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ABSTRACT

Algorithm design has traditionally relied on expert intuition, making it time-
consuming and often unable to balance solution quality with computational effi-
ciency. Although LLM-driven methods have shown remarkable progress in au-
tomating code synthesis, they seldom address multiple requirements simultaneously.
Ignoring such multi-objective trade-offs greatly undermines practical applicability,
as real-world algorithm design inevitably involves reconciling competing goals.
However, balancing multiple requirements is inherently challenging, often leading
to infeasible strategies or unintended side effects during the evolutionary process.
We propose AutoMOAE (Auto-Algorithm Evolution for Multi-Objective require-
ments), a framework that explicitly incorporates multiple demands into the de-
sign process. AutoMOAE leverages LLM prompting to dynamically synthesize
crossover and mutation operators augmented with analytical modules, effectively
reducing nonproductive optimization steps. Verification operations further ensure
strict adherence to both syntactic and functional correctness. Evaluations on graph
coloring and Traveling Salesman benchmarks show that AutoMOAE-generated
algorithms consistently match or surpass expert-crafted solutions in both solution
quality and computational efficiency. These results demonstrate the necessity and
promise of integrating multi-objective considerations into automated algorithm
design, paving the way for scalable, high-performance synthesis frameworks.

1 INTRODUCTION

Algorithm design (Kant, 1985) is a cornerstone of computer science, yet traditional approaches
heavily rely on expert intuition and suffer from inefficiency and limited generalizability (Ma et al.,
2025). The rise of large language models (LLMs) has opened new opportunities for automating this
process, making LLM-driven algorithm design an emerging trend (Yang et al., 2024; Liu et al., 2023;
Lange et al., 2024).

However, algorithm design is inherently a multi-objective problem, requiring careful trade-offs
between solution quality and computational efficiency. Current LLM-driven frameworks largely
overlook this characteristic, often focusing on single objectives. As a result, they struggle to
balance competing goals, frequently generating infeasible strategies or requiring extensive post
hoc corrections, which severely limits their practical applicability.

To address this challenge, we propose AutoMOAE (Auto-Algorithm Evolution for Multi-Objective
Requirements), a unified framework that integrates LLM-based code synthesis with evolutionary
optimization under explicit multi-objective principles. By dynamically generating crossover and
mutation operators tailored to multiple requirements, AutoMOAE not only reduces unproductive
search steps but also ensures syntactic and functional correctness through verification.

Evaluations on graph coloring and the traveling salesman problem demonstrate that AutoMOAE
consistently matches or surpasses expert-crafted solutions across both solution quality and efficiency,
while adapting seamlessly across problem domains. These results underscore the necessity of
embedding multi-objective considerations into automated algorithm design and highlight the promise
of combining LLM capabilities with evolutionary principles for scalable and high-performance
synthesis.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(b) Single-objective LLM-based

Heuristic Design (EoH)

LLM

Ideas Code

...... ......

Objective

Optimal Gap

(b) Single-objective LLM-based

Heuristic Design (EoH)

LLM

Ideas Code

... ...

Objective

Optimal Gap

(a) Manual Heuristic Design

Designer

Idea Code

Objective

Optimal Gap

Objective

Optimal Gap

(a) Manual Heuristic Design

Designer

Idea Code

Objective

Optimal Gap

(c) Multi-objective LLM-based

Heuristic Design (MEoH)

LLM

Ideas Code

...... ......

C
o
m

p
le

x
it

y
C

o
m

p
le

x
it

y

ObjectiveObjective

(c) Multi-objective LLM-based

Heuristic Design (MEoH)

LLM

Ideas Code

... ...

C
o
m

p
le

x
it

y

Objective

(d) Multi-objective LLM-based

Heuristic Design (AutoMOAE)

LLM

Ideas Code

...... ......

C
o
m

p
le

x
it

y
C

o
m

p
le

x
it

y

ObjectiveObjective

(d) Multi-objective LLM-based

Heuristic Design (AutoMOAE)

LLM

Ideas Code

... ...

C
o
m

p
le

x
it

y

Objective
(d1) Crossover Operator in AutoMOAE

(d2) Mutation Operator in AutoMOAE

(d) Multi-objective LLM-based

Heuristic Design (AutoMOAE)

LLM

Ideas Code

... ...

C
o
m

p
le

x
it

y

Objective
(d1) Crossover Operator in AutoMOAE

(d2) Mutation Operator in AutoMOAE

Figure 1: Comparison to human design and existing LLM-based heuristic design. (a) manual heuristic
design by human experts, (b) single-objective LLM-based heuristic design (e.g., FunSearch and
EoH), (c) multi-objective heuristic design (MEoH), and (d) our multi-objective heuristic design
(AutoMOAE), where (d1) Mutation in AutoMOAE. Allowing LLMs to mutate code directly often
produces infeasible or harmful changes. AutoMOAE adds an analysis step to constrain mutations
toward feasible optimization directions, reducing ineffective variations, (d2) Naı̈ve LLM-based
crossover may collapse one code into another. AutoMOAE employs comparative analysis to guide
integration, preserving design diversity while ensuring effective crossover.

2 RELATED WORKS

2.1 AUTOMATED ALGORITHM DESIGN

Prior to the integration of LLMs into algorithm design, extensive research had already explored
various approaches to automated algorithm design. These approaches can be broadly categorized into
two main directions.

The first direction focuses on optimizing existing heuristic algorithms by searching for optimal
parameter configurations to adapt them to specific problems. This line of research has been widely
applied to areas such as multi-objective ant colony optimization algorithms (Birattari et al., 2010;
Lopez-Ibanez & Stutzle, 2012), stochastic local search methods (Pagnozzi & Stützle, 2019), SAT
solvers for flow shop scheduling problems and the traveling salesman problem (TSP) (Hutter et al.,
2007; 2009), as well as mixed-integer programming solvers for TSP and vehicle routing problems
with time windows (Adamo et al., 2017). While these methods have proven effective in improving
performance for specific tasks, their reliance on parameterized frameworks significantly limits their
applicability to a single problem type, restricting their generalizability.

The second direction focuses on recombining existing heuristic algorithm components to create new
algorithms find a suitable algorithm (Guo et al., 2024; Ma et al., 2024; 2025; Guo et al., 2025).
These frameworks conceptualize algorithm design as a combinatorial optimization problem, where
modular algorithmic components are assembled to construct optimization algorithms that can adapt
to diverse problem settings. Prominent examples include GCOP (Qu et al., 2020), HyFlex (Ochoa
et al., 2012), and EvoHyp (Pillay & Beckedahl, 2017), which have garnered significant attention
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in the field. Additionally, frameworks like Hydra (Xu et al., 2010) have extended this approach by
simultaneously optimizing both algorithm components and parameter configurations, offering a more
comprehensive strategy for algorithm design.

2.2 LLM DRIVEN ALGORITHM DESIGN

With the advent of LLMs, algorithm design has undergone a transformative change, benefiting from
enhanced interpretability and access to an expansive search space. Among the early efforts, the
FunSearch (Romera-Paredes et al., 2024) framework pioneered the use of evolutionary computa-
tion techniques for code generation, targeting classical mathematical problems. Building on this
foundation, researchers introduced a series of frameworks that leverage LLMs to simulate the evolu-
tionary algorithm process for algorithmic code generation. These frameworks include ReEvo (Ye
et al., 2024) and EoH (Liu et al., 2024), which focus on single-objective heuristic generation, and
MEoH (Yao et al., 2025), which extends this approach to multi-objective heuristics. EoH and MEoH
specialize in generating the core components of heuristics. This targeted approach enables them to
address more complex tasks, including scientific discovery, combinatorial optimization, and machine
learning-related problems. As shown in Figure 1, MEoH utilizes a strength-diversity mechanism
for effective population management and selection to balance multiple objectives. In contrast, Au-
toMOEA not only manages the population at a macro-level using Pareto-based principles, but also
embeds analytical modules within its specific crossover and mutation operators. This approach
combines macro-level control with local guidance, more effectively directing the population’s search
toward a balanced solution across multiple objectives.

3 METHODS

AutoMOAE represents each candidate algorithm as a code snippet (individual) and iteratively refines
a population of such individuals via initialization, genetic variation (crossover and mutation), and
Pareto-Based population maintenance.

3.1 DIVERSITY-PRESERVING POPULATION INITIALIZATION

To maximize exploratory potential from the outset, AutoMOAE initializes its population in two
phases:

Idea Generation: Invoke an LLM to produce N succinct algorithmic ideai, each a one-sentence
description of a novel design pattern (e.g., greedy nearest-neighbor with adaptive backtracking).

ideai = LLM(Pthink, N), i = 1, · · · , N (1)

where LLM() is the large language model interaction function, and the prompt Pthink instructs the
model to perform the following task:

Please generate N different algorithmic solution ideas for the following
problem: {Problem description}. Requirements: 1) Each idea should be
described in one concise line. 2) Do not include any additional information.
3) The ideas should be clearly distinct from each other. 4) Return exactly
N lines in total.

Code Instantiation: For each concept, call the LLM with a prompt that expands the description into
compilable code. And verify that the code format meets the requirements.

