
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOMOAE: MULTI-OBJECTIVE AUTO-ALGORITHM
EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Algorithm design has traditionally relied on expert intuition, making it time-
consuming and often unable to balance solution quality with computational effi-
ciency. Although LLM-driven methods have shown remarkable progress in au-
tomating code synthesis, they seldom address multiple requirements simultaneously.
Ignoring such multi-objective trade-offs greatly undermines practical applicability,
as real-world algorithm design inevitably involves reconciling competing goals.
However, balancing multiple requirements is inherently challenging, often leading
to infeasible strategies or unintended side effects during the evolutionary process.
We propose AutoMOAE (Auto-Algorithm Evolution for Multi-Objective require-
ments), a framework that explicitly incorporates multiple demands into the de-
sign process. AutoMOAE leverages LLM prompting to dynamically synthesize
crossover and mutation operators augmented with analytical modules, effectively
reducing nonproductive optimization steps. Verification operations further ensure
strict adherence to both syntactic and functional correctness. Evaluations on graph
coloring and Traveling Salesman benchmarks show that AutoMOAE-generated
algorithms consistently match or surpass expert-crafted solutions in both solution
quality and computational efficiency. These results demonstrate the necessity and
promise of integrating multi-objective considerations into automated algorithm
design, paving the way for scalable, high-performance synthesis frameworks.

1 INTRODUCTION

Algorithm design (Kant, 1985) is a cornerstone of computer science, yet traditional approaches
heavily rely on expert intuition and suffer from inefficiency and limited generalizability (Ma et al.,
2025). The rise of large language models (LLMs) has opened new opportunities for automating this
process, making LLM-driven algorithm design an emerging trend (Yang et al., 2024; Liu et al., 2023;
Lange et al., 2024).

However, algorithm design is inherently a multi-objective problem, requiring careful trade-offs
between solution quality and computational efficiency. Current LLM-driven frameworks largely
overlook this characteristic, often focusing on single objectives. As a result, they struggle to
balance competing goals, frequently generating infeasible strategies or requiring extensive post
hoc corrections, which severely limits their practical applicability.

To address this challenge, we propose AutoMOAE (Auto-Algorithm Evolution for Multi-Objective
Requirements), a unified framework that integrates LLM-based code synthesis with evolutionary
optimization under explicit multi-objective principles. By dynamically generating crossover and
mutation operators tailored to multiple requirements, AutoMOAE not only reduces unproductive
search steps but also ensures syntactic and functional correctness through verification.

Evaluations on graph coloring and the traveling salesman problem demonstrate that AutoMOAE
consistently matches or surpasses expert-crafted solutions across both solution quality and efficiency,
while adapting seamlessly across problem domains. These results underscore the necessity of
embedding multi-objective considerations into automated algorithm design and highlight the promise
of combining LLM capabilities with evolutionary principles for scalable and high-performance
synthesis.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(b) Single-objective LLM-based

Heuristic Design (EoH)

LLM

Ideas Code

......

Objective

Optimal Gap

(b) Single-objective LLM-based

Heuristic Design (EoH)

LLM

Ideas Code

... ...

Objective

Optimal Gap

(a) Manual Heuristic Design

Designer

Idea Code

Objective

Optimal Gap

Objective

Optimal Gap

(a) Manual Heuristic Design

Designer

Idea Code

Objective

Optimal Gap

(c) Multi-objective LLM-based

Heuristic Design (MEoH)

LLM

Ideas Code

......

C
o
m

p
le

x
it

y
C

o
m

p
le

x
it

y

ObjectiveObjective

(c) Multi-objective LLM-based

Heuristic Design (MEoH)

LLM

Ideas Code

... ...

C
o
m

p
le

x
it

y

Objective

(d) Multi-objective LLM-based

Heuristic Design (AutoMOAE)

LLM

Ideas Code

......

C
o
m

p
le

x
it

y
C

o
m

p
le

x
it

y

ObjectiveObjective

(d) Multi-objective LLM-based

Heuristic Design (AutoMOAE)

LLM

Ideas Code

... ...

C
o
m

p
le

x
it

y

Objective
(d1) Crossover Operator in AutoMOAE

(d2) Mutation Operator in AutoMOAE

(d) Multi-objective LLM-based

Heuristic Design (AutoMOAE)

LLM

Ideas Code

... ...

C
o
m

p
le

x
it

y

Objective
(d1) Crossover Operator in AutoMOAE

(d2) Mutation Operator in AutoMOAE

Figure 1: Comparison to human design and existing LLM-based heuristic design. (a) manual heuristic
design by human experts, (b) single-objective LLM-based heuristic design (e.g., FunSearch and
EoH), (c) multi-objective heuristic design (MEoH), and (d) our multi-objective heuristic design
(AutoMOAE), where (d1) Mutation in AutoMOAE. Allowing LLMs to mutate code directly often
produces infeasible or harmful changes. AutoMOAE adds an analysis step to constrain mutations
toward feasible optimization directions, reducing ineffective variations, (d2) Naı̈ve LLM-based
crossover may collapse one code into another. AutoMOAE employs comparative analysis to guide
integration, preserving design diversity while ensuring effective crossover.

2 RELATED WORKS

2.1 AUTOMATED ALGORITHM DESIGN

Prior to the integration of LLMs into algorithm design, extensive research had already explored
various approaches to automated algorithm design. These approaches can be broadly categorized into
two main directions.

The first direction focuses on optimizing existing heuristic algorithms by searching for optimal
parameter configurations to adapt them to specific problems. This line of research has been widely
applied to areas such as multi-objective ant colony optimization algorithms (Birattari et al., 2010;
Lopez-Ibanez & Stutzle, 2012), stochastic local search methods (Pagnozzi & Stützle, 2019), SAT
solvers for flow shop scheduling problems and the traveling salesman problem (TSP) (Hutter et al.,
2007; 2009), as well as mixed-integer programming solvers for TSP and vehicle routing problems
with time windows (Adamo et al., 2017). While these methods have proven effective in improving
performance for specific tasks, their reliance on parameterized frameworks significantly limits their
applicability to a single problem type, restricting their generalizability.

The second direction focuses on recombining existing heuristic algorithm components to create new
algorithms find a suitable algorithm (Guo et al., 2024; Ma et al., 2024; 2025; Guo et al., 2025).
These frameworks conceptualize algorithm design as a combinatorial optimization problem, where
modular algorithmic components are assembled to construct optimization algorithms that can adapt
to diverse problem settings. Prominent examples include GCOP (Qu et al., 2020), HyFlex (Ochoa
et al., 2012), and EvoHyp (Pillay & Beckedahl, 2017), which have garnered significant attention

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

in the field. Additionally, frameworks like Hydra (Xu et al., 2010) have extended this approach by
simultaneously optimizing both algorithm components and parameter configurations, offering a more
comprehensive strategy for algorithm design.

2.2 LLM DRIVEN ALGORITHM DESIGN

With the advent of LLMs, algorithm design has undergone a transformative change, benefiting from
enhanced interpretability and access to an expansive search space. Among the early efforts, the
FunSearch (Romera-Paredes et al., 2024) framework pioneered the use of evolutionary computa-
tion techniques for code generation, targeting classical mathematical problems. Building on this
foundation, researchers introduced a series of frameworks that leverage LLMs to simulate the evolu-
tionary algorithm process for algorithmic code generation. These frameworks include ReEvo (Ye
et al., 2024) and EoH (Liu et al., 2024), which focus on single-objective heuristic generation, and
MEoH (Yao et al., 2025), which extends this approach to multi-objective heuristics. EoH and MEoH
specialize in generating the core components of heuristics. This targeted approach enables them to
address more complex tasks, including scientific discovery, combinatorial optimization, and machine
learning-related problems. As shown in Figure 1, MEoH utilizes a strength-diversity mechanism
for effective population management and selection to balance multiple objectives. In contrast, Au-
toMOEA not only manages the population at a macro-level using Pareto-based principles, but also
embeds analytical modules within its specific crossover and mutation operators. This approach
combines macro-level control with local guidance, more effectively directing the population’s search
toward a balanced solution across multiple objectives.

3 METHODS

AutoMOAE represents each candidate algorithm as a code snippet (individual) and iteratively refines
a population of such individuals via initialization, genetic variation (crossover and mutation), and
Pareto-Based population maintenance.

3.1 DIVERSITY-PRESERVING POPULATION INITIALIZATION

To maximize exploratory potential from the outset, AutoMOAE initializes its population in two
phases:

Idea Generation: Invoke an LLM to produce N succinct algorithmic ideai, each a one-sentence
description of a novel design pattern (e.g., greedy nearest-neighbor with adaptive backtracking).

ideai = LLM(Pthink, N), i = 1, · · · , N (1)

where LLM() is the large language model interaction function, and the prompt Pthink instructs the
model to perform the following task:

Please generate N different algorithmic solution ideas for the following
problem: {Problem description}. Requirements: 1) Each idea should be
described in one concise line. 2) Do not include any additional information.
3) The ideas should be clearly distinct from each other. 4) Return exactly
N lines in total.

Code Instantiation: For each concept, call the LLM with a prompt that expands the description into
compilable code. And verify that the code format meets the requirements.

X 0 = LLM(Pverify,LLM(Prun, {ideai}Ni=1)) (2)

where the prompt Prun instructs the model to perform the following task:

Please provide a Python code implementation for the described problem
using the following algorithmic idea: Problem Description: {Problem de-
scription}. Idea: ideai. Specific Requirements: 1) Function Name:
{function name}. 2) Input: {input fmt}. 3) Return Value: {output fmt}

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The prompt Pverify instructs the model to perform the following task:

Please check if the following code meets the requirements, and if not, correct
it:{code}. Requirements: 1) Only include the function implementation code,
without any descriptions, comments, or examples. 2) The main function
name must be {function name}. 3) Do not include a main function or test
code. 4) Return only the corrected code, without any other content.

