Transforming Gaps into Gains: Bridging Model and Data Heterogeneity in Federated Learning via Knowledge Weak-Aware Zones

Ke Li¹, Yan Ding¹, Zhiqin Zhu^{1*}, Shenhai Zheng^{1*}
¹Chongqing University of Posts and Telecommunications
{s230301058, s230301006}@stu.cqupt.edu.cn
{Zhiqin Zhu, Shenhai Zheng}@cqupt.edu.cn

Abstract

Heterogeneous federated learning enables collaborative training across clients under dual heterogeneity of models and data, posing challenges for effective knowledge transfer. Federated mutual learning employs proxy models to bridge cross-model knowledge exchange; however, existing methods remain limited to direct alignment between the outputs of private and proxy models, ignoring the deep discrepancies in representation and decision spaces between them. Such cognitive biases cause knowledge to be transferred only at shallow levels and trigger performance bottlenecks. To address this, this paper proposes FedKWAZ to identify and exploit Knowledge Weak-Aware Zones (KWAZ)—spatial zones of deep knowledge misalignment between private and proxy models, further refined into Semantic Weak-Aware Zones and Decision Weak-Aware Zones, which characterize cognitive misalignments in representation and decision spaces as focal targets for enhanced bidirectional distillation. FedKWAZ designs a Hierarchical Adaptive Patch Mixing (HAPM) mechanism to generate multiple mixed samples and employs a Knowledge Discrepancy Perceptron (KDP) to select the samples exhibiting the largest representation and decision discrepancies, thereby mining critical KWAZ. These modules are integrated into a two-stage mutual learning framework, achieving global class-level representation-decision consistency alignment and local KWAZguided refinement, structurally bridging cognitive biases across heterogeneous mutual learning models. Experimental results on multiple datasets and model configurations demonstrate the superior performance of FedKWAZ.

1 Introduction

Federated Learning (FL) [21, 9, 25, 22, 24, 38, 37, 39, 19] has emerged as a privacy-preserving distributed training paradigm, enabling devices to collaboratively learn a global model without sharing raw data. However, FL faces two major challenges in practical deployments: clients often hold non-IID data, and necessitate training personalized models that fit device-specific resource constraints. The dual heterogeneity in data and model disrupts traditional parameter aggregation and makes it difficult for a single global model to effectively serve all clients. Consequently, Heterogeneous Federated Learning (HtFL) [44], aiming to learn personalized models for each client, has become a central research focus.

To tackle model and data heterogeneity in HtFL, federated mutual learning [28] has been proposed, where clients train performance-driven private models and resource-friendly proxy models in parallel, facilitating knowledge transfer via bidirectional distillation. However, existing methods [28, 36, 15,

^{*}Corresponding authors.

26] primarily focus on **direct alignment in the feature and decision space across heterogeneous models, overlooking deeper mismatches in their learned representations and decision behaviors.** As illustrated in Figure 1 (left), for the same input, the private and proxy models on a given client often produce significantly different feature distributions and classification outputs—a phenomenon termed **semantic–decision dual drift.** This dual drift implies that naive output matching yields only coarse and superficial knowledge transfer, leaving critical representation- and decision-level discrepancies unresolved. Without pinpointing and addressing these misaligned "weak zones," knowledge transfer remains inefficient and ultimately constrains the client's performance.

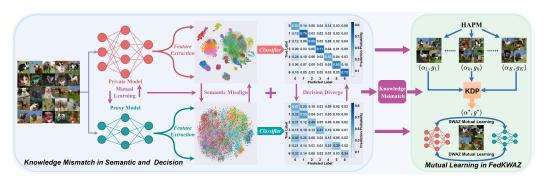


Figure 1: Knowledge mismatch between private and proxy model and mutual learning in FedKWAZ.

Motivated by the necessity to address this semantic—decision dual drift, this paper proposes **Knowledge Weak-Aware Zones** (**KWAZ**), characterizing zones where heterogeneous models exhibit the strongest cognitive discrepancies. KWAZ is further decomposed into **Semantic Weak-Aware Zones** (**SWAZ**) and **Decision Weak-Aware Zones** (**DWAZ**), focusing respectively on representation and decision discrepancies that indicate key zones requiring targeted knowledge enhancement. Building on this insight, the FedKWAZ framework is designed to mine and align complementary knowledge within KWAZ through a two-stage mutual learning scheme integrating local and global collaboration.

At the local stage, as shown in Figure 1 (right), HAPM generates multiple mixed samples via diverse parameter pairs (α_i,g_i) (where $i=1,\ldots,K$), where α controls the mixing ratio between two images and g specifies patch granularity to divide each image into $\sqrt{g} \times \sqrt{g}$ blocks for local mixing. KDP then evaluates representation and decision discrepancies between private and proxy models across these samples and selects (α^*,g^*) inducing the maximal divergence, thereby defining the corresponding samples as KWAZ, which are leveraged via SWAZ and DWAZ for path-specific bidirectional distillation, mitigating semantic and decision-level discrepancies between private and proxy models. At the global stage, the server aggregates class-level semantic prototypes and decision distributions uploaded by clients to construct unified representation-decision anchors. This approach eliminates the need for frequent proxy model synchronization, significantly reduces communication overhead, and provides representation-decision consistency alignment from a global perspective.

The main contributions of this work are summarized as follows:

- KWAZ is proposed to characterize zones where heterogeneous models exhibit strong cognitive divergence, offering fine-grained perspectives beyond conventional output alignment.
- FedKWAZ is developed as a federated mutual learning framework integrating HAPM and KDP to dynamically discover and exploit SWAZ and DWAZ, enabling complementary learning between private and proxy models in their zones of disagreement.
- A communication-efficient global knowledge alignment mechanism is designed using aggregated class-level semantic and decision anchors, achieving strong cross-client knowledge alignment with significantly reduced communication costs.

2 Related Work

HtFL focuses on addressing collaboration challenges arising from variations in clients' computational capabilities, model architectures, and data distributions. Based on the degree of heterogeneity and structural constraints, existing studies can be grouped into the following three categories:

Resource-Heterogeneous FL Methods. A number of approaches handle device heterogeneity by allowing clients to train smaller or pruned versions of a global model that fit their local resource constraints. For example, FedRolex [1], FjORD [12], FLASH [4], FedResCuE [47] and HeteroFL [7] enable each client to work with a sub-model or width-reduced network tailored to its hardware capabilities. These methods focus on resource adaptation — e.g., dynamically extracting or training sub-networks from a larger global model — so that both high-end and low-end devices can participate in federated training. However, their emphasis is on resource allocation rather than on maintaining cross-client knowledge consistency. As a result, resource-heterogeneous solutions do not explicitly align the semantic representations or decision distributions learned by different client models. The absence of such alignment means that knowledge gaps can persist between clients' sub-models, potentially limiting the overall knowledge transfer efficiency across the federation.

Modular-Heterogeneous FL Methods. Another line of work addresses model heterogeneity by splitting models into shared global modules and private local modules. FedRep [6] and FedPer [3] share and aggregate a global feature extractor across clients (aiming for aligned semantic representations), whereas LG-FedAvg [20] and FedGH [41] share a global classifier across clients (aiming for aligned decision output distributions). By partitioning the model, these approaches attempt to transfer knowledge either at the representation level (feature extractor) or at the decision level (classifier) among clients. However, since the "global" module in such frameworks is obtained by aggregating components trained on each client's non-iid local data, forcing all clients to adopt the aggregated module can undermine personalization and lead to suboptimal local performance. In practice, these methods face a trade-off between achieving global alignment and preserving local adaptation. Merely sharing or exchanging modules may prove inadequate in addressing fine-grained, data-dependent misalignments in the learned representations or decision boundaries of client models, potentially leaving certain semantic or decision-level discrepancies unresolved.

Autonomy-heterogeneous methods allow clients to construct local models without structural limits. Distillation-based approaches, such as FCCL [13] and FedGen [48], leverage public or synthetic data to facilitate cross-model knowledge transfer, yet their effectiveness is highly dependent on data fidelity and distributional consistency. Other methods [30, 31, 44, 45, 14] transmit class prototypes or logits as knowledge carriers. However, since prototypes and logits are information-compressed units, they limit the richness of knowledge transfer and hinder deep, comprehensive consistency alignment.