X 0 = LLM(Pverify,LLM(Prun, {ideai}Ni=1)) (2)

where the prompt Prun instructs the model to perform the following task:

Please provide a Python code implementation for the described problem
using the following algorithmic idea: Problem Description: {Problem de-
scription}. Idea: ideai. Specific Requirements: 1) Function Name:
{function name}. 2) Input: {input fmt}. 3) Return Value: {output fmt}

3
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The prompt Pverify instructs the model to perform the following task:

Please check if the following code meets the requirements, and if not, correct
it:{code}. Requirements: 1) Only include the function implementation code,
without any descriptions, comments, or examples. 2) The main function
name must be {function name}. 3) Do not include a main function or test
code. 4) Return only the corrected code, without any other content.

This two-stage approach ensures high semantic diversity among initial candidates and guards against
premature convergence due to superficially similar implementations. These individuals have their
fitness evaluated by the evaluator E(X 0) = [O1(x

0
i ), ..., Om(x0

i )]
N
i=1 (Oi is the objective function)

and are then sorted using a non-dominated sorting algorithm, which assigns each a rank, rank(X g) ∈
1, · · · , N . Subsequently, a selection operator Selcet() randomly selects k individuals Xselect from
the sub-population with the lowest rank to proceed with the evolutionary process.

3.2 LLM-DRIVEN GENETIC OPERATORS

Unlike prior methods that sample from fixed component libraries, AutoMOAE crafts crossover and
mutation operators on-the-fly via LLM prompts, tailored to multi-objective algorithm design. Both
operators incorporate an automatic validation step, a lightweight static and dynamic checker, that
guarantees syntactic correctness and basic functional integrity before evaluation.

3.2.1 CROSSOVER OPERATOR

For algorithmic code, the core principle of the crossover operation is to combine the design ideas of
individuals Xselect to generate a new individual. The specific expression is as follows:

Xoff crossover = LLM(Pverify,LLM(Pcrossover, CrossoverAnalyse(Xselect))) (3)
Objective Analysis - CrossoverAnalyse(): 1) Compute Pareto metrics (e.g., solution quality vs.
runtime) for two parent algorithms. 2) Select an objective, such as minimizing runtime, as the ’guide’
for crossover. Provide the optimization {target objective} and the {strengths and weaknesses} of the
parent generation required for crossover operator.

Prompt Construction - Pcrossover: Embed the parents code and the selected design rationale into
an LLM prompt that instructs:

Please perform a multi-objective optimization crossover based on the fol-
lowing two parent algorithms, with a special focus on the objective {target
objective}: Parent 1 : {strengths and weaknesses}. Parent 2 : {strengths
and weaknesses}. Please generate a new algorithm with the following
requirements: 1) Preserve the advantages of each parent on their respective
strength objectives. 2) Specifically optimize performance for the {target ob-
jective} objective. 3) Ensure the code is complete and meets the problem’s
requirements. 4) The function name must be: {function name}. Return
only the final Python code, without any explanation.

Synthesis & Validation: 1) Generate offspring code snippets via the LLM. 2) Since direct code-level
crossover can result in syntax errors or functional anomalies, we pass the result through a syntax
checker and quick test harness; reject or auto-repair any failures, more details can be see Pverify.

3.2.2 MUTATION OPERATOR

The mutation operator in AutoMOAE, aligned with the crossover operator’s design philosophy, is
tailored for multi-objective algorithm design by prioritizing the improvement of a single performance
metric rather than optimizing all objectives simultaneously.

Xoff mutation = LLM(Pverify,LLM(Pmutation,MutationAnalyse(Xselect))) (4)

Objective Analysis - MutationAnalyse(): Analyze the current individuals Pareto-front position to
identify its weakest objective. Return the following information

4
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• Calculate improvement potential: For each optimization target, it calculates the
{improvement potential}. Potential is the gap between an individual’s current score and the
best score ever achieved for that target.

• Identify mutation targets: Locate the target with the highest potential for improvement and
designate it as {target objective}. This instructs the optimization algorithm where its next
mutation or variation should be directed to achieve the most significant enhancement.

Mutation Prompt - Pmutation: Craft a prompt directing the LLM to apply a focused modifica-
tion, including introducing new concepts to solve the problem, adjusting algorithm parameters, or
restructuring the code while retaining the original design idea. The details are as follows:

Please perform a multi-objective optimization mutation on the following
algorithm, focusing on improving the objective {target objective} (cur-
rent {improvement potential}. Original Code: {code}. Please: 1) Main-
tain performance on the other objectives. 2) Specifically optimize the
{target objective} objective. 3) You may introduce new mathematical
concepts or optimization methods. 4) Ensure the code is complete and
executable. 5) Avoid using recursion or limit its depth. 6) The function
name must remain: {function name}.

Synthesis & Validation: Produce mutated code and validate as in crossover, ensuring functional
soundness before acceptance, more details can be see Pverify.

By embedding validation within each operator, AutoMOAE maintains a pool of executable, diverse
algorithms that faithfully explore the multi-objective design space. Each generation of the population
can be represented as follows:

X g+1 = SelectElite(X g ∪ Xoff crossover ∪ Xoff mutation, N) (5)

The specific population maintenance process SelectElite() is described in the following section.

3.3 PARETO-BASED POPULATION MAINTENANCE

After generating offspring, AutoMOAE evaluates every individual on a standardized benchmark
suite, measuring: Fitness: quality of solutions (e.g., objective optimality) and Runtime: wall-clock
execution time. The fitness value reflects the quality of the solution, such as the optimality of the
objective function, while runtime measures the computational efficiency of the algorithm.

3.3.1 PARETO FRONT CONSTRUCTION

The selection process in AutoMOAE is guided by the Pareto front, which identifies individuals that
achieve an optimal trade-off between fitness and runtimei.e., those not dominated by any others across
all objectives. By prioritizing these individuals for retention, the framework promotes convergence
toward globally optimal solutions while preserving objective balance. This strategy maintains
population diversity and mitigates premature convergence to local optima.

First Front: identify all non-dominated individuals (no other candidate is strictly better in both
fitness and runtime).

Subsequent Fronts: iteratively extract the next layer of non-dominated individuals from the remain-
ing pool until the desired population size is reached.

3.3.2 REPLACEMENT STRATEGY

For newly generated individuals, their fitness values and runtimes are compared against those of the
individuals on the current Pareto front.

Dominance Replacement: New offspring are first compared to the current Pareto front: if an
offspring dominates a front member (i.e., is no worse in all objectives and strictly better in at least
one), it replaces that member; if it is dominated by every front member, it is discarded.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 AutoMOAE

Require: Population size N , Population generations G
Ensure: The final optimized answer y

1: // Initialization
2: {ideai}Ni=1 ← LLM(Pthink).
3: X0 ← LLM(Pverify,LLM(Prun, {ideai}Ni=1)).
4: E(X 0)← [O1(x

0
i ), ..., Om(x0

i )]
N
i=1 // Individual Fitness Assessment. Oi()

5: F0 ← {E(X 0),X 0} // Constructing the Pareto Frontier, E() is the evaluation function
6: for g = 0 to G− 1 do
7: Xselect = Select(X g, k) // k is the number of individuals selected.
8: Xoff crossover = LLM(Pverify,LLM(Pcrossover, CrossoverAnalyse(Xselect)))
9: Xoff mutation = LLM(Pverify,LLM(Pmutation,MutationAnalyse(Xselect)))

10: // Update candidates
X g+1 = SelectElite(X g ∪ Xoff crossover ∪ Xoff mutation, N)

11: // Constructing the Pareto Frontier,
Fg+1 =

{
x ∈ Xg+1

∣∣ x is non-dominated in X g+1
}

12: end for
13: yfinal ← Select the highest-scoring response from F1.
14: Return y

Size Enforcement: Should the population fall below the target size, additional Pareto fronts are
constructed hierarchically from the remaining candidates until the size threshold is met or the
candidate pool is exhausted.

This layered selection preserves diversity while prioritizing high-quality solutions, broadening the
search space and improving the likelihood of global optimal convergence. Ultimately, the Pareto
frontier F = {F1, · · · ,Fm} can be expressed as follows:

Fg+1 =
{
x ∈ X g+1

∣∣ x is non-dominated in X g+1
}
, (6)

The complete steps of AutoMOAE are detailed in Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Problems We selected several classical problems to evaluate the effectiveness of AutoMOAE
in algorithm design, including the Traveling Salesman Problem (TSP) (Lin, 1965) and the Graph
Coloring Problem (GCP) (Matula et al., 1972). The TSP is a combinatorial optimization problem
that seeks the shortest possible route visiting a set of cities exactly once and returning to the starting
point. The GCP involves assigning colors to the vertices of a graph such that no two adjacent vertices
share the same color, while minimizing the total number of colors used.

Datasets and Implementation Details To ensure a fair comparison of algorithms developed by
different automated algorithm design frameworks, we used randomly generated problem instances to
assist in testing the algorithms produced by each framework. For both problems, the best algorithm
designed by each framework was selected for subsequent performance evaluation. For the TSP,
a manually constructed problem instance with 100 nodes was used as the training data across all
frameworks during the algorithm development process, while unweighted path instances from the
TSPLIB dataset (Reinelt, 1991) were selected as testing data. For the GCP, a set of 12 problem
instances was manually created, with each instance name consisting of three components: the problem
name, the number of nodes, and the graph density metric. The dataset was generated using classical
random graph generation models, adjusting the number of vertices and edges to produce graphs with
varying densities and average degrees. Additional processing details are provided in Appendix A.2.