This two-stage approach ensures high semantic diversity among initial candidates and guards against
premature convergence due to superficially similar implementations. These individuals have their
fitness evaluated by the evaluator E(X 0) = [O1(x

0
i), ..., Om(x0

i)]
N
i=1 (Oi is the objective function)

and are then sorted using a non-dominated sorting algorithm, which assigns each a rank, rank(X g) ∈
1, · · · , N . Subsequently, a selection operator Selcet() randomly selects k individuals Xselect from
the sub-population with the lowest rank to proceed with the evolutionary process.

3.2 LLM-DRIVEN GENETIC OPERATORS

Unlike prior methods that sample from fixed component libraries, AutoMOAE crafts crossover and
mutation operators on-the-fly via LLM prompts, tailored to multi-objective algorithm design. Both
operators incorporate an automatic validation step, a lightweight static and dynamic checker, that
guarantees syntactic correctness and basic functional integrity before evaluation.

3.2.1 CROSSOVER OPERATOR

For algorithmic code, the core principle of the crossover operation is to combine the design ideas of
individuals Xselect to generate a new individual. The specific expression is as follows:

Xoff crossover = LLM(Pverify,LLM(Pcrossover, CrossoverAnalyse(Xselect))) (3)
Objective Analysis - CrossoverAnalyse(): 1) Compute Pareto metrics (e.g., solution quality vs.
runtime) for two parent algorithms. 2) Select an objective, such as minimizing runtime, as the ’guide’
for crossover. Provide the optimization {target objective} and the {strengths and weaknesses} of the
parent generation required for crossover operator.

Prompt Construction - Pcrossover: Embed the parents code and the selected design rationale into
an LLM prompt that instructs:

Please perform a multi-objective optimization crossover based on the fol-
lowing two parent algorithms, with a special focus on the objective {target
objective}: Parent 1 : {strengths and weaknesses}. Parent 2 : {strengths
and weaknesses}. Please generate a new algorithm with the following
requirements: 1) Preserve the advantages of each parent on their respective
strength objectives. 2) Specifically optimize performance for the {target ob-
jective} objective. 3) Ensure the code is complete and meets the problem’s
requirements. 4) The function name must be: {function name}. Return
only the final Python code, without any explanation.

Synthesis & Validation: 1) Generate offspring code snippets via the LLM. 2) Since direct code-level
crossover can result in syntax errors or functional anomalies, we pass the result through a syntax
checker and quick test harness; reject or auto-repair any failures, more details can be see Pverify.

3.2.2 MUTATION OPERATOR

The mutation operator in AutoMOAE, aligned with the crossover operator’s design philosophy, is
tailored for multi-objective algorithm design by prioritizing the improvement of a single performance
metric rather than optimizing all objectives simultaneously.

Xoff mutation = LLM(Pverify,LLM(Pmutation,MutationAnalyse(Xselect))) (4)

Objective Analysis - MutationAnalyse(): Analyze the current individuals Pareto-front position to
identify its weakest objective. Return the following information

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Calculate improvement potential: For each optimization target, it calculates the
{improvement potential}. Potential is the gap between an individual’s current score and the
best score ever achieved for that target.

• Identify mutation targets: Locate the target with the highest potential for improvement and
designate it as {target objective}. This instructs the optimization algorithm where its next
mutation or variation should be directed to achieve the most significant enhancement.

Mutation Prompt - Pmutation: Craft a prompt directing the LLM to apply a focused modifica-
tion, including introducing new concepts to solve the problem, adjusting algorithm parameters, or
restructuring the code while retaining the original design idea. The details are as follows:

Please perform a multi-objective optimization mutation on the following
algorithm, focusing on improving the objective {target objective} (cur-
rent {improvement potential}. Original Code: {code}. Please: 1) Main-
tain performance on the other objectives. 2) Specifically optimize the
{target objective} objective. 3) You may introduce new mathematical
concepts or optimization methods. 4) Ensure the code is complete and
executable. 5) Avoid using recursion or limit its depth. 6) The function
name must remain: {function name}.

Synthesis & Validation: Produce mutated code and validate as in crossover, ensuring functional
soundness before acceptance, more details can be see Pverify.

By embedding validation within each operator, AutoMOAE maintains a pool of executable, diverse
algorithms that faithfully explore the multi-objective design space. Each generation of the population
can be represented as follows:

X g+1 = SelectElite(X g ∪ Xoff crossover ∪ Xoff mutation, N) (5)

The specific population maintenance process SelectElite() is described in the following section.

3.3 PARETO-BASED POPULATION MAINTENANCE

After generating offspring, AutoMOAE evaluates every individual on a standardized benchmark
suite, measuring: Fitness: quality of solutions (e.g., objective optimality) and Runtime: wall-clock
execution time. The fitness value reflects the quality of the solution, such as the optimality of the
objective function, while runtime measures the computational efficiency of the algorithm.

3.3.1 PARETO FRONT CONSTRUCTION

The selection process in AutoMOAE is guided by the Pareto front, which identifies individuals that
achieve an optimal trade-off between fitness and runtimei.e., those not dominated by any others across
all objectives. By prioritizing these individuals for retention, the framework promotes convergence
toward globally optimal solutions while preserving objective balance. This strategy maintains
population diversity and mitigates premature convergence to local optima.

First Front: identify all non-dominated individuals (no other candidate is strictly better in both
fitness and runtime).

Subsequent Fronts: iteratively extract the next layer of non-dominated individuals from the remain-
ing pool until the desired population size is reached.

3.3.2 REPLACEMENT STRATEGY

For newly generated individuals, their fitness values and runtimes are compared against those of the
individuals on the current Pareto front.

Dominance Replacement: New offspring are first compared to the current Pareto front: if an
offspring dominates a front member (i.e., is no worse in all objectives and strictly better in at least
one), it replaces that member; if it is dominated by every front member, it is discarded.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 AutoMOAE

Require: Population size N , Population generations G
Ensure: The final optimized answer y

1: // Initialization
2: {ideai}Ni=1 ← LLM(Pthink).
3: X0 ← LLM(Pverify,LLM(Prun, {ideai}Ni=1)).
4: E(X 0)← [O1(x

0
i), ..., Om(x0

i)]
N
i=1 // Individual Fitness Assessment. Oi()

5: F0 ← {E(X 0),X 0} // Constructing the Pareto Frontier, E() is the evaluation function
6: for g = 0 to G− 1 do
7: Xselect = Select(X g, k) // k is the number of individuals selected.
8: Xoff crossover = LLM(Pverify,LLM(Pcrossover, CrossoverAnalyse(Xselect)))
9: Xoff mutation = LLM(Pverify,LLM(Pmutation,MutationAnalyse(Xselect)))

10: // Update candidates
X g+1 = SelectElite(X g ∪ Xoff crossover ∪ Xoff mutation, N)

11: // Constructing the Pareto Frontier,
Fg+1 =

{
x ∈ Xg+1

∣∣ x is non-dominated in X g+1
}

12: end for
13: yfinal ← Select the highest-scoring response from F1.
14: Return y

Size Enforcement: Should the population fall below the target size, additional Pareto fronts are
constructed hierarchically from the remaining candidates until the size threshold is met or the
candidate pool is exhausted.

This layered selection preserves diversity while prioritizing high-quality solutions, broadening the
search space and improving the likelihood of global optimal convergence. Ultimately, the Pareto
frontier F = {F1, · · · ,Fm} can be expressed as follows:

Fg+1 =
{
x ∈ X g+1

∣∣ x is non-dominated in X g+1
}
, (6)

The complete steps of AutoMOAE are detailed in Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Problems We selected several classical problems to evaluate the effectiveness of AutoMOAE
in algorithm design, including the Traveling Salesman Problem (TSP) (Lin, 1965) and the Graph
Coloring Problem (GCP) (Matula et al., 1972). The TSP is a combinatorial optimization problem
that seeks the shortest possible route visiting a set of cities exactly once and returning to the starting
point. The GCP involves assigning colors to the vertices of a graph such that no two adjacent vertices
share the same color, while minimizing the total number of colors used.

Datasets and Implementation Details To ensure a fair comparison of algorithms developed by
different automated algorithm design frameworks, we used randomly generated problem instances to
assist in testing the algorithms produced by each framework. For both problems, the best algorithm
designed by each framework was selected for subsequent performance evaluation. For the TSP,
a manually constructed problem instance with 100 nodes was used as the training data across all
frameworks during the algorithm development process, while unweighted path instances from the
TSPLIB dataset (Reinelt, 1991) were selected as testing data. For the GCP, a set of 12 problem
instances was manually created, with each instance name consisting of three components: the problem
name, the number of nodes, and the graph density metric. The dataset was generated using classical
random graph generation models, adjusting the number of vertices and edges to produce graphs with
varying densities and average degrees. Additional processing details are provided in Appendix A.2.

During the algorithm design process, a single problem instance with 125 nodes and a density of
approximately 0.5 was fixed as the training data, while all 12 instances were used for testing. For
all frameworks, GPT-4o-mini was used as the base model, with a population size of 8 and an

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

evolution limit of 10 generations. For multi-objective frameworks such as AutoMOAE and MEoH,
the algorithm selected for performance comparison was the one achieving the best fitness metric in
the final population, without prioritizing runtime as the primary criterion.

Baseline For GCP, the baseline algorithms include the Greedy algorithm, the Welsh-Powell algo-
rithm (Olariu & Randall, 1989), and the DSATUR algorithm (San Segundo, 2012). For TSP, we used
the Greedy algorithm, the nearest neighbor algorithm (NN), and the insertion method. Additionally,
we included automated algorithm design frameworks such as FunSearch, EoH, and MEoH in the
comparison.

4.2 ALGORITHM PERFORMANCE

GCP For GCP, we compared multiple classical algorithms designed by human experts with the
best algorithms developed by different frameworks. The algorithm developed by AutoMOAE
achieved excellent performance in both solution quality and runtime. The metric used to evaluate
algorithm performance was the number of colors required to completely color a graph with a given
number of nodes. The results are presented in Figure 2a, Tables 4 and 5 of Appendix A.3. From
Figure 2a, it can be observed that the algorithm developed by AutoMOAE allocated colors using
significantly less time compared to EoH and DSATUR, while achieving the same number of colors.
Analysis of the algorithm code of Appendix A.5 revealed that both AutoMOAE and EoH ultimately
designed algorithms based on the DSATUR framework. However, the key difference lies in their
optimization strategies: AutoMOAE shifted its focus to reducing computational overhead after
identifying diminishing returns in further minimizing the number of colors, whereas EoH continued
to attempt integrating new components to improve solution quality, which resulted in longer runtime
compared to DSATUR.