In contrast, federated mutual learning introduces proxy models as bridges for knowledge transfer, thereby accommodating autonomy-heterogeneous setups. FML [28] and FedKD [36] perform bidirectional distillation between private and proxy models to establish interactive transfer pathways. However, they focus on direct output matching, resulting in shallow distillation that fails to capture critical semantic and decision divergence. FedMRL [42] mitigates this paradigm by incorporating multi-granularity features, yet lacks explicit mechanisms for correcting semantic or structural gaps, introducing noise when concatenating diverse features in its MRL. Moreover, frequent transmissions of proxy models in these methods make it hard to balance communication cost and training gains.

Insights. Driven by the limitations identified above—especially the neglect of deeper semantic and decision discrepancies between heterogeneous models—this work introduces FedKWAZ, a cognitively-aware mutual learning framework that explicitly targets the problem of semantic—decision dual drift. It formalizes KWAZ as spatial zones where heterogeneous models display significant knowledge divergence, and further decomposes them into SWAZ and DWAZ, enabling targeted distillation in the semantic and decision discrepancy zones, respectively. In addition, a lightweight class-level global knowledge anchoring mechanism is designed to achieve a new balance among architectural flexibility, communication efficiency, and transfer quality. By directly confronting the semantic—decision dual drift, FedKWAZ bridges overlooked knowledge gaps and enables more precise and efficient cross-model collaboration.

3 The Proposed FedKWAZ Approach

3.1 Problem Setting

A typical HtFL system is considered, consisting of a central server and a set of clients $\{\mathcal{C}_0, \mathcal{C}_1, ..., \mathcal{C}_{N-1}\}$. Each client \mathcal{C}_i holds a private local dataset \mathcal{D}_i , sampled from a distribution \mathcal{P}_i , satisfying $\mathcal{P}_i \neq \mathcal{P}_j$ for any $i \neq j$. In each communication round, $K = N \cdot \rho$ clients are selected according to the participation rate ρ . Each client \mathcal{C}_k trains a private model \mathcal{M}_k and a proxy model \mathcal{Q}_k

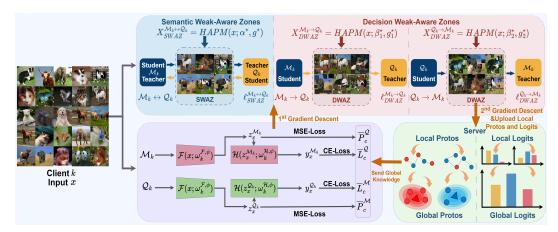


Figure 2: The workflow of FedKWAZ.

on its local data \mathcal{D}_k , parameterized by ψ_k and ϕ_k , respectively. The feature extractor and predictor are defined as $\omega_k^{\mathcal{F}}$ and $\omega_k^{\mathcal{H}}$, represented as $\psi_k = \{\omega_k^{\mathcal{F},\psi}, \omega_k^{\mathcal{H},\psi}\}$ and $\phi_k = \{\omega_k^{\mathcal{F},\phi}, \omega_k^{\mathcal{H},\phi}\}$. Unlike conventional mutual learning, no global model is maintained at the server; instead, global guidance is constructed from feature- and decision-level knowledge uploaded by the clients. FedKWAZ aims to minimize the aggregated local losses across all joint models. The joint model at each client is denoted by $\mathcal{W}_k(\psi_k,\phi_k)$, and the optimization objective is:

$$\min_{\psi_0, \dots, \psi_{N-1}, \phi_0, \dots, \phi_{N-1}} \sum_{k=0}^{N-1} \mathbb{E}_{\mathcal{D}_k \sim P_k} \left[\ell \left(\mathcal{W}_k(\psi_k, \phi_k); \mathcal{D}_k \right) \right]$$
 (1)

where $\ell(\cdot)$ denotes the empirical loss of the joint model on the client's private dataset. After training, each client retains its private model \mathcal{M}_k for final deployment and inference.

3.2 Modeling of KWAZ and Dual-stage Deep Mutual Learning

To investigate cognitive gaps between heterogeneous mutual learning models, KWAZ is characterized as the knowledge-deficient zones of the student model $\mathcal S$ and the teacher model $\mathcal T$ in both representation and decision spaces. To detect these zones, the following modules are introduced:

- HAPM: Every k rounds, HAPM generates multiple mixed inputs by partitioning x into $\sqrt{g} \times \sqrt{g}$ patches (granularity g) and applying patch-wise interpolation with mixing ratio α under varied (α, g) pairs, enabling discrepancy-aware selection (details in Appendix A).
- **KDP**: For each mixed input generated by HAPM under a specific (α, g) , KDP quantifies the knowledge gap between S and T on it, and selects (α^*, g^*) inducing the largest discrepancy to guide targeted KWAZ mining and refinement **over the following** k **training rounds**.

Based on this mechanism, a dual-stage mutual learning framework is constructed: coarse-grained cross-client knowledge alignment is achieved at the first stage via global semantic prototypes and decision anchors, while fine-grained distillation is conducted at the second stage under KWAZ guidance. Figure 2 illustrates the workflow, and Appendix B details the algorithm.

3.2.1 Stage I: Global Knowledge Mutual Learning

Global semantic and decision anchors are constructed by aggregating class-level features and predictions from private and proxy models on the server, enabling \mathcal{M}_k and \mathcal{Q}_k to mutually align with each other's global semantic and decision knowledge. Given class-wise dataset $D_{k,c}$ from client \mathcal{C}_k , for each $x \in D_{k,c}$, features and predictions from \mathcal{M}_k and \mathcal{Q}_k are:

$$z_x^{\mathcal{M}_k} = \mathcal{F}(x; \omega_k^{\mathcal{F}, \psi}), \hat{y}_x^{\mathcal{M}_k} = \mathcal{H}(z_x^{\mathcal{M}_k}; \omega_k^{\mathcal{H}, \psi}), z_x^{\mathcal{Q}_k} = \mathcal{F}(x; \omega_k^{\mathcal{F}, \phi}), \hat{y}_x^{\mathcal{Q}_k} = \mathcal{H}(z_x^{\mathcal{Q}_k}; \omega_k^{\mathcal{H}, \phi}) \quad (2)$$

Class-wise features and logits are averaged as local knowledge. In the case of \mathcal{M}_k :

$$P_c^{\mathcal{M}_k} = \frac{1}{|\mathcal{D}_{k,c}|} \sum_{x \in \mathcal{D}_{k,c}} z_x^{\mathcal{M}_k}, \quad L_c^{\mathcal{M}_k} = \frac{1}{|\mathcal{D}_{k,c}|} \sum_{x \in \mathcal{D}_{k,c}} \widehat{y}_x^{\mathcal{M}_k}$$
(3)

and the same formulation applies to \mathcal{Q}_k , yielding $P_c^{\mathcal{Q}_k}$ and $L_c^{\mathcal{Q}_k}$. All uploaded local knowledge is aggregated to obtain global knowledge, where \mathcal{N}_c denotes clients with data containing class c:

$$\bar{P}_c^{\mathcal{M}} = \frac{1}{|\mathcal{N}_c|} \sum_{k \in \mathcal{N}_c} P_c^{\mathcal{M}_k}, \quad \bar{L}_c^{\mathcal{M}} = \frac{1}{|\mathcal{N}_c|} \sum_{k \in \mathcal{N}_c} L_c^{\mathcal{M}_k}$$
(4)

with $\bar{P}_c^{\mathcal{Q}}$ and $\bar{L}_c^{\mathcal{Q}}$ aggregated analogously from \mathcal{Q}_k . With the global knowledge above, global mutual alignment between \mathcal{M}_k and \mathcal{Q}_k is achieved, where " $\mathcal{M}_k \to \mathcal{Q}_k$ " indicates that \mathcal{M}_k learns from \mathcal{Q}_k , ℓ_{ce} denotes the cross-entropy loss, and σ is the softmax function:

$$\ell_{k}^{\mathcal{M}_{k} \to \mathcal{Q}_{k}} = \sum_{c=1}^{C} \sum_{x \in D_{k,c}} \left[\ell_{ce}(\hat{y}_{x}^{\mathcal{M}_{k}}, y) + \ell_{ce}(\hat{y}_{x}^{\mathcal{M}_{k}}, \sigma(\bar{L}_{c}^{\mathcal{Q}})) + \|z_{x}^{\mathcal{M}_{k}} - \bar{P}_{c}^{\mathcal{Q}}\|_{2}^{2} \right]$$

$$\ell_{k}^{\mathcal{Q}_{k} \to \mathcal{M}_{k}} = \sum_{c=1}^{C} \sum_{x \in D_{k,c}} \left[\ell_{ce}(\hat{y}_{x}^{\mathcal{Q}_{k}}, y) + \ell_{ce}(\hat{y}_{x}^{\mathcal{Q}_{k}}, \sigma(\bar{L}_{c}^{\mathcal{M}})) + \|z_{x}^{\mathcal{Q}_{k}} - \bar{P}_{c}^{\mathcal{M}}\|_{2}^{2} \right]$$
(5)

