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Abstract

Multiplicative speckle noise is an inherent part of coherent imaging systems, such
as synthetic aperture radar and digital holography. Speckle noise is mitigated by ob-
taining multiple measurement vectors with independent speckle noise, a technique
commonly referred to as "multi-look", followed by appropriate averaging. How-
ever, in many applications, even with multi-look, the achievable performance is not
satisfactory. Moreover, in this approach, every look (or every set of measurements)
is required to be over-determined, which imposes additional costs on the measure-
ment process. In this work, we develop a maximum likelihood based approach
for recovering images from a set of under-determined compressive measurements
contaminated by speckle noise. We propose an iterative multi-look compressive
sensing recovery algorithm, DIP-M3, that i) requires no training data, ii) is com-
putationally efficient, and iii) generates high-quality reconstruction images from
multi-look, where each look is under-determined and corrupted by speckle noise.

1 Problem statement
Speckle noise, or multiplicative noise, is one of the key issues preventing many coherent imaging
systems, such as synthetic aperture radar [1] and digital holography [2], from achieving their full
potential. The reason is that the speckle noise corruption considerably degrades the acquired images
and prevents such systems from producing high-quality images [3, 4].

Let xo ∈ Rn denote the desired signal. In an imaging system that is affected by speckle noise, the
measurements can be represented by y = AXow+z, where y ∈ Rm is the measurement, A ∈ Rm×n

denotes the measurement matrix defined by the imaging process, Xo = diag(xo) ∈ Rn×n is the
diagonal matrix with diagonal entries xo. Finally, w ∈ Rn and z ∈ Rm denote the multiplicative
and additive noise, respectively. Throughout this paper we assume that the entries of w and z are
i.i.d. N (0, σ2

w) and N (0, σ2
z). In the classic setting, m ≥ n, therefore matrix A is invertible. In such

settings, the problem simplifies to a denoising problem with both additive and multiplicative noise.

NeurIPS 2023 Workshop on Deep Learning and Inverse Problems.

https://deep-inverse.org/index.html


Multi-look 

Gradient Descent

xG
t ← xt−1 − ρ∇fL(xt−1)

xG
t

xG
t = clip(xG

t , 0, 1)

Projection

Decoder gθ(z)

θt ← argminθt−1 ∥gθt−1(z) − xG
t ∥

xt = (1 − λ)xG
t + λxP

t

xP
t ← gθt

(z)

t ← t + 1
DIP-M3DIP-M2

x0 = 1
L

L

∑
l=1

|ATyl |

ISTANet-M2 ISTANet- +M2

x0 = 1
L

L

∑
l=1

|ATyl |
ISTA-Net


Block

x1 ← x0 − ρ0 ∇fL(x0)

… ISTA-Net

Block

xT ← x′ T−1 − ρT−1 ∇fL(x′ T−1)

x̂ = x′ T

L = ∥x̂ − xo∥

x′ 1 x′ T−1

L =
T

∑
t=1

∥αtx′ t − xo∥T stages

z ∼ 𝒩(0,1)

Multi-look 

Gradient Descent

xG
t ← xt−1 − ρ∇fL(xt−1)

xG
t

xG
t = clip(xG

t , 0, 1)

Projection

Decoder gθ(z)

θt ← argminθt−1 ∥gθt−1(z) − xG
t ∥

xt = (1 − λ)xG
t + λxD

t

xP
t ← gθt

(z)

t ← t + 1x0 = 1
L

L

∑
l=1

|ATyl |

z ∼ 𝒩(0,1)

x0 = 1
L

L

∑
l=1

|ATyl |
ISTA-Net


Block

x1 ← x0 − ρ0 ∇fL(x0)

… ISTA-Net

Block

xT ← x′ T−1 − ρT−1 ∇fL(x′ T−1)

x̂ = x′ Tx′ 1 x′ T−1

T stages

Figure 1: An overview of four model structures we explore in this paper.

In coherent imaging systems, to mitigate the effect of speckle noise, typically multiple measurement
vectors with independent speckle noise vectors (referred to multi-looks) are acquired [5–9]. Then,
a proper averaging of the measurements is performed [10]. That is, for l = 1, . . . , L, where L
denotes the number of looks, one acquires yl = AlXowl + zl, with Al ∈ Rml×n and ml ≥ n. Then,
inverting the measurement matrices Al, we derive ỹl = Xowl + z̃l, where ỹl = (AT

l Al)
−1AT

l yl

and z̃i = (AT
l Al)

−1AT
l zl. We can further combine the multi-look measurements and derive x̂L =

( 1
L

∑L
l=1 ỹ

2
l )

1
2 . It is straightforward to see that as L grows, if there is no additive noise (zl = 0), then

x̂L converges to xo, almost surely.

A key challenge in the described approach is that in many applications A is ill-conditioned, and
inverting A leads to amplifying additive noise and adding dependencies. Hence, in such scenarios
the current approaches offer sub-optimal performance. Furthermore, in a recent work [11], using
maximum likelihood estimation (MLE), it was theoretically shown that it is possible to accurately
estimate structured signal xo even from under-determined measurements y = AXow with m < n.
This raises the following question: Given multi-look in which Al matrix is either under-determined
or ill-posed, i.e., yl = AlXowl + zl, where yl ∈ Rm with m < n, can we employ MLE to recover
xo from (yl)

L
l=1 without inverting A and translating the problem to denoising?