(a) GCP (b) TSP

Figure 2: Average performance metrics of different algorithms on GCP and TSP instances.

TSP For TSP, due to the large number of instances and significant variation in performance metrics
across different problem instances, we used ranking-based metrics to evaluate algorithm performance.
Specifically, the rank achieved by each algorithm on individual instances was averaged across all
instances in the TSPLIB dataset, and the results are summarized in Table 1 and Figure 2b. The results
show that the algorithm developed by AutoMOAE achieved the shortest path length in the majority
of instances, with an average rank of 1.26, significantly outperforming other automated algorithm
design frameworks. However, the runtime performance of the AutoMOAE-developed algorithm
was less favorable. This is primarily due to the design of AutoMOAEs crossover and mutation
operators, which can introduce new concepts or techniques into the algorithm. The detailed results
for AutoMOEA and the various baselines on each specific instance of the TSPLIB, including solution
quality and runtime, are provided in Tables 6 and 7 of Appendix A.4. The specific implementation
details of the algorithm are provided in Appendix A.5.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Average rank of different algorithms on performance metrics in TSPLIB.

Greedy NN Insertion EoH MEoH AutoMOAE
Path Length (Rank) 3.77 3.77 2.73 4.04 3.24 1.26
Runtime (Rank) 1.61 1.50 5.31 4.09 2.92 5.39

Table 2: The proportion of new-generation individuals within the elite population.

Gen1 Gen2 Gen3 Gen4 Gen5 Gen6 Gen7 Gen8 Gen9 Gen10 Avg.
w/ Analysis Component 25.0% 12.5% 32.5% 62.5% 62.5% 75.0% 32.5% 50% 50% 0.0% 40.25%
w/o Analysis Component 32.5% 32.5% 75.0% 12.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 15.25%

(a) w/ Analysis Component (b) w/o Analysis Component

Figure 3: The impact of analysis component in genetic operators on population distribution. (a) w/
Analysis Component; (b) w/o Analysis Component.

4.3 ABLATION STUDY

To demonstrate the effectiveness of the genetic operators designed in AutoMOAE, we conducted
an ablation study on the analysis component within these operators. Specifically, we compared
genetic operators with and without the analysis component in the algorithm population’s evolutionary
process. The distribution of newly generated algorithm populations (prior to population selection) in
the objective space was recorded and visualized in Figure 3. For clarity in observing the differences
in individual distributions across generations, only the first five generations were selected for visual-
ization. By comparing the code characteristics and performance distributions of each generation, we
observed that with the analysis component, most individuals effectively shifted their optimization
focus to algorithm runtime when further improvement in the number of colors was no longer feasible.
In contrast, without the analysis component, individuals in the population lacked a clear optimization
direction and continued attempting to reduce the number of colors by introducing additional strategies.
This resulted in poor runtime performance and, in many cases, regression in algorithm performance
compared to the previous generation.

Additionally, as shown in Table 2, we tracked the proportion of individuals from each new generation
that successfully entered the elite population. It is evident that when the analysis component was
retained, this proportion was significantly higher, indicating that the newly generated individuals
were more competitive. In contrast, without the analysis component, the average proportion dropped
from 40.25% to 15.25%, and the evolutionary process even stagnated in its later stages.

4.4 ALGORITHM COMPLEXITY

In frameworks utilizing LLMs for algorithm design, many approaches, such as EoH and MEoH,
simplify the inherently complex task of algorithm design by focusing solely on the development
of core components within heuristic algorithms. While this strategy enables these frameworks to
tackle more complex problems efficiently, it also constrains them to the heuristic algorithm paradigm,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a)
(b)

Figure 4: (a) The average number of uncommented lines of code in the final algorithm populations,
serving as a proxy for algorithmic complexity. (b) The frequency of algorithmic components within
the final populations from AutoMOAE and MEoH on the GCP, used as a measure of design diversity.

limiting their ability to explore beyond this framework. To enhance the interpretability of the
algorithm design process and increase the capability to address more complex problems, automated
algorithm design frameworks should aim to generate complete and sophisticated algorithmic code.

In this evaluation, we used the number of uncommented lines of code as a metric to assess the
complexity of the algorithms generated by different frameworks. The results are visualized in the
Figure 4a. Comparisons reveal that the average number of code lines in the final algorithm population
generated by AutoMOAE is 45.3, significantly higher than that of other automated algorithm design
frameworks. This is attributed to AutoMOAEs crossover and mutation operators, which effectively
introduce new concepts and techniques into the algorithms. These operations substantially expand the
search space for algorithmic solutions and indicate AutoMOAEs considerable potential for solving
even more complex problems.

4.5 COMPARISON OF DIVERSITY

During the algorithm evolution process, the diversity of algorithm design ideas significantly impacts
the evolutionary potential of the population. To evaluate the diversity within algorithm populations,
we utilized an LLM to summarize the primary implementation ideas of the eight code individuals
from each population into a set of keywords. After removing common high-frequency terms such
as ”DSATUR,” we performed keyword frequency analysis and visualized the results in Figure 4b.
According to the keyword frequency analysis, nearly all of the algorithms developed by EoH relied
on greedy strategies, with minimal application of other strategies. In contrast, the analysis of
AutoMOAE’s final population revealed a total of 27 distinct keywords, compared to 19 keywords
in MEoH’s final population. This result demonstrates that the operators designed in AutoMOAE
effectively introduce new strategies, concepts, and components into the population, thereby enhancing
its diversity.

5 CONCLUSION

This paper introduced AutoMOAE, a novel framework for multi-objective automated algorithm
evolution. The core innovation of AutoMOAE is the integration of analytical operators within its
crossover and mutation mechanisms. This design mitigates ineffective evolutionary steps by intelli-
gently guiding the optimization process, which significantly enhances the framework’s robustness
when navigating complex trade-offs. To support its multi-objective capabilities, AutoMOAE employs
a two-stage initialization method and a dominance-based selection strategy to preserve population
diversity. Our findings establish AutoMOAE as a powerful tool for researchers, enabling the efficient
exploration of diverse design concepts and the generation of highly interpretable baseline algorithms.
For a more detailed discussion, see Appendix A.1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Tommaso Adamo, Gianpaolo Ghiani, Antonio Grieco, Emanuela Guerriero, and Emanuele Manni.
Mip neighborhood synthesis through semantic feature extraction and automatic algorithm configu-
ration. Computers & Operations Research, 83:106–119, 2017.

Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-race and iterated f-race: An
overview. Experimental methods for the analysis of optimization algorithms, pp. 311–336, 2010.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Hongshu Guo, Yining Ma, Zeyuan Ma, Jiacheng Chen, Xinglin Zhang, Zhiguang Cao, Jun Zhang,
and Yue-Jiao Gong. Deep Reinforcement Learning for Dynamic Algorithm Selection: A Proof-of-
Principle Study on Differential Evolution. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 54(7):4247–4259, July 2024. ISSN 2168-2232. doi: 10.1109/TSMC.2024.3374889. URL
https://ieeexplore.ieee.org/abstract/document/10496708.

Hongshu Guo, Zeyuan Ma, Jiacheng Chen, Yining Ma, Zhiguang Cao, Xinglin Zhang, and Yue-Jiao
Gong. ConfigX: Modular Configuration for Evolutionary Algorithms via Multitask Reinforcement
Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 39(25):26982–26990,
April 2025. ISSN 2374-3468. doi: 10.1609/aaai.v39i25.34904. URL https://ojs.aaai.
org/index.php/AAAI/article/view/34904. Number: 25.

Frank Hutter, Holger H Hoos, and Thomas Stützle. Automatic algorithm configuration based on local
search. In Aaai, volume 7, pp. 1152–1157, 2007.

Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils: an automatic
algorithm configuration framework. Journal of artificial intelligence research, 36:267–306, 2009.

Elaine Kant. Understanding and automating algorithm design. IEEE Transactions on Software
Engineering, (11):1361–1374, 1985.

Robert Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 579–582,
2024.

10

https://arxiv.org/abs/2501.12948
https://ieeexplore.ieee.org/abstract/document/10496708
https://ojs.aaai.org/index.php/AAAI/article/view/34904
https://ojs.aaai.org/index.php/AAAI/article/view/34904

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shen Lin. Computer solutions of the traveling salesman problem. Bell System Technical Journal, 44
(10):2245–2269, 1965.

Fei Liu, Xi Lin, Zhenkun Wang, Shunyu Yao, Xialiang Tong, Mingxuan Yuan, and Qingfu
Zhang. Large language model for multi-objective evolutionary optimization. arXiv preprint
arXiv:2310.12541, 2023.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Forty-first International Conference on Machine Learning, 2024.

Manuel Lopez-Ibanez and Thomas Stutzle. The automatic design of multiobjective ant colony
optimization algorithms. IEEE transactions on evolutionary computation, 16(6):861–875, 2012.

Zeyuan Ma, Jiacheng Chen, Hongshu Guo, Yining Ma, and Yue-Jiao Gong. Auto-configuring
Exploration-Exploitation Tradeoff in Evolutionary Computation via Deep Reinforcement Learning.
In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’24, pp.
1497–1505, New York, NY, USA, July 2024. Association for Computing Machinery. ISBN
979-8-4007-0494-9. doi: 10.1145/3638529.3653996. URL https://doi.org/10.1145/
3638529.3653996.

Zeyuan Ma, Hongshu Guo, Yue-Jiao Gong, Jun Zhang, and Kay Chen Tan. Toward Automated Algo-
rithm Design: A Survey and Practical Guide to Meta-Black-Box-Optimization. IEEE Transactions
on Evolutionary Computation, pp. 1–1, 2025. ISSN 1941-0026. doi: 10.1109/TEVC.2025.3568053.
URL https://ieeexplore.ieee.org/abstract/document/10993463.