Model parameters are updated based on the above loss by performing one step of gradient descent:

$$\psi_k^t \leftarrow \psi_k^{t-1} - \eta_\psi \nabla \ell_k^{\mathcal{M}_k \to \mathcal{Q}_k}, \phi_k^t \leftarrow \phi_k^{t-1} - \eta_\phi \nabla \ell_k^{\mathcal{Q}_k \to \mathcal{M}_k}$$
 (6)

3.2.2 Stage II: Local KWAZ Mutual Learning

Following global coarse-grained alignment, FedKWAZ performs local fine-grained mutual learning using KWAZ guidance. This stage incorporates three components: (1) a basic mutual alignment loss, (2) a semantic refinement loss based on SWAZ, and (3) a decision refinement loss based on DWAZ. These objectives are optimized through a second local gradient descent step. Prior to KWAZ-specific distillation, a basic bidirectional loss is computed to align intermediate features and output distributions between \mathcal{M}_k and \mathcal{Q}_k . Here, $\mathrm{KL}(p \parallel q) = \sum_{c=1}^C p_c \log \frac{p_c}{q_c}$ denotes the Kullback-Leibler divergence [11], and τ is a temperature parameter used to smooth the probability outputs:

$$\ell_{\text{base}}^{\mathcal{M}_k \to \mathcal{Q}_k} = \text{KL}\left(\sigma(\widehat{y}_x^{\mathcal{M}_k}/\tau) \| \sigma(\widehat{y}_x^{\mathcal{Q}_k}/\tau)\right) \cdot \tau^2 + \|z_x^{\mathcal{M}_k} - z_x^{\mathcal{Q}_k}\|_2^2$$

$$\ell_{\text{base}}^{\mathcal{Q}_k \to \mathcal{M}_k} = \text{KL}\left(\sigma(\widehat{y}_x^{\mathcal{Q}_k}/\tau) \| \sigma(\widehat{y}_x^{\mathcal{M}_k}/\tau)\right) \cdot \tau^2 + \|z_x^{\mathcal{Q}_k} - z_x^{\mathcal{M}_k}\|_2^2$$
(7)

SWAZ Mutual Learning: Symmetric Semantic Enhancement. SWAZ characterizes input zones where student model $\mathcal S$ severely mismatches teacher model $\mathcal T$ in feature space. To identify such zones, a set of mix ratios $A = \{\alpha_1, \dots, \alpha_m\}$ and patch sizes $G = \{g_1, \dots, g_m\}$ are defined for HAPM. For each $(\alpha,g) \in A \times G$, a mixed input $X_{\mathrm{SWAZ}}^{\mathcal S \to \mathcal T}$ is generated by blending the original sample x with ratio α and patch size g through HAPM. This mixed sample is fed into both $\mathcal S$ and $\mathcal T$, producing feature vectors $z_{X_{\mathrm{SWAZ}}^{\mathcal S} \to \mathcal T}^{\mathcal T}$ and $z_{X_{\mathrm{SWAZ}}^{\mathcal T}}^{\mathcal T}$. The feature gap between $\mathcal S$ and $\mathcal T$ on the mixed sample is measured by Mean Square Error (MSE) [33]:

$$\mathcal{L}_{\text{SWAZ}}^{\mathcal{S} \to \mathcal{T}}(\alpha, g; \mathcal{D}) = \mathbb{E}_{x \sim \mathcal{D}} \left[\| z_{X_{\text{SWAZ}}}^{\mathcal{S} \to \mathcal{T}} - z_{X_{\text{SWAZ}}}^{\mathcal{T}}) \|_{2}^{2} \right]$$
(8)

The KDP conducts a search over $(\alpha, q) \in A \times G$ to find the pair that maximizes this feature gap:

$$(\alpha^{\star}, g^{\star}) = \arg \max_{(\alpha, g) \in A \times G} \mathcal{L}_{\text{SWAZ}}^{\mathcal{S} \to \mathcal{T}}(\alpha, g; \mathcal{D})$$
(9)

Using the optimal pair (α^\star,g^\star) , the SWAZ is defined as $X_{\mathrm{SWAZ}}^{\mathcal{M}_k\leftrightarrow\mathcal{Q}_k}=\mathrm{HAPM}(x;\alpha^\star,g^\star)$, Here, " $\mathcal{M}_k\leftrightarrow\mathcal{Q}_k$ " indicates that the same input is symmetrically used in both directions, since the optimal parameters are selected by maximizing the MSE-based feature gap between the two models, and MSE is symmetric with respect to its inputs. As a result, exchanging student and teacher roles yields the same mixing parameters and the same SWAZ. Let $z_{X_{\mathrm{SWAZ}}^{\mathcal{M}_k\leftrightarrow\mathcal{Q}_k}}^{\mathcal{M}_k}$ and $z_{X_{\mathrm{SWAZ}}^{\mathcal{M}_k\leftrightarrow\mathcal{Q}_k}}^{\mathcal{Q}_k}$ denote the feature vectors of \mathcal{M}_k and \mathcal{Q}_k on this optimal mixed input. Then the SWAZ loss for both directions is:

$$\ell_{\text{SWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k} = \|z_{X_{\text{SWAZ}}^{\mathcal{M}_k \leftrightarrow \mathcal{Q}_k}}^{\mathcal{M}_k} - z_{X_{\text{SWAZ}}^{\mathcal{M}_k \leftrightarrow \mathcal{Q}_k}}^{\mathcal{Q}_k}\|_2^2 = \ell_{\text{SWAZ}}^{\mathcal{Q}_k \to \mathcal{M}_k} = \|z_{X_{\text{SWAZ}}^{\mathcal{M}_k \leftrightarrow \mathcal{Q}_k}}^{\mathcal{Q}_k} - z_{X_{\text{SWAZ}}^{\mathcal{M}_k \leftrightarrow \mathcal{Q}_k}}^{\mathcal{M}_k}\|_2^2$$
 (10)

which highlights the symmetric nature of the loss. Minimizing this term encourages \mathcal{M}_k and \mathcal{Q}_k to align their representations in zones where their feature discrepancies are most pronounced.

DWAZ Mutual Learning: Asymmetric Decision Enhancement. DWAZ characterizes zones where the predictive distributions of the student model $\mathcal S$ and teacher model $\mathcal T$ diverge most in the decision space. To expose such zones, a set of mix ratios $B = \{\beta_1, \ldots, \beta_m\}$ and patch sizes $G = \{g_1, \ldots, g_m\}$ are defined for HAPM. For each $(\beta, g) \in B \times G$, a mixed sample $X_{\mathrm{DWAZ}}^{\mathcal S \to \mathcal T} = \mathrm{HAPM}(x; \beta, g)$ is constructed and passed through $\mathcal S$ and $\mathcal T$ to obtain logits $\hat{y}_{X_{\mathrm{DWAZ}}^{\mathcal S \to \mathcal T}}^{\mathcal S}$ and $\hat{y}_{X_{\mathrm{DWAZ}}^{\mathcal S \to \mathcal T}}^{\mathcal T}$. The predictive gap is measured using KL divergence:

$$\mathcal{L}_{\text{DWAZ}}^{\mathcal{S} \to \mathcal{T}}(\beta, g; \mathcal{D}) = \mathbb{E}_{x \sim D} \left[\text{KL} \left(\sigma(\hat{y}_{X_{\text{DWAZ}}}^{\mathcal{S}} / \tau) \| \sigma(\hat{y}_{X_{\text{DWAZ}}}^{\mathcal{T}} / \tau) \right) \cdot \tau^2 \right]$$
(11)

The KDP explores $(\beta, g) \in B \times G$ to identify the pair that maximizes the prediction divergence:

$$(\beta^{\star}, g^{\star}) = \arg \max_{(\beta, g) \in B \times G} \mathcal{L}_{\text{DWAZ}}^{S \to T}(\beta, g; \mathcal{D})$$
(12)

Unlike SWAZ, DWAZ is direction-dependent due to the asymmetry of KL divergence, where $\mathrm{KL}(p \parallel q) \neq \mathrm{KL}(q \parallel p)$. Accordingly, two distinct mixing setups are derived based on the student–teacher role assignment between \mathcal{M}_k and \mathcal{Q}_k : $(\beta_1^\star, g_1^\star)$ when \mathcal{M}_k learns from \mathcal{Q}_k (i.e., $\mathcal{S} = \mathcal{M}_k$, $\mathcal{T} = \mathcal{Q}_k$), and $(\beta_2^\star, g_2^\star)$ when the roles are reversed. These configurations respectively localize the zones where \mathcal{M}_k and \mathcal{Q}_k diverge most from each other's predictions.