During the algorithm design process, a single problem instance with 125 nodes and a density of
approximately 0.5 was fixed as the training data, while all 12 instances were used for testing. For
all frameworks, GPT-4o-mini was used as the base model, with a population size of 8 and an

6
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evolution limit of 10 generations. For multi-objective frameworks such as AutoMOAE and MEoH,
the algorithm selected for performance comparison was the one achieving the best fitness metric in
the final population, without prioritizing runtime as the primary criterion.

Baseline For GCP, the baseline algorithms include the Greedy algorithm, the Welsh-Powell algo-
rithm (Olariu & Randall, 1989), and the DSATUR algorithm (San Segundo, 2012). For TSP, we used
the Greedy algorithm, the nearest neighbor algorithm (NN), and the insertion method. Additionally,
we included automated algorithm design frameworks such as FunSearch, EoH, and MEoH in the
comparison.

4.2 ALGORITHM PERFORMANCE

GCP For GCP, we compared multiple classical algorithms designed by human experts with the
best algorithms developed by different frameworks. The algorithm developed by AutoMOAE
achieved excellent performance in both solution quality and runtime. The metric used to evaluate
algorithm performance was the number of colors required to completely color a graph with a given
number of nodes. The results are presented in Figure 2a, Tables 4 and 5 of Appendix A.3. From
Figure 2a, it can be observed that the algorithm developed by AutoMOAE allocated colors using
significantly less time compared to EoH and DSATUR, while achieving the same number of colors.
Analysis of the algorithm code of Appendix A.5 revealed that both AutoMOAE and EoH ultimately
designed algorithms based on the DSATUR framework. However, the key difference lies in their
optimization strategies: AutoMOAE shifted its focus to reducing computational overhead after
identifying diminishing returns in further minimizing the number of colors, whereas EoH continued
to attempt integrating new components to improve solution quality, which resulted in longer runtime
compared to DSATUR.

(a) GCP (b) TSP

Figure 2: Average performance metrics of different algorithms on GCP and TSP instances.

TSP For TSP, due to the large number of instances and significant variation in performance metrics
across different problem instances, we used ranking-based metrics to evaluate algorithm performance.
Specifically, the rank achieved by each algorithm on individual instances was averaged across all
instances in the TSPLIB dataset, and the results are summarized in Table 1 and Figure 2b. The results
show that the algorithm developed by AutoMOAE achieved the shortest path length in the majority
of instances, with an average rank of 1.26, significantly outperforming other automated algorithm
design frameworks. However, the runtime performance of the AutoMOAE-developed algorithm
was less favorable. This is primarily due to the design of AutoMOAEs crossover and mutation
operators, which can introduce new concepts or techniques into the algorithm. The detailed results
for AutoMOEA and the various baselines on each specific instance of the TSPLIB, including solution
quality and runtime, are provided in Tables 6 and 7 of Appendix A.4. The specific implementation
details of the algorithm are provided in Appendix A.5.

7
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Table 1: Average rank of different algorithms on performance metrics in TSPLIB.

Greedy NN Insertion EoH MEoH AutoMOAE
Path Length (Rank) 3.77 3.77 2.73 4.04 3.24 1.26
Runtime (Rank) 1.61 1.50 5.31 4.09 2.92 5.39

Table 2: The proportion of new-generation individuals within the elite population.

Gen1 Gen2 Gen3 Gen4 Gen5 Gen6 Gen7 Gen8 Gen9 Gen10 Avg.
w/ Analysis Component 25.0% 12.5% 32.5% 62.5% 62.5% 75.0% 32.5% 50% 50% 0.0% 40.25%
w/o Analysis Component 32.5% 32.5% 75.0% 12.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 15.25%

(a) w/ Analysis Component (b) w/o Analysis Component

Figure 3: The impact of analysis component in genetic operators on population distribution. (a) w/
Analysis Component; (b) w/o Analysis Component.

4.3 ABLATION STUDY

To demonstrate the effectiveness of the genetic operators designed in AutoMOAE, we conducted
an ablation study on the analysis component within these operators. Specifically, we compared
genetic operators with and without the analysis component in the algorithm population’s evolutionary
process. The distribution of newly generated algorithm populations (prior to population selection) in
the objective space was recorded and visualized in Figure 3. For clarity in observing the differences
in individual distributions across generations, only the first five generations were selected for visual-
ization. By comparing the code characteristics and performance distributions of each generation, we
observed that with the analysis component, most individuals effectively shifted their optimization
focus to algorithm runtime when further improvement in the number of colors was no longer feasible.
In contrast, without the analysis component, individuals in the population lacked a clear optimization
direction and continued attempting to reduce the number of colors by introducing additional strategies.
This resulted in poor runtime performance and, in many cases, regression in algorithm performance
compared to the previous generation.

Additionally, as shown in Table 2, we tracked the proportion of individuals from each new generation
that successfully entered the elite population. It is evident that when the analysis component was
retained, this proportion was significantly higher, indicating that the newly generated individuals
were more competitive. In contrast, without the analysis component, the average proportion dropped
from 40.25% to 15.25%, and the evolutionary process even stagnated in its later stages.

4.4 ALGORITHM COMPLEXITY

In frameworks utilizing LLMs for algorithm design, many approaches, such as EoH and MEoH,
simplify the inherently complex task of algorithm design by focusing solely on the development
of core components within heuristic algorithms. While this strategy enables these frameworks to
tackle more complex problems efficiently, it also constrains them to the heuristic algorithm paradigm,

8
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(a)
(b)

Figure 4: (a) The average number of uncommented lines of code in the final algorithm populations,
serving as a proxy for algorithmic complexity. (b) The frequency of algorithmic components within
the final populations from AutoMOAE and MEoH on the GCP, used as a measure of design diversity.

limiting their ability to explore beyond this framework. To enhance the interpretability of the
algorithm design process and increase the capability to address more complex problems, automated
algorithm design frameworks should aim to generate complete and sophisticated algorithmic code.

In this evaluation, we used the number of uncommented lines of code as a metric to assess the
complexity of the algorithms generated by different frameworks. The results are visualized in the
Figure 4a. Comparisons reveal that the average number of code lines in the final algorithm population
generated by AutoMOAE is 45.3, significantly higher than that of other automated algorithm design
frameworks. This is attributed to AutoMOAEs crossover and mutation operators, which effectively
introduce new concepts and techniques into the algorithms. These operations substantially expand the
search space for algorithmic solutions and indicate AutoMOAEs considerable potential for solving
even more complex problems.

4.5 COMPARISON OF DIVERSITY

During the algorithm evolution process, the diversity of algorithm design ideas significantly impacts
the evolutionary potential of the population. To evaluate the diversity within algorithm populations,
we utilized an LLM to summarize the primary implementation ideas of the eight code individuals
from each population into a set of keywords. After removing common high-frequency terms such
as ”DSATUR,” we performed keyword frequency analysis and visualized the results in Figure 4b.
According to the keyword frequency analysis, nearly all of the algorithms developed by EoH relied
on greedy strategies, with minimal application of other strategies. In contrast, the analysis of
AutoMOAE’s final population revealed a total of 27 distinct keywords, compared to 19 keywords
in MEoH’s final population. This result demonstrates that the operators designed in AutoMOAE
effectively introduce new strategies, concepts, and components into the population, thereby enhancing
its diversity.

5 CONCLUSION

This paper introduced AutoMOAE, a novel framework for multi-objective automated algorithm
evolution. The core innovation of AutoMOAE is the integration of analytical operators within its
crossover and mutation mechanisms. This design mitigates ineffective evolutionary steps by intelli-
gently guiding the optimization process, which significantly enhances the framework’s robustness
when navigating complex trade-offs. To support its multi-objective capabilities, AutoMOAE employs
a two-stage initialization method and a dominance-based selection strategy to preserve population
diversity. Our findings establish AutoMOAE as a powerful tool for researchers, enabling the efficient
exploration of diverse design concepts and the generation of highly interpretable baseline algorithms.
For a more detailed discussion, see Appendix A.1.
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A APPENDIX

A.1 DISCUSSION

Comparison Between AutoMOAE and Deep Thinking Large Models Deep thinking large mod-
els, such as DeepSeek-R1 (DeepSeek-AI et al., 2025) or OpenAI o3, have achieved significant success
across various domains, including mathematical reasoning and other complex tasks. These models
excel by engaging in extensive reflection and iterative exploration prior to executing specific tasks,
enabling them to determine effective strategies. As a result, they can partially substitute for certain
functionalities of frameworks like AutoMOAE, such as integrating crossover or mutation operators.
However, compared to automated algorithm design frameworks, deep thinking models lack the
capability to accurately assess whether the generated code or algorithm can solve the target problem,
as well as the extent and efficiency of the solution. We propose that deep thinking models can serve
as initialization operators for algorithm populations, providing high-quality algorithmic candidates to
enhance the diversity and performance of the population in automated design frameworks.

