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Abstract

Heterogeneous federated learning enables collaborative training across clients under
dual heterogeneity of models and data, posing challenges for effective knowledge
transfer. Federated mutual learning employs proxy models to bridge cross-model
knowledge exchange; however, existing methods remain limited to direct alignment
between the outputs of private and proxy models, ignoring the deep discrepan-
cies in representation and decision spaces between them. Such cognitive biases
cause knowledge to be transferred only at shallow levels and trigger performance
bottlenecks. To address this, this paper proposes FedKWAZ to identify and ex-
ploit Knowledge Weak-Aware Zones (KWAZ)—spatial zones of deep knowledge
misalignment between private and proxy models, further refined into Semantic
Weak-Aware Zones and Decision Weak-Aware Zones, which characterize cognitive
misalignments in representation and decision spaces as focal targets for enhanced
bidirectional distillation. FedKWAZ designs a Hierarchical Adaptive Patch Mixing
(HAPM) mechanism to generate multiple mixed samples and employs a Knowl-
edge Discrepancy Perceptron (KDP) to select the samples exhibiting the largest
representation and decision discrepancies, thereby mining critical KWAZ. These
modules are integrated into a two-stage mutual learning framework, achieving
global class-level representation-decision consistency alignment and local KWAZ-
guided refinement, structurally bridging cognitive biases across heterogeneous
mutual learning models. Experimental results on multiple datasets and model
configurations demonstrate the superior performance of FedKWAZ.

1 Introduction

Federated Learning (FL) [21} 9} 25| 22} 24 138} 137 |39} [19] has emerged as a privacy-preserving
distributed training paradigm, enabling devices to collaboratively learn a global model without sharing
raw data. However, FL faces two major challenges in practical deployments: clients often hold
non-IID data, and necessitate training personalized models that fit device-specific resource constraints.
The dual heterogeneity in data and model disrupts traditional parameter aggregation and makes
it difficult for a single global model to effectively serve all clients. Consequently, Heterogeneous
Federated Learning (HtFL) [44]], aiming to learn personalized models for each client, has become a
central research focus.

To tackle model and data heterogeneity in HtFL, federated mutual learning [28] has been proposed,
where clients train performance-driven private models and resource-friendly proxy models in parallel,
facilitating knowledge transfer via bidirectional distillation. However, existing methods [28} 36, [15]

*Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



20] primarily focus on direct alignment in the feature and decision space across heterogeneous
models, overlooking deeper mismatches in their learned representations and decision behaviors.
As illustrated in Figurem(left), for the same input, the private and proxy models on a given client often
produce significantly different feature distributions and classification outputs—a phenomenon termed
semantic—decision dual drift. This dual drift implies that naive output matching yields only coarse
and superficial knowledge transfer, leaving critical representation- and decision-level discrepancies
unresolved. Without pinpointing and addressing these misaligned “weak zones,” knowledge transfer
remains inefficient and ultimately constrains the client’s performance.
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Figure 1: Knowledge mismatch between private and proxy model and mutual learning in FedKWAZ.

Motivated by the necessity to address this semantic—decision dual drift, this paper proposes Knowl-
edge Weak-Aware Zones (KWAZ), characterizing zones where heterogeneous models exhibit the
strongest cognitive discrepancies. KWAZ is further decomposed into Semantic Weak-Aware Zones
(SWAZ) and Decision Weak-Aware Zones (DWAZ), focusing respectively on representation and
decision discrepancies that indicate key zones requiring targeted knowledge enhancement. Building
on this insight, the FedKWAZ framework is designed to mine and align complementary knowledge
within KWAZ through a two-stage mutual learning scheme integrating local and global collaboration.

At the local stage, as shown in Figure [T] (right), HAPM generates multiple mixed samples via
diverse parameter pairs (o, g;) (where s = 1, ..., K), where « controls the mixing ratio between
two images and g specifies patch granularity to divide each image into /g x /g blocks for local
mixing. KDP then evaluates representation and decision discrepancies between private and proxy
models across these samples and selects (a*, g*) inducing the maximal divergence, thereby defining
the corresponding samples as KWAZ, which are leveraged via SWAZ and DWAZ for path-specific
bidirectional distillation, mitigating semantic and decision-level discrepancies between private and
proxy models. At the global stage, the server aggregates class-level semantic prototypes and decision
distributions uploaded by clients to construct unified representation-decision anchors. This approach
eliminates the need for frequent proxy model synchronization, significantly reduces communication
overhead, and provides representation—decision consistency alignment from a global perspective.

The main contributions of this work are summarized as follows:

* KWAZ is proposed to characterize zones where heterogeneous models exhibit strong cogni-
tive divergence, offering fine-grained perspectives beyond conventional output alignment.

* FedKWAZ is developed as a federated mutual learning framework integrating HAPM and
KDP to dynamically discover and exploit SWAZ and DWAZ, enabling complementary
learning between private and proxy models in their zones of disagreement.

* A communication-efficient global knowledge alignment mechanism is designed using aggre-
gated class-level semantic and decision anchors, achieving strong cross-client knowledge
alignment with significantly reduced communication costs.

2 Related Work

HtFL focuses on addressing collaboration challenges arising from variations in clients’ computational
capabilities, model architectures, and data distributions. Based on the degree of heterogeneity and
structural constraints, existing studies can be grouped into the following three categories:



Resource-Heterogeneous FL. Methods. A number of approaches handle device heterogeneity by
allowing clients to train smaller or pruned versions of a global model that fit their local resource
constraints. For example, FedRolex [1]], FjORD [12], FLASH [4]], FedResCuE [47] and HeteroFL.
[[7]] enable each client to work with a sub-model or width-reduced network tailored to its hardware
capabilities. These methods focus on resource adaptation — e.g., dynamically extracting or training
sub-networks from a larger global model — so that both high-end and low-end devices can participate
in federated training. However, their emphasis is on resource allocation rather than on maintaining
cross-client knowledge consistency. As a result, resource-heterogeneous solutions do not explicitly
align the semantic representations or decision distributions learned by different client models. The
absence of such alignment means that knowledge gaps can persist between clients’ sub-models,
potentially limiting the overall knowledge transfer efficiency across the federation.

Modular-Heterogeneous FL. Methods. Another line of work addresses model heterogeneity by
splitting models into shared global modules and private local modules. FedRep [6] and FedPer [3]
share and aggregate a global feature extractor across clients (aiming for aligned semantic represen-
tations), whereas LG-FedAvg [20] and FedGH [41]] share a global classifier across clients (aiming
for aligned decision output distributions). By partitioning the model, these approaches attempt
to transfer knowledge either at the representation level (feature extractor) or at the decision level
(classifier) among clients. However, since the *“global” module in such frameworks is obtained by
aggregating components trained on each client’s non-iid local data, forcing all clients to adopt
the aggregated module can undermine personalization and lead to suboptimal local performance. In
practice, these methods face a trade-off between achieving global alignment and preserving local
adaptation. Merely sharing or exchanging modules may prove inadequate in addressing fine-grained,
data-dependent misalignments in the learned representations or decision boundaries of client models,
potentially leaving certain semantic or decision-level discrepancies unresolved.

Autonomy-heterogeneous methods allow clients to construct local models without structural limits.
Distillation-based approaches, such as FCCL [13]] and FedGen [48]], leverage public or synthetic
data to facilitate cross-model knowledge transfer, yet their effectiveness is highly dependent on data
fidelity and distributional consistency. Other methods [30, 31}, 44,45 [14] transmit class prototypes or
logits as knowledge carriers. However, since prototypes and logits are information-compressed units,
they limit the richness of knowledge transfer and hinder deep, comprehensive consistency alignment.

In contrast, federated mutual learning introduces proxy models as bridges for knowledge transfer,
thereby accommodating autonomy-heterogeneous setups. FML [28] and FedKD [36] perform
bidirectional distillation between private and proxy models to establish interactive transfer pathways.
However, they focus on direct output matching, resulting in shallow distillation that fails to capture
critical semantic and decision divergence. FedMRL [42] mitigates this paradigm by incorporating
multi-granularity features, yet lacks explicit mechanisms for correcting semantic or structural gaps,
introducing noise when concatenating diverse features in its MRL. Moreover, frequent transmissions
of proxy models in these methods make it hard to balance communication cost and training gains.

Insights. Driven by the limitations identified above—especially the neglect of deeper semantic
and decision discrepancies between heterogeneous models—this work introduces FedKWAZ, a
cognitively-aware mutual learning framework that explicitly targets the problem of semantic—decision
dual drift. It formalizes KWAZ as spatial zones where heterogeneous models display significant
knowledge divergence, and further decomposes them into SWAZ and DWAZ, enabling targeted
distillation in the semantic and decision discrepancy zones, respectively. In addition, a lightweight
class-level global knowledge anchoring mechanism is designed to achieve a new balance among
architectural flexibility, communication efficiency, and transfer quality. By directly confronting the
semantic—decision dual drift, FedKWAZ bridges overlooked knowledge gaps and enables more
precise and efficient cross-model collaboration.

3 The Proposed FedKWAZ Approach

3.1 Problem Setting

A typical HtFL system is considered, consisting of a central server and a set of clients
{Co,Cy,...,Cn_1}. Each client C; holds a private local dataset D;, sampled from a distribution
P, satistying P; # P; for any ¢ # j. In each communication round, K = N - p clients are selected
according to the participation rate p. Each client Cy, trains a private model M}, and a proxy model Oy,
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Figure 2: The workflow of FedKWAZ.

on its local data Dy, parameterized by v, and ¢y, respectively. The feature extractor and predictor
are defined as wy and w}?, represented as ¢y, = {wk}—’w, w;’j’d’} and ¢y = {wk}—"b, w,:{"b}. Unlike
conventional mutual learning, no global model is maintained at the server; instead, global guidance is
constructed from feature- and decision-level knowledge uploaded by the clients. FedKWAZ aims to
minimize the aggregated local losses across all joint models. The joint model at each client is denoted
by Wi (¢r, ék ), and the optimization objective is:

N-1

min Ep, ~p, [¢ (W , 1
Y05 YN =1,005--, N -1 P Pk Kk, 91); D )] M
k=0
where £(-) denotes the empirical loss of the joint model on the client’s private dataset. After training,
each client retains its private model M, for final deployment and inference.