When $S = \mathcal{M}_k$ and $T = \mathcal{Q}_k$, the corresponding mixed sample is $X_{\text{DWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k} = \text{HAPM}(x; \beta_1^{\star}, g_1^{\star})$, and the DWAZ loss for the direction $\mathcal{M}_k \to \mathcal{Q}_k$ is:

$$\ell_{\text{DWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k} = \text{KL}\left(\sigma(\hat{y}_{X_{\text{DWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k}}^{\mathcal{M}_k} / \tau) \parallel \sigma(\hat{y}_{X_{\text{DWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k}}^{\mathcal{Q}_k} / \tau)\right) \cdot \tau^2 \tag{13}$$

Similarly, for the reversed roles where $\mathcal{S} = \mathcal{Q}_k$ and $\mathcal{T} = \mathcal{M}_k$, the mixed input becomes $X_{\mathrm{DWAZ}}^{\mathcal{Q}_k \to \mathcal{M}_k} = \mathrm{HAPM}(x; \beta_2^\star, g_2^\star)$, and the corresponding DWAZ loss for the direction $\mathcal{Q}_k \to \mathcal{M}_k$ is:

$$\ell_{\text{DWAZ}}^{\mathcal{Q}_k \to \mathcal{M}_k} = \text{KL}\left(\sigma(\hat{y}_{X_{\text{DWAZ}}^{\mathcal{Q}_k \to \mathcal{M}_k}}^{\mathcal{Q}_k} / \tau) \parallel \sigma(\hat{y}_{X_{\text{DWAZ}}^{\mathcal{Q}_k \to \mathcal{M}_k}}^{\mathcal{M}_k} / \tau)\right) \cdot \tau^2 \tag{14}$$

Minimizing ℓ_{DWAZ} in each direction forces \mathcal{M}_k and \mathcal{Q}_k to mutually align their predictions, focusing on zones exhibiting the largest disparity in their decision outputs.

Based on the combination of base mutual loss, SWAZ loss, and DWAZ loss, a second-stage local gradient descent is conducted to refine both representation and decision knowledge between heterogeneous models. The model parameters are updated as follows:

$$\psi_{k}^{t} \leftarrow \psi_{k}^{t} - \eta_{\psi} \nabla \left[\ell_{\text{base}}^{\mathcal{M}_{k} \to \mathcal{Q}_{k}} + \ell_{\text{SWAZ}}^{\mathcal{M}_{k} \to \mathcal{Q}_{k}} + \ell_{\text{DWAZ}}^{\mathcal{M}_{k} \to \mathcal{Q}_{k}} \right]
\phi_{k}^{t} \leftarrow \phi_{k}^{t} - \eta_{\phi} \nabla \left[\ell_{\text{base}}^{\mathcal{Q}_{k} \to \mathcal{M}_{k}} + \ell_{\text{SWAZ}}^{\mathcal{Q}_{k} \to \mathcal{M}_{k}} + \ell_{\text{DWAZ}}^{\mathcal{Q}_{k} \to \mathcal{M}_{k}} \right]$$
(15)

By combining global coarse alignment and local KWAZ-guided refinement, FedKWAZ constructs a two-stage closed-loop distillation process. Heterogeneous models mutually compensate for semantic and decision-level gaps by emphasizing training on KWAZ.

4 Experimental Evaluation

4.1 Experiment Setup

Baselines and Datasets. Ten mainstream heterogeneous federated learning methods are selected for comparison, including LG-FedAvg [20], FedGen [48], FML [28], FedKD [36], FedDistill[14], FedProto [30], FedGH [41], FedMRL [42], FedTGP [44], and FedKTL [45]. Local Training is adopted as the baseline for the non-federated scenario where training is conducted entirely locally. Five public multi-class datasets, covering tasks from natural image to medical image, are used. The datasets are Cifar10, Cifar100 [17], Skin-Lesions-14 (merged from HAM10000 [32] and MSLDv2.0 [2]), Flowers102 [23], and Tiny-ImageNet [5].

Training Configuration. The experimental setup involves 20 clients, all participating in each communication round ($\rho=1$). Local training is performed once per round using a learning rate of 0.01 and a batch size of 10, over a total of 1000 rounds. Each client splits its local dataset into 75% for training and 25% for testing. The reported result corresponds to the optimal averaged test accuracy across all clients at each round. All experiments are repeated three times, and both the mean and standard deviation are reported.

Data Heterogeneity Modeling. Follow FedALA [43], two non-IID partitioning schemes are used to simulate data heterogeneity: **Pathological Split:** For Cifar10, Skin-Lesions-14, Cifar100, Flowers102, and Tiny-ImageNet (with 10/14/100/102/200 classes, respectively), each client receives 2/2/10/10/20 disjoint classes to induce class-wise isolation. **Practical Split:** For each class c and client i, the sample proportion is drawn from a Dirichlet distribution $q_{c,i} \sim Dir(\beta)$, with $\beta = 0.1$, introducing heterogeneity in both class distribution and data volume.

Modeling heterogeneity scenarios. Two types of heterogeneous setups are constructed for feature extractors and classifiers. Feature extractors follow the HtFE_X scheme, where client i is assigned the $(i \mod X)$ -th model. An average pooling layer with output dimension K=512 is applied for feature alignment. The main test setup, HtFE_8 , including 4-layer CNN [21], GoogleNet [29], MobileNet_v2 [27], and ResNet variants [10]. For classifiers, together with HtFE_8 , two Transformer architectures—ViT-B/16 and ViT-B/32 [8]—with different classifier architectures of ResNets, form the HtM_{10} setup. Furthermore, the HtFE_8 - HtC_4 introduces dual heterogeneity by pairing the eight extractors with four distinct fully connected classifiers. Methods requiring homogeneous classifier structures (LG-FedAvg, FedGen, FedGH) are excluded from this comparison. All architectural details and extended results are provided in Appendix D and Appendix E.

4.2 Performance under Two Data Heterogeneity Settings

As shown in Table 1, FedKWAZ yields accuracy improvements of 4.54% and 3.80% on Cifar100 and Flowers102 under the Dirichlet split. For the Pathological scenario, further gains of 4.66% and 3.87% are reported on Cifar100 and Tiny-ImageNet. These benefits arise from KWAZ-driven knowledge refinement, by adaptively targeting and supervising cognitively misaligned samples via SWAZ and DWAZ, FedKWAZ effectively addresses heterogeneous label assignment and sample imbalance. Performance trends in Figure 3 confirm its stability across tasks.

Table 1: Accuracy across datasets with top three results highlighted as **first**, **second**, and **third**.

Settings	Practical Setting				Pathological Setting					
Datasets	Cifar10	Skin-Lesions-14	Cifar100	Flowers102	Tiny-ImageNet	Cifar10	Skin-Lesions-14	Cifar100	Flowers102	Tiny-ImageNet
Local FedDistill LG-FedAvg FedGen FedKD FedProto FML FedGH FedMRL	86.14±0.18 86.49±0.11 85.03±0.11 85.22±0.12 86.31±0.11 84.57±0.13 86.44±0.10 83.77±0.48 86.79±0.18	86.73±0.27 86.88±0.20 85.40±0.18 86.47±0.19 86.66±0.20 81.57±0.26 86.84±0.18 83.99±0.25 87.60±0.25	39.50±0.21 41.58±0.37 41.13±0.22 40.09±0.20 40.37±0.18 35.83±0.15 39.47±0.20 38.83±0.11 42.22±0.27	49.00±0.14 49.05±0.17 46.33±0.22 49.39±0.24 46.67±0.15 41.08±0.14 45.35±0.17 45.94±0.15 48.47±0.16	23.53±0.07 25.21±0.16 23.40±0.35 23.69±0.19 24.73±0.08 18.37±0.32 23.56±0.18 22.60±0.12 23.37±0.22	84.15±0.13 84.59±0.35 84.50±0.17 84.39±0.26 84.62±0.12 83.49±0.21 83.60±0.12 83.39±0.15 85.80±0.21	93.63±0.18 93.02±0.23 93.15±0.31 93.01±0.18 93.25±0.18 92.28±0.19 93.12±0.31 93.29±0.19 94.33±0.24	56.27±0.50 57.89±0.33 55.58±0.13 55.53±0.13 54.55±0.10 52.66±0.11 53.26±0.15 56.25±0.13 58.55±0.23	59.56±0.36 63.84±0.40 58.52±0.34 59.16±0.29 59.66±0.28 56.55±0.30 58.28±0.28 59.41±0.36 62.41±0.30	31.87±0.06 33.10±0.08 32.50±0.15 32.03±0.10 32.40±0.06 28.41±0.10 31.60±0.14 31.77±0.08 33.48±0.17
FedTGP FedKTL	88.07±0.42 88.02±0.13	87.33±0.36 87.23±0.24	47.15±0.17 47.09±0.16	53.72±0.23 52.85±0.29	27.62±0.08 28.17±0.22	87.03±0.13 86.21±0.34	94.66±0.18 93.70±0.19	61.73±0.32 61.20±0.16	69.07±0.41 64.19±0.45	34.70±0.08 34.74±0.32
FedKWAZ	90.39±0.12	89.82±0.19	51.69±0.14	57.52±0.21	30.85±0.09	90.17±0.11	96.27±0.08	66.39±0.17	71.28±0.29	38.61±0.12

