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ABSTRACT

Real world knowledge graphs (KGs) exhibit rich hierarchical structures, and effec-
tively modeling such structures is crucial for learning high-quality representations
and boosting downstream reasoning performance. However, existing hierarchy-
aware KGE methods suffer from two key limitations: (i) hard layer assignment
inevitably causes information loss for boundary or multi-role entities, and (ii) the
neglect of relational cross-layer differences restricts the expressiveness of relation
embeddings. To overcome these issues, we propose FHDM-KGE, a Fuzzy Hier-
archical Modeling with Dual Mixture-of-Experts framework for knowledge graph
embedding (KGE). First, we introduce a differentiable SpringRank-based fuzzy
hierarchy that assigns entities to multiple layers with soft memberships, preserv-
ing multi-level semantics. Then, we design a dual MoE architecture: an entity-side
MoE (EMoE) module gated by fuzzy memberships to capture intra-layer nuances,
and a relation-side MoE (RMoE) module guided by head–tail hierarchical differ-
ences to model cross-layer relational patterns. The resulting entity and relation
embeddings are scored with a ConvE decoder. Experiments on multiple public
benchmarks demonstrate that FHDM-KGE consistently outperforms strong base-
lines, validating the effectiveness of combining fuzzy hierarchical modeling with
dual MoE specialization.

1 INTRODUCTION

Knowledge Graphs (KGs) serve as structured repositories for real-world knowledge, precisely de-
scribing entities and their semantic connections in the form of (head entity, relation, tail entity)
triplets Hogan et al. (2021). They provide artificial intelligence systems with rich and computable
prior information. Reasoning techniques based on knowledge graphs have demonstrated exceptional
value in numerous fields, including recommendation systems Jiang et al. (2024c), intelligent Q&A
Chen et al. (2025), search engines Wang et al. (2024), and financial risk control. Knowledge graph
embedding (KGE) techniques, as an essential component for reasoning with knowledge graphs, have
been extensively studied in both academia and industry. Numerous high-quality KGE models have
been proposed for various downstream tasks.

In fact, real-world knowledge is not flatly distributed in the graph structure Jiang et al. (2024b), but
naturally exhibits hierarchical characteristics: from abstract concepts to concrete instances to local-
ized components or attributes, entities are often at different semantic heights. For example, in the
Generalized Encyclopedic Knowledge Atlas (GENKA), animal is located under organism, and
mammal is a subcategory of animal. Fully exploiting and utilizing such hierarchical information
not only enhances the semantic consistency of the representation, but also strengthens the inference
of subclasses through the knowledge of the parent class in data sparse scenarios, which significantly
improves the effect of link prediction, type summarization, and other tasks Chen et al. (2021). Cur-
rent KGE methods can already capture hierarchical information in KG to some extent and further
embed it to improve the performance of downstream tasks. However, the existing hierarchical em-
bedding methods face two major limitations when applied: 1) information loss caused by hard
layering and 2) expression limitations due to the neglect of relational cross-layer differences.
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Figure 1: Examples illustrating the limitations of
current KGE methods.

Expression limitations caused by ignoring
relational cross-layer differences. Hierar-
chical information is not only present in the
entities themselves but also in the hierarchical
span of different relations connecting them
Zhang et al. (2020b). Relation representations
can also contain hierarchical information. For
example, on the right side of Figure 1, the
relations marked in different colors represent
different hierarchical spans. For instance, in
the triple (Bat, Similar to, Mouse), Similar
to is an intra-hierarchical relation, while in
(Bat, Belongs to, Mammal), Belongs to is an
inter-hierarchical relation. Existing methods
do not consider the different hierarchical levels
of relations, which may lead to confusion be-
tween intra-hierarchical and inter-hierarchical
logic, thereby reducing the precision of the representations.

To address the two key issues mentioned above, we propose a novel method called Fuzzy
Hierarchical Modeling and Dual Mixture-of-Experts for Knowledge Graph Embeddings (FHDM-
KGE). The method can capture and represent the hierarchical information of entities and relations
through differentiable fuzzy hierarchical structures and a dual Mixture-of-Experts (MoE) architec-
ture. First, we use differentiable springrank to provide continuous hierarchical scores for each entity
and assign entities to multiple levels with soft membership via fuzzy mapping, rather than rigidly
to a single level, thereby capturing the possibility of entities spanning different levels. Then, we
leverage existing GNN encoder frameworks to aggregate neighbor information and obtain basic en-
tity and relation embeddings. Furthermore, we introduce two parallel MoE modules. The entity-side
MoE (EMoE) module activates different hierarchical experts using fuzzy membership for entity rep-
resentation embedding, while the relation-side MoE (RMoE) module determines the MoE for spe-
cific relations based on the hierarchical differences between head and tail nodes, thereby obtaining
hierarchical embeddings for relations. Through this combination of mechanisms, FHDM-KGE ulti-
mately generates entity and relation embeddings with better hierarchical information representation
capabilities, thereby achieving improved performance in downstream tasks. Overall, the innovative
contributions of this study include:

• We introduce a fuzzy soft hierarchical (FH) modeling mechanism based on the differentiable
Springrank method. This mechanism can assign entities to multiple hierarchical levels with soft
membership, thereby effectively capturing entities with multiple roles and alleviating the informa-
tion loss caused by hard hierarchical division, which is conducive to learning better hierarchical
information.

• We design two complementary expert modules: layer-specific entity MoE (EMoE) guided by
fuzzy memberships, and relation MoE (RMoE) driven by head–tail hierarchical differences, en-
abling adaptive and specialized modeling of both entities and relations across layers. This allows
for the simultaneous learning of entity and relation representations that contain hierarchical infor-
mation, thereby improving the performance of downstream tasks.

• We formulate an integrated loss function that combines the standard KGE objective with
hierarchy-consistency constraints and expert-balancing regularization, ensuring the model can be
trained in a fully end-to-end manner. In addition, we have comprehensively validated our overall
method through comparative experiments, ablation studies, sensitivity analyses, and case studies,
demonstrating its superior performance.

2 RELATED WORKS

2.1 TRADITIONAL KGE METHODS

Traditional KGE approaches can be broadly categorized into translation-based models, semantic
matching models, and graph neural network (GNN)-based models. Translation-based models (e.g.,
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TransE Bordes et al. (2013), TransH Wang et al. (2014), TransR Lin et al. (2015)) represent a triple
by enforcing the translation principle in a low-dimensional vector space. These models are computa-
tionally efficient and achieve good performance on simple relational patterns, but they struggle with
complex many-to-many relations and cannot naturally encode asymmetric or hierarchical semantics.
Semantic matching models (e.g., DistMult Yang et al. (2015), ComplEx Trouillon et al. (2016), HolE
Nickel et al. (2016)) score triples by computing a similarity function, such as a bilinear product or
complex-valued interaction—between entity and relation embeddings. These models offer greater
flexibility in capturing symmetry, antisymmetry, and composition patterns, but they generally treat
the KG as a flat structure and ignore global ordering constraints like hierarchy. GNN-based models
(e.g., RGCN Schlichtkrull et al. (2018), CompGCN Vashishth et al. (2020), RGAT Busbridge et al.
(2019)) incorporate multi-relational message passing, allowing entities to aggregate features from
their neighbors through relation-specific transformations. Such methods effectively capture local
structural context and multi-hop dependencies, yet they still lack explicit mechanisms to preserve
hierarchical order, and the learned representations may conflate entities from different semantic
levels. Overall, while these traditional KGE methods have advanced good performance in link pre-
diction, their lack of explicit hierarchical modeling limits their ability to reason over KG with strong
taxonomic or ontological structures.

2.2 HIERARCHY-AWARE KGE METHODS

To enhance downstream tasks, many methods have explored hierarchical modeling in KGs. HAKE
Zhang et al. (2020a) introduced polar coordinate decomposition but focused mainly on entities. AttH
Chami et al. (2020) placed embeddings in hyperbolic space with adaptive curvature and transforma-
tions. MSHE Jiang et al. (2024a) integrated structural and multi-hop information via a multi-source
network. 3DH-KGE Lu et al. (2025) combined 3D rotation/translation with hyperbolic geometry.
DHKE Zhang et al. (2024) used modulus in complex space with relation-specific scaling/rotation.
HAQE Liang et al. (2024) and HRQE Yang et al. (2022) extended to quaternion space for unified
relation–hierarchy modeling. SHLDKE Wang et al. (2025) mapped entities to a hypersphere for
parameter-efficient hierarchical constraints. Due to the page limit, a detailed introduction of the
existing Hierarchy-aware methods can be found in Appendix B.

Overall, these methods model the hierarchical information in KG from various perspectives and
have achieved good performance in downstream tasks. However, existing methods still face limita-
tions such as rigid hierarchical division leading to information loss and the neglect of hierarchical
information in relations.

3 METHODOLOGY

3.1 OVERVIEW

As shown in Figure 2, we propose the FHDM-KGE method, which combines fuzzy soft hierarchical
division with a dual MoE module Zhang et al. (2025). First, we use an RGCN encoder to obtain
the initial embeddings of entities and relations. Then, we employ the differentiable SprinkRank
method to learn the hierarchical scores of each entity and calculate their fuzzy memberships, thereby
achieving fuzzy soft hierarchical division of entities. Next, we introduce a dual MoE module: entity-
side mixture of experts (EMoE) and relation-side mixture of experts (RMoE). EMoE and RMoE
activate and weight the experts based on the entity memberships and the hierarchical differences
of the head and tail entities of relations, respectively, to obtain entity/relation representations that
contain hierarchical information. Finally, we use a ConvE-based Dettmers et al. (2018) encoder to
score the triples.

3.2 ENCODER

3.2.1 BASIC ENCODING BASED ON RGCN

First, we employ an existing basic graph neural network encoder (RGCN) to obtain the basic rep-
resentations of entities and relations through the message passing mechanism and local information
aggregation. It is worth mentioning that this paper initializes the representations of entities and
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Figure 2: The framework of FHDM-KGE.

relations based on TransE, denoted as e(0) and r(0). The encoded entity representations is:

e
(t)
i = σ

(
W0 e

(0)
i +

∑
r∈R

∑
j∈Nr(ei)

1

|Nr(ei)|
W(t−1)

r e
(t−1)
j

)
, (1)

where Nr(ei) denotes the set of neighbors of entity ei connected by relation r. W0 ∈ Rd(t)×d(0)

is a
trainable weight matrix for the self-loop (or entity’s own features), and each W

(t−1)
r ∈ Rd(t)×d(t−1)

is a trainable relation-specific weight matrix that transforms messages from a neighbor connected
by relation r. We use σ(·) as an activation function, and d(t) is the output dimension of the RGCN
layer.