In this paper, we address this problem and provide MLE-based algorithms for recovering xo from
under-determined multi-look measurements. To simplify the presentation of the results, we make the
following assumptions: i) We ignore the additive noise and assume that the achievable performance is
dominated by speckle noise. This is a reasonable assumption in some coherent imaging applications,
unless we amplify the additive noise through inverting matrix A. ii) We assume that the measurement
matrix is constant across different looks, that is, Al = A, for l = 1, . . . , L. This assumption is valid
in some applications. We will relax both assumptions in our future work.

2 Method
2.1 Our proposals
To recover xo from under-determined measurements y = AXow, we need to take the structure of xo

into account. In [11], the authors use compression codes to capture the signal’s structure. Instead, in
this paper, we use the idea of Deep Image Prior (DIP) [12] to represent the source structure. DIP is
described by function gθ : Rk → Rn, which is represented by neural networks. For x ∈ Q, where
x ∈ Q denotes a subset of Rn that describes the class of structured signals we are interested in,
e.g., the class of natural images, one generates u ∼ N (0, Ik) and finds θ̂(x) (e.g. weights of neural
networks) that minimizes ∥gθ(u)− x∥22. Intuitively, gθ is a good fit for the desired class of signals Q
if, for almost every x ∈ Q, ∥gθ̂(x)(u) − x∥22 is small. Existence of such networks for the class of
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natural images is empirically shown in [13, 14]. A key advantage of modeling signal structure using
DIP, as we will elaborate later, is its convenient integration with our proposed algorithms.

Using MLE to recover xo from y and using DIP instead of compression codes to capture the signal
model, the MLE optimization with constraint studied in [11] can be written as

x̂ = argmin
X=diag(x): x=gθ(u)

[
log det(AX2AT ) +

1

σ2
w

yT (AX2AT )−1y
]
. (1)

Note that (1) is for the single-look problem. In the multi-look scenario, yl = AXowl, given the
independence of the noise vectors, it is straightforward to show that, (1) generalizes as follows

x̂L = argmin
X=diag(x): x=gθ(u)

[
log det(AX2AT ) +

1

Lσ2
w

L∑
l=1

yT
l (AX2AT )−1yl

]
. (2)

The optimization in (2) involves cost function fL : Rn → R, fL(x) = log det(AX2AT ) +
1

Lσ2
w

∑L
l=1 y

T
l (AX2AT )−1yl, X = diag(x), and constraint x = gθ(u) that are both non-convex

and complex. Therefore, solving it is challenging, and one needs efficient methods to approximate
the solution of (2). To solve such complex optimization problems, one can potentially consider: 1)
End-to-end networks trained to recover xo directly from sets of measurements (yl)

L
l=1. For instance,

we consider the DnCNN structure [15] and train it to recover xo from a proper initialization that
combines the measurements. This approach ignores the cost function and constraint set in (2). 2)
Unrolled networks consider the gradient of the cost function in (2) and are trained end-to-end to
minimize the training loss between the output of the unrolled network and xo. 3) Iterative approaches
based on projected gradient descent (PGD): we use both the cost function and constraint set in (2).

Inspired by these generic approaches, in this paper, we study the following four different algorithms,
schematically shown in Figure 1, for solving the Multi-look system with Multiplicative noise (M2)
problem. We will use end-to-end solution for baseline comparison later in our experiment.

1. ISTANet-M2: An unrolled network [16] that employs ISTA [17] structure, and was previ-
ously proposed for compressed sensing recovery [18], where we use the gradient of fL and
the same neural networks structure as in [18].

2. ISTANet-M2+: ISTANet-M2+ employs the same neural network structure as ISTANet-
M2. However, we also consider the intermediate losses and add learnable parameters αt, t
denoting the stage index, as explained in Figure 1. The details are presented in Appendix 4.2.

3. DIP-M2: An iterative algorithm based on PGD [19], where it employs the gradient of cost
function fL and utilization of deep prior in [20] for projection. The implicit prior of the
image is introduced by a Deep Decoder [21] gθ(·). The parameters θ are optimized by
minimizing the mean-squared-error (MSE) between the gradient descent (GD) step results
and gθ(z), where z ∼ N (0, 1).

4. DIP-M3: Inspired by DIP-M2, we propose DIP with Memory for Multi-look system with
Multiplicative noise (DIP-M3), which involves effective combination of the memory of
GD and projection output. As reported in Section 3, this simple modification improves the
performance of DIP-M2 by around 3dB on average. The details are presented in Section 2.4.

We elaborate DIP-M2 based method in Section 2.3. Before that, note that all methods employ the
gradient of fL. So we first derive the gradient and comment on its asymptotic behaviour as L→∞.