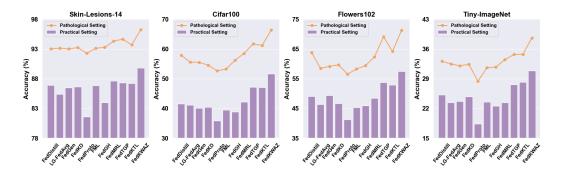


Figure 3: Performance comparison under pathological and dirichlet data heterogeneity settings.

4.3 Performance under Various Model Heterogeneity Settings

As shown in Table 2, most methods experience noticeable performance degradation as model heterogeneity increases, particularly during the transition from the homogeneous $HtFE_1$ to the heterogeneous $HtFE_2$. Figure 4 (left one) highlights the sensitivity of cross-client collaboration to architectural variation. In contrast, FedKWAZ performs architecture-aware distillation by decoupling semantic and decision discrepancies, enabling path-specific alignment across heterogeneous models. It yields a 2.45% average gain and outperforms FedTGP by 3.26% under the $HtFE_8$ – HtC_4 setting,where both extractors and classifiers are heterogeneous, demonstrating high adaptability to model diversity.

Settings Different Degrees of Model Heterogeneity Large Client Amoun HtFE HtFE₂ HtFE₄ HtFE₉ HtM₁₀ HtFE₈-HtC₄ 50 Clients 100 Clients 200 Clients Local 53.64+0.15 44.94 ± 0.48 43.58 ± 0.21 43.46 ± 0.16 40.23 ± 0.09 39.96+0.23 38.28 ± 0.12 36.76 ± 0.16 31.59 ± 0.12 40.45±0.23 40.66±0.10 46.38±0.26 LG-FedAve 53.89 ± 0.13 45.49 ± 0.14 43.74 ± 0.29 43.65 ± 0.10 38.54 ± 0.10 36.26 ± 0.15 30.34 ± 0.11 35.44±0.10 34.39±0.33 32.24±0.19 53.19±0.16 53.09±0.10 44.70±0.17 46.17±0.12 43.26 ± 0.18 44.60 ± 0.13 42.46±0.14 42.30±0.15 30.85 ± 0.14 30.34 ± 0.16 38.42±0.14 FedKD 40.19±0.11 40.30±0.10 39.30 ± 0.12 FedProto 44.33 ± 0.45 46.10 ± 0.13 39.47 ± 0.14 31.34 ± 0.12 34.23 ± 0.19 30.80 ± 0.14 34.82 ± 0.25 26.22 ± 0.20 FMI. 53.03+0.11 43 01+0 16 42 79+0 19 42 36+0 10 40.17±0.11 40.43 ± 0.16 38 58+0 10 36.10 ± 0.11 30.75+0.10 FedGH 49.13±0.23 44.52±0.19 43.35 ± 0.14 41.73±0.20 38.14 ± 0.15 33.73 ± 0.14 29.27 ± 0.30 41.34±0.12 41.80±0.11 FedMRI 45.08 ± 0.35 44.34 ± 0.14 43.81 ± 0.25 42.85 ± 0.22 39.24 ± 0.12 36.73 ± 0.16 31.77 ± 0.15 FedTGP 50.48 ± 0.24 49.91 ± 0.55 46.75 ± 0.15 48.15 ± 0.30 43.21±0.25 40.90 ± 0.13 33.87 ± 0.19 FedKTL 53.53±0.15 48.00±0.17 49.99 ± 0.16 45.64 ± 0.15 44.42±0.16 34.29 ± 0.14 FedKWAZ 54.33±0.17 52.05±0.12 48.35±0.21 51.69 ± 0.11 52.42±0.23 47.91 ± 0.20 47.79 ± 0.12 43.70 ± 0.13 38.18 ± 0.12

Table 2: Effects of model heterogeneity and client scale on Cifar100 test performance.

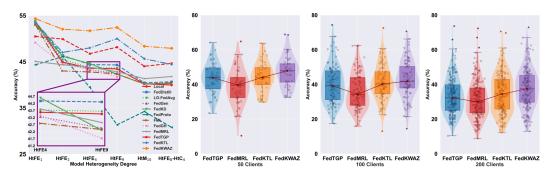


Figure 4: Test accuracy across various model settings (left one) and client scales (right three).

4.4 Performance in Multi-Client Setup

Scalability is evaluated with 50, 100, and 200 clients under partial participation ($\rho=0.5$) to simulate intermittent communication. As shown in Table 4, most methods exhibit notable performance degradation as client count increases and data becomes more fragmented. In contrast, FedKWAZ maintains margins of 4.58%, 2.80%, and 3.89% across the three scales, benefiting from its capacity to extract transferable cues from HAPM-generated inputs and enhance cognitively divergent zones, thus alleviating data sparsity-induced degradation. The per-client accuracy distributions in Figure 4

(right three) further support this trend, with FedKWAZ presenting higher medians, smaller variances, and more concentrated distribution, indicating improved utility under large-scale deployment.

4.5 Communication and Computation Cost

Table 3 reports the theoretical and empirical communication cost per round. In FedGen, the auxiliary generator is denoted as Θ ; in FML, FedKD and FedMRL, θ_g and w_g represent the proxy feature extractor and classifier, with singular value decomposition (SVD) applied to θ_g at a compression ratio r, where $|\theta_g| \gg K \times C$ and C_i is the class count for client i. In FedKTL, the generator latent size is K_G , and the generated image has C_h channels and spatial size S. "M" denotes "million".

Substantial transmission overhead is introduced by FML, FedKD, and FedMRL due

Table 3: Communication cost per iteration of HtFE₈ model group in theory and practice for Cifar100.

	The	Pra	Total		
	Upload	Download	Upload	Download	
FedDistill	$\sum_{i=1}^{M} C \times C_{i}$	$M \times C \times C$	0.09M	0.20M	0.29M
LG-FedAvg	$\sum_{i=1}^{M} w_i $	$\sum_{i=1}^{M} w_i $	1.03M	1.03M	2.06M
FedGen FedKD	$M \times (\theta_q + w_q) \times r$	$M \times (\theta_q + w_q) \times r$	1.03M 16.52M	7.66M 16.52M	8.69M 33.04M
FedProto FML	$\sum_{i=1}^{M} K \times C_i$ $M \times (\theta_q + w_q)$	$M \times K \times C$ $M \times (\theta_q + w_q)$	0.44M 18.50M	1.02M 18.50M	1.46M 37.00M
FedGH FedMRL	$\sum_{i=1}^{M} K \times C_i$ $M \times (\theta_q + w_q)$	$\sum_{i=1}^{M} w_i $ $M \times (\theta_q + w_q)$	0.44M 18.50M	1.03M 18.50M	1.47M 37.00M
FedTGP	$\sum_{i=1}^{M} K \times C_{i}$	$M \times K \times C$	0.44M	1.02M	1.46M
FedKTL	$\sum_{i=1}^{M} C \times C_i$	$M \times C \times (K_G + C_h \times S)$	0.09M	7.17M	7.26M
FedKWAZ	$\sum_{i=1}^{M} (K + C) \times C_i * 2$	$M \times (K + C) \times C * 2$	1.06M	2.44M	3.50M

to the need for proxy model exchange. FedGen further amplifies downstream bandwidth via generator transmission. Although FedDistill maintains low communication volume, its accuracy degrades due to limited information content in transmitted logits. FedKTL also exhibits increased downstream load during generator-based knowledge transfer.