Differences Between AutoMOAE and Existing Frameworks Researchers have proposed several
frameworks for automated algorithm design, including FunSearch, EoH, and MEoH. Compared to
these frameworks, AutoMOAE introduces distinct motivations and contributions. While all these
frameworks, including AutoMOAE, adopt evolutionary algorithm-based approaches for algorithm
design, AutoMOAE draws its inspiration from simulating the workflow of human researchers during
algorithm development. This approach aims to maximize the potential of LLMs by leveraging
their sub-human-level intelligence in a structured and creative manner. In comparison to MEoH,
which is also a multi-objective algorithm design framework, AutoMOAE differs significantly in its
methodology. AutoMOAE does not impose strict constraints on metrics such as population crowding
during evolution. Instead, its multi-objective nature and operational operators are designed to identify
components or strategies that can enhance algorithm performance. Furthermore, when one objective
becomes difficult to optimize, AutoMOAE shifts its focus to another objective, thereby reducing
ineffective iterations during the evolutionary process and improving the efficiency of algorithm
evolution.

Limitations of AutoMOAE Despite its strengths, AutoMOAE has certain limitations. One key
challenge is handling complex input and output conditions, as LLMs often struggle to accurately
interpret parameter sequences and output orders, potentially leading to errors in functionality. To
address this, researchers must simplify input-output structures and minimize the number of parameters
required for problem instances. Additionally, while AutoMOAEs multi-objective design reduces
ineffective iterations, it does not explicitly prioritize maintaining diversity within the algorithm
population, which may restrict its ability to explore a broader solution space in some scenarios.

A.2 DETAILS ON GENERATING DATASETS FOR IMAGE COLORING PROBLEMS

The Graph Coloring Problem (GCP) is a classic problem in graph theory, where the objective is to
assign a color to each vertex of a graph such that no two adjacent vertices share the same color, while
minimizing the total number of colors used. To validate the effectiveness of the proposed method on
the GCP, this study employs a set of artificially generated datasets, designated as the GCP dataset.
Each problem instance within this dataset is named using a combination of the dataset identifier,
the number of nodes, and a graph density metric. The generation of this dataset is based on classic
random graph models. By adjusting the number of vertices and edges, we produced graph instances
with varying densities and average degrees to comprehensively evaluate the algorithm’s adaptability
to both sparse and dense graphs. The fundamental characteristics of these instances are summarized
in Table 3.

During the dataset generation process, we first established the vertex counts for graphs of different
scales, namely 125, 250, 500, and 1000 nodes. Subsequently, a random graph generation algorithm
was utilized to construct graph structures that conform to target densities. To ensure the diversity
and representativeness of the generated graphs, three instances with distinct densities were created
for each vertex count level, corresponding to sparse (density ≈ 0.1), medium-density (density ≈
0.5), and dense (density ≈ 0.9) graphs. Furthermore, to simulate the complexity found in real-world
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problems, random perturbations were introduced to the generated instances to increase their structural
irregularity.

These datasets will serve as the benchmark for evaluating the evolutionary performance of our
proposed method on the Graph Coloring Problem. Specifically, one instance was randomly selected
to assess algorithmic performance during the evolutionary process itself. The development of the
algorithm targets two objectives: minimizing the number of colors used and minimizing the required
computation time. After the optimal algorithm has been identified, it will be comprehensively tested
on the entire suite of datasets.

Table 3: GCP Instance Basic Information Statistics

Instance Name Vertices Edges Density Avg. Degree

GCP125.1 125 736 0.0949 11.776
GCP125.5 125 3891 0.5021 62.256
GCP125.9 125 6961 0.8982 111.376
GCP250.1 250 3218 0.1034 25.744
GCP250.5 250 15668 0.5034 125.344
GCP250.9 250 27897 0.8963 223.176
GCP500.1 500 12458 0.0999 49.832
GCP500.5 500 62624 0.5020 250.496
GCP500.9 500 112437 0.9013 449.748
GCP1000.1 1000 49629 0.0994 99.258
GCP1000.5 1000 249826 0.5002 499.652
GCP1000.9 1000 449449 0.8998 898.898
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A.3 DETAILED RESULTS OF AUTOMOAE AND BASELINES ON THE GRAPH COLORING
PROBLEM (GCP)

As shown in Tables 4 and 5, AutoMOAE demonstrates the best overall performance on the GCP. Its
solution quality is comparable to that of DSATUR and EoH, while its runtime is notably faster.

Table 4: Number of colors used by algorithms on different GCP instances.

Greedy Welsh-Powell DSATUR FunSearch EoH MEoH AutoMOAE
GCP0125.1 8 7 6 8 6 8 6
GCP0125.5 26 23 22 25 22 26 22
GCP0125.9 56 53 51 55 51 56 51
GCP0250.1 13 11 10 11 10 13 10
GCP0250.5 43 41 37 40 37 43 37
GCP0250.9 99 93 92 92 92 99 92
GCP0500.1 20 18 16 18 16 20 16
GCP0500.5 72 71 65 71 65 72 65
GCP0500.9 175 169 170 171 170 175 170
GCP1000.1 31 29 27 29 27 31 27
GCP1000.5 127 121 115 124 115 127 115
GCP1000.9 321 313 299 312 299 321 299

Average Rank # 5.92 # 4.00 # 1.08 # 4.17 # 1.08 # 5.92 # 1.08

Table 5: Algorithm execution time across different GCP instances. Unit: s.

Greedy Welsh-Powell DSATUR FunSearch EoH MEoH AutoMOAE
GCP0125.1 0.0037 0.0037 0.3195 0.0051 0.4083 0.0013 0.0084
GCP0125.5 0.0045 0.0051 0.3571 0.0053 0.4813 0.0062 0.0165
GCP0125.9 0.0049 0.0113 0.3737 0.0059 0.5863 0.0164 0.0256
GCP0250.1 0.0151 0.0145 2.5754 0.0191 3.0949 0.0048 0.0275
GCP0250.5 0.0166 0.0276 2.7750 0.0212 3.7176 0.0262 0.0638
GCP0250.9 0.0194 0.0584 2.9210 0.0222 4.2889 0.1001 0.1037
GCP0500.1 0.0656 0.0723 20.3544 0.0825 24.5486 0.0190 0.1113
GCP0500.5 0.0699 0.1442 22.3491 0.0855 29.4261 0.1448 0.2955
GCP0500.9 0.0803 0.3501 24.8234 0.0913 34.0722 0.5569 0.4656
GCP1000.1 0.2631 0.3304 162.8072 0.3162 193.7323 0.0771 0.4666
GCP1000.5 0.2955 0.8698 179.6298 0.3590 236.0436 0.9171 1.2506
GCP1000.9 0.3155 2.5864 192.3301 0.4782 266.9487 3.9840 2.1976

Average Rank # 1.42 # 3.00 # 6.00 # 2.67 # 7.00 # 3.08 # 4.75
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A.4 DETAILED RESULTS OF AUTOMOAE AND BASELINES ON TSPLIB.

Figures 6 and 7 present the detailed results and computational times for each method on the TSPLIB
dataset.

Table 6: Resulting path length and rank (#) for each algorithm across the TSPLIB instances.