David W Matula, George Marble, and Joel D Isaacson. Graph coloring algorithms. In Graph theory
and computing, pp. 109–122. Elsevier, 1972.

Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A Vazquez-Rodriguez, James Walker, Michel
Gendreau, Graham Kendall, Barry McCollum, Andrew J Parkes, Sanja Petrovic, et al. Hyflex:
A benchmark framework for cross-domain heuristic search. In Evolutionary Computation in
Combinatorial Optimization: 12th European Conference, EvoCOP 2012, Málaga, Spain, April
11-13, 2012. Proceedings 12, pp. 136–147. Springer, 2012.

Stephan Olariu and J Randall. Welsh-powell opposition graphs. Information Processing Letters, 31
(1):43–46, 1989.

Federico Pagnozzi and Thomas Stützle. Automatic design of hybrid stochastic local search algorithms
for permutation flowshop problems. European journal of operational research, 276(2):409–421,
2019.

Nelishia Pillay and Derrick Beckedahl. Evohyp-a java toolkit for evolutionary algorithm hyper-
heuristics. In 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2706–2713. IEEE,
2017.

Rong Qu, Graham Kendall, and Nelishia Pillay. The general combinatorial optimization problem:
Towards automated algorithm design. IEEE Computational Intelligence Magazine, 15(2):14–23,
2020.

Gerhard Reinelt. Tspliba traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Pablo San Segundo. A new dsatur-based algorithm for exact vertex coloring. Computers & Operations
Research, 39(7):1724–1733, 2012.

Lin Xu, Holger Hoos, and Kevin Leyton-Brown. Hydra: Automatically configuring algorithms
for portfolio-based selection. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 24, pp. 210–216, 2010.

11

https://doi.org/10.1145/3638529.3653996
https://doi.org/10.1145/3638529.3653996
https://ieeexplore.ieee.org/abstract/document/10993463

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024.

Shunyu Yao, Fei Liu, Xi Lin, Zhichao Lu, Zhenkun Wang, and Qingfu Zhang. Multi-objective
evolution of heuristic using large language model. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 27144–27152, 2025.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
arXiv preprint arXiv:2402.01145, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DISCUSSION

Comparison Between AutoMOAE and Deep Thinking Large Models Deep thinking large mod-
els, such as DeepSeek-R1 (DeepSeek-AI et al., 2025) or OpenAI o3, have achieved significant success
across various domains, including mathematical reasoning and other complex tasks. These models
excel by engaging in extensive reflection and iterative exploration prior to executing specific tasks,
enabling them to determine effective strategies. As a result, they can partially substitute for certain
functionalities of frameworks like AutoMOAE, such as integrating crossover or mutation operators.
However, compared to automated algorithm design frameworks, deep thinking models lack the
capability to accurately assess whether the generated code or algorithm can solve the target problem,
as well as the extent and efficiency of the solution. We propose that deep thinking models can serve
as initialization operators for algorithm populations, providing high-quality algorithmic candidates to
enhance the diversity and performance of the population in automated design frameworks.

Differences Between AutoMOAE and Existing Frameworks Researchers have proposed several
frameworks for automated algorithm design, including FunSearch, EoH, and MEoH. Compared to
these frameworks, AutoMOAE introduces distinct motivations and contributions. While all these
frameworks, including AutoMOAE, adopt evolutionary algorithm-based approaches for algorithm
design, AutoMOAE draws its inspiration from simulating the workflow of human researchers during
algorithm development. This approach aims to maximize the potential of LLMs by leveraging
their sub-human-level intelligence in a structured and creative manner. In comparison to MEoH,
which is also a multi-objective algorithm design framework, AutoMOAE differs significantly in its
methodology. AutoMOAE does not impose strict constraints on metrics such as population crowding
during evolution. Instead, its multi-objective nature and operational operators are designed to identify
components or strategies that can enhance algorithm performance. Furthermore, when one objective
becomes difficult to optimize, AutoMOAE shifts its focus to another objective, thereby reducing
ineffective iterations during the evolutionary process and improving the efficiency of algorithm
evolution.

Limitations of AutoMOAE Despite its strengths, AutoMOAE has certain limitations. One key
challenge is handling complex input and output conditions, as LLMs often struggle to accurately
interpret parameter sequences and output orders, potentially leading to errors in functionality. To
address this, researchers must simplify input-output structures and minimize the number of parameters
required for problem instances. Additionally, while AutoMOAEs multi-objective design reduces
ineffective iterations, it does not explicitly prioritize maintaining diversity within the algorithm
population, which may restrict its ability to explore a broader solution space in some scenarios.

A.2 DETAILS ON GENERATING DATASETS FOR IMAGE COLORING PROBLEMS

The Graph Coloring Problem (GCP) is a classic problem in graph theory, where the objective is to
assign a color to each vertex of a graph such that no two adjacent vertices share the same color, while
minimizing the total number of colors used. To validate the effectiveness of the proposed method on
the GCP, this study employs a set of artificially generated datasets, designated as the GCP dataset.
Each problem instance within this dataset is named using a combination of the dataset identifier,
the number of nodes, and a graph density metric. The generation of this dataset is based on classic
random graph models. By adjusting the number of vertices and edges, we produced graph instances
with varying densities and average degrees to comprehensively evaluate the algorithm’s adaptability
to both sparse and dense graphs. The fundamental characteristics of these instances are summarized
in Table 3.

During the dataset generation process, we first established the vertex counts for graphs of different
scales, namely 125, 250, 500, and 1000 nodes. Subsequently, a random graph generation algorithm
was utilized to construct graph structures that conform to target densities. To ensure the diversity
and representativeness of the generated graphs, three instances with distinct densities were created
for each vertex count level, corresponding to sparse (density ≈ 0.1), medium-density (density ≈
0.5), and dense (density ≈ 0.9) graphs. Furthermore, to simulate the complexity found in real-world

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

problems, random perturbations were introduced to the generated instances to increase their structural
irregularity.

These datasets will serve as the benchmark for evaluating the evolutionary performance of our
proposed method on the Graph Coloring Problem. Specifically, one instance was randomly selected
to assess algorithmic performance during the evolutionary process itself. The development of the
algorithm targets two objectives: minimizing the number of colors used and minimizing the required
computation time. After the optimal algorithm has been identified, it will be comprehensively tested
on the entire suite of datasets.

Table 3: GCP Instance Basic Information Statistics

Instance Name Vertices Edges Density Avg. Degree

GCP125.1 125 736 0.0949 11.776
GCP125.5 125 3891 0.5021 62.256
GCP125.9 125 6961 0.8982 111.376
GCP250.1 250 3218 0.1034 25.744
GCP250.5 250 15668 0.5034 125.344
GCP250.9 250 27897 0.8963 223.176
GCP500.1 500 12458 0.0999 49.832
GCP500.5 500 62624 0.5020 250.496
GCP500.9 500 112437 0.9013 449.748
GCP1000.1 1000 49629 0.0994 99.258
GCP1000.5 1000 249826 0.5002 499.652
GCP1000.9 1000 449449 0.8998 898.898

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 DETAILED RESULTS OF AUTOMOAE AND BASELINES ON THE GRAPH COLORING
PROBLEM (GCP)

As shown in Tables 4 and 5, AutoMOAE demonstrates the best overall performance on the GCP. Its
solution quality is comparable to that of DSATUR and EoH, while its runtime is notably faster.

Table 4: Number of colors used by algorithms on different GCP instances.

Greedy Welsh-Powell DSATUR FunSearch EoH MEoH AutoMOAE
GCP0125.1 8 7 6 8 6 8 6
GCP0125.5 26 23 22 25 22 26 22
GCP0125.9 56 53 51 55 51 56 51
GCP0250.1 13 11 10 11 10 13 10
GCP0250.5 43 41 37 40 37 43 37
GCP0250.9 99 93 92 92 92 99 92
GCP0500.1 20 18 16 18 16 20 16
GCP0500.5 72 71 65 71 65 72 65
GCP0500.9 175 169 170 171 170 175 170
GCP1000.1 31 29 27 29 27 31 27
GCP1000.5 127 121 115 124 115 127 115
GCP1000.9 321 313 299 312 299 321 299

Average Rank # 5.92 # 4.00 # 1.08 # 4.17 # 1.08 # 5.92 # 1.08

Table 5: Algorithm execution time across different GCP instances. Unit: s.

Greedy Welsh-Powell DSATUR FunSearch EoH MEoH AutoMOAE
GCP0125.1 0.0037 0.0037 0.3195 0.0051 0.4083 0.0013 0.0084
GCP0125.5 0.0045 0.0051 0.3571 0.0053 0.4813 0.0062 0.0165
GCP0125.9 0.0049 0.0113 0.3737 0.0059 0.5863 0.0164 0.0256
GCP0250.1 0.0151 0.0145 2.5754 0.0191 3.0949 0.0048 0.0275
GCP0250.5 0.0166 0.0276 2.7750 0.0212 3.7176 0.0262 0.0638
GCP0250.9 0.0194 0.0584 2.9210 0.0222 4.2889 0.1001 0.1037
GCP0500.1 0.0656 0.0723 20.3544 0.0825 24.5486 0.0190 0.1113
GCP0500.5 0.0699 0.1442 22.3491 0.0855 29.4261 0.1448 0.2955
GCP0500.9 0.0803 0.3501 24.8234 0.0913 34.0722 0.5569 0.4656
GCP1000.1 0.2631 0.3304 162.8072 0.3162 193.7323 0.0771 0.4666
GCP1000.5 0.2955 0.8698 179.6298 0.3590 236.0436 0.9171 1.2506
GCP1000.9 0.3155 2.5864 192.3301 0.4782 266.9487 3.9840 2.1976

Average Rank # 1.42 # 3.00 # 6.00 # 2.67 # 7.00 # 3.08 # 4.75

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 DETAILED RESULTS OF AUTOMOAE AND BASELINES ON TSPLIB.

Figures 6 and 7 present the detailed results and computational times for each method on the TSPLIB
dataset.

Table 6: Resulting path length and rank (#) for each algorithm across the TSPLIB instances.