2.2 Gradient of Multi-look Cost Function
The methods described above require access to the gradient of fL(x). As we show in Appendix 4.1,

∂fL
∂xj

= 2xj

(
aTj (AX2AT )−1aj −

1

Lσ2
w

L∑
l=1

(
aTj (AX2AT )−1yl

)2)
. (3)

where aj ∈ Rm denotes column j of matrix A. We show that in Appendix 4.1, as L grows,∇fL(xo)
converges to zero. That is, as we get more measurements, xo becomes a local minima of fL.
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DnCNN ISTANet-M2 ISTANet-M2+ DIP-M2 DIP-M3

ORMM Sampling rate 25% 18.18 22.06 23.12 19.29 22.81
Sampling rate 50% 21.83 26.33 24.23 23.11 25.91

BRMM Blur kernel 19.94 - - 25.31 28.26
Table 1: Average PSNR (dB) comparison of models in ORMM and BRMM tasks with L = 50.

PSNR:12.20 PSNR:12.13 PSNR:11.69 PSNR:10.47 PSNR:11.99 PSNR:11.66 PSNR:12.65

ORMM 50% 
Initialization

PSNR:24.77 PSNR:25.25 PSNR:27.52 PSNR:27.56 PSNR:26.06 PSNR:24.89 PSNR:25.31

ORMM 50%   
DIP-M3

PSNR:17.48 PSNR:18.82 PSNR:19.28 PSNR:15.59 PSNR:19.09 PSNR:12.98 PSNR:17.32

BRMM 
Initialization

PSNR:27.01 PSNR:25.56 PSNR:30.29 PSNR:30.52 PSNR:28.60 PSNR:28.18 PSNR:27.63

BRMM  
DIP-M3

Figure 2: Left: We show the initialization (row 1,3) and reconstruction (row 2,4) for ORMM and
BRMM with L = 50. Right: We show the sensitivity of each image reconstructed by DIP-M3 to λ,
and compare the average PSNR of all models on ORMM (upper) and BRMM tasks (bottom).

2.3 DIP-M2 based Method
The proposed DIP-M2 based method requires T iterations until the optimization converges. Each
iteration has a GD step and projection step. We denote the GD step result, obtained by using (3),
as xG

t . The projection step enforces an implicit prior on xG
t . The implicit prior is introduced by

gθ(z) with fixed Gaussian noise input z throughout all iterations. The gθ(·) structure is described in
Appendix 4.2 and Figure 3. The optimization over θ, i.e. minimizing ∥gθ(z)−xG

t ∥, requires a number
of T ′ nested iterations until convergence. We denote the output of trained gθt(·) as xP

t = gθT ′ (z).

2.4 "Residual" Connection between xG
t and xP

t

In DIP-M3, we propose a simple yet effective "Residual" structure to better enhance the fusion of
xG
t and xP

t . Considering the gradient (3) calculated with multi-look system is more stable, instead of
using xP

t as next iteration input xt, we introduce a hyperparameter λ, which balance the contribution
from xG

t and xP
t as shown in Figure 1. The hyperparameter λ ∈ [0, 1] is used for generating xt as:

xt = (1− λ)xG
t + λxP

t .

The images (xt)
T
t=1 are generated throughout T iterations, and final reconstructed image is x̂ = xT .

We describe our method details in Algorithm 1. To keep our algorithm simple, we assume the
hyperparameter λ is time invariant. However, one can consider time-dependent choices for λ.

3 Experiments
We compare the four approaches with representative end-to-end solution DnCNN [15] on Recovering
signal from Multi-look systems in the presence of Multiplicative noise (RMM) tasks, with degradation
model A to be row-subsampled random orthogonal (ORMM) or Gaussian matrix (GRMM), and blur
kernel matrix (BRMM). (The details of the experiment setup are in Appendix 4.2.) i) ORMM: We
set A ∈ Rm×n such that AAT = I . (In Appendix 4.3, we present our results from GRMM and
compare them with ORMM results.) We consider 25% and 50% sampling rates, and initialization
x0 = 1

L

∑L
l=1 |ATyl|. The quantitative and qualitative results are in Table 1 and Figure 2. (More

results are in Appendix Table 2 and Figure 5, 6.) We find ISTANet-M2 based methods slightly
outperform DIP-M3, but training the former one is much more expensive as each training image
involves matrix inversion computation. ii) BRMM: In image deblurring, we assume the blur kernel
is separable, i.e., A = Ar ⊗ Ac ∈ Rn×n is the Kronecker product of 1D convolutional matrices.
(Details of the blurring kernel can be found in Appendix 4.2.) The results are shown in Table 1 and
Figure 2. (More results can be found in Appendix 4.3, Table 2 and Figure 7.) In this case, the unrolled
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models fail to converge. Note that, they require gradient calculation (3) during training, involving
computation of (AX2AT )−1 ∈ Rm×m which on one hand is computationally very demanding since
m = n, and on the other hand introduces instability issues to the algorithms because of AX2AT

being ill-conditioned. We also study the hyperparameters used in DIP-M3. i) Choice of memory
control strength λ: We find the sensitivity of reconstruction performance to the hyperparameter λ in
DIP-M3 is similar across all test images in Figure 2. Note that when λ = 1, DIP-M3 simplifies to
DIP-M2, when λ = 0, no prior is enforced by the decoder network. ii) Convergence iteration T : We
plot the PSNR and visualize the intermediate reconstructed images in Figures 10 and 11, respectively,
presented in Appendix 4.3. The convergence with different L and λ values are in Figures 9 (b)-(f). It
can be observed that the algorithm typically converges within 50 iterations. iii) Number of looks L:
We show the reconstruction performance with different L in Figure 8. We study the effect of L on the
choice of λ, and show the 50% CS reconstruction with different L in Figure 9 (a). Specifically, we
see that the reconstruction with larger L benefits more from smaller λ.