Greedy NN Insertion EoH-TSP MEoH-TSP AutoMOAE-TSP

burma14 38.69( # 3) 38.69( # 3) 32.44( # 2) 38.69( # 3) 38.80( # 6) 31.21( # 1)
ulysses16 104.73( # 5) 104.73( # 5) 79.39( # 2) 86.60( # 3) 104.65( # 4) 74.00( # 1)
ulysses22 89.64( # 3) 89.64( # 3) 76.99( # 1) 89.64( # 3) 91.92( # 6) 85.64( # 2)
att48 40526.42( # 5) 40526.42( # 5) 37314.09( # 2) 40364.11( # 4) 37686.87( # 3) 34902.00( # 1)
eil51 513.61( # 4) 513.61( # 4) 496.25( # 3) 513.61( # 4) 458.95( # 1) 465.91( # 2)
berlin52 8980.92( # 3) 8980.92( # 3) 9014.89( # 6) 8980.92( # 3) 8835.06( # 2) 8217.14( # 1)
st70 805.53( # 3) 805.53( # 3) 778.99( # 2) 805.53( # 3) 871.65( # 6) 753.15( # 1)
pr76 153461.92( # 5) 153461.92( # 5) 125936.21( # 3) 145069.74( # 4) 123787.14( # 2) 111856.22( # 1)
eil76 711.99( # 5) 711.99( # 5) 612.39( # 2) 669.24( # 4) 577.27( # 1) 622.71( # 3)
gr96 707.09( # 5) 707.09( # 5) 651.44( # 3) 673.92( # 4) 573.48( # 1) 623.53( # 2)
rat99 1564.72( # 4) 1564.72( # 4) 1482.02( # 2) 1564.72( # 4) 1492.74( # 3) 1377.07( # 1)
kroC100 26327.36( # 4) 26327.36( # 4) 25262.17( # 3) 26327.36( # 4) 24294.06( # 2) 23392.80( # 1)
kroE100 27587.19( # 4) 27587.19( # 4) 25902.00( # 3) 27587.19( # 4) 25221.45( # 2) 24282.64( # 1)
rd100 9941.16( # 3) 9941.16( # 3) 8979.37( # 2) 9941.16( # 3) 10510.18( # 6) 8864.57( # 1)
kroA100 26856.39( # 4) 26856.39( # 4) 24307.78( # 3) 26856.39( # 4) 22683.29( # 1) 22830.62( # 2)
kroB100 29155.04( # 4) 29155.04( # 4) 25580.92( # 2) 29155.04( # 4) 25679.71( # 3) 25392.46( # 1)
kroD100 26950.46( # 4) 26950.46( # 4) 25204.27( # 2) 26950.46( # 4) 26072.81( # 3) 24720.72( # 1)
eil101 825.24( # 4) 825.24( # 4) 702.96( # 2) 844.91( # 6) 720.41( # 3) 702.70( # 1)
lin105 20362.76( # 4) 20362.76( # 4) 16934.62( # 1) 20362.76( # 4) 19041.58( # 3) 17762.08( # 2)
pr107 46678.15( # 2) 46678.15( # 2) 52587.76( # 6) 47029.63( # 4) 50560.61( # 5) 45574.46( # 1)
pr124 69299.43( # 4) 69299.43( # 4) 65318.19( # 2) 69299.43( # 4) 68371.30( # 3) 61910.46( # 1)
bier127 135751.78( # 2) 135751.78( # 2) 140690.94( # 6) 135751.78( # 2) 138054.23( # 5) 122109.70( # 1)
ch130 7575.29( # 4) 7575.29( # 4) 7279.21( # 3) 7575.29( # 4) 7091.76( # 1) 7093.18( # 2)
pr136 120777.86( # 4) 120777.86( # 4) 109587.25( # 1) 118776.81( # 3) 123247.21( # 6) 110347.07( # 2)
gr137 1022.22( # 4) 1022.22( # 4) 821.29( # 1) 1022.22( # 4) 901.99( # 3) 849.98( # 2)
pr144 61650.72( # 3) 61650.72( # 3) 73033.13( # 6) 61650.72( # 3) 60133.16( # 1) 61399.21( # 2)
kroB150 32825.75( # 4) 32825.75( # 4) 31588.68( # 3) 32825.75( # 4) 29848.14( # 2) 27674.75( # 1)
ch150 8194.61( # 4) 8194.61( # 4) 7994.29( # 3) 8194.61( # 4) 7589.72( # 2) 7161.32( # 1)
kroA150 33609.87( # 4) 33609.87( # 4) 29966.54( # 2) 33609.87( # 4) 31060.89( # 3) 28613.32( # 1)
pr152 85702.95( # 2) 85702.95( # 2) 88530.82( # 5) 85702.95( # 2) 92682.12( # 6) 80000.73( # 1)
u159 54669.03( # 4) 54669.03( # 4) 49981.41( # 1) 57436.69( # 6) 51577.24( # 3) 50140.36( # 2)
rat195 2761.96( # 3) 2761.96( # 3) 2814.57( # 6) 2761.96( # 3) 2575.61( # 2) 2490.60( # 1)
d198 18620.07( # 3) 18620.07( # 3) 17631.80( # 2) 18620.07( # 3) 19454.99( # 6) 17340.94( # 1)
kroA200 35798.41( # 5) 35798.41( # 5) 35337.51( # 4) 33901.53( # 3) 33224.38( # 2) 31512.83( # 1)
kroB200 36981.59( # 4) 36981.59( # 4) 35421.70( # 3) 36981.59( # 4) 34079.08( # 1) 34372.39( # 2)
gr202 619.40( # 4) 619.40( # 4) 570.14( # 3) 619.40( # 4) 559.57( # 2) 529.30( # 1)
ts225 152493.55( # 4) 152493.55( # 4) 160009.16( # 6) 146183.10( # 3) 131454.99( # 1) 139697.02( # 2)
tsp225 4829.00( # 5) 4829.00( # 5) 4468.20( # 3) 4786.42( # 4) 4430.19( # 2) 4169.09( # 1)
pr226 94685.45( # 4) 94685.45( # 4) 91024.65( # 2) 94402.09( # 3) 96212.20( # 6) 87543.04( # 1)
gr229 2014.71( # 4) 2014.71( # 4) 1825.83( # 2) 2014.71( # 4) 1987.56( # 3) 1764.18( # 1)
gil262 3241.47( # 4) 3241.47( # 4) 2804.23( # 3) 3259.42( # 6) 2748.90( # 1) 2757.03( # 2)
pr264 58022.86( # 2) 58022.86( # 2) 58225.34( # 4) 58328.28( # 5) 59000.73( # 6) 56762.06( # 1)
a280 3148.11( # 4) 3148.11( # 4) 3101.79( # 2) 3182.09( # 6) 3123.70( # 3) 2828.71( # 1)
pr299 59899.01( # 3) 59899.01( # 3) 58124.45( # 2) 60220.49( # 5) 61338.05( # 6) 52408.65( # 1)
lin318 54033.58( # 4) 54033.58( # 4) 49454.81( # 2) 54033.58( # 4) 50085.92( # 3) 49153.11( # 1)
linhp318 54033.58( # 4) 54033.58( # 4) 49454.81( # 2) 54033.58( # 4) 50085.92( # 3) 49153.11( # 1)
rd400 19168.05( # 4) 19168.05( # 4) 18629.98( # 3) 19168.05( # 4) 17599.52( # 2) 16651.71( # 1)
fl417 15114.12( # 4) 15114.12( # 4) 14179.84( # 3) 15256.42( # 6) 13680.66( # 2) 13630.60( # 1)
gr431 2516.25( # 4) 2516.25( # 4) 2214.43( # 2) 2516.25( # 4) 2263.78( # 3) 2153.00( # 1)
pr439 131282.09( # 3) 131282.09( # 3) 130067.88( # 2) 137778.50( # 6) 134814.09( # 5) 118498.55( # 1)
pcb442 61984.05( # 5) 61984.05( # 5) 60891.83( # 3) 61234.77( # 4) 58945.83( # 2) 54291.55( # 1)
d493 43646.38( # 4) 43646.38( # 4) 39982.31( # 2) 43710.70( # 6) 43050.15( # 3) 38869.88( # 1)
att532 112099.45( # 4) 112099.45( # 4) 102201.61( # 2) 112099.45( # 4) 103710.35( # 3) 99101.62( # 1)
ali535 2671.07( # 4) 2671.07( # 4) 2366.95( # 2) 2671.07( # 4) 2483.48( # 3) 2269.30( # 1)
u574 46881.87( # 4) 46881.87( # 4) 44144.83( # 2) 46881.87( # 4) 46620.28( # 3) 39154.50( # 1)
rat575 8449.32( # 5) 8449.32( # 5) 7853.86( # 3) 8430.71( # 4) 7808.10( # 2) 7398.48( # 1)
p654 43411.56( # 4) 43411.56( # 4) 40418.68( # 2) 48824.31( # 6) 41009.57( # 3) 38249.53( # 1)
d657 62176.40( # 3) 62176.40( # 3) 57906.66( # 2) 62176.40( # 3) 63518.97( # 6) 54801.59( # 1)
gr666 4110.90( # 4) 4110.90( # 4) 3670.13( # 2) 4110.90( # 4) 3920.88( # 3) 3507.73( # 1)
u724 55223.20( # 5) 55223.20( # 5) 50245.77( # 3) 52482.39( # 4) 49538.41( # 2) 47108.98( # 1)
rat783 11255.07( # 4) 11255.07( # 4) 10301.88( # 2) 11255.07( # 4) 11151.44( # 3) 9468.73( # 1)
dsj1000 24630960.10( # 4) 24630960.10( # 4) 22291166.04( # 2) 24630960.10( # 4) 23977443.37( # 3) 21147745.60( # 1)
pr1002 315596.59( # 3) 315596.59( # 3) 302938.90( # 2) 325311.07( # 6) 320713.45( # 5) 277925.10( # 1)
u1060 281635.68( # 5) 281635.68( # 5) 270377.38( # 2) 280689.98( # 4) 270485.28( # 3) 241651.40( # 1)
vm1084 301469.23( # 4) 301469.23( # 4) 277435.70( # 3) 302111.10( # 6) 273437.36( # 2) 263501.02( # 1)
pcb1173 70277.94( # 3) 70277.94( # 3) 69010.68( # 2) 70279.94( # 5) 71441.00( # 6) 62453.05( # 1)
d1291 59941.24( # 3) 59941.24( # 3) 59956.75( # 5) 59892.04( # 2) 62211.60( # 6) 55389.49( # 1)
rl1304 339797.47( # 5) 339797.47( # 5) 314295.61( # 3) 335160.35( # 4) 303550.70( # 2) 284242.81( # 1)
rl1323 332094.97( # 3) 332094.97( # 3) 341512.46( # 6) 331159.20( # 2) 334237.62( # 5) 299654.18( # 1)
nrw1379 70015.46( # 5) 70015.46( # 5) 66216.21( # 2) 69794.61( # 4) 68362.91( # 3) 61838.87( # 1)
fl1400 26971.88( # 4) 26971.88( # 4) 22955.32( # 2) 27057.04( # 6) 23757.04( # 3) 22420.49( # 1)
u1432 188815.01( # 4) 188815.01( # 4) 171110.62( # 2) 196453.25( # 6) 173995.52( # 3) 167338.88( # 1)
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Table 7: Algorithm execution time and rank (#) across different TSBLIB instances. Unit: s.