Greedy NN Insertion EoH-TSP MEoH-TSP AutoMOAE-TSP

burma14 38.69(# 3) 38.69(# 3) 32.44(# 2) 38.69(# 3) 38.80(# 6) 31.21(# 1)
ulysses16 104.73(# 5) 104.73(# 5) 79.39(# 2) 86.60(# 3) 104.65(# 4) 74.00(# 1)
ulysses22 89.64(# 3) 89.64(# 3) 76.99(# 1) 89.64(# 3) 91.92(# 6) 85.64(# 2)
att48 40526.42(# 5) 40526.42(# 5) 37314.09(# 2) 40364.11(# 4) 37686.87(# 3) 34902.00(# 1)
eil51 513.61(# 4) 513.61(# 4) 496.25(# 3) 513.61(# 4) 458.95(# 1) 465.91(# 2)
berlin52 8980.92(# 3) 8980.92(# 3) 9014.89(# 6) 8980.92(# 3) 8835.06(# 2) 8217.14(# 1)
st70 805.53(# 3) 805.53(# 3) 778.99(# 2) 805.53(# 3) 871.65(# 6) 753.15(# 1)
pr76 153461.92(# 5) 153461.92(# 5) 125936.21(# 3) 145069.74(# 4) 123787.14(# 2) 111856.22(# 1)
eil76 711.99(# 5) 711.99(# 5) 612.39(# 2) 669.24(# 4) 577.27(# 1) 622.71(# 3)
gr96 707.09(# 5) 707.09(# 5) 651.44(# 3) 673.92(# 4) 573.48(# 1) 623.53(# 2)
rat99 1564.72(# 4) 1564.72(# 4) 1482.02(# 2) 1564.72(# 4) 1492.74(# 3) 1377.07(# 1)
kroC100 26327.36(# 4) 26327.36(# 4) 25262.17(# 3) 26327.36(# 4) 24294.06(# 2) 23392.80(# 1)
kroE100 27587.19(# 4) 27587.19(# 4) 25902.00(# 3) 27587.19(# 4) 25221.45(# 2) 24282.64(# 1)
rd100 9941.16(# 3) 9941.16(# 3) 8979.37(# 2) 9941.16(# 3) 10510.18(# 6) 8864.57(# 1)
kroA100 26856.39(# 4) 26856.39(# 4) 24307.78(# 3) 26856.39(# 4) 22683.29(# 1) 22830.62(# 2)
kroB100 29155.04(# 4) 29155.04(# 4) 25580.92(# 2) 29155.04(# 4) 25679.71(# 3) 25392.46(# 1)
kroD100 26950.46(# 4) 26950.46(# 4) 25204.27(# 2) 26950.46(# 4) 26072.81(# 3) 24720.72(# 1)
eil101 825.24(# 4) 825.24(# 4) 702.96(# 2) 844.91(# 6) 720.41(# 3) 702.70(# 1)
lin105 20362.76(# 4) 20362.76(# 4) 16934.62(# 1) 20362.76(# 4) 19041.58(# 3) 17762.08(# 2)
pr107 46678.15(# 2) 46678.15(# 2) 52587.76(# 6) 47029.63(# 4) 50560.61(# 5) 45574.46(# 1)
pr124 69299.43(# 4) 69299.43(# 4) 65318.19(# 2) 69299.43(# 4) 68371.30(# 3) 61910.46(# 1)
bier127 135751.78(# 2) 135751.78(# 2) 140690.94(# 6) 135751.78(# 2) 138054.23(# 5) 122109.70(# 1)
ch130 7575.29(# 4) 7575.29(# 4) 7279.21(# 3) 7575.29(# 4) 7091.76(# 1) 7093.18(# 2)
pr136 120777.86(# 4) 120777.86(# 4) 109587.25(# 1) 118776.81(# 3) 123247.21(# 6) 110347.07(# 2)
gr137 1022.22(# 4) 1022.22(# 4) 821.29(# 1) 1022.22(# 4) 901.99(# 3) 849.98(# 2)
pr144 61650.72(# 3) 61650.72(# 3) 73033.13(# 6) 61650.72(# 3) 60133.16(# 1) 61399.21(# 2)
kroB150 32825.75(# 4) 32825.75(# 4) 31588.68(# 3) 32825.75(# 4) 29848.14(# 2) 27674.75(# 1)
ch150 8194.61(# 4) 8194.61(# 4) 7994.29(# 3) 8194.61(# 4) 7589.72(# 2) 7161.32(# 1)
kroA150 33609.87(# 4) 33609.87(# 4) 29966.54(# 2) 33609.87(# 4) 31060.89(# 3) 28613.32(# 1)
pr152 85702.95(# 2) 85702.95(# 2) 88530.82(# 5) 85702.95(# 2) 92682.12(# 6) 80000.73(# 1)
u159 54669.03(# 4) 54669.03(# 4) 49981.41(# 1) 57436.69(# 6) 51577.24(# 3) 50140.36(# 2)
rat195 2761.96(# 3) 2761.96(# 3) 2814.57(# 6) 2761.96(# 3) 2575.61(# 2) 2490.60(# 1)
d198 18620.07(# 3) 18620.07(# 3) 17631.80(# 2) 18620.07(# 3) 19454.99(# 6) 17340.94(# 1)
kroA200 35798.41(# 5) 35798.41(# 5) 35337.51(# 4) 33901.53(# 3) 33224.38(# 2) 31512.83(# 1)
kroB200 36981.59(# 4) 36981.59(# 4) 35421.70(# 3) 36981.59(# 4) 34079.08(# 1) 34372.39(# 2)
gr202 619.40(# 4) 619.40(# 4) 570.14(# 3) 619.40(# 4) 559.57(# 2) 529.30(# 1)
ts225 152493.55(# 4) 152493.55(# 4) 160009.16(# 6) 146183.10(# 3) 131454.99(# 1) 139697.02(# 2)
tsp225 4829.00(# 5) 4829.00(# 5) 4468.20(# 3) 4786.42(# 4) 4430.19(# 2) 4169.09(# 1)
pr226 94685.45(# 4) 94685.45(# 4) 91024.65(# 2) 94402.09(# 3) 96212.20(# 6) 87543.04(# 1)
gr229 2014.71(# 4) 2014.71(# 4) 1825.83(# 2) 2014.71(# 4) 1987.56(# 3) 1764.18(# 1)
gil262 3241.47(# 4) 3241.47(# 4) 2804.23(# 3) 3259.42(# 6) 2748.90(# 1) 2757.03(# 2)
pr264 58022.86(# 2) 58022.86(# 2) 58225.34(# 4) 58328.28(# 5) 59000.73(# 6) 56762.06(# 1)
a280 3148.11(# 4) 3148.11(# 4) 3101.79(# 2) 3182.09(# 6) 3123.70(# 3) 2828.71(# 1)
pr299 59899.01(# 3) 59899.01(# 3) 58124.45(# 2) 60220.49(# 5) 61338.05(# 6) 52408.65(# 1)
lin318 54033.58(# 4) 54033.58(# 4) 49454.81(# 2) 54033.58(# 4) 50085.92(# 3) 49153.11(# 1)
linhp318 54033.58(# 4) 54033.58(# 4) 49454.81(# 2) 54033.58(# 4) 50085.92(# 3) 49153.11(# 1)
rd400 19168.05(# 4) 19168.05(# 4) 18629.98(# 3) 19168.05(# 4) 17599.52(# 2) 16651.71(# 1)
fl417 15114.12(# 4) 15114.12(# 4) 14179.84(# 3) 15256.42(# 6) 13680.66(# 2) 13630.60(# 1)
gr431 2516.25(# 4) 2516.25(# 4) 2214.43(# 2) 2516.25(# 4) 2263.78(# 3) 2153.00(# 1)
pr439 131282.09(# 3) 131282.09(# 3) 130067.88(# 2) 137778.50(# 6) 134814.09(# 5) 118498.55(# 1)
pcb442 61984.05(# 5) 61984.05(# 5) 60891.83(# 3) 61234.77(# 4) 58945.83(# 2) 54291.55(# 1)
d493 43646.38(# 4) 43646.38(# 4) 39982.31(# 2) 43710.70(# 6) 43050.15(# 3) 38869.88(# 1)
att532 112099.45(# 4) 112099.45(# 4) 102201.61(# 2) 112099.45(# 4) 103710.35(# 3) 99101.62(# 1)
ali535 2671.07(# 4) 2671.07(# 4) 2366.95(# 2) 2671.07(# 4) 2483.48(# 3) 2269.30(# 1)
u574 46881.87(# 4) 46881.87(# 4) 44144.83(# 2) 46881.87(# 4) 46620.28(# 3) 39154.50(# 1)
rat575 8449.32(# 5) 8449.32(# 5) 7853.86(# 3) 8430.71(# 4) 7808.10(# 2) 7398.48(# 1)
p654 43411.56(# 4) 43411.56(# 4) 40418.68(# 2) 48824.31(# 6) 41009.57(# 3) 38249.53(# 1)
d657 62176.40(# 3) 62176.40(# 3) 57906.66(# 2) 62176.40(# 3) 63518.97(# 6) 54801.59(# 1)
gr666 4110.90(# 4) 4110.90(# 4) 3670.13(# 2) 4110.90(# 4) 3920.88(# 3) 3507.73(# 1)
u724 55223.20(# 5) 55223.20(# 5) 50245.77(# 3) 52482.39(# 4) 49538.41(# 2) 47108.98(# 1)
rat783 11255.07(# 4) 11255.07(# 4) 10301.88(# 2) 11255.07(# 4) 11151.44(# 3) 9468.73(# 1)
dsj1000 24630960.10(# 4) 24630960.10(# 4) 22291166.04(# 2) 24630960.10(# 4) 23977443.37(# 3) 21147745.60(# 1)
pr1002 315596.59(# 3) 315596.59(# 3) 302938.90(# 2) 325311.07(# 6) 320713.45(# 5) 277925.10(# 1)
u1060 281635.68(# 5) 281635.68(# 5) 270377.38(# 2) 280689.98(# 4) 270485.28(# 3) 241651.40(# 1)
vm1084 301469.23(# 4) 301469.23(# 4) 277435.70(# 3) 302111.10(# 6) 273437.36(# 2) 263501.02(# 1)
pcb1173 70277.94(# 3) 70277.94(# 3) 69010.68(# 2) 70279.94(# 5) 71441.00(# 6) 62453.05(# 1)
d1291 59941.24(# 3) 59941.24(# 3) 59956.75(# 5) 59892.04(# 2) 62211.60(# 6) 55389.49(# 1)
rl1304 339797.47(# 5) 339797.47(# 5) 314295.61(# 3) 335160.35(# 4) 303550.70(# 2) 284242.81(# 1)
rl1323 332094.97(# 3) 332094.97(# 3) 341512.46(# 6) 331159.20(# 2) 334237.62(# 5) 299654.18(# 1)
nrw1379 70015.46(# 5) 70015.46(# 5) 66216.21(# 2) 69794.61(# 4) 68362.91(# 3) 61838.87(# 1)
fl1400 26971.88(# 4) 26971.88(# 4) 22955.32(# 2) 27057.04(# 6) 23757.04(# 3) 22420.49(# 1)
u1432 188815.01(# 4) 188815.01(# 4) 171110.62(# 2) 196453.25(# 6) 173995.52(# 3) 167338.88(# 1)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Algorithm execution time and rank (#) across different TSBLIB instances. Unit: s.