We find that training DnCNN is more efficient than unrolled networks, but the PSNR is downgraded
given that gradient in (3) is not explicitly considered. ISTANet-M2 based methods achieve good
performance but the training is very computationally expensive since for each training image it
requires inversion of large matrices. The proposed DIP-M3, however, requires no training data, and
provides an efficient and effective solution.
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4 Appendix

4.1 Gradient descent for multi-look systems

We calculate the gradient of objective function (2) in the following way. Define diagonal matrix
δj = diag([0, · · · , 1, · · · , 0]), with all zeros except the j-th entry to be 1. We denote that the j-th
coordinate of X is updated as X2 ← X2 + αjδj , where αj is the increment. We need to minimize
the updated objective function value over αj :

αj = argmin
αj

[
log det

(
A(X2 + αjδj)A

T
)
+

1

Lσ2
w

L∑
l=1

yT
l

(
A(X2 + αjδj)A

T
)−1

yl

]
. (4)

this can be further written as:

αj = argmin
αj

[
log det

(
B + αjaja

T
j

)
+

1

Lσ2
w

L∑
l=1

yT
l

(
B + αjaja

T
j

)−1
yl

]
. (5)

where we denote B = AX2AT . By matrix inversion Lemma, we know that
(
B + αjaja

T
j

)−1
=

B−1 − αjB
−1aja

T
j B−1

1+αjaT
j B−1aj

. We also know that from the property of determinant and eigenvalues:

log det
(
B + αjaja

T
j

)
= log det

(
B

1
2 (I + αjB

− 1
2 aja

T
j B

− 1
2 )B

1
2

)
(6)

= log det(B) + log det
(
I + αjB

− 1
2 aja

T
j B

− 1
2

)
(7)

= log det(B) + log(1 + αja
T
j B

−1aj). (8)

we note that the last equality comes from that, all but one of the eigenvalues of matrix (I +

αjB
− 1

2 aja
T
j B

− 1
2 ) are 1. Then the gradient at x2

j can be calculated as:

∂fL
∂x2

j

= lim
αj→0

fL(x
2
j + αj)− fL(x

2
j )

αj
(9)

= lim
αj→0

log(1 + αja
T
j B

−1aj)− 1
Lσ2

w

∑L
l=1

αjy
T
l B−1aja

T
j B−1yl

1+αjaT
j B−1aj

αj
(10)

= aTj B
−1aj −

1

Lσ2
w

L∑
l=1

(aTj B
−1yl)

2. (11)

The second equality comes from using matrix inversion Lemma, and property of determinant
and eigenvalues as we described before. The last equality comes from using the fact that
limx→0

log(1+x)
x = 1. Thus we can express the gradient of (2) at xj as:

∂fL
∂xj

= 2xj

(
aTj B

−1aj −
1

Lσ2
w

L∑
l=1

(
aTj B

−1yl

)2)
(12)

= 2xj

(
aTj B

−1aj − aTj B
−1AXo

1

Lσ2
w

L∑
l=1

wlw
T
l XoA

TB−1aj

)
(13)

= 2xja
T
j

(
B−1 −B−1AXo(

1

σ2
wL

L∑
l=1

wlw
T
l )XoA

TB−1
)
aj (14)

= 2xja
T
j B

− 1
2

(
I −B− 1

2AXo(
1

σ2
wL

L∑
l=1

wlw
T
l )XoA

TB− 1
2

)
B− 1

2 aj . (15)

where the term ( 1
σ2
wL

∑L
l=1 wlw

T
l ) is approximately an identity matrix when L is large enough,

remember that AX2AT = B, so the gradient at optimal point ∇f(xo) = 0, xo becomes a local
minima of fL. This helps explain the better performance achieved by using larger number of looks.
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Algorithm 1 DIP with Memory for Multi-look system with Multiplicative noise (DIP-M3)

Input: {yl}Ll=1, A,x0 = 1
L

∑L
l=1 |ATyl|, ρ, λ ∈ [0, 1], T, gθ0(·).

Output: Reconstructed x̂.
for t = 1, . . . , T do

[Gradient Descent Step]
Gradient at coordinate j as∇f(xt−1,j) and update xG

t,j : xG
t,j ← xt−1,j − ρ∇f(xt−1,j) in (3).

Truncate xG
t into range (0, 1), xG

t = clip(xG
t , 0, 1).

[Deep Prior Projection Step]
Generate random image given fixed randomly generated noise z ∼ N (0, 1) as gθt−1

(z).
Update θt by optimizing ∥gθt−1

(z)− xG
t ∥: θt ← argminθt−1

∥gθt−1
(z)− xG

t ∥ till converges.
Generate xP

t using trained deep decoder as xP
t ← gθt(z).

Obtain xt by adding xG
t and xP

t with coefficient λ: xt = (1− λ)xG
t + λxP

t .
end for
Reconstruct image as x̂ = xT .