3.2 Modeling of KWAZ and Dual-stage Deep Mutual Learning

To investigate cognitive gaps between heterogeneous mutual learning models, KWAZ is charac-
terized as the knowledge-deficient zones of the student model S and the teacher model 7 in both
representation and decision spaces. To detect these zones, the following modules are introduced:

* HAPM: Every k rounds, HAPM generates multiple mixed inputs by partitioning = into
\/9 X /9 patches (granularity g) and applying patch-wise interpolation with mixing ratio o
under varied (o, g) pairs, enabling discrepancy-aware selection (details in Appendix .

» KDP: For each mixed input generated by HAPM under a specific («, g), KDP quantifies the
knowledge gap between S and 7 on it, and selects (a*, g*) inducing the largest discrepancy
to guide targeted KWAZ mining and refinement over the following % training rounds.

Based on this mechanism, a dual-stage mutual learning framework is constructed: coarse-grained
cross-client knowledge alignment is achieved at the first stage via global semantic prototypes and
decision anchors, while fine-grained distillation is conducted at the second stage under KWAZ
guidance. Figure [2]illustrates the workflow, and Appendix [B]details the algorithm.

3.2.1 Stage I: Global Knowledge Mutual Learning

Global semantic and decision anchors are constructed by aggregating class-level features and predic-
tions from private and proxy models on the server, enabling M}, and Q. to mutually align with each
other’s global semantic and decision knowledge. Given class-wise dataset D, . from client Cy,, for
each x € Dy, ., features and predictions from M, and Q, are:

2 = Flaywl ™), g0 = H(z s wlt ), 228 = Flaywl ), 925 = H=2Hw0) @)



Class-wise features and logits are averaged as local knowledge. In the case of My:
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and the same formulation applies to Q,, yielding P2+ and LE*. All uploaded local knowledge is
aggregated to obtain global knowledge, where AV, denotes clients with data containing class c:
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with P2 and L aggregated analogously from Qj,. With the global knowledge above, global mutual
alignment between M, and Qj, is achieved, where "M, — Q" indicates that M, learns from Qp,
{.. denotes the cross-entropy loss, and ¢ is the softmax function:

B3 S [l 0) b (% o(E9) 45— P ]
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Model parameters are updated based on the above loss by performing one step of gradient descent:
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3.2.2 Stage II: Local KWAZ Mutual Learning

Following global coarse-grained alignment, FedKWAZ performs local fine-grained mutual learning
using KWAZ guidance. This stage incorporates three components: (1) a basic mutual alignment
loss, (2) a semantic refinement loss based on SWAZ, and (3) a decision refinement loss based on
DWAZ. These objectives are optimized through a second local gradient descent step. Prior to KWAZ-
specific distillation, a basic bidirectional loss is computed to align intermediate features and output

distributions between M}, and Qy. Here, KL(p || ¢) = ZC 1 Pe log Ee denotes the Kullback-Leibler
divergence [[11]], and 7 is a temperature parameter used to smooth the probablhty outputs:
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SWAZ Mutual Learning: Symmetric Semantic Enhancement. SWAZ characterizes input zones
where student model S severely mismatches teacher model 7 in feature space. To identify such zones,
a set of mix ratios A = {aq,...,an} and patch sizes G = {¢1,. .., gm} are defined for HAPM. For
each (a, g) € A x G, a mixed 1nput X8 SWAZ is generated by blending the original sample = with ratio
« and patch size g through HAPM. This mixed sample is fed into both S and T, producing feature
vectors zf(sﬁT and 27 XSaT The feature gap between S and 7 on the mixed sample is measured by

Mean Square Error (MSE) [133]]:

£8%(0,:D) = Bonn [12557 — #ksoor) I3 ®)

The KDP conducts a search over («, g) € A x G to find the pair that maximizes this feature gap:

(a*,g*) = arg o e Gﬁ‘mm,g; D) ©9)



Using the optimal pair (a*, g*), the SWAZ is defined as X{hs%* = HAPM(xz; o*, g*), Here,
"M, <> Q4" indicates that the same input is symmetrically used in both directions, since the optimal
parameters are selected by maximizing the MSE-based feature gap between the two models, and
MSE is symmetric with respect to its inputs. As a result, exchanging student and teacher roles yields

the same mixing parameters and the same SWAZ. Let z;\;‘,\’;w(g , and Z)Q(’LWQ . denote the feature

vectors of M, and Q. on this optimal mixed input. Then the SWAZ loss for both directions is:

Mi—=Qp _ || Mk Qp 2 _ pQr—Mi _ || ,9k My 2
bswaz " = ||ZXMkHQk T A My oy 12 = lswaz " = HZXM;VHQ;C T A Mooy Iz (10)
SWAZ SWAZ SWAZ SWAZ
which highlights the symmetric nature of the loss. Minimizing this term encourages My, and Qy, to

align their representations in zones where their feature discrepancies are most pronounced.

DWAZ Mutual Learning: Asymmetric Decision Enhancement. DWAZ characterizes zones
where the predictive distributions of the student model S and teacher model 7 diverge most in
the decision space. To expose such zones, a set of mix ratios B = {f31,. .., O} and patch sizes
G = {g1,..-,9m} are defined for HAPM. For each (3,g) € B x G, a mixed sample XSy, =

HAPM(z; 3, g) is constructed and passed through S and 7 to obtain logits g}f(sﬂT and Q)T( s—7. The
DWAZ DWAZ
predictive gap is measured using KL divergence:

L530(8,0:D) = Barp [KL (0000 /Mo 0gr /7)) - 7] (1)

The KDP explores (3, 9) € B x G to identify the pair that maximizes the prediction divergence:

* % S—T .
(B*,9") = arg (ﬁ’glea‘gxc‘cDWAZ(/Baga D) (12)
Unlike SWAZ, DWAZ is direction-dependent due to the asymmetry of KL divergence, where
KL(p || ¢) # KL(q || p). Accordingly, two distinct mixing setups are derived based on the
student—teacher role assignment between My, and Qy: (57, g7) when My, learns from Qy, (i.e.,
S = My, T = Qy), and (33, g5) when the roles are reversed. These configurations respectively
localize the zones where M}, and Qy, diverge most from each other’s predictions.

When § = My, and T = Qy, the corresponding mixed sample is Xlg\gv’;;g’“ = HAPM(z; 87, 97),
and the DWAZ loss for the direction M), — Q9 is:

502 = KL (o, a0 /7) 10085 00 /7)) 7 13

XDWAZ DWAZ

Similarly, for the reversed roles where S = Qj, and T = My, the mixed input becomes XDstlszk =

HAPM(z; 8%, g5), and the corresponding DWAZ loss for the direction Qj — My, is:

Qp— My, _ ~Qp M 2

85 =KL (00528, /1) | 00, /7)) 0 (14
DWAZ DWAZ

Minimizing {pwaz in each direction forces My, and Qj to mutually align their predictions, focusing

on zones exhibiting the largest disparity in their decision outputs.

Based on the combination of base mutual loss, SWAZ loss, and DWAZ loss, a second-stage lo-
cal gradient descent is conducted to refine both representation and decision knowledge between
heterogeneous models. The model parameters are updated as follows:

Uk Uk — 1V [k B + s
15)
B Ok =10 V [6RAM + u M + o]

By combining global coarse alignment and local KWAZ-guided refinement, FedKWAZ constructs a
two-stage closed-loop distillation process. Heterogeneous models mutually compensate for semantic

and decision-level gaps by emphasizing training on KWAZ.



4 Experimental Evaluation

4.1 Experiment Setup

Baselines and Datasets. Ten mainstream heterogeneous federated learning methods are selected
for comparison, including LG-FedAvg [20], FedGen [48], FML [28]], FedKD [36], FedDistill[[14],
FedProto [30], FedGH [41], FedMRL [42], FedTGP [44], and FedKTL [45]. Local Training is
adopted as the baseline for the non-federated scenario where training is conducted entirely locally.
Five public multi-class datasets, covering tasks from natural image to medical image, are used. The
datasets are Cifar10, Cifar100 [17]], Skin-Lesions-14 (merged from HAM10000 [32] and MSLDv2.0
[2]), Flowers102 [23]], and Tiny-ImageNet [S].

Training Configuration. The experimental setup involves 20 clients, all participating in each
communication round (p = 1). Local training is performed once per round using a learning rate
of 0.01 and a batch size of 10, over a total of 1000 rounds. Each client splits its local dataset into
75% for training and 25% for testing. The reported result corresponds to the optimal averaged test
accuracy across all clients at each round. All experiments are repeated three times, and both the mean
and standard deviation are reported.

Data Heterogeneity Modeling. Follow FedALA [43]], two non-IID partitioning schemes are used to
simulate data heterogeneity: Pathological Split: For Cifar10, Skin-Lesions-14, Cifar100, Flowers102,
and Tiny-ImageNet (with 10/14/100/102/200 classes, respectively), each client receives 2/2/10/10/20
disjoint classes to induce class-wise isolation. Practical Split: For each class c and client i, the
sample proportion is drawn from a Dirichlet distribution g, ; ~ Dir(3), with § = 0.1, introducing
heterogeneity in both class distribution and data volume.

Modeling heterogeneity scenarios. Two types of heterogeneous setups are constructed for feature
extractors and classifiers. Feature extractors follow the HtFEx scheme, where client ¢ is assigned
the (¢ mod X)-th model. An average pooling layer with output dimension K = 512 is applied
for feature alignment. The main test setup, HtFEg, including 4-layer CNN [21]], GoogleNet [29],
MobileNet_v2 [27], and ResNet variants [10]. For classifiers, together with HtFEg, two Transformer
architectures—ViT-B/16 and ViT-B/32 [8]]—with different classifier architectures of ResNets, form
the HtM( setup. Furthermore, the HtFEg—HtC, introduces dual heterogeneity by pairing the eight
extractors with four distinct fully connected classifiers. Methods requiring homogeneous classifier
structures (LG-FedAvg, FedGen, FedGH) are excluded from this comparison. All architectural details
and extended results are provided in Appendix [D]and Appendix [E]

4.2 Performance under Two Data Heterogeneity Settings

As shown in Table FedKWAZ yields accuracy improvements of 4.54% and 3.80% on Cifar100 and
Flowers102 under the Dirichlet split. For the Pathological scenario, further gains of 4.66% and 3.87%
are reported on Cifar100 and Tiny-ImageNet. These benefits arise from KWAZ-driven knowledge
refinement, by adaptively targeting and supervising cognitively misaligned samples via SWAZ and
DWAZ, FedKWAZ effectively addresses heterogeneous label assignment and sample imbalance.
Performance trends in Figure [3| confirm its stability across tasks.