Greedy NN Insertion EoH-TSP MEoH-TSP AutoMOAE-TSP

burma14 0.00(# 2) 0.00(# 1) 0.00(# 3) 0.05(# 5) 0.00(# 4) 0.06(# 6)
ulysses16 0.00(# 2) 0.00(# 1) 0.00(# 3) 0.02(# 5) 0.00(# 4) 0.06(# 6)
ulysses22 0.00(# 2) 0.00(# 1) 0.00(# 4) 0.04(# 5) 0.00(# 3) 0.07(# 6)
att48 0.00(# 1) 0.00(# 2) 0.02(# 4) 0.07(# 5) 0.00(# 3) 0.14(# 6)
eil51 0.00(# 1) 0.00(# 2) 0.03(# 4) 0.07(# 5) 0.01(# 3) 0.16(# 6)
berlin52 0.00(# 2) 0.00(# 1) 0.03(# 4) 0.07(# 5) 0.00(# 3) 0.17(# 6)
st70 0.00(# 1) 0.00(# 2) 0.07(# 4) 0.09(# 5) 0.01(# 3) 0.16(# 6)
pr76 0.00(# 2) 0.00(# 1) 0.07(# 4) 0.08(# 5) 0.01(# 3) 0.18(# 6)
eil76 0.00(# 2) 0.00(# 1) 0.07(# 4) 0.08(# 5) 0.01(# 3) 0.17(# 6)
gr96 0.00(# 2) 0.00(# 1) 0.14(# 5) 0.12(# 4) 0.01(# 3) 0.32(# 6)
rat99 0.00(# 2) 0.00(# 1) 0.15(# 5) 0.12(# 4) 0.01(# 3) 0.29(# 6)
kroC100 0.00(# 2) 0.00(# 1) 0.16(# 5) 0.12(# 4) 0.01(# 3) 0.24(# 6)
kroE100 0.00(# 2) 0.00(# 1) 0.15(# 5) 0.12(# 4) 0.01(# 3) 0.26(# 6)
rd100 0.00(# 1) 0.00(# 2) 0.15(# 5) 0.12(# 4) 0.01(# 3) 0.28(# 6)
kroA100 0.00(# 2) 0.00(# 1) 0.16(# 5) 0.12(# 4) 0.01(# 3) 0.29(# 6)
kroB100 0.00(# 1) 0.00(# 2) 0.16(# 5) 0.12(# 4) 0.01(# 3) 0.27(# 6)
kroD100 0.00(# 2) 0.00(# 1) 0.16(# 5) 0.12(# 4) 0.01(# 3) 0.26(# 6)
eil101 0.00(# 1) 0.00(# 2) 0.16(# 5) 0.12(# 4) 0.01(# 3) 0.30(# 6)
lin105 0.00(# 2) 0.00(# 1) 0.19(# 5) 0.12(# 4) 0.01(# 3) 0.36(# 6)
pr107 0.00(# 1) 0.00(# 2) 0.19(# 5) 0.13(# 4) 0.01(# 3) 0.21(# 6)
pr124 0.00(# 2) 0.00(# 1) 0.31(# 6) 0.15(# 4) 0.01(# 3) 0.29(# 5)
bier127 0.00(# 1) 0.00(# 2) 0.33(# 5) 0.16(# 4) 0.01(# 3) 0.39(# 6)
ch130 0.00(# 2) 0.00(# 1) 0.35(# 6) 0.17(# 4) 0.01(# 3) 0.32(# 5)
pr136 0.00(# 1) 0.00(# 2) 0.41(# 6) 0.18(# 4) 0.01(# 3) 0.35(# 5)
gr137 0.00(# 2) 0.00(# 1) 0.41(# 5) 0.18(# 4) 0.01(# 3) 0.75(# 6)
pr144 0.00(# 2) 0.00(# 1) 0.48(# 6) 0.19(# 4) 0.01(# 3) 0.28(# 5)
kroB150 0.00(# 2) 0.00(# 1) 0.54(# 5) 0.20(# 4) 0.01(# 3) 0.65(# 6)
ch150 0.00(# 1) 0.00(# 2) 0.55(# 5) 0.21(# 4) 0.01(# 3) 0.58(# 6)
kroA150 0.00(# 2) 0.00(# 1) 0.53(# 5) 0.20(# 4) 0.01(# 3) 0.68(# 6)
pr152 0.00(# 1) 0.00(# 2) 0.55(# 6) 0.21(# 4) 0.01(# 3) 0.44(# 5)
u159 0.00(# 2) 0.00(# 1) 0.65(# 6) 0.23(# 4) 0.01(# 3) 0.57(# 5)
rat195 0.01(# 2) 0.01(# 1) 1.18(# 6) 0.31(# 4) 0.01(# 3) 0.88(# 5)
d198 0.01(# 1) 0.01(# 2) 1.23(# 6) 0.31(# 4) 0.01(# 3) 0.96(# 5)
kroA200 0.01(# 2) 0.01(# 1) 1.27(# 5) 0.31(# 4) 0.02(# 3) 1.31(# 6)
kroB200 0.01(# 2) 0.01(# 1) 1.25(# 6) 0.30(# 4) 0.01(# 3) 1.13(# 5)
gr202 0.01(# 2) 0.01(# 1) 1.29(# 5) 0.31(# 4) 0.01(# 3) 1.48(# 6)
ts225 0.01(# 2) 0.01(# 1) 1.76(# 6) 0.37(# 4) 0.02(# 3) 1.06(# 5)
tsp225 0.01(# 2) 0.01(# 1) 1.77(# 5) 0.36(# 4) 0.02(# 3) 1.97(# 6)
pr226 0.01(# 2) 0.01(# 1) 1.80(# 6) 0.37(# 4) 0.02(# 3) 0.93(# 5)
gr229 0.01(# 1) 0.01(# 2) 1.87(# 6) 0.37(# 4) 0.02(# 3) 1.66(# 5)
gil262 0.01(# 2) 0.01(# 1) 2.78(# 6) 0.46(# 4) 0.02(# 3) 2.60(# 5)
pr264 0.01(# 2) 0.01(# 1) 2.83(# 6) 0.47(# 4) 0.02(# 3) 1.22(# 5)
a280 0.01(# 1) 0.01(# 2) 3.40(# 6) 0.51(# 4) 0.02(# 3) 2.01(# 5)
pr299 0.01(# 1) 0.01(# 2) 4.15(# 6) 0.58(# 4) 0.02(# 3) 2.46(# 5)
lin318 0.02(# 2) 0.02(# 1) 4.97(# 6) 0.64(# 4) 0.02(# 3) 3.39(# 5)
linhp318 0.02(# 1) 0.02(# 2) 5.08(# 6) 0.63(# 4) 0.02(# 3) 3.46(# 5)
rd400 0.02(# 1) 0.03(# 2) 9.91(# 6) 0.92(# 4) 0.03(# 3) 6.82(# 5)
fl417 0.03(# 2) 0.03(# 1) 11.60(# 5) 0.99(# 4) 0.03(# 3) 12.69(# 6)
gr431 0.03(# 2) 0.03(# 1) 12.77(# 6) 1.05(# 4) 0.03(# 3) 8.38(# 5)
pr439 0.03(# 2) 0.03(# 1) 13.42(# 6) 1.08(# 4) 0.03(# 3) 7.19(# 5)
pcb442 0.03(# 2) 0.03(# 1) 13.74(# 6) 1.08(# 4) 0.03(# 3) 7.25(# 5)
d493 0.04(# 2) 0.04(# 1) 18.66(# 6) 1.31(# 4) 0.05(# 3) 12.76(# 5)
att532 0.04(# 1) 0.04(# 2) 23.36(# 6) 1.50(# 4) 0.05(# 3) 18.22(# 5)
ali535 0.04(# 2) 0.04(# 1) 24.66(# 6) 1.52(# 4) 0.05(# 3) 21.88(# 5)
u574 0.05(# 3) 0.05(# 1) 29.48(# 6) 1.71(# 4) 0.05(# 2) 24.23(# 5)
rat575 0.05(# 2) 0.05(# 1) 30.47(# 6) 1.72(# 4) 0.05(# 3) 17.80(# 5)
p654 0.06(# 3) 0.06(# 2) 44.83(# 6) 2.14(# 4) 0.06(# 1) 33.29(# 5)
d657 0.06(# 2) 0.06(# 3) 43.99(# 6) 2.17(# 4) 0.06(# 1) 27.59(# 5)
gr666 0.07(# 3) 0.06(# 2) 46.96(# 5) 2.24(# 4) 0.06(# 1) 47.61(# 6)
u724 0.08(# 3) 0.08(# 2) 60.90(# 6) 2.56(# 4) 0.07(# 1) 34.95(# 5)
rat783 0.09(# 3) 0.09(# 2) 75.48(# 6) 3.01(# 4) 0.07(# 1) 67.56(# 5)
dsj1000 0.15(# 2) 0.15(# 3) 162.24(# 6) 4.67(# 4) 0.11(# 1) 160.58(# 5)
pr1002 0.15(# 2) 0.15(# 3) 163.05(# 6) 4.70(# 4) 0.11(# 1) 102.30(# 5)
u1060 0.16(# 2) 0.17(# 3) 191.92(# 6) 5.20(# 4) 0.12(# 1) 138.68(# 5)
vm1084 0.17(# 2) 0.18(# 3) 211.03(# 6) 5.42(# 4) 0.12(# 1) 104.16(# 5)
pcb1173 0.21(# 3) 0.21(# 2) 263.46(# 6) 6.28(# 4) 0.14(# 1) 136.74(# 5)
d1291 0.25(# 3) 0.25(# 2) 354.15(# 6) 7.47(# 4) 0.16(# 1) 52.08(# 5)
rl1304 0.26(# 2) 0.26(# 3) 368.57(# 6) 7.66(# 4) 0.16(# 1) 153.49(# 5)
rl1323 0.27(# 3) 0.27(# 2) 382.37(# 6) 7.86(# 4) 0.16(# 1) 130.90(# 5)
nrw1379 0.29(# 3) 0.29(# 2) 433.28(# 6) 8.45(# 4) 0.17(# 1) 272.26(# 5)
fl1400 0.30(# 3) 0.30(# 2) 452.88(# 5) 8.66(# 4) 0.17(# 1) 538.49(# 6)
u1432 0.31(# 2) 0.31(# 3) 481.20(# 6) 9.04(# 4) 0.19(# 1) 234.80(# 5)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.5 DETAILS OF ALGORITHMS FOR GCP AND TSP EVOLVED BY AUTOMOEA AND
BASELINES

