlot are semantically similar relative289

to the ground-truth captions and accurately capture the input motion trajectory.290

4.2 Goal conditioned Motion Generation291

Ours Diffuser [55]

Figure 3: Qualitative results of
the goal reaching task: note that
our method expresses the multi-
modal nature of the trajectory
distribution, while [55] generates
path towards the goal, its success
of convergence at goal is lower.

This experiment evaluates the model’s ability to express multi-modal292

action distributions, generating diverse trajectories that approach the293

goal. The task-specific prefix in Eq. 2 is li is "reach goal:294

", the input token xi is the goal cell token from Vg an the output295

yi is the robot motion tokens. The qualitative results are shown in296

Fig. 3, and the quantitative results are summarized in Tab. 5. A297

trajectory is successful if its terminal position is within the goal cell.298

Diffusion with classifier guidance [55], is a promising generative299

approach to capture multiple-behavioural modes within the trajectory300

distribution, therefore, its trained on the QUAD-LOCO dataset as301

a baseline. It can be observed that MotionGlot achieves a significant302

improvement over [55] on success % and generative metrics.303

Method Success ↑ % Diversity→ FID↓ MMod→
Real 100 2.85±0.031 0.039±0.00 1.38±0.0067

Ours 62.0±0.061 3.24±0.16 0.33±0.014 1.56±0.01

Diffusion [55] 30.55±0.074 3.51±0.0106 0.95±0.022 2.91±0.009

Table 5: Goal reaching Task.

Methods RP@3↑ FID↓ Div→ MMod↑
Real 0.364±.002 0.002±.000 9.503±.065 -
T2M-GPT 0.38±.003 3.5±.008 8.58±.078 2.89±.042

T2m-GPT* 0.33±.006 0.25±.005 9.26±.071 2.44±.053

Ours 0.36±.003 0.19±.006 9.69±.08 3.06±.042

Table 6: Q& A with Motion. T2M-GPT* indicates [14]
trained with [39] and QUES-CAP datasets.4.3 Q&A with Human Motion304

This task presents a motion equivalent for text-based zero-shot Q&A, where motion is generated in305

response to user questions. Qualitative and quantitative results are shown in Fig. 1 (b) and Tab. 6,306

respectively. As seen in Fig. 1 (b), for a given question, the motion response form [14] generates a307

generic walking motion that does not relate well to a gymnastics practice question. After training308

on the QUES-CAP dataset, however, the response improves, producing a headstand action. Motion309

generated through MotionGlot is more expressive, performing a complete cartwheel relevant to the310

user query. These findings show that QUES-CAP dataset can train models for Q & A with motion.311

The overall performance improvement is summarized in Tab. 6, and the entries of Eq. 2 are the312

same as in Sec. 4.1.2.313

5 Conclusion314

We introduce MotionGlot, a motion generator for multiple embodiments with various action dimen-315

sions. Our findings show that MotionGlot can follow unseen user instructions, represent multi-modal316

action distributions, and function as a multi-task learner for motion and text data. In the future, we317

aim to enhance MotionGlot to include motion planning capabilities.318
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6 Appendix504

6.1 Ablation Studies505
6.1.1 Robot Motion Captioning506

Methods RP@3↑ MDist↓ Lavg ↑ B@1↑ B@4↑ [52]↑ [53]↑ [51]↑

Real 0.581 3.9 9.26 - - - - -
Ours 0.2635 3.09 8.58 64.7 41.1 74.5 29.6 0.6165

Table 7: Motion Captioning ablation on QUAD-LOCO dataset.

This ablation aims to generate507

direction-based text captions for robot508

trajectories. In Eq. 2, ’give text509

description for robot :’510

is the substituted prefix li, xi and yi511

is the sequence of robot motion and text tokens respectively. The performance analysis is given in512

Tab, 7, the high value of translation metrics indicates that MotionGlot is a reliable motion-to-text513

translator.514

6.1.2 Sentiment Classification with Gaits515

Saytap [37] demonstrates that each sentiment class can be associated with a gait for robot locomotion.516

For example, the bounding and trott gait can be used to indicate happy and neutral sentiments. With517

MotionGlot the gait field in Eq. 2 indicates the sentiment. 100 samples from the QUAD-LOCO518

dataset was used to benchmark against GPT-4 [4] in a few shot setting. Both techniques perform this519

task with an average precision of 100%.520
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