Table 1: Accuracy across datasets with top three results highlighted as first, second , and third .

FedKTL
FedKWAZ

88.02+0.13 87.2340.24 47.09+0.16 52.85+0.29 28.17+0.22 86.21+0.34 93.7040.19 61.20£0.16 64.19+0.45 34.74+0.32
90.39+0.12 89.82-+£0.19 51.69+0.14 57.52+0.21 30.85+0.09 | 90.17+0.11 96.27+0.08 66.39+0.17 71.28+0.29 38.61+£0.12

Settings | Practical Setting | Pathological Setting

Datasets ‘ Cifar10 Skin-Lesions-14 Cifar100 Flowers102 Tiny-ImageNet ‘ Cifar10 Skin-Lesions-14 Cifar100 Flowers102 Tiny-ImageNet
Local 86.14+0.18 86.73+0.27 39.50+0.21 49.00+0.14 23.53+0.07 84.15+0.13 93.63+0.18 56.27+0.50 59.56+0.36 31.8740.06
FedDistill 86.49+0.11 86.88-+0.20 41.584+0.37 49.0540.17 25.2140.16 84.59+0.35 93.0240.23 57.89+0.33 63.8440.40 33.10£0.08
LG-FedAvg 85.03£0.11 85.40£0.18 41.13+0.22 46.3340.22 23.40£0.35 84.50£0.17 93.15+0.31 55.58+0.13 58.5240.34 32.50£0.15
FedGen 85.22+0.12 86.47+0.19 40.09+0.20 49.39+0.24 23.69+0.19 84.39+0.26 93.01+0.18 55.5340.13 59.16+0.29 32.03£0.10
FedKD 86.31+0.11 86.660.20 40.374+0.18 46.67+0.15 24.7340.08 84.62+0.12 93.254+0.18 54.55+0.10 59.66+0.28 32.40+0.06
FedProto 84.57+0.13 81.57+0.26 35.83£0.15 41.08+0.14 18.37+0.32 83.49+0.21 92.2840.19 52.66+0.11 56.5540.30 28.41£0.10
FML 86.44£0.10 86.84+0.18 39.4740.20 45.35+0.17 23.56+0.18 83.60+0.12 93.124+0.31 53.26+0.15 58.28+0.28 31.60+0.14
FedGH 83.77+0.48 83.99+0.25 38.83+0.11 45.9440.15 22.6040.12 83.39+0.15 93.2940.19 56.25+0.13 59.41£0.36 31.77+0.08
FedMRL 86.79+0.18 87.60+0.25 42.224+0.27 48.47+0.16 23.37+0.22 85.80+0.21 94.33+0.24 58.55+0.23 62.41+0.30 33.48+0.17
FedTGP 88.07+0.42 87.33+0.36 47.154+0.17 53.724+0.23 27.6240.08 87.03+0.13 94.66+0.18 61.73+0.32 69.07+0.41 34.70+0.08
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Figure 3: Performance comparison under pathological and dirichlet data heterogeneity settings.

4.3 Performance under Various Model Heterogeneity Settings

As shown in Table[2] most methods experience noticeable performance degradation as model hetero-
geneity increases, particularly during the transition from the homogeneous HtFE; to the heteroge-
neous HtFE,. Figure[d] (left one) highlights the sensitivity of cross-client collaboration to architectural
variation. In contrast, FedKWAZ performs architecture-aware distillation by decoupling semantic
and decision discrepancies, enabling path-specific alignment across heterogeneous models. It yields
a 2.45% average gain and outperforms FedTGP by 3.26% under the HtFEg—HtC, setting,where both
extractors and classifiers are heterogeneous, demonstrating high adaptability to model diversity.

Table 2: Effects of model heterogeneity and client scale on Cifar100 test performance.

Settings ‘ Different Degrees of Model Heterogeneity Large Client Amount
| HtFE, HtFE, HtFE, HtFE, HtM; HtFEg-HtCy 50 Clients 100 Clients 200 Clients

FedDistill 53.67+0.12 46.384+0.26 44.5440.17 44.31+£0.27 40.45+0.23 40.66+0.10 40.64+0.38 39.6940.11 32.61£0.15

LG-FedAvg | 53.89+0.13 45.49+0.14 43.744+0.29 43.65+0.10 — — 38.5440.10 36.26+0.15 30.3440.11

FedGen 53.1940.16 44.70£0.17 43.2640.18 42.4610.14 — — 38.4240.14 35.4440.10 30.85+0.14
FedKD 53.0940.10 46.17+0.12 44.60+0.13 42.30+0.15 40.19+0.11 40.30+0.10 39.3040.12 34.394+0.33 30.34+0.16
FedProto 44.3310.45 46.10£0.13 39.4740.14 31.3440.12 34.2340.19 30.8040.14 34.8240.25 32.2440.19 26.2240.20
FML 53.03+0.11 43.0140.16 42.794+0.19 42.36+0.10 40.1740.11 40.43+0.16 38.5840.10 36.1040.11 30.7540.10
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Figure 4: Test accuracy across various model settings (left one) and client scales (right three).

4.4 Performance in Multi-Client Setup

Scalability is evaluated with 50, 100, and 200 clients under partial participation (p = 0.5) to simulate
intermittent communication. As shown in Table 4] most methods exhibit notable performance
degradation as client count increases and data becomes more fragmented. In contrast, FedKWAZ
maintains margins of 4.58%, 2.80%, and 3.89% across the three scales, benefiting from its capacity
to extract transferable cues from HAPM-generated inputs and enhance cognitively divergent zones,
thus alleviating data sparsity-induced degradation. The per-client accuracy distributions in Figure []



(right three) further support this trend, with FedKWAZ presenting higher medians, smaller variances,
and more concentrated distribution, indicating improved utility under large-scale deployment.

4.5 Communication and Computation Cost

Table [3| reports the theoretical and empirical

communication cost per round. In FedGen, the  Taple 3: Communication cost per iteration of HtFEg

auxiliary generator is denoted as ©; in FML, ' model group in theory and practice for Cifar100.
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Substantial transmission overhead is intro-
duced by FML, FedKD, and FedMRL due
to the need for proxy model exchange. FedGen further amplifies downstream bandwidth via generator
transmission. Although FedDistill maintains low communication volume, its accuracy degrades due
to limited information content in transmitted logits. FedKTL also exhibits increased downstream load
during generator-based knowledge transfer.
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Figure 5: Comparison of communication and computation costs across methods.

As shown in Figure 5] (a), owing to the use of class-level semantic representations and prediction
outputs as compact cross-model carriers, FedKWAZ achieves substantial reductions in both upload
and download communication volume. Figure 5] (b) reports the number of communication rounds
required by FedTGP, FML, FedKD, and FedMRL to reach peak performance, compared to the rounds
needed by FedKWAZ to match these baselines. Total FLOPs per local forward-backward pass are also
evaluated. Benefiting from its two-stage mutual learning scheme, FedKWAZ attains and surpasses
baseline performance with fewer rounds. As illustrated in Figures [5](c)(d), both communication and
computation costs are reduced, improving adaptability under high-frequency interactions.

4.6 Ablation Study

Three ablation variants are constructed to isolate
the contributions of FedKWAZ components: (1) Table 4: Ablation study on four datasets in the
Local Mutual Learning (LML), which omits the  practical setting using HtFEs.

global alignment stage; (2) One-way KWAZ

learning from proxy model to private model | LML P2P-L P2P-R  FedKWAZ
to-Pri : 1)) _ Cifarl0 89.42+0.10 89.63+0.15 89.95+0.13 90.39:£0.12
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way KWAZ learning in reverse from private  Cifari00 5036+0.16 5093+£0.12 5113019 51.69:£0.14
Flowers102 56448025 S56.87+0.17 57.08+023 57.52+0.21

model to proxy model (Private-to-Proxy Reverse
Learning, P2P-R). As reported in Table ] Fed-
KWAZ consistently outperforms LML by 0.97%, 1.12%, 1.33%, and 1.08% on Cifar10, Skin-
Lesions-14, Cifar100, and Flowers102, respectively. Figure[6| (left) shows that one-way transfer pro-




vides limited gains over LML, suggesting that cross-model knowledge gaps remain under-addressed.
In contrast, the full FedKWAZ—with bidirectional KWAZ learning and global alignment, achieves
markedly superior results, demonstrating its efficacy in focused and deeper knowledge transfer.
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Figure 6: Ablation study results (left two) and hyperparameter study results (right one).

4.7 Hyperparameter Study

As shown in Figure [§] (right one), the impact of updating HAPM mixing configurations via KDP
every k rounds is evaluated with k € {10, 20, 30, 40, 50}. Frequent updates (k = 10 or 20) lead to
performance degradation, as the model fails to fully exploit the knowledge learned from KWAZ.
Conversely, infrequent updates (k = 40 or 50) hinder the timely detection and bridging of emerging
knowledge gaps, limiting the effectiveness of KWAZ-guided learning. Accuracy consistently peaks
at k = 30 across datasets, suggesting that a balanced schedule between knowledge absorption and
dynamic gap correction is essential. Overall, FedKWAZ sustains strong performance across different
k, validating the effectiveness of its dynamic update strategy.