This section presents the code for the algorithms developed by AutoMOEA and the various baseline
methods for the Graph Coloring Problem (GCP) and the Traveling Salesperson Problem (TSP).

def graph_coloring_v5(adj_matrix):

 import heapq

 n = adj_matrix.shape[0]

 colors = np.full(n, -1)

 degrees = np.sum(adj_matrix, axis=1)

 adj_lists = [np.where(adj_matrix[i] == 1)[0] for i in range(n)]

 adj_colors = [set() for _ in range(n)]

 vertex_heap = [(0, -degrees[i], i) for i in range(n)]

 heapq.heapify(vertex_heap)

 colored = np.zeros(n, dtype=bool)

 def update_saturation(vertex):

 saturation = len(adj_colors[vertex])

 return (-saturation, -degrees[vertex], vertex)

 def update_neighbors(vertex, color):

 for neighbor in adj_lists[vertex]:

 if not colored[neighbor]:

 adj_colors[neighbor].add(color)

 while vertex_heap:

 _, _, vertex = heapq.heappop(vertex_heap)

 if colored[vertex]:

 continue

 used_colors = adj_colors[vertex]

 available_colors = set(range(n)) - used_colors

 if available_colors:

 color_usage = np.zeros(n, dtype=int)

 for neighbor in adj_lists[vertex]:

 if colored[neighbor]:

 color_usage[colors[neighbor]] += 1

 min_color = min(available_colors, key=lambda c: (color_usage[c], c))

 colors[vertex] = min_color

 colored[vertex] = True

 update_neighbors(vertex, min_color)

 for neighbor in adj_lists[vertex]:

 if not colored[neighbor]:

 heapq.heappush(vertex_heap, update_saturation(neighbor))

 return colors

The AutoMOEA-evolved algorithm for the GCP.

def graph_coloring_v5(adj_matrix):

 import heapq

 n = adj_matrix.shape[0]

 colors = np.full(n, -1)

 degrees = np.sum(adj_matrix, axis=1)

 adj_lists = [np.where(adj_matrix[i] == 1)[0] for i in range(n)]

 adj_colors = [set() for _ in range(n)]

 vertex_heap = [(0, -degrees[i], i) for i in range(n)]

 heapq.heapify(vertex_heap)

 colored = np.zeros(n, dtype=bool)

 def update_saturation(vertex):

 saturation = len(adj_colors[vertex])

 return (-saturation, -degrees[vertex], vertex)

 def update_neighbors(vertex, color):

 for neighbor in adj_lists[vertex]:

 if not colored[neighbor]:

 adj_colors[neighbor].add(color)

 while vertex_heap:

 _, _, vertex = heapq.heappop(vertex_heap)

 if colored[vertex]:

 continue

 used_colors = adj_colors[vertex]

 available_colors = set(range(n)) - used_colors

 if available_colors:

 color_usage = np.zeros(n, dtype=int)

 for neighbor in adj_lists[vertex]:

 if colored[neighbor]:

 color_usage[colors[neighbor]] += 1

 min_color = min(available_colors, key=lambda c: (color_usage[c], c))

 colors[vertex] = min_color

 colored[vertex] = True

 update_neighbors(vertex, min_color)

 for neighbor in adj_lists[vertex]:

 if not colored[neighbor]:

 heapq.heappush(vertex_heap, update_saturation(neighbor))

 return colors

The AutoMOEA-evolved algorithm for the GCP.

Figure 5: The AutoMOEA-evolved algorithm for the GCP.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

def graph_coloring_v2(adj_matrix):

 n = adj_matrix.shape[0]

 colors = np.full(n, -1)

 def get_saturation_degree(vertex):

 return len(set(colors[v] for v in range(n) if adj_matrix[vertex][v] == 1 and

colors[v] != -1))

 def find_next_vertex():

 max_saturation = -1

 candidate_vertex = -1

 for vertex in range(n):

 if colors[vertex] == -1:

 saturation_degree = get_saturation_degree(vertex)

 degree = sum(adj_matrix[vertex])

 if saturation_degree > max_saturation or (saturation_degree ==

max_saturation and degree > sum(adj_matrix[candidate_vertex]) if candidate_vertex !=

-1 else degree):

 max_saturation = saturation_degree

 candidate_vertex = vertex

 return candidate_vertex

 for _ in range(n):

 u = find_next_vertex()

 if u == -1:

 break

 available_colors = set(range(n))

 for v in range(n):

 if adj_matrix[u][v] == 1 and colors[v] != -1:

 available_colors.discard(colors[v])

 if available_colors:

 color_usage = np.zeros(n, dtype=int)

 for v in range(n):

 if adj_matrix[u][v] == 1 and colors[v] != -1:

 color_usage[colors[v]] += 1

 min_color = min(available_colors, key=lambda c: (color_usage[c], c))

 colors[u] = min_color

 return colors

The algorithm developed by EoH for the GCP.

def graph_coloring_v2(adj_matrix):

 n = adj_matrix.shape[0]

 colors = np.full(n, -1)

 def get_saturation_degree(vertex):

 return len(set(colors[v] for v in range(n) if adj_matrix[vertex][v] == 1 and

colors[v] != -1))

 def find_next_vertex():

 max_saturation = -1

 candidate_vertex = -1

 for vertex in range(n):

 if colors[vertex] == -1:

 saturation_degree = get_saturation_degree(vertex)

 degree = sum(adj_matrix[vertex])

 if saturation_degree > max_saturation or (saturation_degree ==

max_saturation and degree > sum(adj_matrix[candidate_vertex]) if candidate_vertex !=

-1 else degree):

 max_saturation = saturation_degree

 candidate_vertex = vertex

 return candidate_vertex

 for _ in range(n):

 u = find_next_vertex()

 if u == -1:

 break

 available_colors = set(range(n))

 for v in range(n):

 if adj_matrix[u][v] == 1 and colors[v] != -1:

 available_colors.discard(colors[v])

 if available_colors:

 color_usage = np.zeros(n, dtype=int)

 for v in range(n):

 if adj_matrix[u][v] == 1 and colors[v] != -1:

 color_usage[colors[v]] += 1

 min_color = min(available_colors, key=lambda c: (color_usage[c], c))

 colors[u] = min_color

 return colors

The algorithm developed by EoH for the GCP.

Figure 6: The EoH-evolved algorithm for the GCP.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

def graph_coloring_meoh(adjacency_matrix):

 """

 A simple greedy algorithm for graph coloring.

 Args:

 adjacency_matrix: A numpy array representing the adjacency matrix of the

graph.

 Returns:

 A list of integers where the i-th element represents the color of the i-th vertex.

 """

 n = len(adjacency_matrix)

 colors = [-1] * n

 def is_safe(vertex, color):

 for neighbor in np.where(adjacency_matrix[vertex] == 1)[0]:

 if colors[neighbor] == color:

 return False

 return True

 def backtrack(vertex):

 if vertex == n:

 return True

 for color in range(n):

 if is_safe(vertex, color):

 colors[vertex] = color

 if backtrack(vertex + 1):

 return True

 colors[vertex] = -1

 return False

 backtrack(0)

 return colors

The algorithm developed by MEoH for the GCP.

def graph_coloring_meoh(adjacency_matrix):

 """

 A simple greedy algorithm for graph coloring.

 Args:

 adjacency_matrix: A numpy array representing the adjacency matrix of the

graph.

 Returns:

 A list of integers where the i-th element represents the color of the i-th vertex.

 """

 n = len(adjacency_matrix)

 colors = [-1] * n

 def is_safe(vertex, color):

 for neighbor in np.where(adjacency_matrix[vertex] == 1)[0]:

 if colors[neighbor] == color:

 return False

 return True

 def backtrack(vertex):

 if vertex == n:

 return True

 for color in range(n):

 if is_safe(vertex, color):

 colors[vertex] = color

 if backtrack(vertex + 1):

 return True

 colors[vertex] = -1

 return False

 backtrack(0)

 return colors

The algorithm developed by MEoH for the GCP.