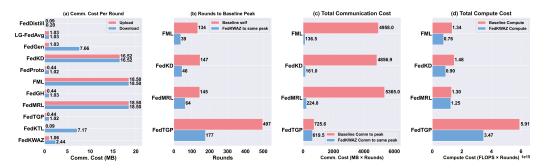


Figure 5: Comparison of communication and computation costs across methods.

As shown in Figure 5 (a), owing to the use of class-level semantic representations and prediction outputs as compact cross-model carriers, FedKWAZ achieves substantial reductions in both upload and download communication volume. Figure 5 (b) reports the number of communication rounds required by FedTGP, FML, FedKD, and FedMRL to reach peak performance, compared to the rounds needed by FedKWAZ to match these baselines. Total FLOPs per local forward-backward pass are also evaluated. Benefiting from its two-stage mutual learning scheme, FedKWAZ attains and surpasses baseline performance with fewer rounds. As illustrated in Figures 5 (c)(d), both communication and computation costs are reduced, improving adaptability under high-frequency interactions.

4.6 Ablation Study

Three ablation variants are constructed to isolate the contributions of FedKWAZ components: (1) Local Mutual Learning (LML), which omits the global alignment stage; (2) One-way KWAZ learning from proxy model to private model (Proxy-to-Private Learning, P2P-L); (3) One-way KWAZ learning in reverse from private model to proxy model (Private-to-Proxy Reverse Learning, P2P-R). As reported in Table 4, Fed-

Table 4: Ablation study on four datasets in the practical setting using HtFE₈.

	LML	P2P-L	P2P-R	FedKWAZ
Cifar10	89.42±0.10	89.63±0.15	89.95±0.13	90.39±0.12
Skin-Lesions-14	88.70±0.18	89.12 ± 0.22	89.30±0.16	89.82 ± 0.19
Cifar100	50.36±0.16	50.93 ± 0.12	51.13±0.19	51.69 ± 0.14
Flowers102	56.44±0.25	56.87 ± 0.17	57.08 ± 0.23	57.52 ± 0.21

KWAZ consistently outperforms LML by 0.97%, 1.12%, 1.33%, and 1.08% on Cifar10, Skin-Lesions-14, Cifar100, and Flowers102, respectively. Figure 6 (left) shows that one-way transfer pro-

vides limited gains over LML, suggesting that cross-model knowledge gaps remain under-addressed. In contrast, the full FedKWAZ—with bidirectional KWAZ learning and global alignment, achieves markedly superior results, demonstrating its efficacy in focused and deeper knowledge transfer.

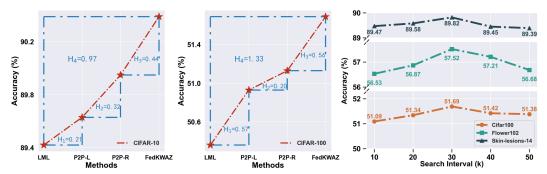


Figure 6: Ablation study results (left two) and hyperparameter study results (right one).

4.7 Hyperparameter Study

As shown in Figure 6 (right one), the impact of updating HAPM mixing configurations via KDP every k rounds is evaluated with $k \in \{10, 20, 30, 40, 50\}$. Frequent updates (k = 10 or 20) lead to performance degradation, as the model fails to fully exploit the knowledge learned from KWAZ. Conversely, infrequent updates (k = 40 or 50) hinder the timely detection and bridging of emerging knowledge gaps, limiting the effectiveness of KWAZ-guided learning. Accuracy consistently peaks at k = 30 across datasets, suggesting that a balanced schedule between knowledge absorption and dynamic gap correction is essential. Overall, FedKWAZ sustains strong performance across different k, validating the effectiveness of its dynamic update strategy.

5 Conclusions

This paper proposes FedKWAZ, a cognitively structured mutual learning framework that captures semantic and decision discrepancies across heterogeneous models by decomposing KWAZ into SWAZ and DWAZ. Through HAPM-based sample structuring and KDP-guided discrepancy localization, KWAZ is dynamically identified and reinforced, offering a fine-grained perspective beyond conventional output alignment. Comprehensive experiments across diverse datasets and architectures validate its effectiveness under both model and data heterogeneity in federated learning.

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Natural Science Foundation of China under Grants 62576062, 62331008 and 62276039, in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grants KJZD-M202500604 and KJZD-K202200606, in part by the New Chongqing Youth Innovation Talent under Grant CSTB2024NSCQQCXMX0067.

References

- [1] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. Fedrolex: Model-heterogeneous federated learning with rolling sub-model extraction. *Advances in Neural Information Processing Systems*, 35:29677–29690, 2022.
- [2] Shams Nafisa Ali, Md Tazuddin Ahmed, Tasnim Jahan, Joydip Paul, SM Sakeef Sani, Nawsabah Noor, Anzirun Nahar Asma, and Taufiq Hasan. A web-based mpox skin lesion detection system using state-of-the-art deep learning models considering racial diversity. *Biomedical Signal Processing and Control*, 98:106742, 2024.
- [3] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated learning with personalization layers. *arXiv preprint arXiv:1912.00818*, 2019.
- [4] Sara Babakniya, Souvik Kundu, Saurav Prakash, Yue Niu, and Salman Avestimehr. Revisiting sparsity hunting in federated learning: Why does sparsity consensus matter? *Transactions on Machine Learning Research*, 2023.
- [5] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an alternative to the cifar datasets. *arXiv preprint arXiv:1707.08819*, 2017.
- [6] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared representations for personalized federated learning. In *International conference on machine learning*, pages 2089–2099. PMLR, 2021.
- [7] Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient federated learning for heterogeneous clients. *arXiv* preprint arXiv:2010.01264, 2020.
- [8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
- [9] Peng Han, Han Xiao, Shenhai Zheng, Yuanyuan Li, Guanqiu Qi, and Zhiqin Zhu. Fedmkd: Hybrid feature guided multilayer fusion knowledge distillation in heterogeneous federated learning. *IEEE Transactions on Neural Networks and Learning Systems*, 2025.
- [10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 770–778, 2016.
- [11] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv* preprint arXiv:1503.02531, 2015.
- [12] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and Nicholas Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with ordered dropout. *Advances in Neural Information Processing Systems*, 34:12876–12889, 2021.
- [13] Wenke Huang, Mang Ye, and Bo Du. Learn from others and be yourself in heterogeneous federated learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10143–10153, 2022.
- [14] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. Communication-efficient on-device machine learning: Federated distillation and augmentation under non-iid private data. *Advances in Neural Information Processing Systems*, 2018.
- [15] Shivam Kalra, Junfeng Wen, Jesse C Cresswell, and Maksims Volkovs. Decentralized federated learning through proxy model sharing. *Nature communications*, 14(1):2899, 2023.
- [16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- [17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
- [18] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain generalization. In *Proceedings of the IEEE international conference on computer vision*, pages 5542–5550, 2017.
- [19] Haoyuan Liang, Xinyu Zhang, Shilei Cao, Guowen Li, and Juepeng Zheng. Tta-feddg: Leveraging test-time adaptation to address federated domain generalization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 18658–18666, 2025.