5 Conclusions

This paper proposes FedKWAZ, a cognitively structured mutual learning framework that captures
semantic and decision discrepancies across heterogeneous models by decomposing KWAZ into
SWAZ and DWAZ. Through HAPM-based sample structuring and KDP-guided discrepancy local-
ization, KWAZ is dynamically identified and reinforced, offering a fine-grained perspective beyond
conventional output alignment. Comprehensive experiments across diverse datasets and architectures
validate its effectiveness under both model and data heterogeneity in federated learning.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contributions are clearly and accurately articulated in the Abstract
and Introduction (Section E]), including the concept of Knowledge Weak-Aware Zones
(KWAZ), explicitly subdivided into Semantic Weak-Aware Zones (SWAZ) and Decision
Weak-Aware Zones (DWAZ). Furthermore, a dual-stage deep mutual learning mechanism
integrated with the proposed HAPM and KDP methods effectively enables knowledge
transfer among heterogeneous federated models. These stated claims align consistently and
comprehensively with subsequent theoretical analyses and experimental results.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Potential limitations of this work are explicitly addressed in Section G} includ-
ing the use of a fixed temperature parameter 7 during prediction distillation and the uniform
setting of feature dimensionality K across datasets. The potential for dynamically adapting
these configurations to better accommodate model complexity and data characteristics is
also discussed.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: A comprehensive set of theoretical assumptions and corresponding detailed
proofs are provided explicitly in the Theoretical Proofs (Section [C). This section thoroughly
covers Lemma([l] [2] and Theorem([T} 2] including clearly stated assumptions (Assumptions|T]

and[) as well as complete proofs (Proof of and [C.4).

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All critical components required to reproduce the experimental results have
been thoroughly disclosed. The experimental protocols, dataset configurations, training
routines, and modeling heterogeneity strategies are detailed in Section[d.1] with supplemen-
tary pseudo-code provided in Appendix [B| Furthermore, implementation-level specifics are
provided in Appendix [D} including hyperparameter settings (Appendix [D.3)), experimental
environments (Appendix [D.I)), and architectural design choices (Appendix [D.4). These
collectively ensure full reproducibility of the reported results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Open-source implementations have been made publicly accessible via the
GitHub repository linked in Appendix [D.T] All datasets used in the experiments are publicly
available, and their access links are clearly listed in Appendix Together with the
algorithm description and hyperparameter configurations, the provided resources support
faithful replication of the experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baseline. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Complete training and evaluation details are provided in Section including
data partition strategies (pathological and Dirichlet), number of clients, training/testing
splits, learning rate, batch size, and local/global update frequency. Appendix [D.3]expands
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on baseline-specific hyperparameter settings, optimizer types, distillation parameters, and
HAPM configurations. These ensure the setup is transparent and comprehensive.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results are reported with mean and standard deviation over
three independent trials, as stated in Section[d.1} This allows evaluation of result consistency
and robustness. Error ranges are numerically indicated in all tables and figure legends,
providing a reliable measure of statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on the computational environment are clearly stated in Appendix [D.T}
where it is noted that all experiments were executed on four NVIDIA GeForce RTX 4090
GPUs (24GB) using the PyTorch framework. This allows readers to understand the scale of
resources required and estimate the expected runtime and memory consumption.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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0.

10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The NeurIPS Code of Ethics has been carefully reviewed, and the research
presented in this paper fully conforms to all stipulated ethical guidelines.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are explicitly discussed in Section [H} Positive societal
impacts are addressed, including enhanced adaptability of heterogeneous federated models,
reduced communication costs with improved privacy protection, accelerated convergence
and improved system energy efficiency, and the expanded potential for practical applications
across domains such as healthcare, smart manufacturing, and smart cities. No direct negative
societal impacts have been identified; however, careful monitoring is encouraged when
deploying the technology in critical domains.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: No significant risk of misuse or dual-use associated with the released code or
models has been identified in this work; therefore, explicit safeguard mechanisms are not
applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All utilized datasets and related assets have been properly credited in Sec-
tion @} The licenses and official sources for the datasets, including Cifar10, Cifar100,

Flowers102, Tiny-ImageNet, and Skin-Lesions-14, have been explicitly mentioned, and
their terms of use have been properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The newly developed code for FedKWAZ has been publicly released and prop-
erly documented, with access information provided in Appendix [D.1] Detailed descriptions
of hyperparameters, architectures, and experimental setups have been provided to facilitate
reproducibility and reusability.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human subject experiments have been involved in the
research presented in this paper.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve research with human participants, and therefore
IRB approvals or equivalent institutional review procedures are not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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An overview of the Appendix is provided below, covering algorithmic components, theoretical founda-
tions, implementation specifics, extended empirical analysis, and broader contextual considerations.
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A Hierarchical Adaptive Patch Mixup

To explicitly capture knowledge discrepancies between heterogeneous models, a novel Hierarchical
Adaptive Patch Mixup HAPM mechanism is introduced in FedKWAZ. High-quality samples with
local diversity and hierarchical structure are generated through spatially granular partitioning and
stochastic perturbation, supporting the identification and enhancement of weak knowledge-aware
zones. The input to HAPM includes the images x, a mixing strength parameter «, and a spatial
granularity parameter G. Two key procedures are involved in HAPM: hierarchical random partitioning
of spatial patches and independent interpolation of partitioned samples.

A.1 Hierarchical Random Partitioning of Spatial Patches

To reflect knowledge differences across heterogeneous models at a local granularity, a spatially
hierarchical random perturbation mechanism is incorporated into HAPM. The original input images
X € REXCOxXHXW (where B, C, H, and W denote the batch size, channels, height, and width) is
partitioned into v/G x /G local patches. Each patch is then subjected to spatial perturbations to
improve diversity and sensitivity to knowledge. Specifically, the base height and width of each patch
are defined as:

H W
h ase — | T = | ase — | T = 16
b { e J W { fe J (16)

Next, the initial boundaries of each patch are constructed based on grid indices:

hgtzz;r][) =1q- hbasea hé;’dj) - (Z + 1) : hbasea ws(tz;{rjt) = j * Whase we(;g) = (] + 1) * Whase (17)

Here, the grid indices i,j = 0,1,...,v/G — 1 are used to specify patch positions. To increase the

diversity of local perturbations, jitter factors 5,(3“7') and 61(5 )

variables from uniform distributions:

6}(li,j) ~U (_ Pbase hbase) 7 51(371') ~U (_ Whase wbase) (18)

are introduced and sampled as integer

47 4 4 7 4
To ensure validity, the perturbed positions are clipped within image boundaries using the clip function:

R = i (1520430, 2 = o (150 o0 0m)
@i = clip(wlilh +057,0,W), 857 = clip(wly + 857, 0,W)

These designs jointly form the hierarchical structure of HAPM, where local-granularity patches are
first divided in space and then perturbed at the patch level to enhance the diversity of the mixed

samples.

A.2 Patch-wise Independent Interpolation and Fusion

Based on the above spatial partitioning, the mixing coefficient A7) is independently sampled for
each patch zone from a Beta distribution:

AB9) < Beta(a, ), o >0 (20)

Given a randomly shuffled batch index , the interpolation fusion is independently performed in each
patch zone:

X5 B+ b B B0 = AVIXE s B s B @i - @) on

(1= Ay, B RS Bl B
Through this mixing process, each local zone of the image is independently adjusted based on the
patch-specific mixing strength, enabling HAPM to generate more diverse and knowledge-sensitive

samples, thereby enhancing the model’s recognition capacity in knowledge-weak zones.
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B Pseudo Codes of Fed KWAZ

Algorithm 1: FedKWAZ

Input: N, total number of clients; p, participation rate of clients in one round; 7', total number of rounds; 7,
learning rate of private and proxy models; F 4,FE, training epoch of the first and second stage; o*, 7, 55,
g™, mixing parameters of HAPM; 7, temperature of distillation; Dy, the local dataset of the k-th client.

Qutput: Private and proxy models’ PMr P2k and LMk L2x.

Randomly initialize the client local heterogeneous models [M1(¢1), ..., Mn—_1()n—1)] and local proxy
homogeneous small models [Q1(¢1), ..., On—1(dn-1)].
for each round t=1,...,7-1 do
// Server Side:

for each clientk =1,..., K do
| ClientUpdate(PM, P2, L LE)
end
Aggregate global semantic representation and decision output.
/I ClientUpdate:
Receive PM, P, LM, LE from the server;
for k € S* do
// Stage I: Global Knowledge Mutual Learning
for epoche =1,...,E4 do
for batch (z,y) € Dy, do
Obtain representation and logits:
2%, g2 M@ ), 228, 9% — Qu(x; ér);
Compute global alignment loss:

ZkaHMk = EOE()A’sz,y) + lor (f’?’ﬂo’(ié‘")) + | Zsz _ Pé\/l |
Ut v v — eV o o e,

end
end

// Stage II: Local KWAZ Mutual Learning
for epoche =1,...,Ep do

for batch (z,y) € Dy, do

Compute base mutual learning losses:

(7% Z KL (o(55% /) | 0994 /7)) -7+ |22 — 28

base

(ot = KL (a(99%/7) [l (92" /7)) - 72+ [|28% — 22 |

base
Generate SWAZ mixed samples: Xgyks” %k = HAPM(z; o, g*);

Compute semantic weak-awareness loss:
pMe—Q, _ Hsz _ 5%k H2 — 2k M.
SWAZ = lIZ Mooy Mpopll2 = fswaz s
SWAZ SWAZ
Generate DWAZ mixed samples:
Mp— —M *
Xpwhz = HAPM(m;ﬂf,gi‘),XDQ\,(fAZ * = HAPM(z; 3, g5 );

Compute decision weak-awareness losses:

Mp—Qp ~ M ~ Q. 2.