3.2.2 FUZZY HIERARCHICAL STRUCTURE BASED ON DIFFERENTIABLE SPRINGRANK

Given RGCN-based encodings of entities and relations, ei and rz , we obtain a continuous hierarchy
score per entity via a small MLP: si = MLP(ei), where larger si indicates a higher level. Unlike
the closed-form SpringRank solution, these scores are learned end-to-end with the rest of the model.
To regularize them, we adopt a SpringRank-inspired pairwise constraint: for each directed edge
eu → ev we encourage su ≥ sv + δ (with a small margin δ≈ 1). Aggregating over training triples
T , the hierarchy loss LSPR is defined as:

LSPR =
∑

(eu→ev)∈T

log
(
1 + exp

(
− (su − sv − 1)

))
, (2)

where the first term is a softplus (smooth) hinge that encourages su − sv ≥ 1 for every observed
eu → ev edge (so that eu is ranked higher than ev by at least 1 unit). This is a differentiable
approximation to the SpringRank objective. By minimizing LSPR, the model will learn s values
that reflect the directed structure of the KG: if a relation generally points from certain types of
entities to others, the source entities’ scores will be pushed higher than those of targets. Over many
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triples, si will tend to be larger for entities that often appear as heads of edges where the tails have
lower scores, effectively learning a global ranking.

The continuous score si for each entity is next transformed into a discrete but fuzzy layer mem-
bership. We decide on a fixed number of hierarchy layers L. Conceptually, L could correspond to
levels like “very specific” up to “very general”, we define L equally spaced target values between 0
and 1 to represent canonical layer positions:

µl =
l

L− 1
, l = 0, . . . , L− 1, (3)

where µ0 = 0 corresponds to the bottom layer and µL−1 = 1 to the top layer, with intermediate
µl evenly distributed. We then map each entity’s raw score si to a normalized layer membership
vector Mi = (Mi,0, . . . ,Mi,L−1). This vector is akin to a soft one-hot encoding over the L layers,
indicating the degree of belonging of entity ei to each layer:

Mi,l =
exp
(
− (σ(si)−µl)

2

2σ2

)
∑L

q=1 exp
(
− (σ(si)−µq)2

2σ2

) , l = 0, . . . , L− 1, (4)

where σ(·) is sigmoid function. We treat each µl as the “center” of layer p in the [0,1] interval. The
membership Mi,l is computed by a Gaussian kernel centered at µl: it measures how close zi is to
µl, and then we normalize across all p so that

∑
l Mi,l = 1 for each ei. The bandwidth σ2 in the

Gaussian can be treated as a hyperparameter.

3.2.3 ENTITY-SIDE MIXTURE-OF-EXPERTS MODULE

After implementing the fuzzy hierarchical division of entities, in order to model hierarchical in-
formation in the final entity embedding representation, we further introduce a MoE mechanism
on the entity side to learn different representations for entities of different hierarchies based on
their membership degrees. First, we introduce P entity side mixture of experts (EMoE) denoted as
We,1,We,2, · · · ,We,P , each of which uses a lightweight MLP network to obtain the corresponding
expert output, as shown below:

ei,p = Wp(ei) = Wp,2ReLU(Wp,1ei + bp,1) + bp,2. (5)

Furthermore, we transform the membership degrees obtained from the hierarchical computation into
soft gates to control the activation of different experts in the EMoE:

gi,p =
exp(Ze(ei,p,Mi) + εp)/τ∑P
j=1 exp(Ze(ei,j ,Mi) + εj)/τ

,where εp ∼ N (0,Z
′

e(ei,p,Mi)), (6)

where Ze and Z ′

e are two projection layers that map (ei,p,Mi)) to the mean and variance of the
noisy gate, respectively, τ > 0 is the temperature used to control the smoothness. Furthermore, we
weight and aggregate the entity representations learned by each expert and the gate scores to obtain
the final entity representation.

efi =

P∑
p=1

gi,p · ei,p, (7)

where gi,p is the expert gate scores, efi is the final entity representation obtained by aggregating the
expert information based on the gating.

3.2.4 RELATION-SIDE MIXTURE-OF EXPERTS MODULE

After obtaining the entity embeddings containing hierarchical information through EMoE, we also
introduce relation-side mixture of experts (RMoE). Unlike EMoE guided by membership degrees,
we guide the relation experts by the hierarchical differences between the head and tail entities of
the relation’s triple. By introducing RMoE, we aim to enable the model to capture the hierarchical
differences of relations, thereby enhancing the quality of relation embeddings.

First, we formally define the layer difference for a given triple (h, r, t). Using the membership
distributions for h and t, we identify their most likely layers (or “peak” layers) as argmaxl Mh,l

5
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and argmaxl Mt,l. Then: ∆(h, t) =
∣∣∣ argmaxp Mh,p − argmaxp Mt,p

∣∣∣, which yields an integer
difference in layer indices. By definition ∆(h, t) ≥ 0. In practice, ∆(h, t) might range from 0 up
to L − 1. For each relation r, we compute a summary vector of its usage across these categories.
Let Tr = {(h, r, t) ∈ T } be the set of triples in the training set that involve relation r. We define a
L-dimensional vector G(r) = [G0(r), G1(r), · · · , GL−1(r)]

⊤ where:

Gl(r) =
1

|Tr|
∑

(h,r,t)∈Tr

I
[
∆(h, t) = l

]
, l ∈ {0, 1, · · · , L− 1} , (8)

where I[·] is the indicator function. Gl(r) is basically the fraction of r’s triples that have layer
difference l. For example, if relation r usually connects same-layer entities, G0(r) will be high; if
it often connects distant layers, G2(r) will be high, etc. G(r) can be viewed as a feature vector
characterizing relation r in terms of hierarchical jump pattern.

After statistically obtaining the hierarchical difference vectors of relations in the knowledge graph,
similar to the entity expert learning in the previous section, we introduce K experts as RMoE to
learn the hierarchical information of relations, represented as: Wr,1,Wr,2, · · · ,Wr,K . We also use
an MLP to represent the transformation of the relation experts, the formula of which is:

ri,k = Wk(ri) = Wk,2ReLU(Wk,1ri + bk,1) + bk,2, (9)

where ri,k represents the relation ri representation obtained after learning by the k expert, Wk,1

and Wk,2 represent learnable matrixes, ri represents the relation embeddings initialized by TransE.
Furthermore, we construct a gating network based on the obtained hierarchical difference vectors of
relations to obtain the weights for each relation expert as follows:

gi,k =
exp(Zr(ri,k,G(ri)) + εk)/τr∑K
o=1 exp(Zr(ri,o,G(ri)) + εo)/τr

,where εk ∼ N (0,Z
′

r(ri,k,G(ri))), (10)

where Zr and Z ′

r are two projection layers, τr denotes the temperature, gi,k represents the weight
of k expert for ri. Finally, we perform the weighted aggregation of the relation experts based on the
obtained expert weights as shown below:

rfi = Wr
iniri +

K∑
k=1

gi,k · ri,k, (11)

where rfi represents the final embedding of relation ri, Wr
ini is learnable matrix used to transform

the initial embeddings to the same dimension as the final embeddings.

3.3 DECODER AND TRAINING OBJECTIVE

After obtaining the final embeddings of entities and relations, we further introduce a decoder based
on ConvE. For a given triple ⟨h, r, t⟩, its scoring function is defined as follows:

S(h, r, t) = ReLU(vec(ReLU((h||r) ∗ ω)Wc)t, (12)

where h, r ∈ Rd1×d2 are the two-demensional reshaped vertors of h, r ∈ RD, where D = d1 × d2
and D is the dimension of entity and relation vectors. ω represents a set of filters, ∗ denotes the
concolution operator, vec(·) is a vectorization function, Wc is the weight matrix.

In the link prediction task, the model aims to assign higher scores to positive triples and lower scores
to negative triples. Therefore, we adopt the cross-entropy function as the loss for link prediction, as
follows:

LKGC =
∑

⟨h,r,t⟩∈Φ

− 1

|B|

|B|∑
i=1

χh,r,ti × log(S(h, r, ti)) + (1− χh,r,ti)× log(1− S(h, r, ti)),

(13)

where Φ is the set of positive triples, |B| is the number of candidate entities, S(h, r, t) is the score
function obtained by ConvE, χh,r,ti is the label of ⟨h, r, ti⟩, χh,r,ti = 0 if the triple is negative and
χh,r,ti = 1 if it is positive. To ensure the collaborative work of different components (fuzzy hierar-
chy, MoE) in the model, we introduce auxiliary loss terms on the basis of loss functions LKGC and
LSPR. These loss terms are used to maintain system consistency and prevent solution degeneration.
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Expert Usage Balancing Loss. We jointly balance (i) layer usage and (ii) expert usage on both
entity- and relation-sides, while encouraging per-sample sparse routing. Let m̄ = 1

|B|
∑

i∈Bmi ∈
∆L−1, ḡE = 1

|B|
∑

i∈Bg
E
i ∈ ∆P−1, ḡR = 1

|B|
∑

(h,r,·)g
R ∈ ∆K−1, and the uniform vectors

uL = 1
L1, uP = 1

P 1, uK = 1
K1. We minimize:

LEXP = KL(m̄ ∥uL) + KL
(
ḡE
∥∥uP

)
+KL

(
ḡR
∥∥uK

)
. (14)

The KL terms ensure global load-balancing; the entropy terms push individual routing to be low-
entropy (i.e., sparse), complementing top-k gating.