- [20] Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with local and global representations. *arXiv* preprint arXiv:2001.01523, 2020.
- [21] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pages 1273–1282. PMLR, 2017.
- [22] Lei Meng, Zhuang Qi, Lei Wu, Xiaoyu Du, Zhaochuan Li, Lizhen Cui, and Xiangxu Meng. Improving global generalization and local personalization for federated learning. *IEEE Transactions on Neural Networks and Learning Systems*, 36, 2024.
- [23] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pages 722–729. IEEE, 2008.
- [24] Zhuang Qi, Lei Meng, Zitan Chen, Han Hu, Hui Lin, and Xiangxu Meng. Cross-silo prototypical calibration for federated learning with non-iid data. In *Proceedings of the 31st ACM International Conference on Multimedia*, pages 3099–3107, 2023.
- [25] Zhuang Qi, Lei Meng, Zhaochuan Li, Han Hu, and Xiangxu Meng. Cross-silo feature space alignment for federated learning on clients with imbalanced data. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 19986–19994, 2025.
- [26] Zhen Qin, Shuiguang Deng, Mingyu Zhao, and Xueqiang Yan. Fedapen: Personalized cross-silo federated learning with adaptability to statistical heterogeneity. In *Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining*, pages 1954–1964, 2023.
- [27] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4510–4520, 2018.
- [28] Tao Shen, Jie Zhang, Xinkang Jia, Fengda Zhang, Zheqi Lv, Kun Kuang, Chao Wu, and Fei Wu. Federated mutual learning: a collaborative machine learning method for heterogeneous data, models, and objectives. *Frontiers of Information Technology & Electronic Engineering*, 24(10):1390–1402, 2023.
- [29] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1–9, 2015.
- [30] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fedproto: Federated prototype learning across heterogeneous clients. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pages 8432–8440, 2022.
- [31] Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and Jing Jiang. Federated learning from pre-trained models: A contrastive learning approach. *Advances in Neural Information Processing Systems*, 35:19332–19344, 2022.
- [32] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. *Scientific data*, 5(1):1–9, 2018.
- [33] Michael Tuchler, Andrew C Singer, and Ralf Koetter. Minimum mean squared error equalization using a priori information. *IEEE Transactions on Signal processing*, 50(3):673–683, 2002.
- [34] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.
- [35] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 5018–5027, 2017.
- [36] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. Communication-efficient federated learning via knowledge distillation. *Nature communications*, 13(1):2032, 2022.
- [37] Xinghao Wu, Xuefeng Liu, Jianwei Niu, Haolin Wang, Shaojie Tang, Guogang Zhu, and Hao Su. Decoupling general and personalized knowledge in federated learning via additive and low-rank decomposition. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 7172–7181, 2024.

- [38] Xinghao Wu, Xuefeng Liu, Jianwei Niu, Guogang Zhu, and Shaojie Tang. Bold but cautious: Unlocking the potential of personalized federated learning through cautiously aggressive collaboration. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 19375–19384, 2023.
- [39] Xinghao Wu, Jianwei Niu, Xuefeng Liu, Guogang Zhu, Shaojie Tang, Wanyu Lin, and Jiannong Cao. The diversity bonus: Learning from dissimilar clients in personalized federated learning. *IEEE Transactions on Neural Networks and Learning Systems*, 2025.
- [40] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv* preprint *arXiv*:1708.07747, 2017.
- [41] Liping Yi, Gang Wang, Xiaoguang Liu, Zhuan Shi, and Han Yu. Fedgh: Heterogeneous federated learning with generalized global header. In *Proceedings of the 31st ACM International Conference on Multimedia*, pages 8686–8696, 2023.
- [42] Liping Yi, Han Yu, Chao Ren, Gang Wang, Xiaoxiao Li, et al. Federated model heterogeneous matryoshka representation learning. *Advances in Neural Information Processing Systems*, 37:66431–66454, 2024.
- [43] Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan. Fedala: Adaptive local aggregation for personalized federated learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pages 11237–11244, 2023.
- [44] Jianqing Zhang, Yang Liu, Yang Hua, and Jian Cao. Fedtgp: Trainable global prototypes with adaptive-margin-enhanced contrastive learning for data and model heterogeneity in federated learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pages 16768–16776, 2024.
- [45] Jianqing Zhang, Yang Liu, Yang Hua, and Jian Cao. An upload-efficient scheme for transferring knowledge from a server-side pre-trained generator to clients in heterogeneous federated learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12109–12119, 2024.
- [46] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging sgd. *Advances in Neural Information Processing Systems*, 28, 2015.
- [47] Zhuangdi Zhu, Junyuan Hong, Steve Drew, and Jiayu Zhou. Resilient and communication efficient learning for heterogeneous federated systems. *Proceedings of machine learning research*, 162:27504, 2022.
- [48] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous federated learning. In *International conference on machine learning*, pages 12878–12889. PMLR, 2021.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The main contributions are clearly and accurately articulated in the Abstract and Introduction (Section 1), including the concept of Knowledge Weak-Aware Zones (KWAZ), explicitly subdivided into Semantic Weak-Aware Zones (SWAZ) and Decision Weak-Aware Zones (DWAZ). Furthermore, a dual-stage deep mutual learning mechanism integrated with the proposed HAPM and KDP methods effectively enables knowledge transfer among heterogeneous federated models. These stated claims align consistently and comprehensively with subsequent theoretical analyses and experimental results.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Potential limitations of this work are explicitly addressed in Section G, including the use of a fixed temperature parameter τ during prediction distillation and the uniform setting of feature dimensionality K across datasets. The potential for dynamically adapting these configurations to better accommodate model complexity and data characteristics is also discussed.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: A comprehensive set of theoretical assumptions and corresponding detailed proofs are provided explicitly in the Theoretical Proofs (Section C). This section thoroughly covers Lemma 1, 2, and Theorem 1, 2, including clearly stated assumptions (Assumptions 1, 2, 3, and 4) as well as complete proofs (Proof of C.1, C.2, C.3, and C.4).

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All critical components required to reproduce the experimental results have been thoroughly disclosed. The experimental protocols, dataset configurations, training routines, and modeling heterogeneity strategies are detailed in Section 4.1, with supplementary pseudo-code provided in Appendix B. Furthermore, implementation-level specifics are provided in Appendix D, including hyperparameter settings (Appendix D.3), experimental environments (Appendix D.1), and architectural design choices (Appendix D.4). These collectively ensure full reproducibility of the reported results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.

- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Open-source implementations have been made publicly accessible via the GitHub repository linked in Appendix D.1. All datasets used in the experiments are publicly available, and their access links are clearly listed in Appendix D.2. Together with the algorithm description and hyperparameter configurations, the provided resources support faithful replication of the experiments.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baseline. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Complete training and evaluation details are provided in Section 4.1, including data partition strategies (pathological and Dirichlet), number of clients, training/testing splits, learning rate, batch size, and local/global update frequency. Appendix D.3 expands

on baseline-specific hyperparameter settings, optimizer types, distillation parameters, and HAPM configurations. These ensure the setup is transparent and comprehensive.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results are reported with mean and standard deviation over three independent trials, as stated in Section 4.1. This allows evaluation of result consistency and robustness. Error ranges are numerically indicated in all tables and figure legends, providing a reliable measure of statistical significance.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Details on the computational environment are clearly stated in Appendix D.1, where it is noted that all experiments were executed on four NVIDIA GeForce RTX 4090 GPUs (24GB) using the PyTorch framework. This allows readers to understand the scale of resources required and estimate the expected runtime and memory consumption.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The NeurIPS Code of Ethics has been carefully reviewed, and the research presented in this paper fully conforms to all stipulated ethical guidelines.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are explicitly discussed in Section H. Positive societal impacts are addressed, including enhanced adaptability of heterogeneous federated models, reduced communication costs with improved privacy protection, accelerated convergence and improved system energy efficiency, and the expanded potential for practical applications across domains such as healthcare, smart manufacturing, and smart cities. No direct negative societal impacts have been identified; however, careful monitoring is encouraged when deploying the technology in critical domains.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: No significant risk of misuse or dual-use associated with the released code or models has been identified in this work; therefore, explicit safeguard mechanisms are not applicable.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All utilized datasets and related assets have been properly credited in Section D.2. The licenses and official sources for the datasets, including Cifar10, Cifar100, Flowers102, Tiny-ImageNet, and Skin-Lesions-14, have been explicitly mentioned, and their terms of use have been properly respected.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The newly developed code for FedKWAZ has been publicly released and properly documented, with access information provided in Appendix D.1. Detailed descriptions of hyperparameters, architectures, and experimental setups have been provided to facilitate reproducibility and reusability.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.

- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human subject experiments have been involved in the research presented in this paper.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human **Subjects**

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve research with human participants, and therefore IRB approvals or equivalent institutional review procedures are not applicable.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- · For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

Appendices

An overview of the Appendix is provided below, covering algorithmic components, theoretical foundations, implementation specifics, extended empirical analysis, and broader contextual considerations.