4.2 Experiment setup

Degradation model setup We partition the image of (256× 256) into patches of (32× 32). The
number of looks is denoted as L, so the patches shape becomes (64×1×32×32×L), where 64 is the
batch size, 1 is the channel number. The shape of multiplicative noise w is also (64×1×32×32×L),
which indicates the noise wi ∼ N (0, σ2

w) is generated independently for each pixel across every
batch and look. The measurement matrix A is consistent in each batch and look.

Decoder gθ(·) structure The input of gθ(·) is randomly generated Gaussian noise z ∼ N (0, 1), z
is fixed in each Deep Prior Projection Step of Algorithm 1. Each layer of the deep decoder consists
of 1) a pixel-wise linear combinations (1 × 1 conv layer); 2) activation function ReLU; 3) Batch
Normalization (BN); 4) Bi-linear upsampling with scale factor = 2. The final output layer consists
of 1) a pixel-wise linear combinations (1 × 1 conv layer); 2) Sigmoid function. The gθ(·) we use
has 4 layers and 1 output layer. The structure of the decoder is shown in Figure 3. The input and
output channel numbers for all layers are [100, 50, 25, 10] and [50, 25, 10, 1] respectively. Since
the test image size is (1 × 256 × 256) with single channel, we partition it into small patches as
(32 × 32) without overlaps, thus the image size becomes (64 × 1 × 32 × 32) with batch size 64
and channel number 1. Given the decoder structure and image size, the size of the input noise z is
(64× 100× 4× 4). The total number of parameters in gθ(·) is 13,990.

ORMM The random orthogonal matrix A ∈ Rm×n with m < n satisfies AAT = I , we also
compare the performance of our method on ORMM and GRMM in Appendix 4.3. Given the
computational resource limitation, we crop the image into smaller patches as input of models. Since
the ISTANet-M2-based and DIP-M2-based methods demand the matrix inverse computation of
AX2AT ∈ Rm×m, which is computationally intensive, we crop image into patches of size (32× 32).

BRMM In the image deblurring mode, the blur mechanism is assumed to be linear and is modeled
as a convolution with a 2D kernel k(x, y). We further assume that the kernel is seperable and is
written as k(x, y) = r(x)c(y). we consider the blurring kernel k denote 1D convolutional matrices
Ar, Ac ∈ Rn′×n′

with kernel r and c respectively. The blurring process on raw image xo ∈ Rn′×n′

with multiplicative noise is Y = Ar(xo ⊙ w)AT
c , where Y ∈ Rn′×n′

and w ∈ Rn′×n′
are the

blurred noisy image and speckle noise respectively. We denote n = n′ × n′, the vectorized y ∈ Rn

can be alternatively represented as y = AXow, where A = Ar ⊗ Ac ∈ Rn×n is the Kronecker
product of the two 1D convolutional matrix, Xo = diag(xo) ∈ Rn×n is the diagonal matrix where
diagonal entry xo ∈ Rn is the vectorized xo ∈ Rn′×n′

, w ∈ Rn is the vectorized w ∈ Rn′×n′
.

As we mentioned before, we consider separable blurring kernel as k = rcT , we next introduce
how we construct r and c. We define Gaussian PDF as f(x) = e−x2/2σ2

, where σ = 10, then
r = c = [f(−10), f(−8), f(−6), f(−4), f(−2), f(0), f(2), f(4), f(6), f(8), f(10)]T , and the 1D
convolutional matrices Ar, Ac with kernel r, c are made accordingly.
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…

θt ← argminθt−1 ∥gθt−1(z) − xG
t ∥

z1 zk−1
…

zK−1 gθt−1(z)

Decoder gθ

zkz ∼ 𝒩(0,1)

xG
t

xP
t = gθt

(z) xt

Conv
ReLU

Batch Norm
Upsample

Sigmoid
MSE

(1 − λ)xG
t + λxP

t

Figure 3: We visualize the detailed structure of decoder gθ, and show how we use it in DIP-M3.

…

ISTA-Net Block

x′ t

Conv
ReLU

xt…xt ← x′ t−1 − ρt−1 ∇fL(x′ t−1)

Ft F̃tFtF̃t = I
symmetry constraint

soft-threshold

Figure 4: We visualize the Figure 1 ISTA-Net Block structure of ISTANet-M2 and ISTANet-M2+.
F denotes the forward networks, and F̃ is designed to be symmetric to the structure of F .

Baseline models setup We use supervised learning strategy for DnCNN and ISTANet-M2-based
methods, the training data are 91 images that are commonly used in previous works [18, 22]. The
degradation process and initialization are the same for every model. Given that DnCNN does not
involve matrix inverse (AX2AT )−1 calculation, the patch size and stride step when cropping the
training images are (128 × 128), 64. We choose (32 × 32), 14 for ISTANet-M2. The number of
blocks (stages) used in DnCNN and ISTANet-M2 is 9. The block (stage) structures of DnCNN and
ISTANet-M2-based method are kept the same as stated in [15, 18]. We present the block structure of
ISTANet-M2-based method in Figure 4. We also modify the ISTANet-M2 and name the modified
version as ISTANet-M2+. In the ISTANet-M2, only the final output xT is used in calculating the
loss ∥xT − xo∥ for backpropagation. In ISTANet-M2+, however, we also consider the intermediate
outputs (xt)

T−1
t=1 for each stage (block), and compute the intermediate losses together with the final

loss as
∑T

t=1 ∥x′
t−xo∥ for backpropagation. Furthermore, we introduce a set of learnable parameters

(αt)
T
t=1 into the losses as

∑T
t=1 ∥αtx

′
t − xo∥, since we find the performance is improved by adding

α into the loss. The structures of ISTANet-M2 and ISTANet-M2+ are shown in Figure 1.