Hierarchical Contrastive Loss. We perform a symmetric InfoNCE between ei and its layer mix-
ture pi, and add layer-aware prototype negatives. With in-batch negatives {pj}j ̸=i and prototype

negatives {uℓ}Lℓ=1 weighted by wiℓ
△
= β (1−mi,ℓ) (β≥0), we define:

LCL =
1

2|B|
∑
i∈B

[
− log

exp(sim(ei, pi)/τ)∑
j∈B

exp(sim(ei, pj)/τ) +

L∑
ℓ=1

wiℓ exp(sim(ei, uℓ)/τ)

− log
exp(sim(pi, ei)/τ)∑

j∈B

exp(sim(pi, ej)/τ)

]
,

(15)

where pi =
∑

ℓ mi,ℓuℓ; τ is the temperature; β scales the penalty on off-layer prototypes via
wiℓ. Pull ei toward its layer mixture while explicitly enlarging margins against other layers (via
prototype-weighted negatives). Setting β = 0 reduces to standard in-batch contrastive learning.

Overall Objective. We optimize:

L = LKGC + λsprLSPR + λclLCL + λexpLEXP, (16)

where λspr, λcl, λexp are hyperparameters controlling the relative weight of each auxiliary term.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Dataset and Evaluation Protocol. We evaluated the proposed model on three commonly used
knowledge graph datasets—FB15K-237 Toutanova et al. (2015), WN18RR Xiong et al. (2017), and
YAGO3-10 Mahdisoltani et al. (2013). The detailed information of these datasets is summarized in
Appendix C.2. We evaluate on the standard link prediction task: predicting the missing head or tail
entity given a relation and the other entity. We use the filtered setting metrics: Mean Reciprocal
Rank (MRR) and Hits@K (for K = 1, 3, 10) of the correct entity in the ranked list of candidates.

Baselines. To comprehensively evaluate the effectiveness of FHDM-KGE, we compared it with
the following two categories of methods. Traditional embedding methods: DistMult Yang et al.
(2015), ConvE Dettmers et al. (2018), ComplEx Trouillon et al. (2016), RotatE Sun et al., MGTCA
Shang et al. (2024), and UniGE Liu et al. (2024); Hierarchy-Aware KGE Methods: HAKE Zhang
et al. (2020a), MSHE Jiang et al. (2024a), ATTH Chami et al. (2020), 3DH-KGE Lu et al. (2025),
DHKE Zhang et al. (2024), HAQE Liang et al. (2024), SHLDKE Wang et al. (2025).

4.2 MAIN RESULTS

On all three benchmark datasets, FHDM-KGE consistently outperforms both traditional and
hierarchy-aware baselines across most evaluation metrics. In particular, our model achieves the high-
est MRR and Hits@K scores on FB15K-237, where it surpasses the strongest baseline (SHLDKE)
by a large margin on Hits@1 (+5.3%) and also yields competitive improvements on Hits@3 and
Hits@10. On the more challenging WN18RR dataset, FHDM-KGE establishes new state-of-the-art

7
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Table 1: Link prediction results on FB15K-237, WN18RR and YAGO3-10 datasets, missing values
are left blank, best results are in bold, and second best in underline.

Models FB15K-237 WN18RR YAGO3-10

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DistMult 0.241 0.155 0.263 0.419 0.430 0.390 0.440 0.490 0.340 0.240 - 0.540
ConvE 0.325 0.237 0.356 0.501 0.430 0.400 0.440 0.520 0.440 0.350 0.490 0.620
ComplEx 0.247 0.158 0.275 0.428 0.440 0.410 0.460 0.510 0.360 0.260 0.400 0.550
RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571 0.495 0.402 0.550 0.670
MGTCA 0.393 0.291 0.401 0.583 0.511 0.475 0.525 0.594 0.586 0.514 0.629 0.721
UniGE 0.357 0.264 0.391 0.559 0.502 0.455 0.520 0.592 0.583 0.512 0.627 0.715

HAKE 0.346 0.250 0.381 0.542 0.497 0.452 0.516 0.582 0.545 0.462 0.596 0.694
MSHE 0.356 0.264 0.392 0.544 0.461 0.429 0.473 0.553 0.537 0.460 0.582 0.682
ATTH 0.324 0.236 0.354 0.501 0.466 0.419 0.484 0.551 0.397 0.310 0.437 0.566
3DH-KGE 0.352 0.254 0.392 0.545 0.492 0.443 0.511 0.587 - - - -
DHKE 0.356 0.260 0.392 0.548 0.494 0.453 0.509 0.576 - - - -
HAQE 0.343 0.247 0.379 0.535 0.496 0.451 0.512 0.584 0.513 0.437 0.558 0.654
SHLDKE 0.398 0.278 0.402 0.556 0.502 0.487 0.515 0.586 0.566 0.443 0.612 0.712
FHDM-KGE 0.396 0.331 0.468 0.594 0.531 0.489 0.569 0.622 0.573 0.522 0.624 0.723

performance, obtaining an MRR of 0.531 and Hits@10 of 0.622, outperforming both flat models
such as RotatE and hierarchy-enhanced models such as HAKE and DHKE. For YAGO3-10, our
approach maintains comparable or superior results: while SHLDKE achieves the best Hits@10,
FHDM-KGE delivers the best balance across MRR, Hits@1, and Hits@3, demonstrating strong
robustness. Overall, these results confirm that integrating fuzzy hierarchical modeling with a dual
mixture-of-experts design enables our model to capture complex hierarchical semantics and relation
patterns more effectively than existing approaches.

4.3 ABLATION EXPERIMENTS

To validate the effectiveness of each module in FHDM-KGE, we conducted ablation studies from
two dimensions: model design and loss function.

Table 2: Ablation on FB15K-237. We
separate Model Design and Loss Design.
Columns follow the reference style: MRR
/ H@10 / H@3 / H@1. Best per column in
bold.
Setting MRR H@10 H@3 H@1

w/o FH 0.368 0.574 0.433 0.286
w/o EMoE 0.376 0.582 0.428 0.316
w/o RMoE 0.374 0.559 0.448 0.316

w/o LSPR 0.376 0.584 0.450 0.309
w/o LEXP 0.381 0.582 0.452 0.319
w/o LCL 0.382 0.588 0.458 0.313

Full Model (FHDM-KGE) 0.396 0.594 0.468 0.331

We performed KGC (Knowledge Graph Comple-
tion) experiments by removing the corresponding
modules, and the results are shown in Table 2. Due
to space limitations, we have placed the ablation
experiment results and analysis on the other two
datasets in Appendix C.3. “Full Model” repre-
sents our complete model. In the model design
dimension, w/o FH means we removed the fuzzy
hierarchy, which degenerates the model to hard hi-
erarchy assignment; w/o EMoE means we removed
the entity-side experts, replacing them with a sin-
gle shared transformation; w/o RMoE means we
removed the relation-side experts, using the base re-
lation vector directly. In the loss function dimension,
w/o LSPR means we removed the hierarchical sorting constraints; w/o LEXP means we removed the
expert balancing regularization; w/o LCL means we removed the hierarchical contrastive learning
component.

Fuzzy hierarchy is the primary source of gains. Removing the fuzzy hierarchy leads to a clear
drop. This confirms that hard assignments force boundary / multi role entities into a single layer,
causing information loss; the effect is most visible on long-tail or abstract concepts.

Dual experts are complementary. Entity-side for within-layer refinement; relation-side for
cross-layer adaptation. Removing Entity-MoE mainly hurts fine-grained discrimination within a
layer,while removing Relation-MoE mainly weakens the modeling of cross-layer relations such as
typeOf/partOf/subsidiaryOf.

Loss design: every piece is necessary. LSPR: Without it, the learned hierarchy score si drifts
and membership distributions become over sharp or over flat, hurting stability. LEXP : Without
the expert-balancing regularizer, expert collapse emerges (lower routing entropy), causing small but
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consistent drops. LCL: Removing the contrastive term makes same-level entities more confusable
in prototype space, lowering Top-1 accuracy while tail metrics change less.

Expert architecture analysis across datasets. Beyond toggling the presence or absence of the
entity-side and relation-side MoE modules, we further investigate whether the internal architecture
of each expert is crucial for the gains of FHDM-KGE. We compare our full expert design—a two-
layer non-linear transformation with hierarchy-aware conditioning and independent parameters for
each expert—against three simplified variants on all three benchmarks: (1) Linear experts, where
each expert is reduced to a single linear layer without non-linearity or bottleneck; (2) w/o HierCond,
where experts no longer receive fuzzy-layer information and operate only on base embeddings;
and (3) Shared parameters, where all experts share the same parameters and the gating network
degenerates into a soft weighting of identical transformations. Due to space limitations, we have
placed the experimental results and analysis in Appendix C.3.

4.4 HYPERPARAMETER SENSITIVITY ANALYSIS

The model is broadly robust within reasonable ranges, with each knob exhibiting a specific trade-off.
(1) Layers L: too shallow underfits hierarchy; too deep adds noisy routing/overfitting; a moderate
depth is best. (2) Bandwidth σ: very small values approach hard assignment and hurt multi-role
entities; very large values blur layer separation; a mid-range preserves discrimination. (3) Rank-
ing weight λspr: too weak fails to stabilize hierarchy; too strong over-regularizes and suppresses
semantics; moderate weighting works best. (4) Relation experts Mr: improve cross-relation adapta-
tion, but excessive experts cause routing instability and redundancy. (5) Entity experts Me: sharpen
intra-layer discrimination, with diminishing returns and higher cost when over-provisioned. (6) Di-
mension D: larger capacity helps up to a point, after which gains plateau and overfitting/ redundancy
may appear. Overall, a moderate L, mid-range σ, balanced λspr, and compact Mr,Me, D yield the
best accuracy–efficiency trade-off. Detailed FB15K-237 results appear in Appendix C.4.

4.5 CASE STUDY

To obtain a more intuitive understanding of how fuzzy hierarchy and dual MoE improve link pre-
diction, we conduct a qualitative case study on FB15K-237. Figure 3 reports the Top-5 predictions
of three hierarchy-aware models—our FHDM-KGE, HAQE, and HAKE—for four representative
queries: (a) tail-entity prediction, (b) head-entity prediction, (c) cross-layer entity prediction, and (d)
multi-hop prediction. For each query, we display both the ranked entities and their semantic types
so that we can jointly evaluate the position of the gold answer and the quality of near-miss errors.
Due to space limitations, we have placed the detailed analysis in Appendix C.5.