Lowaz =KL (O-(yXMkA)Qk /)l U(yXMkan /T)) T
DWAZ DWAZ

Qp M NG M 2.
852 =KL (002, . nes/7) | 00y /) 7%
. DWAZ DWAZ
Update models again:
My —Q M Q M Q
Pk = g, — 0w Vbt~ "+ lswhz "+ lowhe s

A I Y v R R S PR vt

base

end

end

Aggregate and upload updated PMr pSr [Mr L2 to the server.

end
end

St « Randomly sample K clients from N clients; Broadcast P!, P2, LM, LE to them;

G = Lop(FE,y) + tos (9%, 0(L8)) + || 22 — P2 |I%;

2.
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C Theoretical Proofs

The following notations and expressions are defined. ¢t € 0,1, ..., — 1 is used to denote the ¢-th
round of federated communication. The local loss function £y (wy,) is defined over the parameter set
wyg, of the local model M, and proxy model Qy, on client k. In each communication round, a total of
E = E4 + Ep local steps are conducted on client k in two stages. The start of the local update at
communication round ¢ is denoted as t F/ + 0, where the first local iteration of Stage I begins after the
global semantic and decision anchors are received from the server. Stage I involves E4 steps of local
update, with parameter sequence denoted as {th +€}e o, and th +Ea indicating the parameters
at the end of this stage. Starting from wtkE tEa Stage II proceeds with Ep local update steps, with

parameters denoted by {th tel f :Abf AE B, where wZE +Ea+Es represents the final parameters after the
t-th local training round. After Stage II, the local representations and decision outputs are uploaded to
the server for global aggregation and update, initiating the next communication round. The learning

rates on client k are unified into a scalar 1), comprising 7, and 7.

Assumption 1. Lipschitz Smoothness.The local loss function on any client k is assumed to satisfy
the I-Lipschitz smoothness condition. Specifically, for any parameter vectors wzl , w?, it holds that:

VL (wyl sz, y) — VLR (w2 z,y)|| < Li|lwp —wi?||,Vt,t2 > 0, (z,y) € Dy (22)
Moreover, this can be further expressed as:
L
Li = L < (VLR (=) + 2w — w2 (23)

Assumption 2. Unbiased Gradient and Bounded Variance.On client k, during the t-th local update,
the batch gradient sampled at w}, is denoted as gfu’ w = VL (wh; BL), and it is assumed to satisfy
unbiasedness and bounded variance:

Unbiasedness:
Ep:cp,[9u,k) = VL (w)). (24)

Bounded variance: )
Epco, [[| VLl B - VEL@))[*] < 02 25)

Assumption 3. Bounded Gradient in Global Alignment.Inspired by the theoretical bound on
semantic alignment loss variation per round in FedProto, the first-stage local update iterations in
FedKWAZ are defined, during which global semantic and decision alignment is performed on each
client’s local model. The resulting gradient shift from each single round is uniformly upper-bounded
as:

Hv@%gbalahgﬁ <% Vee{0,1,...,Ex—1},k e {0,1,...,.N —1}. (26)

Assumption 4. Bounded Gradient in KWAZ Alignment.Similarly, in the second stage of FedKWAZ
(the KWAZ learning stage), the knowledge alignment operations (including SWAZ and DWAZ)
performed between the local heterogeneous model and the proxy model on the client side are assumed
to exhibit a unified bound on per-step gradient variation:

||vchEgVeVAZahgn||2 <~y Ve€{Es,Es+1,.,Es+FEp—1},ke{0,1,.,N -1} (27)

Lemma 1. Stage-I Bias. Given Assumptions|[l| [2|and[3] After the completion of the first stage, the
following inequality is satisfied for any client:

tE+Ea tE+0 L1772 ! tE+ey 112 LIEAWQU2 2
E[Lk(wy = Lu(wy™™) = (11— =5 > I VLe(wre) 113 t————— +nEad
e=0

(28)

Lemma 2. Stage-II Bias. Given Assumptions|[l| [2|and[] After the completion of the second stage,
the following inequality is satisfied for any client:

Yo VL@

2 e=FE4 (29)

L 2 Ea+Ep—1
B [Cuuf*P0P)] <B [P P)] - (- H50 )

L1E3n202

E 2
9 +nLBYy
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Theorem 1. One Complete Round of FL. Given the above lemma, for any client, after the two-stage
mutual learning has been completed, the following inequality holds:

L 2 Eapa+Ep—1
E[ﬁk(sz—FEAJFEB)] < Ek(w’th-‘rO) _ (77 o 1277 ) Z ” Vﬁk(wfng—i_e) H%
=0 (30)
Li(E4 + Eg)n?c?
L LnlBa 5 BIVOT | (Ead 4 Es?)

Theorem 2. Non-convex Convergence Rate of FedKWAZ. Given Theorem(l| For any client and any
constant € > 0, the following inequality holds:

T—1Eas+Ep—1

1 e
£ DI S LA
t=0 =0

2 _2
D Prive {ﬁk(wimo) — E[Ly, (wiFHFatEey) | IiBatEpnio” 4 (g, 52 1 Epy?)

- Lin?
n—-—-

2(6 — (EA(SQ + EB’}/Q))
Li(e+ (Ea + Eg)o2)’

<€

st. 0<n<
(3D

C.1 Proof of Lemmalll

Proof. In the e-th local update of the first stage (e € 0, 1, ..., E4 — 1), any client & is considered, and
the result can be derived based on the Lipschitz smoothness in [I]

E[Ck (05 )] € B[Lk(w!P4e) + (VLu(wfBTe), wiFrert ey 4 L [ytBhert _ytBe 2]
© Lol + E[(VLL(wfe), —ngtP) + Lllngt™+|13]

= Lo(wiP*e) — nE[(VLu(wiETe), gtF+e)] + L[| gtE+<(12]

D L) = | VLr(wH) |3 + LB llgh7 3]

@ 2
< Li(wi®He) = nl|VLe(wi )13 + 255 (IVLr(wiP )3 + 07)

) 2 e 2,2
= Ll ) — (n = B50) VL™ + B

Step (a): Based on Assumption L, is approximated near sz ¢ using a first-order Taylor expansion.

Step (b): The update rule wi? e+t = gt F+e —ng,iE *¢ is applied, where gZE *¢ denotes the stochastic
gradient over the current batch.

Step (c): Based on Assumption 2] (unbiased gradients).
Step (d): From Assumption |Z| (bounded variance of the gradient), it holds that

E[l| g = VLi(wi") [I3] < o (32)
From this, the following upper bound is derived:

Elll 9" 113 <Il VL (wi"*) I3 +0 (33)

By summing the single-step inequalities from e = 0 to e = E 4 — 1, the following result is obtained:

tE+FE4 tE+0 Ll??2 Ea. tE+ey |12 L1EA772<72
BIC(wf™ ")) < L) = (n= 25 ) 30 1 VL) I3+ 2515 64)
e=0

Furthermore, based on Assumption [3] (bounded global alignment gradient in the first stage), a per-

round gradient variation upper bound §2 is introduced, leading to an extra term 1E 452 in the total
sum. Finally, LemmalT]is fully expressed as Eq.[28] O

25



C.2 Proof of Lemmal[2

Proof. Similarly, based on Assumptions[T} 2 and [] after the second stage of FedKWAZ (KWAZ
knowledge alignment stage), the expected local loss at any client % is shown to satisfy Eq. O

C.3 Proof of Theorem[I]

Proof. By substituting Lemma [I]into the right-hand side of the inequality in Lemma[2] Eq.[30|can be
obtained. O

C.4 Proof of Theorem

Proof. The left and right sides of Theorem [I]are swapped, and the gradient terms are rearranged:

Ea+Ep—1

> I VL) |3
=0 (35)
_ Ek(w]chJrO) . E[ﬁk(wZE+EA+EB)] + Ll(EA+2EB)n2gz + n(EA(SQ + EBr-Y2)
- Lyn? ’
n——5-

In the total 7" rounds of federated communication training, the expectation of the above inequality is
taken for ¢ from O to 7' — 1 and summed, yielding:

T—1FEps+Ep—1

TZ Z IV Li (w7 113

— 20_2
i [csz'f*”) — B[y (wfPHEAER))| 4 LEAERIRE (52 4 Bpe?)

T 24t=0
= n - L12’I’]2
(36)
The difference between the loss at the initial time and the optimal loss is defined as:
A=Ly—L">0 (37)
The expected loss function over 7" rounds is expressed as:
Z [ t+0 E[ﬁ (th+EA+EB)]:| < é (38)
T Fw =T
Hence, the original inequality can be further simplified as:
T—1Ea+Eg—1 Li(BEa+Ep)n’c® 2 2
e § + TSR 4 (Exd + Epy®)
T Z Z I VLK (wi) < T R T . (9
2

Let the expected norm of the modulus in the above equation be expected to converge to a constant e:

2
2+ —EI(EA+2EB)" T +n(EA6% + Epy? )

. L12n (40)
Since the number of training iterations 7" > 0, and A > 0, the denominator must satisfy:
Lin? Li(Ea + Ep)n?o?
e(n — 1277 ) — 1(Ea 5 B)1 —n(Ex6* + Epy?) > 0 41)
Thus, the upper bound of 7 is obtained as:
2(e — (E40% + Epv?
0<n< 2 (Fa 57)) (42)
Li(e+ (Ea+ Ep)o?)
O
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Since all of the quantities €, Ly, o2, 62, and 72 are positive finite constants, the constraint on
the learning rate 7 exists in a non-empty solution set. When the learning rate 7 satisfies the above
conditions, the expected norm of the local loss for any client can converge to the constant €. According
to the right-hand side of the above equation, except for the term divided by %, the remaining terms
are constants. Therefore, the non-convex convergence rate of FedKWAZ is achieved as: O(1/T).

D Additional Experimental Details

D.1 Experimental Environment

All experiments are conducted on the PyTorch platform. The experiments are executed on four
NVIDIA GeForce 4090 GPUs (24GB memory) across five supervised image classification datasets ﬂ

D.2 Datasets

The sources of the datasets are detailed. The experiments are conducted based on five public multi-
class datasets, covering natural and medical image recognition tasks, including:

Cifarl0 (https://pytorch.org/vision/main/generated/torchvision.datasets. CIFAR 10.html),

Cifar100 (https://pytorch.org/vision/stable/generated/torchvision.datasets. CIFAR 100.html),
Flowers102 (https://pytorch.org/vision/stable/generated/torchvision.datasets.Flowers102.html),
Tiny-ImageNet (http://cs23 1n.stanford.edu/tiny-imagenet-200.zip),

and Skin-Lesions-14 (https://www.kaggle.com/datasets/ahmedxc4/skin-ds) are utilized.