Training details of DIP-M3 The algorithm of DIP-M3 is presented in Algorithm 1. In
DIP-M3 training, the step size ρ in Gradient Descent Step is fixed to ρ = 1e − 2. In
Deep Prior Projection Step, we use Adam [23] optimizer to optimize the decoder parameters θ,
the learning rate is 1e − 4, weight decay is 5e − 4, the number of iterations used for achieving
convergence of ∥gθ(z)− xG

t ∥ is T ′ = 200. The choice of λ value was discussed before, and we pick
λ = 0.12 for ORMM, and 0.22 for BRMM.

4.3 Additional experiments

Quantitative and qualitative results of baseline models To better compare the reconstruction
performance of all test images, we provide the PSNR of each test image reconstructed by all the
methods discussed above on ORMM and BRMM tasks in Table 2. We also show the qualitative
results of the baseline models on ORMM Figure 5, 6, and BRMM Figure 7 tasks.
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Images DnCNN ISTANet-M2 ISTANet-M2+ DIP-M2 DIP-M3

ORMM (25%)

Babara 17.94 21.60 22.56 19.72 22.49
Peppers 17.83 21.45 21.98 17.85 21.41
House 18.56 22.46 24.49 21.07 24.85
Foreman 17.46 22.42 23.85 20.42 24.49
Boats 18.97 22.15 23.54 19.53 23.10
Parrots 17.29 21.99 22.51 19.49 22.12
Monarch 19.23 22.35 22.90 16.95 21.21

ORMM (50%)

Babara 21.26 25.49 23.39 22.47 24.77
Peppers 21.67 24.95 23.48 22.32 25.25
House 22.16 27.69 24.17 25.00 27.52
Foreman 20.57 27.03 24.99 24.20 27.56
Boats 22.82 26.64 25.32 23.60 26.06
Parrots 19.94 25.84 24.16 22.08 24.89
Monarch 22.67 26.70 24.13 22.12 25.31

BRMM

Babara 19.36 - - 23.57 27.01
Peppers 19.74 - - 24.73 25.56
House 21.54 - - 27.56 30.29
Foreman 20.09 - - 27.73 30.52
Boats 20.56 - - 25.78 28.60
Parrots 19.47 - - 24.23 28.18
Monarch 18.83 - - 23.56 27.63

Table 2: PSNR (dB) of each test image on ORMM and BRMM tasks. We take λ = 0.12 and λ = 0.22
for DIP-M3 on ORMM and BRMM tasks respectively.

Effects of number of looks We compare the performance of DIP-M3 with different number of
looks in Figure 8. We also show that the number of looks L has a strong effect on the choice of
λ value in Figure 9 (a), this is reasonable since larger number of looks provides better gradient
calculation in the Gradient Descent Step in Algorithm 1, which makes xG

t to be more optimal. Note
that xP

t is generated to be as close as possible to xG
t , and at the same time to be more like a natural

image given the implicit prior enforced by gθ(·). However, the optimization of ∥gθ(z)− xG
t ∥ is not

always guaranteed to be optimal given different iteration t, number of nested iterations T ′, and even
the structure choice of gθ(·). In these cases, the information from a good reconstructed xG

t can help
compensate the generated xP

t , and yield a better fusion xt compared with only using xP
t as xt.

Number of iterations for convergence We plot the intermediate reconstructed images on both
ORMM and BRMM tasks in Figure 10 and Figure 11. We also show the convergence curves of
ORMM with 50% sampling rate in Figure 9 (b)-(f). We can find that the optimization of DIP-M3

generally converges within 50 iterations on both ORMM and BRMM tasks. In ORMM task with
patch size (32× 32), it takes 1 to 1.5 seconds for DIP-M3 to complete one iteration depending on
the sampling rate m/n. In BRMM task, it takes about 2 seconds for each iteration.

Measurement matrix in RMM We also compare the effect of different measurement matrices in
RMM. We consider two choices of measurement matrix A: row-subsampled (1) random orthogonal
matrix AAT = I; (2) random Gaussian matrix Aij ∼ N (0, 1). Table 3 and Figure 12 compare the
results we obtain for these two choices. We can find that the choice of the measurement matrix does
not have much effect on the performance of our model DIP-M3.
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Babara Peppers House Foreman Boats Parrots Monarch