Greedy NN Insertion EoH-TSP MEoH-TSP AutoMOAE-TSP

burma14 0.00( # 2) 0.00( # 1) 0.00( # 3) 0.05( # 5) 0.00( # 4) 0.06( # 6)
ulysses16 0.00( # 2) 0.00( # 1) 0.00( # 3) 0.02( # 5) 0.00( # 4) 0.06( # 6)
ulysses22 0.00( # 2) 0.00( # 1) 0.00( # 4) 0.04( # 5) 0.00( # 3) 0.07( # 6)
att48 0.00( # 1) 0.00( # 2) 0.02( # 4) 0.07( # 5) 0.00( # 3) 0.14( # 6)
eil51 0.00( # 1) 0.00( # 2) 0.03( # 4) 0.07( # 5) 0.01( # 3) 0.16( # 6)
berlin52 0.00( # 2) 0.00( # 1) 0.03( # 4) 0.07( # 5) 0.00( # 3) 0.17( # 6)
st70 0.00( # 1) 0.00( # 2) 0.07( # 4) 0.09( # 5) 0.01( # 3) 0.16( # 6)
pr76 0.00( # 2) 0.00( # 1) 0.07( # 4) 0.08( # 5) 0.01( # 3) 0.18( # 6)
eil76 0.00( # 2) 0.00( # 1) 0.07( # 4) 0.08( # 5) 0.01( # 3) 0.17( # 6)
gr96 0.00( # 2) 0.00( # 1) 0.14( # 5) 0.12( # 4) 0.01( # 3) 0.32( # 6)
rat99 0.00( # 2) 0.00( # 1) 0.15( # 5) 0.12( # 4) 0.01( # 3) 0.29( # 6)
kroC100 0.00( # 2) 0.00( # 1) 0.16( # 5) 0.12( # 4) 0.01( # 3) 0.24( # 6)
kroE100 0.00( # 2) 0.00( # 1) 0.15( # 5) 0.12( # 4) 0.01( # 3) 0.26( # 6)
rd100 0.00( # 1) 0.00( # 2) 0.15( # 5) 0.12( # 4) 0.01( # 3) 0.28( # 6)
kroA100 0.00( # 2) 0.00( # 1) 0.16( # 5) 0.12( # 4) 0.01( # 3) 0.29( # 6)
kroB100 0.00( # 1) 0.00( # 2) 0.16( # 5) 0.12( # 4) 0.01( # 3) 0.27( # 6)
kroD100 0.00( # 2) 0.00( # 1) 0.16( # 5) 0.12( # 4) 0.01( # 3) 0.26( # 6)
eil101 0.00( # 1) 0.00( # 2) 0.16( # 5) 0.12( # 4) 0.01( # 3) 0.30( # 6)
lin105 0.00( # 2) 0.00( # 1) 0.19( # 5) 0.12( # 4) 0.01( # 3) 0.36( # 6)
pr107 0.00( # 1) 0.00( # 2) 0.19( # 5) 0.13( # 4) 0.01( # 3) 0.21( # 6)
pr124 0.00( # 2) 0.00( # 1) 0.31( # 6) 0.15( # 4) 0.01( # 3) 0.29( # 5)
bier127 0.00( # 1) 0.00( # 2) 0.33( # 5) 0.16( # 4) 0.01( # 3) 0.39( # 6)
ch130 0.00( # 2) 0.00( # 1) 0.35( # 6) 0.17( # 4) 0.01( # 3) 0.32( # 5)
pr136 0.00( # 1) 0.00( # 2) 0.41( # 6) 0.18( # 4) 0.01( # 3) 0.35( # 5)
gr137 0.00( # 2) 0.00( # 1) 0.41( # 5) 0.18( # 4) 0.01( # 3) 0.75( # 6)
pr144 0.00( # 2) 0.00( # 1) 0.48( # 6) 0.19( # 4) 0.01( # 3) 0.28( # 5)
kroB150 0.00( # 2) 0.00( # 1) 0.54( # 5) 0.20( # 4) 0.01( # 3) 0.65( # 6)
ch150 0.00( # 1) 0.00( # 2) 0.55( # 5) 0.21( # 4) 0.01( # 3) 0.58( # 6)
kroA150 0.00( # 2) 0.00( # 1) 0.53( # 5) 0.20( # 4) 0.01( # 3) 0.68( # 6)
pr152 0.00( # 1) 0.00( # 2) 0.55( # 6) 0.21( # 4) 0.01( # 3) 0.44( # 5)
u159 0.00( # 2) 0.00( # 1) 0.65( # 6) 0.23( # 4) 0.01( # 3) 0.57( # 5)
rat195 0.01( # 2) 0.01( # 1) 1.18( # 6) 0.31( # 4) 0.01( # 3) 0.88( # 5)
d198 0.01( # 1) 0.01( # 2) 1.23( # 6) 0.31( # 4) 0.01( # 3) 0.96( # 5)
kroA200 0.01( # 2) 0.01( # 1) 1.27( # 5) 0.31( # 4) 0.02( # 3) 1.31( # 6)
kroB200 0.01( # 2) 0.01( # 1) 1.25( # 6) 0.30( # 4) 0.01( # 3) 1.13( # 5)
gr202 0.01( # 2) 0.01( # 1) 1.29( # 5) 0.31( # 4) 0.01( # 3) 1.48( # 6)
ts225 0.01( # 2) 0.01( # 1) 1.76( # 6) 0.37( # 4) 0.02( # 3) 1.06( # 5)
tsp225 0.01( # 2) 0.01( # 1) 1.77( # 5) 0.36( # 4) 0.02( # 3) 1.97( # 6)
pr226 0.01( # 2) 0.01( # 1) 1.80( # 6) 0.37( # 4) 0.02( # 3) 0.93( # 5)
gr229 0.01( # 1) 0.01( # 2) 1.87( # 6) 0.37( # 4) 0.02( # 3) 1.66( # 5)
gil262 0.01( # 2) 0.01( # 1) 2.78( # 6) 0.46( # 4) 0.02( # 3) 2.60( # 5)
pr264 0.01( # 2) 0.01( # 1) 2.83( # 6) 0.47( # 4) 0.02( # 3) 1.22( # 5)
a280 0.01( # 1) 0.01( # 2) 3.40( # 6) 0.51( # 4) 0.02( # 3) 2.01( # 5)
pr299 0.01( # 1) 0.01( # 2) 4.15( # 6) 0.58( # 4) 0.02( # 3) 2.46( # 5)
lin318 0.02( # 2) 0.02( # 1) 4.97( # 6) 0.64( # 4) 0.02( # 3) 3.39( # 5)
linhp318 0.02( # 1) 0.02( # 2) 5.08( # 6) 0.63( # 4) 0.02( # 3) 3.46( # 5)
rd400 0.02( # 1) 0.03( # 2) 9.91( # 6) 0.92( # 4) 0.03( # 3) 6.82( # 5)
fl417 0.03( # 2) 0.03( # 1) 11.60( # 5) 0.99( # 4) 0.03( # 3) 12.69( # 6)
gr431 0.03( # 2) 0.03( # 1) 12.77( # 6) 1.05( # 4) 0.03( # 3) 8.38( # 5)
pr439 0.03( # 2) 0.03( # 1) 13.42( # 6) 1.08( # 4) 0.03( # 3) 7.19( # 5)
pcb442 0.03( # 2) 0.03( # 1) 13.74( # 6) 1.08( # 4) 0.03( # 3) 7.25( # 5)
d493 0.04( # 2) 0.04( # 1) 18.66( # 6) 1.31( # 4) 0.05( # 3) 12.76( # 5)
att532 0.04( # 1) 0.04( # 2) 23.36( # 6) 1.50( # 4) 0.05( # 3) 18.22( # 5)
ali535 0.04( # 2) 0.04( # 1) 24.66( # 6) 1.52( # 4) 0.05( # 3) 21.88( # 5)
u574 0.05( # 3) 0.05( # 1) 29.48( # 6) 1.71( # 4) 0.05( # 2) 24.23( # 5)
rat575 0.05( # 2) 0.05( # 1) 30.47( # 6) 1.72( # 4) 0.05( # 3) 17.80( # 5)
p654 0.06( # 3) 0.06( # 2) 44.83( # 6) 2.14( # 4) 0.06( # 1) 33.29( # 5)
d657 0.06( # 2) 0.06( # 3) 43.99( # 6) 2.17( # 4) 0.06( # 1) 27.59( # 5)
gr666 0.07( # 3) 0.06( # 2) 46.96( # 5) 2.24( # 4) 0.06( # 1) 47.61( # 6)
u724 0.08( # 3) 0.08( # 2) 60.90( # 6) 2.56( # 4) 0.07( # 1) 34.95( # 5)
rat783 0.09( # 3) 0.09( # 2) 75.48( # 6) 3.01( # 4) 0.07( # 1) 67.56( # 5)
dsj1000 0.15( # 2) 0.15( # 3) 162.24( # 6) 4.67( # 4) 0.11( # 1) 160.58( # 5)
pr1002 0.15( # 2) 0.15( # 3) 163.05( # 6) 4.70( # 4) 0.11( # 1) 102.30( # 5)
u1060 0.16( # 2) 0.17( # 3) 191.92( # 6) 5.20( # 4) 0.12( # 1) 138.68( # 5)
vm1084 0.17( # 2) 0.18( # 3) 211.03( # 6) 5.42( # 4) 0.12( # 1) 104.16( # 5)
pcb1173 0.21( # 3) 0.21( # 2) 263.46( # 6) 6.28( # 4) 0.14( # 1) 136.74( # 5)
d1291 0.25( # 3) 0.25( # 2) 354.15( # 6) 7.47( # 4) 0.16( # 1) 52.08( # 5)
rl1304 0.26( # 2) 0.26( # 3) 368.57( # 6) 7.66( # 4) 0.16( # 1) 153.49( # 5)
rl1323 0.27( # 3) 0.27( # 2) 382.37( # 6) 7.86( # 4) 0.16( # 1) 130.90( # 5)
nrw1379 0.29( # 3) 0.29( # 2) 433.28( # 6) 8.45( # 4) 0.17( # 1) 272.26( # 5)
fl1400 0.30( # 3) 0.30( # 2) 452.88( # 5) 8.66( # 4) 0.17( # 1) 538.49( # 6)
u1432 0.31( # 2) 0.31( # 3) 481.20( # 6) 9.04( # 4) 0.19( # 1) 234.80( # 5)
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A.5 DETAILS OF ALGORITHMS FOR GCP AND TSP EVOLVED BY AUTOMOEA AND
BASELINES