D.3 Hyperparameter Settings

In addition to the hyperparameter settings provided in the main text, the hyperparameter configurations
for each baseline method are also followed according to their original publications. Specifically,
LG-FedAvg is configured with no additional hyperparameters; for FedGen, the noise dimension is set
to 32, the generator learning rate is set to 0.1, and the hidden dimension is aligned with the feature
dimension K, with 100 training rounds on the server. The distillation hyperparameters in FML are
setas o = 0.5 and 8 = 0.5; in FedKD, the proxy model’s learning rate is set to 0.01 to match the
client; the temperature range for distillation is set to Ty, = 0.95 and Tenq = 0.95; for FedDistill,
~ = 1 is applied. FedProto is configured with A = 0.1; in FedGH, the server learning rate is set to
0.01 to match the client; the representation dimension of the proxy model in FedMRL is set to 256.
For FedTGP, ) is set to 0.1, the distillation margin threshold 7 to 100, and the server training rounds
to 100; in FedKTL, K is set to C, i = 50, A = 1, with server learning rate 1, = 0.01, batch size
B, = 100, and server training rounds E; = 100. Except for FedGen and FedKTL, where server-side
training is performed using the Adam [16] optimizer, SGD [46] is applied for client- and server-side
training in all other methods. In FedKWAZ, the HAPM module is employed to automatically search
for optimal mixing strength parameters (« or 3) using KDP within the range 0.1, 0.5, 1.0. The spatial
granularity G is used to divide each input image into v/G x /G local patches. Specifically, for
CIFAR10 and CIFARI100 (input size 3 x 32 x 32), as well as Flowers102 and Tiny-ImageNet (input
size 3 x 64 x 64), G € 64,16, 4; for Skin-Lesions-14 (input size 3 x 28 x 28), G € 49,16,4. In
FedKWAZ, the KWAZ update frequency (i.e., the interval k& for KDP-based HAPM parameter search)
is fixed to once every 30 rounds to balance the ability to absorb prior knowledge and explore novel
knowledge; the distillation temperature 7 is set to 4. The training epoch £ 4 and E'p for the first and
second stages are uniformly set to 1.

D.4 Detailed Setting of Model Heterogeneity

The primary test configuration for feature extractor heterogeneity is defined as HtFEg, consisting of
eight representative network architectures: 4-layer CNN [21], GoogleNet [29], MobileNet_v2 [27],
ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152 [10]. Networks of ResNet18 and
deeper are classified under the ResNet series and are used to construct multi-level heterogeneous
configurations, including: HtFE; (containing only ResNet4, used to simulate a fully homogeneous
scenario), HtFE; (composed of CNN and ResNet18, indicating slight heterogeneity), HtFE, (inte-
grating CNN, GoogleNet, MobileNet_v2, and ResNet18 to simulate moderate heterogeneity), and

2Code is available at: https://github.com/ysml1666/FedKWAZ
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HtFEy (configured as extremely heterogeneous by combining ResNet4, ResNet6, ResNet8, ResNet10,
ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152).

Regarding classifier heterogeneity, the HtC4 scenario is constructed to include four types of classifiers
composed only of fully connected (FC) layers, to simulate structural heterogeneity in decision-making.
The four architectures are defined as: (1) single-layer FC (100-d), (2) two-layer FC (512-d — 100-d)
with a 512-d hidden layer, (3) two-layer FC (256-d — 100-d), and (4) two-layer FC (128-d — 100-d).
In the HtFEg-HtC, scenario, the eight types of feature extractors and four types of classifiers are
cross-combined according to client indices, thereby forming a test environment with simultaneous
heterogeneity in both feature extraction and decision modules.

In mutual learning schemes, the proxy model structure is defined as a simple 4-layer CNN to suit
methods such as FedKD, FML, and FedMRL that periodically upload parameters of the proxy models
to the server, aiming to reduce communication overhead. In contrast, FedKWAZ avoids proxy model
transmission entirely and instead constructs global semantic prototypes and decision anchors by
aggregating local class-wise features and logits, the proxy model is still uniformly set as a 4-layer
CNN to ensure consistency and fairness in experimental comparisons, and to eliminate the influence
of model complexity as a confounding variable.

E Additional Experimental Results

E.1 Impact of Feature Dimensions

As shown in Table [5] most algorithms exhibit accuracy gains as the feature dimension increases from
K =64to K = 256. At K = 256, FedKWAZ attains an accuracy of 50.95%, surpassing FedKTL
by 5.16% (Figure , indicating its strong capability in leveraging high-dimensional representations
for effective knowledge interaction. When the feature dimension is further increased to K = 1024,
performance declines are observed in several methods, which can be attributed to elevated sparsity
and reduced discriminative efficiency in overly expanded feature spaces. In contrast, FedKWAZ
maintains competitive performance with 50.87% accuracy, supported by its KWAZ-guided knowledge
coordination.

In addition, several federated learning baselines are outperformed by the Local method under certain
configurations, as negative transfer under dual heterogeneity in data and model structures compro-
mises collaborative training. FedKWAZ, by incorporating KWAZ-guided modeling of representation
and decision discrepancies, effectively alleviates cross-model knowledge transfer bottlenecks and
maintains consistent performance across diverse tasks and configurations.

Table 5: Impact of feature dimensions (K) on HtFEg

. 50,95 50.87
model group performance on Cifar100. 51 . ,?— ..... —
| K=64 K =256 K =1024 5$L-" | |

Local 39.2440.14  40.92+0.11 40.2540.18 < 308 wudl
FedDistill 38934020  44.1040.15  42.5640.23 Sao | |
LG-FedAvg | 39.66£022  40.15+£0.14  41.25+0.19 g zi’g s |
FedGen 3875+0.15  40234+0.19  40.4340.11 3 R T
FedKD 40.5440.16  4026+0.17  41.08+0.10 < *‘ﬂ“‘-" osr
FedProto 31.84-+0.10 35.63+0.12 34.14+0.14 - 21 e,
FML 38.4040.18  40.80+0.11 40.5940.19 ) =
FedGH 38.19+0.18  40.01+0.15  38.4840.17 4538 —A7 S
FedMRL 39.06+0.14  41.90+0.16  42.9540.12 45 > e
Fed TGP 47.0540.17  47.874027  47.43+0.24 64 256 1024
FedKTL 45984+0.15  4579+0.14  46.76+0.17 Feature Dimension (K)

Figure 7: Accuracy comparison among
FedKWAZ ‘ 50.04+0.13 50.95+0.16 50.87+0.12 FedKWAZ, FedTGP, and FedKTL.

E.2 Homogeneous Models Setting
To further investigate the role of data heterogeneity in isolation, all clients are configured with identical

model architectures across three homogeneous settings: ResNet10, ResNet18, and ResNet34, in
addition to the original HtFE; (ResNet4) baseline listed in Table By removing model-level

28



heterogeneity, these experiments focus solely on the impact of non-IID data distributions on federated
knowledge transfer. As shown in Table [f] FedKWAZ consistently outperforms all baseline methods
under each homogeneous configuration. These results demonstrate that, even without structural
differences across models, the proposed dual-stage mutual learning framework remains effective by
explicitly aligning both representation semantics and decision behaviors across clients. This joint
alignment enables FedKWAZ to bridge knowledge gaps induced purely by data distribution shifts,
thereby ensuring stable performance improvements under non-IID conditions.

E.3 Performance on Fashion-MNIST under Pathological and Dirichlet Data Settings

On the Fashion-MNIST [40] dataset, the HtCNNg model group is adopted to accommodate the
grayscale single-channel input, with partition details listed in Table[8] A comprehensive evaluation of
all methods is conducted under both Pathological and Practical non-IID settings. As shown in Table[7}
FedKWAZ consistently yields the highest accuracy in both scenarios. Although FMNIST presents
relatively modest classification complexity and most methods perform well, FedKWAZ maintains a
consistent performance lead. In addition, Figure [§]presents the t-SNE [34] visualization of learned
feature representations under the pathological setting for representative mutual learning baselines
(FML, FedKD, FedMRL) and FedKWAZ. Compared to these baselines, the features produced by
FedKWAZ exhibit stronger intra-class compactness and inter-class separability, reflecting enhanced
semantic consistency under model heterogeneity and data distribution shift, and supporting improved
cross-model knowledge transfer.

Table 6: Performance using homogeneous mod-  Table 7: Performance on FMNIST using the

els on Cifar100 in the practical setting. HtCNNs.

Architectures | ResNet10 ResNet18 ResNet34 Settings \ Pathological Setting  Practical Setting
Local 45.38+0.16 42.57£0.12 41.62+0.14 Local 99.384+0.05 97.224+0.09
FedDistill 44.7840.18 44.1240.21 43.62+0.23 FedDistill 99.42+0.04 97.44+0.03
LG-FedAvg 47.114£0.17 44.53+0.15 44.04+0.20 LG—FCdAVg 99.3740.05 97.224+0.04
FedGen 47024022 44534013 44.2740.11 : : ) :
FedKD 45.1340.11 41324015 40.26+0.12 Ezgggl gg'igig'gg g;ggig'gg
FedProto 40.6740.25  40.23+0.18 38.0240.15 FodProt 99.394.0.03 97354002
FML 4637+0.16  43.07+0.17  40.25+0.12 edrroto : - : -
FedGH 453040.12 43294014  41.8420.10 FML 99.41+0.05 97.34£0.04
FedMRL 47364009 45674010  45.40+0.12 FedGH 99.38+0.04 97.36+0.03
FedTGP 47054038  4579+035  47.43+033 FedMRL 99.45+0.05 97.08+0.04
FedKTL 51.20+0.15 50.1040.14 48.1740.12 FedTGP 99.5240.06 97.53+0.05
FedKWAZ | 52355011 52474014  51.75+0.12 FedKWAZ | 99.60+0.03 97.61+0.04
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Figure 8: T-SNE visualization of features extracted by FML, FedKD, FedMRL and FedKWAZ on
FMNIST under pathological partition.