Figure 7: The MEoH-evolved algorithm for the GCP.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

def graph_coloring_v1(adj_matrix):

 n = adj_matrix.shape[0]

 colors = [-1] * n

 degree = np.sum(adj_matrix, axis=1)

 nodes = np.argsort(-degree)

 for node in nodes:

 available_colors = [True] * n

 for neighbor in range(n):

 if adj_matrix[node][neighbor] == 1 and colors[neighbor] != -1:

 available_colors[colors[neighbor]] = False

 for color in range(n):

 if available_colors[color]:

 colors[node] = color

 break

 return colors

The algorithm developed by Funsearch for the GCP.

def graph_coloring_v1(adj_matrix):

 n = adj_matrix.shape[0]

 colors = [-1] * n

 degree = np.sum(adj_matrix, axis=1)

 nodes = np.argsort(-degree)

 for node in nodes:

 available_colors = [True] * n

 for neighbor in range(n):

 if adj_matrix[node][neighbor] == 1 and colors[neighbor] != -1:

 available_colors[colors[neighbor]] = False

 for color in range(n):

 if available_colors[color]:

 colors[node] = color

 break

 return colors

The algorithm developed by Funsearch for the GCP.

Figure 8: The Funsearch-evolved algorithm for the GCP.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

def tsp_04(distances):

 import random

 import math

 n = len(distances)

 unvisited = set(range(1, n))

 current = 0

 route = [0]

 while unvisited:

 next_city = min(unvisited, key=lambda x: distances[current][x])

 route.append(next_city)

 unvisited.remove(next_city)

 current = next_city

 temp = 100.0

 cooling = 0.95

 iterations = 30

 current_cost = calculate_cost(route, distances)

 best_route = route[:]

 best_cost = current_cost

 while temp > 0.1:

 for _ in range(iterations):

 i, j = random.sample(range(1, n), 2)

 new_route = route[:]

 new_route[i], new_route[j] = new_route[j], new_route[i]

 new_cost = calculate_cost(new_route, distances)

 if new_cost < current_cost or random.random() < math.exp((current_cost -

new_cost) / temp):

 route = new_route

 current_cost = new_cost

 if new_cost < best_cost:

 best_route = new_route[:]

 best_cost = new_cost

 temp *= cooling

 best_route = two_opt(best_route, distances)

 return best_route

The algorithm developed by AutoMOEA for the TSP.

def tsp_04(distances):

 import random

 import math

 n = len(distances)

 unvisited = set(range(1, n))

 current = 0

 route = [0]

 while unvisited:

 next_city = min(unvisited, key=lambda x: distances[current][x])

 route.append(next_city)

 unvisited.remove(next_city)

 current = next_city

 temp = 100.0

 cooling = 0.95

 iterations = 30

 current_cost = calculate_cost(route, distances)

 best_route = route[:]

 best_cost = current_cost

 while temp > 0.1:

 for _ in range(iterations):

 i, j = random.sample(range(1, n), 2)

 new_route = route[:]

 new_route[i], new_route[j] = new_route[j], new_route[i]

 new_cost = calculate_cost(new_route, distances)

 if new_cost < current_cost or random.random() < math.exp((current_cost -

new_cost) / temp):

 route = new_route

 current_cost = new_cost

 if new_cost < best_cost:

 best_route = new_route[:]

 best_cost = new_cost

 temp *= cooling

 best_route = two_opt(best_route, distances)

 return best_route

The algorithm developed by AutoMOEA for the TSP.

Figure 9: The AutoMOEA-evolved algorithm for the TSP.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

def tsp_02(distances: np.ndarray) -> List[int]:

 from typing import List

 import numpy as np

 import random

 n = len(distances)

 path = list(range(n))

 for i in range(n-1):

 min_j = min(range(i+1, n),

 key=lambda j: distances[path[i]][path[j]])

 path[i+1], path[min_j] = path[min_j], path[i+1]

 pop_size = 20

 generations = 100

 population = [path[:]]

 for _ in range(pop_size - 1):

 new_path = path[:]

 i, j = random.sample(range(1, n), 2)

 new_path[i], new_path[j] = new_path[j], new_path[i]

 population.append(new_path)

 for _ in range(generations):

 population.sort(key=lambda x: sum(distances[x[i]][x[i+1]]

 for i in range(n-1)) + distances[x[-1]][x[0]])

 population = population[:pop_size//2]

 while len(population) < pop_size:

 p1, p2 = random.sample(population, 2)

 cut = random.randint(1, n-2)

 child = p1[:cut]

 child.extend(x for x in p2 if x not in child)

 population.append(child)

 return min(population,

 key=lambda x: sum(distances[x[i]][x[i+1]]

 for i in range(n-1)) + distances[x[-1]][x[0]])

The algorithm developed by EoH for the TSP.

def tsp_02(distances: np.ndarray) -> List[int]:

 from typing import List

 import numpy as np

 import random

 n = len(distances)

 path = list(range(n))

 for i in range(n-1):

 min_j = min(range(i+1, n),

 key=lambda j: distances[path[i]][path[j]])

 path[i+1], path[min_j] = path[min_j], path[i+1]

 pop_size = 20

 generations = 100

 population = [path[:]]

 for _ in range(pop_size - 1):

 new_path = path[:]

 i, j = random.sample(range(1, n), 2)

 new_path[i], new_path[j] = new_path[j], new_path[i]

 population.append(new_path)

 for _ in range(generations):

 population.sort(key=lambda x: sum(distances[x[i]][x[i+1]]

 for i in range(n-1)) + distances[x[-1]][x[0]])

 population = population[:pop_size//2]

 while len(population) < pop_size:

 p1, p2 = random.sample(population, 2)

 cut = random.randint(1, n-2)

 child = p1[:cut]

 child.extend(x for x in p2 if x not in child)

 population.append(child)

 return min(population,

 key=lambda x: sum(distances[x[i]][x[i+1]]

 for i in range(n-1)) + distances[x[-1]][x[0]])

The algorithm developed by EoH for the TSP.

Figure 10: The EoH-evolved algorithm for the TSP.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

def tsp_06(distances: np.ndarray) -> List[int]:

 import numpy as np

 def generate_neighborhood_matrix(distance_matrix):

 n = len(distance_matrix)

 neighborhood_matrix = np.zeros((n, n), dtype=int)

 for i in range(n):

 sorted_indices = np.argsort(distance_matrix[i])

 neighborhood_matrix[i] = sorted_indices

 return neighborhood_matrix

 def select_next_node(current_node: int, destination_node: int, unvisited_nodes:

np.ndarray, distance_matrix: np.ndarray) -> int:

 current_dist = distance_matrix[current_node, unvisited_nodes]

 dest_dist = distance_matrix[destination_node, unvisited_nodes]

 # Normalize distances

 norm_current = current_dist / np.max(current_dist)

 norm_dest = dest_dist / np.max(dest_dist)

 # Weighted score (higher weight for proximity to current node)

 score = 0.7 * norm_current + 0.3 * (1 - norm_dest)

 return unvisited_nodes[np.argmin(score)]

 n = len(distances)

 neighbor_matrix = generate_neighborhood_matrix(distances)

 route = np.zeros(n, dtype=int)

 current_node = 0

 destination_node = 0

 for i in range(1, n - 1):

 near_nodes = neighbor_matrix[current_node][1:]

 mask = ~np.isin(near_nodes, route[:i])

 unvisited_near_nodes = near_nodes[mask]

 next_node = select_next_node(current_node, destination_node,

unvisited_near_nodes, distances)

 current_node = next_node

 route[i] = current_node

 mask = ~np.isin(np.arange(n), route[:n - 1])

 last_node = np.arange(n)[mask]

 route[n - 1] = last_node[0]

 return route.tolist()

The algorithm developed by MEoH for the TSP.

def tsp_06(distances: np.ndarray) -> List[int]:

 import numpy as np

 def generate_neighborhood_matrix(distance_matrix):

 n = len(distance_matrix)

 neighborhood_matrix = np.zeros((n, n), dtype=int)

 for i in range(n):

 sorted_indices = np.argsort(distance_matrix[i])

 neighborhood_matrix[i] = sorted_indices

 return neighborhood_matrix

 def select_next_node(current_node: int, destination_node: int, unvisited_nodes:

np.ndarray, distance_matrix: np.ndarray) -> int:

 current_dist = distance_matrix[current_node, unvisited_nodes]

 dest_dist = distance_matrix[destination_node, unvisited_nodes]

 # Normalize distances

 norm_current = current_dist / np.max(current_dist)

 norm_dest = dest_dist / np.max(dest_dist)

 # Weighted score (higher weight for proximity to current node)

 score = 0.7 * norm_current + 0.3 * (1 - norm_dest)

 return unvisited_nodes[np.argmin(score)]

 n = len(distances)

 neighbor_matrix = generate_neighborhood_matrix(distances)

 route = np.zeros(n, dtype=int)

 current_node = 0

 destination_node = 0

 for i in range(1, n - 1):

 near_nodes = neighbor_matrix[current_node][1:]

 mask = ~np.isin(near_nodes, route[:i])

 unvisited_near_nodes = near_nodes[mask]

 next_node = select_next_node(current_node, destination_node,

unvisited_near_nodes, distances)

 current_node = next_node

 route[i] = current_node

 mask = ~np.isin(np.arange(n), route[:n - 1])

 last_node = np.arange(n)[mask]

 route[n - 1] = last_node[0]

 return route.tolist()

The algorithm developed by MEoH for the TSP.

Figure 11: The MEoH-evolved algorithm for the TSP.

24

	Introduction
	Related Works
	Automated Algorithm Design
	LLM Driven Algorithm Design

	Methods
	Diversity-Preserving Population Initialization
	LLM-Driven Genetic Operators
	Crossover Operator
	Mutation Operator

	Pareto-Based Population Maintenance
	Pareto Front Construction
	Replacement Strategy

	Experiments
	Experimental Settings
	Algorithm performance
	Ablation Study
	Algorithm Complexity
	Comparison of Diversity

	Conclusion
	Appendix
	Discussion
	Details on Generating Datasets for Image Coloring Problems
	Detailed Results of AutoMOAE and Baselines on the Graph Coloring Problem (GCP)
	DETAILED RESULTS OF AUTOMOAE AND BASELINES ON TSPLIB.
	Details of Algorithms for GCP and TSP Evolved by AutoMOEA and Baselines