This section presents the code for the algorithms developed by AutoMOEA and the various baseline
methods for the Graph Coloring Problem (GCP) and the Traveling Salesperson Problem (TSP).

def graph_coloring_v5(adj_matrix):

    import heapq

    n = adj_matrix.shape[0]

    colors = np.full(n, -1)

    degrees = np.sum(adj_matrix, axis=1)

    adj_lists = [np.where(adj_matrix[i] == 1)[0] for i in range(n)]

    adj_colors = [set() for _ in range(n)]

    vertex_heap = [(0, -degrees[i], i) for i in range(n)]

    heapq.heapify(vertex_heap)

    colored = np.zeros(n, dtype=bool)

    

    def update_saturation(vertex):

        saturation = len(adj_colors[vertex])

        return (-saturation, -degrees[vertex], vertex)

    

    def update_neighbors(vertex, color):

        for neighbor in adj_lists[vertex]:

            if not colored[neighbor]:

                adj_colors[neighbor].add(color)

    

    while vertex_heap:

        _, _, vertex = heapq.heappop(vertex_heap)

        if colored[vertex]:

            continue

        used_colors = adj_colors[vertex]

        available_colors = set(range(n)) - used_colors

        

        if available_colors:

            color_usage = np.zeros(n, dtype=int)

            for neighbor in adj_lists[vertex]:

                if colored[neighbor]:

                    color_usage[colors[neighbor]] += 1

            min_color = min(available_colors, key=lambda c: (color_usage[c], c))

            colors[vertex] = min_color

            colored[vertex] = True

            update_neighbors(vertex, min_color)

            for neighbor in adj_lists[vertex]:

                if not colored[neighbor]:

                    heapq.heappush(vertex_heap, update_saturation(neighbor))

    

    return colors

The AutoMOEA-evolved algorithm for the GCP.

def graph_coloring_v5(adj_matrix):

    import heapq

    n = adj_matrix.shape[0]

    colors = np.full(n, -1)

    degrees = np.sum(adj_matrix, axis=1)

    adj_lists = [np.where(adj_matrix[i] == 1)[0] for i in range(n)]

    adj_colors = [set() for _ in range(n)]

    vertex_heap = [(0, -degrees[i], i) for i in range(n)]

    heapq.heapify(vertex_heap)

    colored = np.zeros(n, dtype=bool)

    

    def update_saturation(vertex):

        saturation = len(adj_colors[vertex])

        return (-saturation, -degrees[vertex], vertex)

    

    def update_neighbors(vertex, color):

        for neighbor in adj_lists[vertex]:

            if not colored[neighbor]:

                adj_colors[neighbor].add(color)

    

    while vertex_heap:

        _, _, vertex = heapq.heappop(vertex_heap)

        if colored[vertex]:

            continue

        used_colors = adj_colors[vertex]

        available_colors = set(range(n)) - used_colors

        

        if available_colors:

            color_usage = np.zeros(n, dtype=int)

            for neighbor in adj_lists[vertex]:

                if colored[neighbor]:

                    color_usage[colors[neighbor]] += 1

            min_color = min(available_colors, key=lambda c: (color_usage[c], c))

            colors[vertex] = min_color

            colored[vertex] = True

            update_neighbors(vertex, min_color)

            for neighbor in adj_lists[vertex]:

                if not colored[neighbor]:

                    heapq.heappush(vertex_heap, update_saturation(neighbor))

    

    return colors

The AutoMOEA-evolved algorithm for the GCP.

Figure 5: The AutoMOEA-evolved algorithm for the GCP.
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def graph_coloring_v2(adj_matrix):

    n = adj_matrix.shape[0]

    colors = np.full(n, -1)

    def get_saturation_degree(vertex):

        return len(set(colors[v] for v in range(n) if adj_matrix[vertex][v] == 1 and 

colors[v] != -1))

    def find_next_vertex():

        max_saturation = -1

        candidate_vertex = -1

        for vertex in range(n):

            if colors[vertex] == -1:

                saturation_degree = get_saturation_degree(vertex)

                degree = sum(adj_matrix[vertex])

                if saturation_degree > max_saturation or (saturation_degree == 

max_saturation and degree > sum(adj_matrix[candidate_vertex]) if candidate_vertex != 

-1 else degree):

                    max_saturation = saturation_degree

                    candidate_vertex = vertex

        return candidate_vertex

    for _ in range(n):

        u = find_next_vertex()

        if u == -1:

            break

        available_colors = set(range(n))

        for v in range(n):

            if adj_matrix[u][v] == 1 and colors[v] != -1:

                available_colors.discard(colors[v])

        if available_colors:

            color_usage = np.zeros(n, dtype=int)

            for v in range(n):

                if adj_matrix[u][v] == 1 and colors[v] != -1:

                    color_usage[colors[v]] += 1

            

            min_color = min(available_colors, key=lambda c: (color_usage[c], c))

            colors[u] = min_color

    return colors

The algorithm developed by EoH for the GCP.

def graph_coloring_v2(adj_matrix):

    n = adj_matrix.shape[0]

    colors = np.full(n, -1)

    def get_saturation_degree(vertex):

        return len(set(colors[v] for v in range(n) if adj_matrix[vertex][v] == 1 and 

colors[v] != -1))

    def find_next_vertex():

        max_saturation = -1

        candidate_vertex = -1

        for vertex in range(n):

            if colors[vertex] == -1:

                saturation_degree = get_saturation_degree(vertex)

                degree = sum(adj_matrix[vertex])

                if saturation_degree > max_saturation or (saturation_degree == 

max_saturation and degree > sum(adj_matrix[candidate_vertex]) if candidate_vertex != 

-1 else degree):

                    max_saturation = saturation_degree

                    candidate_vertex = vertex

        return candidate_vertex

    for _ in range(n):

        u = find_next_vertex()

        if u == -1:

            break

        available_colors = set(range(n))

        for v in range(n):

            if adj_matrix[u][v] == 1 and colors[v] != -1:

                available_colors.discard(colors[v])

        if available_colors:

            color_usage = np.zeros(n, dtype=int)

            for v in range(n):

                if adj_matrix[u][v] == 1 and colors[v] != -1:

                    color_usage[colors[v]] += 1

            

            min_color = min(available_colors, key=lambda c: (color_usage[c], c))

            colors[u] = min_color

    return colors

The algorithm developed by EoH for the GCP.

Figure 6: The EoH-evolved algorithm for the GCP.
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def graph_coloring_meoh(adjacency_matrix):

    """

    A simple greedy algorithm for graph coloring.

    Args:

        adjacency_matrix: A numpy array representing the adjacency matrix of the 

graph.

    Returns:

        A list of integers where the i-th element represents the color of the i-th vertex.

    """

    n = len(adjacency_matrix)

    colors = [-1] * n

    

    def is_safe(vertex, color):

        for neighbor in np.where(adjacency_matrix[vertex] == 1)[0]:

            if colors[neighbor] == color:

                return False

        return True

    

    def backtrack(vertex):

        if vertex == n:

            return True

        for color in range(n):

            if is_safe(vertex, color):

                colors[vertex] = color

                if backtrack(vertex + 1):

                    return True

                colors[vertex] = -1

        return False

    

    backtrack(0)

    return colors

The algorithm developed by MEoH for the GCP.

def graph_coloring_meoh(adjacency_matrix):

    """

    A simple greedy algorithm for graph coloring.

    Args:

        adjacency_matrix: A numpy array representing the adjacency matrix of the 

graph.

    Returns:

        A list of integers where the i-th element represents the color of the i-th vertex.

    """

    n = len(adjacency_matrix)

    colors = [-1] * n

    

    def is_safe(vertex, color):

        for neighbor in np.where(adjacency_matrix[vertex] == 1)[0]:

            if colors[neighbor] == color:

                return False

        return True

    

    def backtrack(vertex):

        if vertex == n:

            return True

        for color in range(n):

            if is_safe(vertex, color):

                colors[vertex] = color

                if backtrack(vertex + 1):

                    return True

                colors[vertex] = -1

        return False

    

    backtrack(0)

    return colors

The algorithm developed by MEoH for the GCP.