E.4 Performance under Low Client Participation Rates and High Client Drop Rates

On the Cifarl0 dataset (Dirichlet distribution, 100 clients), client participation is systematically
restricted to simulate federated scenarios with limited and unstable communication. Participation
rates of 5% and 10% are adopted, corresponding to only 5 or 10 randomly selected clients contributing
to each round, while aggregation uses updates only from the clients participating in that round. For
FML, FedKD, and FedMRL, global proxy models are constructed by aggregating local proxy models
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Table 8: The model architectures in the HtCNNg group. Convolutional layers are represented as
“I5 x 5,32]” indicating a convolution with kernel size 5 x 5 and 32 output channels, and “2 X 2 max
pooling” refers to a max pooling layer with kernel size 2 x 2.

| Sequentially Connected Feature Extractors Classifiers
CNN1 | Conv (5 x 5, 32), 2 x 2 max pool, 512-d fc 10-d fc
CNN2 | Conv (5 X 5, 32), 2 x 2 max pool, Conv (5 x 5, 64), 2 x 2 max pool, 512-d fc 10-d fc
CNN3 | Conv (5 x 5, 32), 2 x 2 max pool, 2 x 512-d fc 10-d fc
CNN4 | Conv (5 x 5, 32), 2 x 2 max pool, Conv (5 x 5, 64), 2 X 2 max pool, 2 x 512-d fc 10-d fc
CNNS | Conv (5 x 5, 32), 2 x 2 max pool, 1024-d fc, 512-d fc 10-d fc
CNNG6 | Conv (5 x 5, 32), 2 x 2 max pool, Conv (5 x 5, 64), 2 x 2 max pool, 1024-d fc, 512-d fc 10-d fc
CNN7 | Conv (5 x 5, 32), 2 x 2 max pool, 1024-d fc x2, 512-d fc 10-d fc
CNN8 | Conv (5 x 5, 32), 2 x 2 max pool, Conv (5 x 5, 64), 2 x 2 max pool, 1024-d fc, 512-d fc x2  10-d fc

from all clients. In contrast, FedKWAZ performs global aggregation using class-wise prototypes and
logits from all clients to form semantic representations and decision anchors. As reported in Table [0}
overall performance degrades as participation rate decreases. Nonetheless, FedKWAZ consistently
achieves the highest accuracy at both 5% and 10% settings, demonstrating strong resilience to client
sparsity. Figure [9] further illustrates the prediction matrix at 10% participation, where FedKWAZ
exhibits sharper diagonal confidence compared to other methods, indicating improved inter-class
separation and stronger decision reliability under sparse client engagement.

Table 9: Performance of FML, FedKD, FedMRL and FedKWAZ under low client participation rates
and high client drop rates.

| Client Participation Rate Client Drop Rate

| 5% 10% 90% 95%
FML 79.54+0.10 80.40+0.12 81.55+0.14 81.1240.11
FedKD 79.41+0.11 79.67+0.10 80.66+0.16 80.48+0.13
FedMRL 80.92+0.12 81.08+0.15 81.65+0.13 81.39+0.10
FedKWAZ | 82.85+0.09 83.71+0.11 84.37+0.12 83.93+0.13
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Figure 9: Confusion matrices of FML, FedKD, FedMRL, and FedKWAZ on Cifar10 under dirichlet
partition with a client participation rate of 0.1, showing the prediction probability for each class.

To further evaluate communication disruptions, a Client Drop Rate experiment is conducted. In
this setting, all 100 clients participate in local training, but only a portion are able to upload their
knowledge due to simulated dropout. Dropout rates of 90% and 95% are used, meaning that only
10 or 5 clients successfully contribute to global aggregation. As shown in Table [} these settings
yield better accuracy than the 10% and 5% participation scenarios, suggesting that consistent local
participation—even under partial upload failure—helps preserve training efficacy and partially
compensates for reduced aggregation scale.

These results collectively confirm that FedKWAZ, empowered by its dual-stage knowledge transfer
mechanism and lightweight semantic anchoring, maintains robust knowledge integration even under
extreme communication sparsity and unstable client availability, effectively addressing practical
challenges in real-world federated deployments.
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E.5 Impact of SWAZ and DWAZ

The individual contributions of SWAZ and DWAZ to the second-stage mutual learning in FedKWAZ
are further investigated. Specifically, experiments are conducted by selectively enabling either
SWAZ or DWAZ while disabling the other, and performance is assessed on the Skin-Lesions-14
and Flowers102 datasets under both Dirichlet and Pathological data partitions. As reported in
Figure[T0] DWAZ consistently achieves higher accuracy than SWAZ, indicating that decision-level
alignment exerts a more immediate influence on cross-model knowledge transfer. This observation
highlights the critical role of decision space consistency in federated mutual learning. Furthermore,
the full FedKWAZ—combining both SWAZ and DWAZ—achieves the highest performance across
all scenarios, confirming the complementary nature of semantic and decision-level discrepancy
modeling. These findings underscore the necessity of jointly capturing both representational and
predictive misalignments to optimize knowledge transfer between heterogeneous models.
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Figure 10: The contributions of SWAZ and DWAZ to performance.

E.6 Impact of Feature Shift

To further assess the robustness of each method under feature shift scenarios, a heterogeneous data
experiment is constructed in which each client is provided with a complete set of class labels, but
the visual characteristics of the data—such as style, texture, and viewpoint—differ substantially
across domains. Two widely adopted domain generalization benchmarks are selected: PACS [18]],
comprising 9,991 images from 7 categories across 4 domains (Art, Cartoon, Photo, Sketch), and
OfficeHome [35]], containing 15,588 images from 65 categories over 4 domains (Art, Clipart, Product,
Real). For each dataset, samples are split into training and test sets with a 3:1 ratio, and each domain
is treated as a distinct client, simulating federated feature heterogeneity.

In model allocation, the HtFE, architecture configuration is adopted, where heterogeneous back-
bones—including a 4-layer CNN, GoogleNet, MobileNet_v2, and ResNet18—are deployed across
clients to emulate the hardware and model diversity typical in real-world federated environments.
Figure [T1] illustrates the domain-induced feature shift across different domains in PACS and Of-
ficeHome for a representative category, highlighting the substantial variation in visual statistics.
Table [T0|summarizes the per-domain test accuracy at the final communication round and the overall
average accuracy achieved at the optimal round for each method. Notably, the average accuracy is not
obtained via direct averaging over individual client scores but is instead computed based on the total
number of correct predictions across all test samples, yielding a more comprehensive and balanced
measure of global performance.

As presented in Table[I0and Figure [I2] FedKWAZ consistently demonstrates faster convergence,
improved communication efficiency, and higher per-domain accuracies. In addition, it achieves
the highest aggregated performance, significantly surpassing all baselines. These results suggest
that FedKWAZ effectively addresses the representational and decision-level mismatches induced
by feature shift through its dynamic KWAZ-based localization and targeted enhancement strategy,
thereby enabling more reliable knowledge transfer across heterogeneous clients.
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Table 10: Test accuracy (%) comparison of various federated learning methods on PACS and
OfficeHome datasets. Each column represents the accuracy on one domain, while "Avg" indicates the
mean accuracy across all domains.

| PACS | OfficeHome

Methods | Art Cartoon Photo Sketch | Avg | Art Clipart Product Real | Avg

Local 40.23+0.09 78.64+0.11 58.61+0.07 73.04+0.11 65.51+0.18 14.50+0.14 47.25+0.14 33.96+0.08 18.53+0.17 30.96+0.18
FedDistill 42.66+0.20 78.60+0.14 60.77+0.21 77.72£0.25 68.63+0.24 16.14+0.15 49.73+0.20 48.47+0.13 20.83+0.15 36.16+0.16
LG-FedAvg | 40.04+0.14 76.62+0.23 60.77+0.23 74.47+0.19 65.79+0.15 14.00+0.19 46.43+0.13 37.8440.10 19.08+0.12 31.57+0.08
FedGen 40.43+0.18 78.84+0.31 57.18+0.08 69.38+0.16 65.99+0.17 12.85+0.21 47.25+0.21 33.9640.30 11.10+0.24 31.08+0.27
FedKD 42.40+0.08 78.50+0.21 62.44+0.23 76.16+0.15 67.03+0.16 16.31+0.18 45.60+0.08 36.76+0.16 18.6240.17 30.18+0.15
FedProto 41.75+0.21 77.65+0.20 61.57+0.24 73.75+0.26 66.31+0.24 16.39+0.08 48.64+0.21 33.06+0.23 14.5940.15 29.67+0.18
FML 42.21£0.18 78.67+0.08 59.57+0.10 71.92+0.22 65.11+0.15 15.17+0.13 43.95+0.26 33.34+0.19 17.4240.23 30.83+0.14
FedGH 39.65+0.15 78.52+0.13 59.33+0.26 76.50+0.19 66.67+0.23 15.49+0.15 47.53+0.16 41.89+0.18 16.4240.08 32.39+0.10
FedMRL 39.45+0.17 78.40+0.15 60.29+0.13 76.40+0.26 67.39+0.19 15.82+0.23 51.77+0.14 37.59+0.13 17.814+0.26 33.11+0.19
FedTGP 38.47+0.23 76.45+0.34 63.16+0.30 78.94+0.32 68.71+0.36 14.28+0.22 47.60+0.28 33.77+0.34 18.2640.26 30.73+0.32
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Figure 11: Visualization of feature shift across different domains in PACS and OfficeHome datasets.
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Figure 12: Comparison of test accuracy across various methods on PACS and OfficeHome datasets.

E.7 Effectiveness of HAPM vs. Hard Sample Selection

To further verify the effectiveness of the proposed Hierarchical Adaptive Patch Mixing (HAPM)
module, we conducted additional comparative experiments to evaluate its advantage over naive image
distillation and local hard-sample selection strategies in facilitating cross-model knowledge transfer.
The experiments were performed on two representative datasets, CIFAR-10 and Flowers102.

The compared methods include:
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FedKD (Original): The private and proxy models align their features and logits using only original
local images.

FedKD + Local Hard Sample Enhancement: The top 10%, 30%, and 50% local samples with the
highest feature MSE and logits KL divergence were selected for enhanced distillation.