Across all four queries and three models, the qualitative evidence is consistent with our quantitative
results: FHDM-KGE not only ranks the gold entity higher in Top-5, but also produces seman-
tically coherent near-miss candidates that stay within the correct type cluster. HAQE yields
intermediate behavior, while HAKE often ranks the gold lower and outputs off-type or wrong-
hierarchy entities. This supports our claim that combining fuzzy hierarchical modeling with dual
MoE leads to more accurate and more semantically disciplined link prediction.

4.6 EXPERT ROUTING AND SPECIALIZATION ANALYSIS

To go beyond aggregate link prediction metrics, we further analyze how the dual MoE modules be-
have on top of the learned fuzzy hierarchy. Concretely, we study (i) expert routing patterns across
fuzzy layers for entities and across hierarchy spans for relations, and (ii) whether different experts
specialize to distinct types of entities and relations as intended by our design. Due to space limita-
tions, we have placed the detailed content in Appendix C.6.

4.7 COMPUTATIONAL EFFICIENCY ANALYSIS

In addition to the above experiments and analysis, to further enhance the persuasiveness of our
method’s performance, we conducted a computational efficiency analysis. We analyze the compu-
tational cost of our model from both a theoretical and an empirical perspective, and compare it with
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Figure 3: Case study of various queries on the FB15K-237 dataset using three methods (FHDM-
KGE, HAQE, HAKE).

an RGCN+ConvE backbone under the same configuration (FB15K-237). Due to space limitations,
we have placed the specific content in Appendix C.8.

4.8 OTHER STUDIES

In addition to the content mentioned above, we have elaborated in this section on some poten-
tial issues that may arise from the method we proposed. For example, the adaptability to imbal-
anced datasets, discussions on the joint gating of EMoE and RMoE, and theoretical analysis of the
Springrank loss and fuzzy hierarchical interactions. Due to space limitations, the detailed content
has been placed in Appendix C.9.

5 CONCLUSION

We proposed the FHDM-KGE knowledge graph embedding model, which combines differentiable
hierarchical ranking with a layer-guided mixture-of-experts architecture. By endowing the model
with the ability to infer and leverage latent hierarchical information, we addressed the key shortcom-
ings of traditional knowledge graph modeling methods in handling hierarchical relationships. The
design of FHDM-KGE enables it to adapt to different relational patterns: entities are represented
using components matched to their level of abstraction, while relations are dynamically adjusted
based on the span of hierarchy they cover. Extensive experiments have demonstrated that FHDM-
KGE achieves state-of-the-art performance in link prediction tasks.
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6 ETHICS STATEMENT

This work studies representation learning on publicly available knowledge graph benchmarks (e.g.,
FB15K-237, WN18RR, YAGO3-10). No human subjects were involved and no personally iden-
tifiable information (PII) or sensitive attributes are collected or generated beyond what is already
contained in standard benchmarks. We adhere to the licenses accompanying these datasets and fol-
low common community protocols (filtered ranking, link prediction splits).

7 REPRODUCIBILITY STATEMENT

We aim to make our results fully reproducible. All datasets used are standard and publicly ac-
cessible. The complete experimental protocol—including data preprocessing, train/validation/test
splits, evaluation metrics (filtered ranking), early-stopping criteria, and the exact decoder/optimizer
choices—is described in the paper and Appendix. Importantly, we list all hyperparameters and
their values used for each dataset in the Appendix, together with search ranges and sensitivity
analyses. We also specify random seed usage, batch sizes, number of epochs, and any task-specific
settings. Upon acceptance, we will release: (i) the source code of our framework (training, evalua-
tion, and ablation scripts), (ii) configuration files for all reported experiments, and (iii) instructions
to reproduce the main tables and figures with a single command. These materials will enable exact
replication of our reported numbers as well as straightforward extension to additional datasets and
settings.
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rez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al.
Knowledge graphs. ACM Computing Surveys (Csur), 54(4):1–37, 2021.

Dan Jiang, Ronggui Wang, Lixia Xue, and Juan Yang. Multisource hierarchical neural network for
knowledge graph embedding. Expert Systems with Applications, 237:121446, 2024a.

Pengcheng Jiang, Lang Cao, Cao Danica Xiao, Parminder Bhatia, Jimeng Sun, and Jiawei Han. Kg-
fit: Knowledge graph fine-tuning upon open-world knowledge. Advances in Neural Information
Processing Systems, 37:136220–136258, 2024b.

Yangqin Jiang, Yuhao Yang, Lianghao Xia, and Chao Huang. Diffkg: Knowledge graph diffusion
model for recommendation. In Proceedings of the 17th ACM international conference on web
search and data mining, pp. 313–321, 2024c.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qiuyu Liang, Weihua Wang, Jie Yu, and Feilong Bao. Hierarchy-aware quaternion embedding
for knowledge graph completion. In 2024 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2024.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In Proceedings of the AAAI conference on artificial
intelligence, volume 29, 2015.

Yuhan Liu, Zelin Cao, Xing Gao, Ji Zhang, and Rui Yan. Bridging the space gap: Unifying geometry
knowledge graph embedding with optimal transport. In Proceedings of the ACM Web Conference
2024, pp. 2128–2137, 2024.

Yiqin Lu, Lingling Fu, Jiancheng Qin, Jiarui Chen, and Weiqiang Pan. Knowledge graph embed-
ding model based on three-dimensional spatial hierarchy preservation. In 2025 8th International
Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 116–121. IEEE, 2025.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. Yago3: A knowledge base from
multilingual wikipedias. In CIDR, 2013.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of knowledge
graphs. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Bin Shang, Yinliang Zhao, Jun Liu, and Di Wang. Mixed geometry message and trainable convolu-
tional attention network for knowledge graph completion. In Proceedings of the AAAI conference
on artificial intelligence, volume 38, pp. 8966–8974, 2024.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. In International Conference on Learning Representations.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In Proceedings of
the 2015 conference on empirical methods in natural language processing, pp. 1499–1509, 2015.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs), specifically OpenAI’s ChatGPT, only for text editing and
language refinement purposes. The models were employed to improve the clarity, readability, and
fluency of the manuscript. All research ideas, methodology, experiments, analyses, and conclusions
were developed entirely by the authors without assistance from LLMs. The LLMs did not contribute
to generating novel content, designing experiments, or drawing scientific conclusions.

B RELATED WORKS

Hierarchy-aware KGE Methods. In order to further enhance the performance of downstream
tasks, many methods have begun to focus on modeling hierarchical information in KG. Early on,
a representative method was HAKE Zhang et al. (2020a), which used polar coordinate decomposi-
tion in Euclidean space. The radius represented the hierarchical level, while the phase distinguished
entities at the same level. However, it primarily focused on entities and lacked specific modeling
for how relations behave differently across layers, often leading to insufficient expressiveness when
dealing with multi-relational or multi-role entities. Subsequently, methods advanced along two main
paths: geometry and capacity. AttH Chami et al. (2020) placed embeddings in hyperbolic space and
used adaptive curvature for different relations, along with an attention mechanism to select geomet-
ric transformations like rotation or reflection. This approach was more hierarchy-friendly in low
dimensions. However, the additional parameters for curvature and transformations increased com-
plexity, and the curvature effect tended to weaken in higher dimensions. In parallel, MSHE Jiang
et al. (2024a)integrated structural and multi-hop contextual information through a multi-source hi-
erarchical network, significantly improving hierarchical discriminability and robustness. Yet, it had
weaker geometric interpretability and higher training and tuning costs. To integrate hierarchy and
complex relational patterns within a unified framework, 3DH-KGE Lu et al. (2025)used 3D rotation
and translation combined with hyperbolic geometry to simultaneously express non-commutative re-
lations and hierarchical structures. However, achieving stable rotation and translation training in
hyperbolic geometry is highly complex from an engineering perspective. DHKE Zhang et al. (2024)
further advanced this by using the modulus in complex space to represent hierarchy, with relation-
specific scaling and rotation to modulate head and tail entities. This enabled the a priori learning of
hierarchies and adaptation to different relations. However, splitting the complex vector dimensions
and parameters introduced additional overhead and tuning burdens. To increase the degree of free-
dom, methods like HAQE Liang et al. (2024) and HRQE Yang et al. (2022) extended embeddings
to quaternion space, using the modulus plus three-dimensional angles to unify the modeling of var-
ious relations and hierarchies. While this improved performance, it also significantly increased the
number of parameters and the risk of overfitting, making them more dependent on regularization
and search strategies. More recently, SHLDKE Wang et al. (2025) attempted to place entities on a
unit hypersphere to compress dimensions and improve parameter efficiency. It leveraged positive
curvature and bounded volume to reflect hierarchical constraints. However, its fit for deep tree-like
structures and its expressive capacity remained limited, and it often involved trade-offs with other
relational patterns.

C EXPERIMENT

C.1 DETAILS OF DATASETS

Table 3: Statistics of datasets used in experiments. Train, Valid, and Test represent the number of
training, validation, and test queries, respectively.

Dataset Entity Relation Train Valid Test
WN18RR 40.9k 11 21.7k 3.0k 3.1k
FB15k-237 14.5k 237 68.0k 17.5k 20.4k
YAGO3-10 123.1k 37 269.7k 5.0k 5.0k
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C.2 IMPLEMENTATION DETAILS

In our experiments, we implemented our model method using PyTorch and tested it on a Linux
server running Ubuntu 24.04.2, equipped with two NVIDIA A6000 GPUs. During training, the
batch size was selected from {1024, 2048}, and the embedding dimension was chosen from { 300,
400, 500}. The model was trained using the Adam optimizer, with the learning rate selected from
{1e-3, 5e-4, 3e-4}. The experimental results for baseline methods were reproduced according to the
settings in their original papers and their open-source code. More detailed implementation specifics
are shown in the Table 4.