Raw images

PSNR:9.64 PSNR:9.65 PSNR:9.14 PSNR:8.08 PSNR:9.43 PSNR:9.23 PSNR:10.18

ORMM 25% 
Initialization

PSNR:17.94 PSNR:17.83 PSNR:18.56 PSNR:17.46 PSNR:18.97 PSNR:17.29 PSNR:19.23

ORMM 25% 
DnCNN

PSNR:21.60 PSNR:21.45 PSNR:22.46 PSNR:22.42 PSNR:22.15 PSNR:21.99 PSNR:22.35

ORMM 25% 
ISTANet-M2

PSNR:22.56 PSNR:21.98 PSNR:24.49 PSNR:23.85 PSNR:23.54 PSNR:22.51 PSNR:22.90

ORMM 25% 
ISTANet-M2+

PSNR:19.72 PSNR:17.85 PSNR:21.07 PSNR:20.42 PSNR:19.53 PSNR:19.49 PSNR:16.95

ORMM 25% 
DIP-M2

PSNR:22.49 PSNR:21.41 PSNR:24.85 PSNR:24.49 PSNR:23.10 PSNR:22.12 PSNR:21.21

ORMM 25% 
DIP-M3

Figure 5: Qualitative comparison of the five models DnCNN, ISTANet-M2, ISTANet-M2+, DIP-M2,
DIP-M3 on ORMM. In this figure, the sampling rate is chosen to be 25% and we collect 50 looks.
The first row shows the raw test images. The second row is initialization 1

L

∑L
l=1 |ATyl|, which is

the same for all models. From the third to the last row, we show the results of all models respectively.

Images 25% sampling rate 50% sampling rate
Orthogonal Gaussian Orthogonal Gaussian

Babara 22.49 22.40 24.77 24.80
Peppers 21.41 21.34 25.25 25.24
House 24.85 24.79 27.52 27.64

Foreman 24.49 24.30 27.56 27.55
Boats 23.10 22.80 26.06 26.03

Parrots 22.12 21.88 24.89 24.90
Monarch 21.21 20.86 25.31 25.36

Table 3: PSNR (dB) of different measurement matrix on RMM tasks with 50-look. We show the
PSNR of reconstructed images with random orthogonal and Gaussian matrix using DIP-M3.
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Babara Peppers House Foreman Boats Parrots Monarch

Raw images

PSNR:12.20 PSNR:12.13 PSNR:11.69 PSNR:10.47 PSNR:11.99 PSNR:11.66 PSNR:12.65

ORMM 50% 
Initialization

PSNR:21.26 PSNR:21.67 PSNR:22.16 PSNR:20.57 PSNR:22.82 PSNR:19.94 PSNR:22.67

ORMM 50% 
DnCNN

PSNR:25.49 PSNR:24.95 PSNR:27.69 PSNR:27.03 PSNR:26.64 PSNR:25.84 PSNR:26.70

ORMM 50% 
ISTANet-M2

PSNR:23.39 PSNR:23.48 PSNR:24.17 PSNR:24.99 PSNR:25.32 PSNR:24.16 PSNR:24.13

ORMM 50% 
ISTANet-M2+

PSNR:22.47 PSNR:22.32 PSNR:25.00 PSNR:24.20 PSNR:23.60 PSNR:22.08 PSNR:22.12

ORMM 50% 
DIP-M2

PSNR:24.77 PSNR:25.25 PSNR:27.52 PSNR:27.56 PSNR:26.06 PSNR:24.89 PSNR:25.31

ORMM 50% 
DIP-M3

Figure 6: Qualitative comparison of the five models DnCNN, ISTANet-M2, ISTANet-M2+, DIP-M2,
DIP-M3 on ORMM. In this figure, the sampling rate is chosen to be 50% and we collect 50 looks.
The first row shows the raw test images. The second row is initialization 1

L

∑L
l=1 |ATyl|, which is

the same for all models. From the third to the last row, we show the results of all models respectively.
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Babara Peppers House Foreman Boats Parrots Monarch

Raw images

PSNR:17.48 PSNR:18.82 PSNR:19.28 PSNR:15.59 PSNR:19.09 PSNR:12.98 PSNR:17.32

BRMM 
Initialization

PSNR:19.36 PSNR:19.74 PSNR:21.54 PSNR:20.09 PSNR:20.56 PSNR:19.47 PSNR:18.83

BRMM 
DnCNN

PSNR:23.57 PSNR:24.73 PSNR:27.56 PSNR:27.73 PSNR:25.78 PSNR:24.23 PSNR:23.56

BRMM 
DIP-M2

PSNR:27.01 PSNR:25.56 PSNR:30.29 PSNR:30.52 PSNR:28.60 PSNR:28.18 PSNR:27.63

BRMM 
DIP-M3

Figure 7: Qualitative comparison on BRMM with 50 looks. The second row visualize the initialization
1
L

∑L
l=1 |yl|, which is the same for all models. From the third row to the last row, we show the

reconstructed results from DnCNN, DIP-M2 and DIP-M3 respectively.