FedKWAZ (Full Framework): HAPM generates perturbed mixed samples, and KDP identifies
semantic—decision weak zones (SWAZ and DWAZ) for fine-grained mutual learning.

Table 11: Performance comparison between FedKD, hard sample-enhanced FedKD (top 10%, 30%,
50% samples), and FedKWAZ on CIFAR-10 and Flowers102 datasets.

Model CIFAR-10 Flowers102
FedKD (Original) 86.31 46.67
FedKD + top 10% hard sample 86.91 50.02
FedKD + top 30% hard sample 86.72 50.95
FedKD + top 50% hard sample 86.55 49.05
FedKWAZ 90.39 57.52

(1) As shown in Table[IT], the performance gain from hard-sample enhancement exhibits dataset-
dependent trends. On CIFAR-10, selecting the top 10% of hard samples yields the best result, while
expanding the selection ratio slightly decreases performance. This indicates that the most challenging
samples are highly informative, but excessive inclusion introduces redundancy and noise.

(2) On Flowers102, the best performance is achieved with the top 30% hard samples. Since this
dataset has fewer training samples, an overly strict selection (e.g., 10%) limits generalization, whereas
a moderate 30% ratio provides a better balance between informativeness and coverage.

(3) Overall, although selecting high-divergence samples can improve distillation, its effect is sensitive
to the chosen ratio and lacks robustness. In contrast, FedKWAZ, equipped with HAPM for generating
structurally diverse and perturbed samples and KDP for dynamically identifying discrepancy zones,
consistently outperforms all hard-sample-based variants—achieving +4.08% gain on CIFAR-10 and
+10.85% on Flowers102.

These results demonstrate that HAPM provides a more generalizable and stable mechanism for
discrepancy exposure, eliminating the need for fixed selection thresholds and enabling models to
better identify and assimilate knowledge weak-aware zones (KWAZ). Consequently, FedKWAZ
supports more effective and fine-grained mutual distillation under heterogeneous federated learning
settings.

E.8 Correlation between HAPM Parameters and Client Properties

We investigate how the HAPM mixing parameters correlate with client properties. Eight clients (ID
0-7) are assigned private models in ascending capacity order: 4-layer CNN < MobileNet V2 <
GoogLeNet < ResNet18 < ResNet34 < ResNet50 < ResNet101 < ResNet152. All clients use the
same 4-layer CNN as the proxy model. On the Flowers102 dataset (102 classes), we set the mixing
strengths «, 5 € {0.1,0.5,1.0}, the spatial granularity g € {4, 16,64}, and the update frequency
k = 30. Over 1000 rounds, 33 updates yield 8 x 33 = 264 HAPM configurations per client, each
comprising {SWAZ : (a*, g*)} and {DWAZ : (8}, g7), (85, 93)}-

Because KWAZ-guided mutual learning operates solely on local data, cross-client data heterogeneity
has limited influence on local parameter selection; we therefore focus on model architectural
differences. Based on the capacity gap between private and proxy models, clients are grouped into
Group A (small gap, IDs 0-3; private models from 4-layer CNN to ResNet18) and Group B (large
gap, IDs 4-7; private models from ResNet34 to ResNet152).

Mixing strength (o, ). Smaller « or 8 induces stronger information mixing, amplifying inter-
model discrepancies. Empirically, o*, 57, and 35 most frequently take 0.1 (244, 233, and 220 times,
respectively), indicating that KDP often prefers smaller mixing strengths to expose cross-model gaps.
Smoother settings (0.5 or 1.0) occur 26 times in Group A and 69 times in Group B, showing that
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when private and proxy models differ substantially, even smoother mixing can still form distinct
discrepancy regions that benefit transfer and alignment.

Spatial granularity (g). A smaller g produces fewer (larger) patches—coarser fusion—while a
larger g yields finer local mixing. The most frequent choice for g*, g7, and g3 is 16 (238, 225, and
217 times, respectively), suggesting a medium granularity that balances discrepancy revelation and
image recognizability. When g = 4, Group A appears 15 times vs. Group B 38 times; when g = 64,
Group A appears 41 times vs. Group B 18 times. Thus, larger structural gaps favor coarser mixing
(larger patch areas) to construct discrepancy regions, whereas more similar models benefit from
finer mixing to explicitly stimulate subtle mismatches.

Overall, these results indicate that FedKWAZ exhibits structure-aware behavior: HAPM/KDP adap-
tively select mixing strengths and granularities according to the degree of architectural heterogeneity
across clients.

E.9 Variance and Stability Analysis of Dynamically Selected HAPM Parameters

To examine the dynamic behavior and stability of the HAPM parameters, we recorded the values of
six key parameters (a*, 87, 85, g%, g7, g5 ) selected by each client at every communication round and
analyzed three representative rounds—the 30", 510%™, and 990" —as summarized in Table

Table 12: Selected HAPM parameters across clients at rounds 30, 510, and 990.
Round ClientID o* 87 B85 g* 97 95

30 0 01 01 01 16 16 16
30 1 0.1 01 01 16 64 16
30 2 01 01 01 16 16 16
30 3 01 05 01 16 4 16
30 4 01 01 01 16 16 16
30 5 01 01 05 16 16 64
30 6 01 10 01 16 16 16
30 7 05 01 01 4 16 16
510 0 01 01 01 16 16 64
510 1 01 01 01 16 16 16
510 2 01 01 01 16 64 16
510 3 01 01 05 16 16 16
510 4 01 01 01 16 16 16
510 5 01 01 05 64 16 16
510 6 1.0 01 01 16 4 16
510 7 01 05 01 16 16 4
990 0 01 01 01 16 16 16
990 1 01 01 01 16 16 16
990 2 01 01 01 16 16 16
990 3 01 10 01 4 16 16
990 4 01 01 01 16 16 16
990 5 01 01 01 16 16 4
990 6 05 01 01 16 4 16
990 7 01 01 05 16 16 16

Inter-client variance. In the 510™ round, the variance of a* reached 0.089, mainly because Client 6
(ResNet101, significantly more complex than the CNN proxy model) selected a* = 1.0. In such
cases, clients with higher model capacities tend to prefer smoother mixing strategies to generate
samples with stronger transferability. In contrast, in the 30™ round, the variance of g; reached
285.75, primarily due to Client 1 (MobileNet_V2, a lightweight model) selecting g7 = 64, which is
considerably higher than others. This observation suggests that when the private model is structurally
close to the proxy model, the system adapts by employing finer-grained mixing strategies to better
expose cross-model discrepancies.
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Intra-client variance. Client 4 consistently selected identical values for all six parameters across
rounds 30, 510, and 990, indicating strong internal stability. Similarly, most clients (Clients 0, 1, 2,
and 5) maintained stable parameter selections across rounds, demonstrating that the KDP mechanism
enforces a high degree of strategic consistency within each client.

Overall, FedKWAZ exhibits low intra-client variance (strong stability within clients) and rela-
tively high inter-client variance (clear differentiation across clients). These findings confirm that
FedKWAZ possesses a structure-aware and adaptive KDP mechanism, capable of dynamically
adjusting mixing strategies according to model heterogeneity, thereby enhancing both robustness and
transfer effectiveness in federated knowledge distillation.

F Visualizations of Data Distributions
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Figure 13: Top row (a—c) illustrates the practical non-IID scenario (8 = 0.1) on CIFAR-10, CIFAR-
100, and Flowers102. Bottom row (d-f) shows the pathological non-IID setting (s = 2/2/20) on
FMNIST, Skin-Lesions-14, and Tiny-ImageNet. In each plot, each circle represents the class-wise
data distribution of a client, and the size of the circle corresponds to the number of samples.
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Figure 14: The data distributions of clients on PACS and OfficeHome, where each domain is assigned
to an individual client. The size of each circle reflects the number of samples.
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Figure 15: Data distributions of clients on Cifar10 and Cifar100 under practical settings (5 = 0.1).
The number of clients is 100 for Cifar10 and 200 for Cifar100, respectively. The size of each circle
indicates the number of samples held by each client.
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G Limitations

During the prediction distillation stage, a fixed temperature hyperparameter (7 = 4.0) is employed.
While the empirical results demonstrate consistent performance across heterogeneous model structures
and data distributions, potential remains for optimizing distillation effectiveness by dynamically
adjusting the temperature in response to model complexity or input data characteristics, which may
further enhance system-level efficiency.

In the default experimental configuration, the feature dimension is uniformly set to K = 512.
To assess the impact of dimensionality, additional experiments are conducted with K = 64, 256,
and 1024 on the Cifar100 dataset. As datasets differ in their demands for feature expressiveness,
determining feature dimensionality in accordance with data-specific properties warrants further
investigation to improve representational capacity and adaptation across tasks.

H Broader Impacts

In the context of heterogeneous federated learning, a fine-grained mutual learning framework based
on Knowledge Weak-Aware Zones (KWAZ) is proposed, yielding several broader impacts:

Enhanced adaptability of heterogeneous models. By explicitly modeling Semantic Weak-Aware
Zones (SWAZ) and Decision Weak-Aware Zones (DWAZ), the proposed framework enables effective
cross-architecture knowledge transfer. This design improves generalization under dual heterogeneity,
supporting deployment in real-world scenarios with varying data distributions and model configura-
tions.

Reduced communication overhead and improved privacy. By transmitting only class-level feature
prototypes and prediction distributions, rather than full model parameters, the approach substantially
reduces communication bandwidth consumption. Furthermore, as neither model structures nor
weights are exposed, the system exhibits enhanced resistance to privacy leakage.

Improved system efficiency via faster convergence. The targeted refinement of KWAZ-guided distil-
lation accelerates alignment in feature and decision spaces, enabling faster model convergence. This
yields improved energy efficiency compared to conventional output-aligned distillation, contributing
to the sustainability of large-scale distributed learning.

Broadened application potential. The architecture-agnostic design accommodates diverse client
models and devices, promoting practical deployment in heterogeneous environments such as health-
care, smart manufacturing, and urban sensing systems. This broadens the real-world applicability of
federated learning across domains.
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