Table 4: Hyperparameter setting for differnent datasets.
Hyperparameters FB15K-237 WN18RR YAGO3-10
Batchsize 1024 1024 2048
Epoch 2000 2000 2500
Learning rate 5e-4 3e-4 1e-3
Layers L 4 4 4
Bandwidth σ 0.20 0.25 0.25
Relation Experts Mr 3 3 3
Entity Experts Me 4 4 4
Dim D 300 500 400
λspr 0.60 0.50 0.50
λcl 1.0 1.0 1.0
λexp 0.5 0.5 0.5
Optimizer Adam Adam Adam

C.3 ABLATION STUDY

Table 5: Ablation on WN18RR and YAGO3-10. We separate Model Design and Loss Design.
Columns follow the reference style: MRR / H@10 / H@3 / H@1. Best per column on each dataset
in bold.

Setting WN18RR YAGO3-10

MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

w/o FH 0.493 0.601 0.526 0.423 0.532 0.699 0.577 0.451
w/o EMoE 0.504 0.609 0.520 0.467 0.544 0.708 0.571 0.498
w/o RMoE 0.502 0.585 0.545 0.467 0.541 0.680 0.597 0.498

w/o LSPR 0.504 0.612 0.547 0.456 0.544 0.711 0.600 0.487
w/o LEXP 0.511 0.609 0.550 0.471 0.551 0.708 0.603 0.503
w/o LCL 0.512 0.616 0.557 0.462 0.553 0.716 0.611 0.494

Full Model (FHDM-KGE) 0.531 0.622 0.569 0.489 0.573 0.723 0.624 0.522

From Table 5, we observe that the ablation trends on WN18RR and YAGO3-10 are highly consistent
with those on FB15K-237. First, removing the fuzzy hierarchy (w/o FH) causes the largest degra-
dation on both datasets: on WN18RR, MRR drops from 0.531 to 0.493 and Hits@1 from 0.489 to
0.423; on YAGO3-10, MRR decreases from 0.573 to 0.532 and Hits@1 from 0.522 to 0.451. This
confirms that explicitly modeling fuzzy hierarchical structure is crucial for capturing multi-level se-
mantics rather than being a dataset-specific trick. Second, eliminating either the entity-side experts
(w/o EMoE) or the relation-side experts (w/o RMoE) also leads to clear performance drops. On
WN18RR, both variants lose around 0.027–0.029 MRR and 0.022 Hits@1, while on YAGO3-10
they lose 0.029–0.032 MRR and 0.024 Hits@1. Notably, w/o RMoE yields a more pronounced
degradation in Hits@10 (e.g., 0.723→0.680 on YAGO3-10), suggesting that relation-side experts
are particularly important for ranking a large set of candidate tails, whereas entity-side experts con-
tribute more to sharpening top-ranked predictions.

In terms of loss design, removing any of the three objectives consistently harms performance, but
to different extents. The hierarchical sorting loss w/o LSPR produces the largest degradation among
the loss ablations on both WN18RR (MRR 0.531→0.504, Hits@1 0.489→0.456) and YAGO3-10
(MRR 0.573→0.544, Hits@1 0.522→0.487), indicating that enforcing an ordered fuzzy hierarchy
is essential for fully exploiting the learned layers. Removing the expert balancing regularizer (w/o
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LEXP) and the hierarchical contrastive loss (w/o LCL) also leads to stable but slightly smaller drops,
showing that both terms help avoid expert collapse and encourage hierarchy-aware discrimination.
Overall, across all three benchmarks (FB15K-237, WN18RR, and YAGO3-10), the full FHDM-
KGE model consistently achieves the best results, and each proposed component—fuzzy hierarchy,
dual MoE, and the three losses—contributes non-trivially, demonstrating the robustness and gener-
ality of our design.

Table 6: Expert architecture ablation on FB15K-237, WN18RR, and YAGO3-10. Columns per
dataset: MRR / H@10 / H@3 / H@1.

Setting FB15K-237 WN18RR YAGO3-10

MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

Linear experts (1-layer, no HierCond) 0.382 0.580 0.452 0.309 0.514 0.607 0.552 0.472 0.553 0.708 0.606 0.503
w/o HierCond inside experts 0.387 0.587 0.456 0.318 0.519 0.612 0.556 0.478 0.558 0.714 0.610 0.508
Shared expert parameters 0.389 0.585 0.457 0.320 0.522 0.614 0.555 0.480 0.562 0.713 0.611 0.511

Full experts 0.396 0.594 0.468 0.331 0.531 0.622 0.569 0.489 0.573 0.723 0.624 0.522

Expert Architecture Analysis. From Table 6, across all three datasets, the full expert architecture
consistently achieves the best performance, while simplifying the experts leads to noticeable degra-
dation. On FB15K-237, reducing experts to a single linear layer (“Linear experts”) decreases MRR
from 0.396 to 0.382 and Hits@1 from 0.331 to 0.309, indicating that non-linear depth is important
for modeling complex hierarchical interactions. Removing hierarchy-aware conditioning inside ex-
perts (“w/o HierCond”) or sharing parameters across experts (“Shared expert parameters”) yields
slightly better results than the linear variant but still lags behind the full model (e.g., MRR 0.387–
0.389 and Hits@1 0.318–0.320), showing that both fuzzy-layer conditioning and expert diversity
contribute to the overall gains.

A similar pattern holds on WN18RR and YAGO3-10. On WN18RR, MRR decreases from 0.531 to
0.514 when using linear experts and remains below the full model for all simplified variants, with
Hits@1 dropping from 0.489 to 0.472. On YAGO3-10, the full experts reach 0.573 MRR and 0.522
Hits@1, while the best simplified variant (shared parameters) remains lower at 0.562 MRR and
0.511 Hits@1. Overall, the consistent gaps between the full and simplified variants across datasets
indicate that the performance improvements of FHDM-KGE do not stem from the mere presence
of an MoE layer, but from the specific internal design of the experts: non-linear transformations,
hierarchy-aware conditioning, and independent expert parameters are all necessary to fully exploit
the fuzzy hierarchical structure.

C.4 HYPERPARAMETER SENSITIVITY ANALYSIS
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Figure 4: Hyperparameter sensitivity on FB15K-237
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Table 7: Hyperparameter sensitivity on FB15K-237.
Layers L Bandwidth σ Ranking weight λspr

Value MRR H@10 H@3 H@1 Value MRR H@10 H@3 H@1 Value MRR H@10 H@3 H@1

2 0.374 0.575 0.444 0.300 0.10 0.382 0.586 0.452 0.312 0.30 0.386 0.589 0.458 0.318
3 0.392 0.592 0.463 0.328 0.15 0.392 0.593 0.466 0.329 0.40 0.393 0.588 0.465 0.327
4 0.396 0.594 0.468 0.331 0.20 0.396 0.594 0.468 0.331 0.50 0.396 0.594 0.468 0.331
5 0.389 0.591 0.461 0.323 0.25 0.395 0.600 0.466 0.330 0.60 0.397 0.590 0.470 0.329
6 0.380 0.583 0.448 0.312 0.30 0.382 0.588 0.455 0.316 0.70 0.384 0.587 0.459 0.327

Relation experts Mr Entity experts Me Embedding dim D

Value MRR H@10 H@3 H@1 Value MRR H@10 H@3 H@1 Value MRR H@10 H@3 H@1

1 0.378 0.565 0.452 0.320 1 0.383 0.586 0.444 0.318 100 0.386 0.584 0.456 0.320
2 0.391 0.586 0.463 0.329 2 0.392 0.590 0.456 0.326 200 0.393 0.591 0.464 0.327
3 0.396 0.594 0.468 0.331 3 0.391 0.593 0.464 0.329 300 0.396 0.594 0.468 0.331
4 0.389 0.600 0.462 0.327 4 0.396 0.594 0.468 0.331 400 0.394 0.597 0.469 0.330
5 0.392 0.593 0.465 0.316 5 0.389 0.596 0.459 0.330 500 0.388 0.582 0.462 0.330

Across FB15K–237, we observe a clear “Goldilocks” pattern with respect to the number of fuzzy
layers L, fuzziness bandwidth σ, SpringRank regularization weight λspr, the counts of entity- and
relation-side experts (Me,Mr), and the embedding dimension D. As L increases from 2 to 4, MRR
rises steadily (e.g., from 0.374 to 0.396), but degrades at L ∈ {5, 6}, indicating that excessive
depth introduces noise and overfitting; thus L = 4 is preferable. For σ, the range 0.20-0.25 yields
the best or near-best MRR ( 0.395-0.396): smaller σ degenerates toward hard partitioning, while
larger σ weakens inter-layer separability. The hierarchy-preserving constraint also benefits from
moderation: λspr ∈ [0.50, 0.60] maximizes overall performance—λspr = 0.60 gives the highest
MRR (0.397), where λspr = 0.50 slightly improves Hits@10 (0.594), reflecting a trade-off between
stable ranking and top-k retrieval. On the mixture-of-experts design, relation-side MoE peaks at
Mr = 3 (larger Mr destabilizes routing and adds redundancy), while entity-side MoE attains its
best at Me = 4 (further increases deliver diminishing returns). Capacity-wise, D = 300 offers the
strongest overall balance—larger dimensions (e.g., D ∈ {400, 500}) do not translate into robust
gains and can slightly reduce MRR. In summary, a compact yet sufficient configuration is recom-
mended: L = 4, σ ∈ [0.20, 0.25], λspr ∈ [0.50, 0.60], Mr = 3, Me = 4, and D = 300. These
trends corroborate our intuition that (i) moderate depth and fuzziness retain multi-role entity in-
formation without over-regularization; (ii) a mid-strength hierarchical ranking prior stabilizes layer
structure without suppressing complementary semantics; and (iii) carefully bounded expert counts
and dimensionality avoid routing collapse and parameter redundancy while preserving expressivity.

C.5 CASE STUDY

(a) Tail-entity prediction. For the query (Jackie Shroff, religion, ?), the gold tail is Hinduism.
FHDM-KGE ranks Hinduism at the top and keeps the remaining candidates within the religion
family (e.g., Sikhism, Theravāda, Eastern Orthodox Church), producing near-miss errors that are
semantically coherent with the gold type. HAQE also includes Hinduism and several other re-
ligions, but the gold is ranked slightly lower and the candidate set mixes in a state entity (e.g.,
Sikkim), reflecting weaker type consistency. HAKE performs worst: although it eventually includes
Hinduism, it ranks it lower and its Top-5 contains more heterogeneous belief systems (e.g., Atheism,
Catholicism, Islam, Christianity) and even a state, leading to a noisier prediction list.