Babara Peppers House Foreman Boats Parrots Monarch

Raw images

PSNR:18.73 PSNR:17.86 PSNR:18.95 PSNR:17.56 PSNR:18.72 PSNR:18.26 PSNR:17.59

ORMM 50%  
DIP-M3

1-look

PSNR:22.26 PSNR:22.47 PSNR:24.30 PSNR:24.32 PSNR:23.27 PSNR:22.28 PSNR:22.42

ORMM 50%  
DIP-M3

10-look

PSNR:24.77 PSNR:25.25 PSNR:27.52 PSNR:27.56 PSNR:26.06 PSNR:24.89 PSNR:25.31

ORMM 50%  
DIP-M3

50-look

PSNR:25.78 PSNR:26.21 PSNR:29.20 PSNR:29.03 PSNR:27.31 PSNR:25.94 PSNR:26.61

ORMM 50%  
DIP-M3

100-look

Figure 8: Comparison on ORMM task with 50% sampling rate with different number of looks. The
first row shows the raw test images. The second to the last row shows the results of our model
DIP-M3 with 1,10,50,100 looks respectively.
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Figure 9: Effects of number of looks. We show the average PSNR of our model DIP-M3 with 1-look,
10-look, 50-look, 100-look across all candidate λ on ORMM task in (a). We also plot the convergence
of our model DIP-M3 under different number of looks when λ = 1.0, 0.8, 0.6, 0.4, 0.2 in (b)-(f).
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t = 10 t = 20 t = 30 t = 40 t = 50 t = 100 t = 200t = 0

PSNR:20.62 PSNR:22.69 PSNR:23.72 PSNR:24.23 PSNR:24.48 PSNR:24.75 PSNR:24.77PSNR:12.20

PSNR:19.78 PSNR:21.89 PSNR:23.10 PSNR:23.82 PSNR:24.26 PSNR:24.99 PSNR:25.25PSNR:12.13

PSNR:20.20 PSNR:23.15 PSNR:25.05 PSNR:26.12 PSNR:26.72 PSNR:27.46 PSNR:27.51PSNR:11.69

PSNR:17.58 PSNR:20.61 PSNR:22.84 PSNR:24.39 PSNR:25.44 PSNR:27.26 PSNR:27.56PSNR:10.47

PSNR:20.55 PSNR:23.06 PSNR:24.47 PSNR:25.19 PSNR:25.54 PSNR:25.98 PSNR:26.06PSNR:11.99

PSNR:19.25 PSNR:21.38 PSNR:22.69 PSNR:23.50 PSNR:23.97 PSNR:24.65 PSNR:24.89PSNR:11.66

PSNR:19.82 PSNR:21.83 PSNR:23.04 PSNR:23.77 PSNR:24.21 PSNR:25.03 PSNR:25.31PSNR:12.65

Figure 10: Visualization of reconstructed images by our model DIP-M3 at iteration t =
0, 10, 20, 30, 40, 50, 100, 200 on ORMM. The sampling rate is 50% and L = 50.
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t = 10 t = 20 t = 30 t = 40 t = 50 t = 100 t = 200t = 0

PSNR:24.93 PSNR:26.63 PSNR:26.89 PSNR:26.93 PSNR:26.92 PSNR:26.97 PSNR:27.00PSNR:17.48

PSNR:23.75 PSNR:25.09 PSNR:24.95 PSNR:25.13 PSNR:24.99 PSNR:25.19 PSNR:25.32PSNR:18.82

PSNR:25.87 PSNR:28.73 PSNR:29.60 PSNR:29.84 PSNR:29.87 PSNR:30.20 PSNR:30.24PSNR:19.28

PSNR:22.10 PSNR:26.57 PSNR:28.76 PSNR:29.71 PSNR:30.10 PSNR:30.46 PSNR:30.52PSNR:15.59

PSNR:25.42 PSNR:27.43 PSNR:28.08 PSNR:28.20 PSNR:28.27 PSNR:28.26 PSNR:28.50PSNR:19.09

PSNR:22.38 PSNR:26.16 PSNR:27.27 PSNR:27.65 PSNR:27.75 PSNR:27.94 PSNR:28.09PSNR:12.98

PSNR:24.75 PSNR:26.91 PSNR:27.27 PSNR:27.37 PSNR:27.41 PSNR:27.51 PSNR:27.63PSNR:17.32

Figure 11: Visualization of reconstructed images by our model DIP-M3 at iteration t =
0, 10, 20, 30, 40, 50, 100, 200 on ORMM, L = 50.
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Babara Peppers House Foreman Boats Parrots Monarch

Raw images

PSNR:22.49 PSNR:21.41 PSNR:24.85 PSNR:24.49 PSNR:23.10 PSNR:22.12 PSNR:21.21

ORMM 25% 
DIP-M3

PSNR:22.40 PSNR:21.34 PSNR:24.79 PSNR:24.30 PSNR:22.80 PSNR:21.88 PSNR:20.86

GRMM 25% 
DIP-M3

PSNR:24.77 PSNR:25.25 PSNR:27.52 PSNR:27.56 PSNR:26.06 PSNR:24.89 PSNR:25.31

ORMM 50% 
DIP-M3

PSNR:24.80 PSNR:25.24 PSNR:27.64 PSNR:27.55 PSNR:26.03 PSNR:24.90 PSNR:25.36

GRMM 50% 
DIP-M3

Figure 12: Qualitative comparison on different measurement matrix with 50 looks on RMM task.
The first row shows the raw test images. The second and third row are RMM (25% sampling rate)
with random orthogonal and Gaussian measurement matrix. The fourth and fifth row are RMM (50%
sampling rate) with random orthogonal and Gaussian measurement matrix.
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