Figure 7: The MEoH-evolved algorithm for the GCP.
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def graph_coloring_v1(adj_matrix):

    n = adj_matrix.shape[0]

    colors = [-1] * n

    degree = np.sum(adj_matrix, axis=1)

    nodes = np.argsort(-degree)

    for node in nodes:

        available_colors = [True] * n

        for neighbor in range(n):

            if adj_matrix[node][neighbor] == 1 and colors[neighbor] != -1:

                available_colors[colors[neighbor]] = False

        for color in range(n):

            if available_colors[color]:

                colors[node] = color

                break

    return colors

The algorithm developed by Funsearch for the GCP.

def graph_coloring_v1(adj_matrix):

    n = adj_matrix.shape[0]

    colors = [-1] * n

    degree = np.sum(adj_matrix, axis=1)

    nodes = np.argsort(-degree)

    for node in nodes:

        available_colors = [True] * n

        for neighbor in range(n):

            if adj_matrix[node][neighbor] == 1 and colors[neighbor] != -1:

                available_colors[colors[neighbor]] = False

        for color in range(n):

            if available_colors[color]:

                colors[node] = color

                break

    return colors

The algorithm developed by Funsearch for the GCP.

Figure 8: The Funsearch-evolved algorithm for the GCP.
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def tsp_04(distances):

    import random

    import math

    n = len(distances)

    unvisited = set(range(1, n))

    current = 0

    route = [0]

    while unvisited:

        next_city = min(unvisited, key=lambda x: distances[current][x])

        route.append(next_city)

        unvisited.remove(next_city)

        current = next_city

    

    temp = 100.0

    cooling = 0.95

    iterations = 30

    

    current_cost = calculate_cost(route, distances)

    best_route = route[:]

    best_cost = current_cost

    

    while temp > 0.1:

        for _ in range(iterations):

            i, j = random.sample(range(1, n), 2)

            new_route = route[:]

            new_route[i], new_route[j] = new_route[j], new_route[i]

            

            new_cost = calculate_cost(new_route, distances)

            

            if new_cost < current_cost or random.random() < math.exp((current_cost - 

new_cost) / temp):

                route = new_route

                current_cost = new_cost

                if new_cost < best_cost:

                    best_route = new_route[:]

                    best_cost = new_cost

                    

        temp *= cooling

    best_route = two_opt(best_route, distances)

    

    return best_route

The algorithm developed by AutoMOEA for the TSP.

def tsp_04(distances):

    import random

    import math

    n = len(distances)

    unvisited = set(range(1, n))

    current = 0

    route = [0]

    while unvisited:

        next_city = min(unvisited, key=lambda x: distances[current][x])

        route.append(next_city)

        unvisited.remove(next_city)

        current = next_city

    

    temp = 100.0

    cooling = 0.95

    iterations = 30

    

    current_cost = calculate_cost(route, distances)

    best_route = route[:]

    best_cost = current_cost

    

    while temp > 0.1:

        for _ in range(iterations):

            i, j = random.sample(range(1, n), 2)

            new_route = route[:]

            new_route[i], new_route[j] = new_route[j], new_route[i]

            

            new_cost = calculate_cost(new_route, distances)

            

            if new_cost < current_cost or random.random() < math.exp((current_cost - 

new_cost) / temp):

                route = new_route

                current_cost = new_cost

                if new_cost < best_cost:

                    best_route = new_route[:]

                    best_cost = new_cost

                    

        temp *= cooling

    best_route = two_opt(best_route, distances)

    

    return best_route

The algorithm developed by AutoMOEA for the TSP.

Figure 9: The AutoMOEA-evolved algorithm for the TSP.
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def tsp_02(distances: np.ndarray) -> List[int]:

    from typing import List

    import numpy as np

    import random

    

    n = len(distances)

    path = list(range(n))

    for i in range(n-1):

        min_j = min(range(i+1, n), 

                   key=lambda j: distances[path[i]][path[j]])

        path[i+1], path[min_j] = path[min_j], path[i+1]

    

    pop_size = 20 

    generations = 100  

    population = [path[:]]

    

    for _ in range(pop_size - 1):

        new_path = path[:]

        i, j = random.sample(range(1, n), 2)

        new_path[i], new_path[j] = new_path[j], new_path[i]

        population.append(new_path)

    

    for _ in range(generations):

        population.sort(key=lambda x: sum(distances[x[i]][x[i+1]] 

                                        for i in range(n-1)) + distances[x[-1]][x[0]])

        population = population[:pop_size//2]

        

        while len(population) < pop_size:

            p1, p2 = random.sample(population, 2)

            cut = random.randint(1, n-2)

            child = p1[:cut]

            child.extend(x for x in p2 if x not in child)

            population.append(child)

            

    return min(population, 

              key=lambda x: sum(distances[x[i]][x[i+1]] 

                               for i in range(n-1)) + distances[x[-1]][x[0]])

The algorithm developed by EoH for the TSP.

def tsp_02(distances: np.ndarray) -> List[int]:

    from typing import List

    import numpy as np

    import random

    

    n = len(distances)

    path = list(range(n))

    for i in range(n-1):

        min_j = min(range(i+1, n), 

                   key=lambda j: distances[path[i]][path[j]])

        path[i+1], path[min_j] = path[min_j], path[i+1]

    

    pop_size = 20 

    generations = 100  

    population = [path[:]]

    

    for _ in range(pop_size - 1):

        new_path = path[:]

        i, j = random.sample(range(1, n), 2)

        new_path[i], new_path[j] = new_path[j], new_path[i]

        population.append(new_path)

    

    for _ in range(generations):

        population.sort(key=lambda x: sum(distances[x[i]][x[i+1]] 

                                        for i in range(n-1)) + distances[x[-1]][x[0]])

        population = population[:pop_size//2]

        

        while len(population) < pop_size:

            p1, p2 = random.sample(population, 2)

            cut = random.randint(1, n-2)

            child = p1[:cut]

            child.extend(x for x in p2 if x not in child)

            population.append(child)

            

    return min(population, 

              key=lambda x: sum(distances[x[i]][x[i+1]] 

                               for i in range(n-1)) + distances[x[-1]][x[0]])

The algorithm developed by EoH for the TSP.

Figure 10: The EoH-evolved algorithm for the TSP.
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def tsp_06(distances: np.ndarray) -> List[int]:

    import numpy as np

    def generate_neighborhood_matrix(distance_matrix):

        n = len(distance_matrix)

        neighborhood_matrix = np.zeros((n, n), dtype=int)

        for i in range(n):

            sorted_indices = np.argsort(distance_matrix[i])

            neighborhood_matrix[i] = sorted_indices

        return neighborhood_matrix

    def select_next_node(current_node: int, destination_node: int, unvisited_nodes: 

np.ndarray, distance_matrix: np.ndarray) -> int:

        current_dist = distance_matrix[current_node, unvisited_nodes]

        dest_dist = distance_matrix[destination_node, unvisited_nodes]

        

        # Normalize distances

        norm_current = current_dist / np.max(current_dist)

        norm_dest = dest_dist / np.max(dest_dist)

        

        # Weighted score (higher weight for proximity to current node)

        score = 0.7 * norm_current + 0.3 * (1 - norm_dest)

        

        return unvisited_nodes[np.argmin(score)]

    n = len(distances)

    neighbor_matrix = generate_neighborhood_matrix(distances)

    route = np.zeros(n, dtype=int)

    current_node = 0

    destination_node = 0

    for i in range(1, n - 1):

        near_nodes = neighbor_matrix[current_node][1:]

        mask = ~np.isin(near_nodes, route[:i])

        unvisited_near_nodes = near_nodes[mask]

        next_node = select_next_node(current_node, destination_node, 

unvisited_near_nodes, distances)

        current_node = next_node

        route[i] = current_node

    mask = ~np.isin(np.arange(n), route[:n - 1])

    last_node = np.arange(n)[mask]

    route[n - 1] = last_node[0]

    return route.tolist()

The algorithm developed by MEoH for the TSP.

def tsp_06(distances: np.ndarray) -> List[int]:

    import numpy as np

    def generate_neighborhood_matrix(distance_matrix):

        n = len(distance_matrix)

        neighborhood_matrix = np.zeros((n, n), dtype=int)

        for i in range(n):

            sorted_indices = np.argsort(distance_matrix[i])

            neighborhood_matrix[i] = sorted_indices

        return neighborhood_matrix

    def select_next_node(current_node: int, destination_node: int, unvisited_nodes: 

np.ndarray, distance_matrix: np.ndarray) -> int:

        current_dist = distance_matrix[current_node, unvisited_nodes]

        dest_dist = distance_matrix[destination_node, unvisited_nodes]

        

        # Normalize distances

        norm_current = current_dist / np.max(current_dist)

        norm_dest = dest_dist / np.max(dest_dist)

        

        # Weighted score (higher weight for proximity to current node)

        score = 0.7 * norm_current + 0.3 * (1 - norm_dest)

        

        return unvisited_nodes[np.argmin(score)]

    n = len(distances)

    neighbor_matrix = generate_neighborhood_matrix(distances)

    route = np.zeros(n, dtype=int)

    current_node = 0

    destination_node = 0

    for i in range(1, n - 1):

        near_nodes = neighbor_matrix[current_node][1:]

        mask = ~np.isin(near_nodes, route[:i])

        unvisited_near_nodes = near_nodes[mask]

        next_node = select_next_node(current_node, destination_node, 

unvisited_near_nodes, distances)

        current_node = next_node

        route[i] = current_node

    mask = ~np.isin(np.arange(n), route[:n - 1])

    last_node = np.arange(n)[mask]

    route[n - 1] = last_node[0]

    return route.tolist()

The algorithm developed by MEoH for the TSP.

Figure 11: The MEoH-evolved algorithm for the TSP.
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