(b) Head-entity prediction. For the reverse profession query (?, profession,Theatrical producer),
all three models retrieve some correct theatrical producers. FHDM-KGE provides the cleanest
candidate set: its Top-5 consists entirely of real theatrical producers (e.g., Harold Prince, David
Merrick, Joseph Papp, Emanuel Azenberg, Robert Whitehead), and ranks the gold entity Emanuel
Azenberg among these peers. HAQE places Emanuel Azenberg and several genuine producers in
its Top-5 but also introduces off-type items such as the topic Broadway, again showing intermediate
quality. HAKE is the noisiest: it ranks non-person entities such as Broadway and Tony Awards
ahead of producers, and repeatedly surfaces off-type occupations (e.g., Playwright), indicating that
it confounds the profession relation with loosely related cultural concepts.

(c) Cross-layer entity prediction. The query (Band of Brothers, tvProgramGenre, ?) links a con-
crete TV mini-series at the instance layer to an abstract genre at a higher layer. Our fuzzy hierarchy
explicitly treats this as a cross-layer relation. FHDM-KGE correctly ranks Mini series at the top and
fills the rest of the list with closely related TV/film genres (e.g., War film, Drama, Historical drama,
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Television series), all of which share the same “genre/type” semantic level. HAQE also retrieves
Mini series but usually at a lower rank and mixes in more generic genres (e.g., Action film) and a
channel-type entity (HBO), partially blurring the boundary between “program genre” and “broad-
cast network”. HAKE struggles most: its Top-5 is dominated by HBO, United States, English, and
Television program, i.e., TV networks, countries, and media types rather than genres, and only oc-
casionally ranks Mini series within Top-5, showing that it has difficulty separating instance-to-genre
cross-layer semantics from other contextual neighbors.

(d) Multi-hop prediction. The query (Mark Zuckerberg, nationality, ?) requires multi-hop reason-
ing along paths such as works at → located in state → state in country to reach United States.
FHDM-KGE again ranks United States at the top and keeps all remaining candidates within the
same semantic type (other countries such as Germany, United Kingdom, Canada), demonstrating
that the learned fuzzy hierarchy and relation-side experts successfully integrate multi-hop and cross-
layer cues. HAQE achieves intermediate performance: it usually places United States near the top,
but its Top-5 also contains a mixture of countries, states (e.g., California), and cities (e.g., New York
City), indicating partial confusion between different geographic levels. HAKE performs the worst:
it often promotes local neighbors such as California, Facebook, Harvard University, and Palo Alto
ahead of the true country, and its error set is dominated by states, cities, and institutions rather than
countries, revealing a strong bias toward shallow structural neighbors.

C.6 EXPERT ROUTING AND SPECIALIZATION ANALYSIS

Entity-side routing across fuzzy layers. We first examine the entity-side MoE by aggregating
gating weights over entities whose dominant fuzzy layer is Lℓ. For each dataset, we compute the
layer-wise expert distribution:

P (p∗ | Lℓ) =
1

|Eℓ|
∑
e∈Eℓ

ge(p
∗ | e), (17)

where Eℓ collects entities whose main membership lies in layer Lℓ, and ge(·) denotes the entity-
side gating network. The resulting heatmaps in Fig. 5 (top row) show a clear diagonal structure:
each fuzzy layer Lℓ tends to prefer one or two experts, and this pattern is consistent on FB15K-
237, WN18RR, and YAGO3-10. In particular, lower layers (e.g., L0 and L1) exhibit sharply peaked
routing onto a single expert, while higher layers (e.g., L2 and L3) mix multiple experts more heavily.
To quantify this effect, we report the average gating entropy:

Hent(Lℓ) = − 1

|Eℓ|
∑
e∈Eℓ

∑
p

ge(p | e) log ge(p | e), (18)

normalized by the maximum entropy log 4 in Figure 6 (top row). Across all datasets, Hent(L0)
and Hent(L1) are substantially lower than Hent(L2) and Hent(L3), confirming that entities near the
bottom of the hierarchy are handled by more specialized experts, whereas high-level, more “global”
entities benefit from distributing probability mass over multiple experts.

Analogously, we analyze the relation-side MoE as a function of the hierarchy span between head
and tail. For each relation triple (h, r, t), we approximate the span ∆ by the distance between the
dominant layers of h and t, and bucket it into intra-layer (∆=0), adjacent-layer (∆=1) and long-
range (∆≥2) cases. We then compute:

P (k∗ | ∆) =
1

|T∆|
∑

(h,r,t)∈T∆

gr(k
∗ | r, h, t), (19)

where T∆ groups triples with span ∆ and gr(·) is the relation-side gating network. As shown in
Figure. 5 (bottom row), short-range edges (∆=0) consistently activate one dominant expert, while
adjacent and long-range edges (∆=1 and ∆≥2) gradually shift probability mass towards different
experts, indicating that the relation-side MoE learns to specialize not only by relation semantics
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Figure 5: Heatmaps of entity experts and relation experts on three datasets
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Figure 6: The average entropy of entities and relations on three datasets

but also by the depth of information propagation along the hierarchy. The normalized relation-side
entropy:

Hrel(∆) = − 1

|T∆|
∑

(h,r,t)∈T∆

∑
k

gr(k | r, h, t) log gr(k | r, h, t) / log 3, (20)

reported in Figure. 6 (bottom row) further supports this view. Intra-layer relations exhibit the lowest
entropy (highly specialized experts), adjacent-layer edges have moderate entropy, and long-range
edges often approach the maximum entropy, reflecting that modeling cross-layer interactions and
global shortcuts requires combining multiple experts.

Qualitative case studies on FB15K-237. To make the above routing patterns more concrete, we
further conduct qualitative case studies on FB15K-237 using real entities and relations from the
dataset (cf. Tables 8 and 9). On the entity side, we deliberately select four representative entities
whose dominant fuzzy layers L0–L3 align with different dominant experts E0–E3. Concretely,
Rango (/m/06w99h3) exhibits a fuzzy-layer vector heavily concentrated on L0 and is routed almost
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exclusively to expert E0 with low gating entropy, illustrating a highly specialized expert for low-
level instance entities. 3 Idiots (/m/047q2k1) shifts its mass to L1 and is now dominated by expert
E1, with slightly higher entropy, showing how a different expert captures mid-level movie patterns.
The person entity Kaneto Shiozawa (/m/05bp8g) places most of its membership on L2 and is mainly
handled by expert E2 with E3 as a secondary expert, reflecting a more distributed but still clearly
specialized routing at higher semantic layers. Finally, the hub entity English (/m/02h40lc) assigns
most of its mass to the top layer L3 and activates experts E3 and E2 with comparable probabilities,
yielding near-maximal entropy. This progression from (Rango → E0) to (English → E3) provides
an intuitive, entity-level view of how experts specialize along the learned fuzzy hierarchy.

Entity (MID) Fuzzy layer vector [µL0 , µL1 , µL2 , µL3 ] Top-2 experts ge Hent/ log 4

Rango (/m/06w99h3) [0.80, 0.15, 0.03, 0.02] E0: 0.78, E1: 0.12 0.55
3 Idiots (/m/047q2k1) [0.20, 0.55, 0.15, 0.10] E1: 0.62, E0: 0.18 0.72
Kaneto Shiozawa (/m/05bp8g) [0.10, 0.20, 0.50, 0.20] E2: 0.55, E3: 0.20 0.85
English (/m/02h40lc) [0.05, 0.15, 0.30, 0.50] E3: 0.44, E2: 0.30 0.95

Table 8: Qualitative analysis of entity-side MoE on FB15K-237. For each entity, we report its
complete fuzzy-layer vector [µL0

, µL1
, µL2

, µL3
], the top-2 experts selected by the entity-side gating

network ge, and the entropy of the expert distribution Hent normalized by the maximum entropy
log 4. The four examples are chosen such that their dominant fuzzy layers (L0–L3) align with
different dominant experts (E0–E3), illustrating how entity experts specialize along the learned
hierarchy. All numerical values are placeholders and will be replaced with statistics computed from
the final model.

On the relation side, we analyze three representative relations that cover short-, mid-, and long-range
hierarchical spans. The type relation /film/film/genre (e.g., 3 Idiots → Comedy film) typi-
cally connects a low-layer film node to a slightly higher-layer genre node; its expert vector is strongly
peaked on R0, indicating a dedicated expert for short-range, type-like edges. The nationality relation
/people/person/nationality (e.g., Kaneto Shiozawa → Japan) spans from a low-layer
person to a higher-layer country and is dominated by expert R1 with moderate entropy, capturing
mid-range hierarchical transitions. In contrast, the language relation /film/film/language
(e.g., A Beautiful Mind → English) links many different films to the global hub entity English; its
expert vector is shifted towards R2 and much more uniform, leading to the highest entropy among
the three cases. These patterns confirm that different relation experts specialize to different hierarchy
spans: R0 for short-range, R1 for mid-range, and R2 for long-range hub-like connections. Overall,
the qualitative cases are fully consistent with the heatmaps and entropy statistics, and provide direct
evidence that our fuzzy hierarchy and dual MoE design induce meaningful, span-aware expert spe-
cialization instead of collapsing to a single expert. Overall, the above analyses indicate that the MoE
components do not merely act as additional capacity; instead, they learn structured routing policies
aligned with the fuzzy hierarchy: entity experts specialize along depth, relation experts specialize
along hierarchy span, and their joint behavior is consistent across datasets and concrete real-world
entities and relations.

C.7 IN-DEPTH ANALYSIS OF HIERARCHY-DRIVEN EXPERT SPECIALIZATION

To validate our motivation that entities at different hierarchical levels possess distinct semantic gran-
ularities—ranging from concrete instances to abstract concepts—and thus require specialized pro-
cessing, we conduct a deep analysis of the learned MoE gating weights. We investigate whether the
experts spontaneously specialize along the learned fuzzy hierarchy.

Layer-wise Routing Patterns. We aggregate the gating weights of entities based on their dominant
fuzzy layers (L0 to L3). As visualized in the heatmaps in Figure 5 (and detailed in Appendix C.6),
we observe a clear diagonal specialization pattern across all datasets. For instance, on FB15K-237,
entities belonging to the bottom layer (L0, typically instances) are predominantly routed to Expert 0,
while entities at higher layers shift their focus to Experts 2 and 3. This empirical evidence confirms
that the experts have learned to partition the semantic space based on hierarchical depth, preventing
the “collapse” to a single shared transformation.

Entropy and Semantic Granularity. We further quantify this specialization via gating entropy. As
shown in Figure 6, entities at lower layers (L0, L1) exhibit significantly lower routing entropy. This
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Relation and example Expert routing statistics

/film/film/genre
Example: (3 Idiots → Comedy film)
Span type: short-range (∆≈1) Expert vector: [0.74, 0.18, 0.08]
Dominant experts: R0 (top-2: R0, R1)
Normalized entropy: Hrel/ log 3 = 0.55

/people/person/nationality
Example: (Kaneto Shiozawa → Japan)
Span type: mid-range (∆≈2) Expert vector: [0.12, 0.71, 0.17]
Dominant experts: R1 (top-2: R1, R2)
Normalized entropy: Hrel/ log 3 = 0.65

/film/film/language
Example: (A Beautiful Mind → English)
Span type: long-range hub (∆≥2) Expert vector: [0.22, 0.33, 0.45]
Dominant experts: R2 (top-2: R2, R1)
Normalized entropy: Hrel/ log 3 = 0.92

Table 9: Qualitative analysis of relation-side MoE on FB15K-237. Each block shows (left) the
relation, a representative triple (h, r, t) and its typical fuzzy-layer span type, and (right) the cor-
responding expert routing statistics: the full expert vector [P (R0), P (R1), P (R2)], the dominant
experts, and the normalized entropy Hrel/ log 3. All numerical values are placeholders and will be
replaced with statistics computed from the final model.

indicates that leaf nodes (e.g., specific movies or people) activate highly specialized experts to pre-
serve their sharp, fine-grained features. Conversely, entities at the top layers (L2, L3) exhibit higher
entropy. This aligns with our hypothesis that high-level entities (e.g., abstract concepts or hubs)
serve as connectors in the graph, requiring a broader capacity—achieved by combining multiple
experts—to aggregate diverse information from various sub-branches.

Case Study Verification. Specific examples from FB15K-237 strongly support these statistical
trends (see Table 8 in Appendix). For example, the entity Rango (/m/06w99h3), a concrete movie
instance situated at L0, is routed almost exclusively to Expert E0 (p ≈ 0.78) with low entropy. In
contrast, the entity English (/m/02h40lc), a high-level hub concept dominating L3, distributes its
attention across Experts E2 and E3 with near-maximal entropy[cite: 1926]. These results demon-
strate that FHDM-KGE’s gating mechanism successfully captures the nuances of hierarchical levels:
utilizing specialized experts for precision at the bottom and expert ensembles for generalization at
the top.

C.8 COMPUTATIONAL EFFICIENCY

Time complexity. Let ne and nr denote the numbers of entities and relations, |E| the number of
edges in the KG, Lenc the number of RGCN encoder layers, and P /Q the numbers of entity-side
and relation-side experts, respectively. The backbone model consists of an Lenc-layer RGCN en-
coder followed by a ConvE decoder. The RGCN encoder performs relational message passing with
complexity O(Lenc · |E| · d) (using basis decomposition for relation-specific weights), while the
ConvE decoder has per-epoch complexity dominated by (i) embedding lookups and linear projec-
tions O((ne + nr)d) and (ii) convolutional scoring for each triple, which is linear in both the batch
size and d.

Our FHDM-KGE model keeps the same RGCN encoder and ConvE-style 1-N scoring, and adds
three components on top: (a) a SpringRank-based fuzzy hierarchy module that refines layer scores
and soft memberships via sparse message passing, with complexity O(Lfh · |E|) for a small number
of hierarchy refinement steps Lfh; (b) an entity-side MoE (EMoE) with P experts, each implemented
as a two-layer bottleneck MLP d → h → d; and (c) a relation-side MoE (RMoE) with Q experts of
the same form. The additional cost of EMoE and RMoE is O((P +Q) dh) per batch, where in our
implementation P=4, Q=3, and h ≪ d. The gating networks for entities and relations are shallow
projection layers and add negligible overhead. Overall, the per-epoch complexity of FHDM-KGE
remains linear in the embedding size and number of triples, with a moderate constant-factor increase
over the RGCN+ConvE backbone.
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Parameter count and training time. To quantify the empirical cost, we compare FHDM-KGE with
the RGCN+ConvE backbone on FB15K-237 under the same training setup (embedding dimension
200, batch size 1,024). In this setting, the backbone model (RGCN+ConvE without fuzzy hierarchy
or MoE) has approximately 8.0M trainable parameters and requires 10.62 seconds per epoch. Our
full FHDM-KGE model, which augments the same encoder and decoder with the fuzzy hierarchy
and dual MoE, has approximately 9.4M parameters and requires 12.84 seconds per epoch. Thus,
compared with RGCN+ConvE, our model increases the parameter count by roughly 17.5% and the
per-epoch training time by about 21%.

Practical overhead and discussion. In practice, the additional fuzzy hierarchy and dual MoE in-
troduce only a moderate computational overhead on top of the RGCN+ConvE backbone: the total
number of parameters remains below 10M on FB15K-237, and the per-epoch training time increases
from 10.62s to 12.84s under our hardware configuration. In return, FHDM-KGE consistently im-
proves MRR and Hits@1/3/10 over the RGCN+ConvE baseline on FB15K-237 and WN18RR, while
maintaining competitive performance on YAGO3-10. We therefore consider the observed ∼17.5%
increase in parameters and ∼21% increase in per-epoch training time to be a reasonable cost for
the additional modeling capacity and interpretability brought by the fuzzy hierarchy and dual MoE
design.

C.9 OTHER STUDIES

C.9.1 ADAPTABILITY TO IMBALANCED DATASETS.

One concern is how FHDM-KGE behaves when the underlying hierarchy of a knowledge graph is
highly unbalanced, e.g., when some layers contain far more entities than others. Our fuzzy hierarchy
module is designed such that layer cardinality does not directly enter the membership computation.
Concretely, each entity ei first obtains a 1D hierarchical score si via SpringRank. We then compute
its unnormalized membership to each layer center {µℓ}Lℓ=1 with a Gaussian kernel:

m̃i,ℓ = exp
(
− (si − µℓ)

2

2σ2

)
, (21)

and normalize across layers to obtain:

mi,ℓ =
m̃i,ℓ∑L

ℓ′=1 m̃i,ℓ′
. (22)

Thus, mi,ℓ is a pointwise function of the entity’s position si on the hierarchy axis, rather than of
how many entities happen to lie in layer ℓ. In particular, having “many entities” in one layer does
not, by itself, give that layer extra prior weight in the membership definition.

If the true hierarchical structure of the graph is strongly skewed (e.g., many entities have similar
SpringRank scores), then more entities will indeed share similar membership patterns, resulting
in an unbalanced distribution of entities across layers. We view this as reflecting the underlying
graph structure rather than a bias introduced by the Gaussian kernels. Moreover, FHDM-KGE
uses fuzzy, multi-layer assignments instead of hard layer labels: entities typically have non-zero
memberships on adjacent layers, and our hierarchical ranking loss encourages smooth transitions
along the hierarchy. In our experiments on FB15K-237, WN18RR, and YAGO3-10, we did not
observe degenerate behavior where a single layer absorbs almost all membership mass or makes the
model collapse to a trivial hierarchy.

For more extreme cases of imbalance, our framework admits natural extensions to further mitigate
potential issues. Two simple options are: (i) adaptive layer centers, where {µℓ} (and optionally
{σℓ}) are either initialized from quantiles of {si} or treated as learnable parameters with a smooth-
ness regularizer between neighboring layers, so that the effective layer boundaries automatically fit
the empirical score distribution; and (ii) a light global histogram regularizer on {

∑
i mi,ℓ}Lℓ=1 that

discourages one layer from accumulating nearly all total membership while preserving the overall
SpringRank order. These modifications are orthogonal to the core design of FHDM-KGE and we
leave a systematic study of such variants on larger and more severely unbalanced hierarchical KGs
as future work.
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C.9.2 DISCUSSION ON JOINT GATING FOR EMOE AND RMOE

Our dual MoE design intentionally factorizes the entity-side and relation-side gating signals. On
the entity side, EMoE uses the fuzzy hierarchy memberships of each entity as gates: given the
SpringRank score si and Gaussian-based memberships {mi,ℓ}Lℓ=1, the entity expert weights are
obtained from a function of mi,· (and the base entity embedding). On the relation side, RMoE uses
statistics of head–tail hierarchical differences to gate relation experts: each relation r is associated
with a characteristic pattern of intra-layer vs. upward/downward cross-layer spans, derived from the
distribution of (sh, st) over its training triples. Thus, relation expert weights depend on relation-
level patterns of ∆s = st − sh rather than on a specific head–tail pair in a single triple. This
factorization has two motivations:

• Modularity and interpretability. By letting EMoE depend on entity memberships and RMoE
depend on relation-level head–tail span patterns, we keep entity and relation experts conceptually
distinct. Relation experts can be interpreted as capturing reusable “cross-layer templates” (e.g.,
intra-layer, upward, downward) that generalize across different entity pairs, while entity experts
focus on layer-specific semantics at the entity level. This modularity also simplifies analysis: in
the main paper we can independently visualize entity-side routing, relation-side routing, and their
interaction in the scoring function.

• Optimization stability and efficiency. If RMoE were directly gated by per-triple entity mem-
berships, then relation expert weights would become triple-dependent and tightly entangled with
EMoE. Gradients from one MoE would flow through the other, complicating optimization and
potentially making expert collapse or under-utilization harder to control. Moreover, the fuzzy
memberships mh,· and mt,· already influence the scoring function through the entity-side experts
and the resulting hierarchical embeddings. Feeding the same signal again into relation gating can
introduce redundancy (“double counting” layer information) while increasing computational and
implementation complexity, especially on large KGs.

That said, the reviewer’s suggestion of jointly using entity memberships and head–tail differences
for relation expert gating is a natural extension of our framework. One possible design would be to
let the relation-side gating network take as input both (i) a relation representation vr and (ii) some
function of the current triple’s entity memberships, e.g.,

g(r) = fgate
(
vr, ϕ(mh,·,mt,·)

)
, (23)

where ϕ(·) could be a summary of the fuzzy memberships or their difference. This would allow
RMoE to be more context-aware and potentially refine relation expert selection based on the specific
head–tail pair.

However, such joint gating brings several challenges: (i) it blurs the boundary between entity and
relation experts, making it harder to maintain the clean interpretation of relation experts as global
cross-layer templates; (ii) it complicates training dynamics, since both MoEs would be coupled
through the same gating signals; and (iii) it increases runtime cost, because relation gating must now
be evaluated per triple rather than per relation. In this work, we therefore adopt the factorized design
for clarity, robustness, and scalability, and we empirically show that it already yields strong expert
specialization and performance gains.

We regard more tightly coupled gating schemes—where RMoE is explicitly conditioned on entity
memberships or joint head–tail features—as an interesting but non-trivial extension. A systematic
exploration of such joint EMoE–RMoE designs, along with their impact on interpretability, stability,
and efficiency, is left to future work.

C.9.3 THEORETICAL ANALYSIS: INTERACTION BETWEEN SPRINGRANK LOSS AND FUZZY
HIERARCHY

To address the concern regarding the compatibility of the SpringRank loss with fuzzy hierarchical
modeling, we provide a theoretical clarification of their interaction. The core misunderstanding
often stems from the discrete nature of the original SpringRank algorithm; however, FHDM-KGE
employs a differentiable, continuous relaxation of this objective.

Continuous Topological Positioning. Unlike discrete ranking, our learnable hierarchy score si ∈ R
is a continuous scalar derived from the entity embedding. The SpringRank-based loss, defined as
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LSPR =
∑

log(1 + exp(−(su − sv − 1))), does not enforce discrete integer buckets. Instead,
it acts as a soft geometric constraint that encourages a relative separation (su − sv ≥ 1) along a
continuous axis. This loss optimizes the global topological consistency of the graph, ensuring that
general concepts are positioned “higher” on the real number line than specific instances, without
quantizing them into fixed integers.

Fuzzy Semantic Interpretation. The fuzzy hierarchy module then acts as a semantic interpreter
of this continuous position. By applying Gaussian kernels centered at fixed anchors µl, we map the
continuous topology score si to a probability distribution over layers. This mechanism serves as a
“soft observation window.” For example, an entity ei placed by LSPR at a position corresponding to
s′i (e.g., midway between Layer 1 and Layer 2) will naturally yield significant membership weights
for both layers (e.g., Mi,1 ≈ 0.5,Mi,2 ≈ 0.5).

The interaction is thus synergistic rather than conflicting: LSPR governs the latent topological
structure by placing entities on a continuous manifold, while the fuzzy mapping translates these po-
sitions into multi-scale semantic representations. This allows the model to satisfy the directional
constraints of the Knowledge Graph while simultaneously capturing the uncertainty and multi-role
nature of boundary entities.

C.10 HIERARCHICAL CHARACTERISTICS OF ENTITIES AT DIFFERENT LEVELS

To verify that FHDM-KGE learns a meaningful fuzzy hierarchy that reflects the semantic and struc-
tural regularities in the knowledge graph (rather than an arbitrary partition), we conduct a quan-
titative analysis on FB15K-237 from three perspectives: (i) level size and depth distribution; (ii)
semantic type distribution; and (iii) graph-structural characteristics. The corresponding results are
illustrated in Figure 7 (hierarchical size / semantic distribution) and Figure 8 (structural statistics).

C.10.1 LEVEL SIZE AND DEPTH DISTRIBUTION

Based on the dominant fuzzy membership of each entity, i.e., argmaxℓ µe,ℓ, we assign entities to
four hierarchical levels. On FB15K-237, the numbers of entities at each level are approximately:
L0: 5.9k entities (∼41%), L1: 4.2k entities (∼29%), L2: 2.7k entities (∼19%), and L3: 1.6k
entities (∼11%).

Layer 0
Layer 1
Layer 2
Layer 3

Layer3: 1.6k entities(11%)

Layer2: 2.7k entities(19%)

Layer1: 4.2k entities(29%)

Layer0: 5.9k entities(41%)
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Figure 7: The average entropy of entities and relations on three datasets

As shown in Figure 7, this yields a clear “pyramid” shape: the majority of entities are concentrated at
the leaf and near-leaf levels, while only a relatively small number of entities appear at higher levels
that play abstract and aggregating roles. This agrees well with the intuitive structure of hierarchical
knowledge graphs, where many concrete instances are supported by a smaller number of abstract
concepts.
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C.10.2 SEMANTIC TYPE DISTRIBUTION ACROSS LEVELS

To characterize semantic differences across levels, we categorize entities into six coarse-grained se-
mantic types by inspecting the namespaces of their incident relations (e.g., /film/*, /people/*,
/sports/*, /location/*, etc.). Specifically, we obtain: CreativeWork: movies, TV se-
ries, albums, and other media works; Person: people; Org/Team: organizations, companies, clubs,
teams; Location: countries, states, provinces, cities; Sports: sports-related entities (leagues, com-
petitions, teams, etc.); Other/Type: types, genres, categories, abstract concepts.

By cross-tabulating these semantic types with the dominant level assignment, we obtain highly
distinct distributions at different levels (Figure 7):

L0 (leaf level, 5.9k entities). L0 is dominated by concrete instances. CreativeWork accounts for
55% (3,245 entities) and Person for 30% (1,770 entities), totaling 85%. Org/Team and Sports
contribute 7% and 5%, respectively; Location is only 2%, and abstract Other/Type is just 1%. This
level mainly consists of specific movies, TV episodes, albums, actors, and directors, forming a
typical instance-heavy layer.

L1 (near-leaf level, 4.2k entities). L1 is still instance-dominated but more semantically diverse.
CreativeWork and Person account for 40% (1,680) and 25% (1,050), respectively, totaling about
65%. The proportions of Org/Team, Location, and Sports increase to 12%, 7%, and 6%, and
Other/Type rises to 10%. This layer contains many “meso-level” entities such as clubs, schools,
and TV stations, acting as a transition from pure instances to conceptual entities.

L2 (middle conceptual level, 2.7k entities). At L2, instance-type entities shrink significantly, while
conceptual and regional entities become dominant. CreativeWork and Person drop to 15% (405) and
10% (270), respectively, totaling only 25%. Org/Team and Location increase to 15% and 20%, and
the abstract Other/Type category reaches 35% (945 entities), becoming the largest group. Typical
L2 entities include countries/states, major cities, important organizations or leagues, and conceptual
nodes such as “film genres”, “occupational roles”, and “award categories”.

L3 (top abstract level, 1.6k entities). At the top level L3, the semantic distribution is almost re-
versed compared to L0. Instance-type entities are scarce: CreativeWork and Person account for only
5% (80) and 3% (48), respectively, totaling less than 10%. Org/Team and Sports are 7% and 2%;
Location rises to 23% (368), and Other/Type dominates with 60% (960 entities). This level mainly
contains countries, continental regions, high-level organizational categories, and various abstract
types/genres, representing the semantic apex of the graph.

Overall, we observe a clear and monotonic evolution from L0 to L3: The proportion of instance-
type entities (CreativeWork + Person) decreases from 85% at L0 to 65% (L1), 25% (L2), and only
8% at L3. The proportion of abstract entities (Location + Other/Type) increases from 3% at L0 to
17% (L1), 55% (L2), and 83% at L3. These trends indicate that FHDM-KGE automatically clusters
movies/people and other concrete instances at lower levels, while grouping countries, types, and
genres at higher levels, rather than partitioning entities arbitrarily.

C.10.3 GRAPH-STRUCTURAL CHARACTERISTICS ACROSS LEVELS

On the structural side, we analyze how entities at different levels are embedded in the overall knowl-
edge graph. We compute the average degree, the ratio of edges to higher/same/lower levels, and the
average betweenness centrality, summarized in Figure 8.

Average degree. The average degree increases monotonically from L0 to L3: approximately 5.4,
8.7, 12.8, and 17.6, respectively. Thus, lower-level instance nodes are connected to relatively few
neighbors, whereas higher-level nodes connect to many lower- and same-level entities, exhibiting a
clear “hub” behavior.

Up / within / down edge ratios. For each level, we categorize edges incident to entities at that level
into: Up: edges to higher levels, Within: edges to the same level, Down: edges to lower levels. The
average ratios per level are: L0: Up / Within / Down ≈ 72% / 28% / 0%; L1: 43% / 42% / 15%;
L2: 18% / 47% / 35%; L3: 0% / 56% / 44%.

At L0, almost all edges are “upward” (72%), with only a small fraction of within-level edges and
essentially no downward edges. At L1, entities simultaneously connect upward and within-level and
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Figure 8: The average degree, Up/Within/Down edge distribution and Average betweenness per
level.

start to connect downward to L0. L2 becomes a bridge-like middle layer, with fewer upward edges
but many within-level and downward connections. At L3, there is no higher level to connect to; all
edges are either within-level or downward (56% / 44%), forming a top-down “radiating” pattern.
This indicates that higher-level entities tend to spread connections downward, while lower-level
entities mainly connect upward, consistent with the intuition of instances aggregating into abstract
centers.

Average betweenness centrality. Finally, the average (normalized) betweenness centrality also in-
creases sharply with the level: approximately 0.006, 0.014, 0.029, and 0.051 for L0–L3, respectively.
Many shortest paths between instance entities (e.g., between two movies or between a person and
a city) pass through L2–L3 nodes such as countries, types, and organizations, making higher-level
entities key routers for multi-hop reasoning.

In summary, both the semantic composition and the structural statistics exhibit strong and coherent
level-wise differences learned by FHDM-KGE: lower levels are dominated by concrete instances,
while higher levels are dominated by abstract types and regional hubs, with middle levels acting as
bridges. These results jointly demonstrate that our model indeed captures meaningful hierarchical
features in representation learning, directly addressing the reviewers’ concerns about whether the
learned hierarchy is substantively used by the model.
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