A	Hier	archical Adaptive Patch Mixup	22
	A.1	Hierarchical Random Partitioning of Spatial Patches	22
	A.2	Patch-wise Independent Interpolation and Fusion	22
В	Pseu	do Codes of FedKWAZ	23
C	The	oretical Proofs	24
	C.1	Proof of Lemma 1	25
	C.2	Proof of Lemma 2	26
	C.3	Proof of Theorem 1	26
	C.4	Proof of Theorem 2	26
D	Add	itional Experimental Details	27
	D.1	Experimental Environment	27
	D.2	Datasets	27
	D.3	Hyperparameter Settings	27
	D.4	Detailed Setting of Model Heterogeneity	27
E	Add	itional Experimental Results	28
	E.1	Impact of Feature Dimensions	28
	E.2	Homogeneous Models Setting	28
	E.3	Performance on Fashion-MNIST under Pathological and Dirichlet Data Settings	29
	E.4	Performance under Low Client Participation Rates and High Client Drop Rates	29
	E.5	Impact of SWAZ and DWAZ	31
	E.6	Impact of Feature Shift	31
	E.7	Effectiveness of HAPM vs. Hard Sample Selection	32
	E.8	Correlation between HAPM Parameters and Client Properties	33
	E.9	Variance and Stability Analysis of Dynamically Selected HAPM Parameters	34
F	Visu	alizations of Data Distributions	35
G	Lim	itations	37
Н	Broa	nder Impacts	37

A Hierarchical Adaptive Patch Mixup

To explicitly capture knowledge discrepancies between heterogeneous models, a novel Hierarchical Adaptive Patch Mixup HAPM mechanism is introduced in FedKWAZ. High-quality samples with local diversity and hierarchical structure are generated through spatially granular partitioning and stochastic perturbation, supporting the identification and enhancement of weak knowledge-aware zones. The input to HAPM includes the images x, a mixing strength parameter α , and a spatial granularity parameter G. Two key procedures are involved in HAPM: hierarchical random partitioning of spatial patches and independent interpolation of partitioned samples.

A.1 Hierarchical Random Partitioning of Spatial Patches

To reflect knowledge differences across heterogeneous models at a local granularity, a spatially hierarchical random perturbation mechanism is incorporated into HAPM. The original input images $X \in \mathbb{R}^{B \times C \times H \times W}$ (where B, C, H, and W denote the batch size, channels, height, and width) is partitioned into $\sqrt{G} \times \sqrt{G}$ local patches. Each patch is then subjected to spatial perturbations to improve diversity and sensitivity to knowledge. Specifically, the base height and width of each patch are defined as:

$$h_{\text{base}} = \left| \frac{H}{\sqrt{G}} \right|, \quad w_{\text{base}} = \left| \frac{W}{\sqrt{G}} \right|$$
 (16)

Next, the initial boundaries of each patch are constructed based on grid indices:

$$h_{\text{start}}^{(i,j)} = i \cdot h_{\text{base}}, \quad h_{\text{end}}^{(i,j)} = (i+1) \cdot h_{\text{base}}, \quad w_{\text{start}}^{(i,j)} = j \cdot w_{\text{base}}, \quad w_{\text{end}}^{(i,j)} = (j+1) \cdot w_{\text{base}}$$
 (17)

Here, the grid indices $i,j=0,1,\ldots,\sqrt{G}-1$ are used to specify patch positions. To increase the diversity of local perturbations, jitter factors $\delta_h^{(i,j)}$ and $\delta_w^{(i,j)}$ are introduced and sampled as integer variables from uniform distributions:

$$\delta_h^{(i,j)} \sim \mathcal{U}\left(-\frac{h_{\text{base}}}{4}, \frac{h_{\text{base}}}{4}\right), \quad \delta_w^{(i,j)} \sim \mathcal{U}\left(-\frac{w_{\text{base}}}{4}, \frac{w_{\text{base}}}{4}\right)$$
 (18)

To ensure validity, the perturbed positions are clipped within image boundaries using the clip function:

$$\hat{h}_{\text{start}}^{(i,j)} = \text{clip}\left(h_{\text{start}}^{(i,j)} + \delta_h^{(i,j)}, 0, H\right), \hat{h}_{\text{end}}^{(i,j)} = \text{clip}\left(h_{\text{end}}^{(i,j)} + \delta_h^{(i,j)}, 0, H\right)
\hat{w}_{\text{start}}^{(i,j)} = \text{clip}(w_{\text{start}}^{(i,j)} + \delta_w^{(i,j)}, 0, W), \hat{w}_{\text{end}}^{(i,j)} = \text{clip}(w_{\text{end}}^{(i,j)} + \delta_w^{(i,j)}, 0, W)$$
(19)

These designs jointly form the hierarchical structure of HAPM, where local-granularity patches are first divided in space and then perturbed at the patch level to enhance the diversity of the mixed samples.

A.2 Patch-wise Independent Interpolation and Fusion

Based on the above spatial partitioning, the mixing coefficient $\lambda^{(i,j)}$ is independently sampled for each patch zone from a Beta distribution:

$$\lambda^{(i,j)} \sim \text{Beta}(\alpha, \alpha), \quad \alpha > 0$$
 (20)

Given a randomly shuffled batch index π , the interpolation fusion is independently performed in each patch zone:

$$X^{\text{mix}}[:,:, \hat{h}_{\text{start}}^{(i,j)} : \hat{h}_{\text{end}}^{(i,j)}, \widehat{w}_{\text{start}}^{(i,j)} : \widehat{w}_{\text{end}}^{(i,j)}] = \lambda^{(i,j)} X[:,:, \hat{h}_{\text{start}}^{(i,j)} : \hat{h}_{\text{end}}^{(i,j)}, \widehat{w}_{\text{start}}^{(i,j)} : \widehat{w}_{\text{end}}^{(i,j)}] + (1 - \lambda^{(i,j)}) X[\pi, :, \hat{h}_{\text{start}}^{(i,j)} : \hat{h}_{\text{end}}^{(i,j)}, \widehat{w}_{\text{start}}^{(i,j)} : \widehat{w}_{\text{end}}^{(i,j)}]$$
(21)

Through this mixing process, each local zone of the image is independently adjusted based on the patch-specific mixing strength, enabling HAPM to generate more diverse and knowledge-sensitive samples, thereby enhancing the model's recognition capacity in knowledge-weak zones.

B Pseudo Codes of FedKWAZ

```
Algorithm 1: FedKWAZ
```

end end

```
Input: N, total number of clients; \rho, participation rate of clients in one round; T, total number of rounds; \eta,
learning rate of private and proxy models; E_A, E_B, training epoch of the first and second stage; \alpha^*, \beta_1^*, \beta_2^*,
q^*, mixing parameters of HAPM; \tau, temperature of distillation; \mathcal{D}_k, the local dataset of the k-th client.
Output: Private and proxy models' P_c^{\mathcal{M}_k}, P_c^{\mathcal{Q}_k} and L_c^{\mathcal{M}_k}, L_c^{\mathcal{Q}_k}.
Randomly initialize the client local heterogeneous models [\mathcal{M}_1(\psi_1), \dots, \mathcal{M}_{N-1}(\psi_{N-1})] and local proxy
   homogeneous small models [Q_1(\phi_1), \dots, Q_{N-1}(\phi_{N-1})].
for each round t=1,...,T-1 do
           // Server Side:
            S^t \leftarrow \text{Randomly sample } K \text{ clients from } N \text{ clients; Broadcast } \bar{P}_c^{\mathcal{M}}, \bar{P}_c^{\mathcal{Q}}, \bar{L}_c^{\mathcal{M}}, \bar{L}_c^{\mathcal{Q}} \text{ to them;}
           end
           Aggregate global semantic representation and decision output.
           // ClientUpdate:
           Receive \bar{P}_c^{\mathcal{M}}, \bar{P}_c^{\mathcal{Q}}, \bar{L}_c^{\mathcal{M}}, \bar{L}_c^{\mathcal{Q}} from the server;
           for k \in S^t do
                         // Stage I: Global Knowledge Mutual Learning
                          for epoch e = 1, \dots, E_A do
                                      for batch (x,y) \in \mathcal{D}_k do
                                                 Obtain representation and logits:

z_x^{\mathcal{M}_k}, \hat{y}_x^{\mathcal{M}_k} \leftarrow \mathcal{M}_k(x; \psi_k), z_x^{\mathcal{Q}_k}, \hat{y}_x^{\mathcal{Q}_k} \leftarrow \mathcal{Q}_k(x; \phi_k);
                                                   Compute global alignment loss:
                                                 Compute global alignment loss. \ell_k^{\mathcal{M}_k \to \mathcal{Q}_k} = \ell_{CE}(\hat{\mathbf{y}}_x^{\mathcal{M}_k}, y) + \ell_{CE}\left(\hat{\mathbf{y}}_x^{\mathcal{M}_k}, \sigma(\bar{L}_c^{\mathcal{Q}})\right) + \|z_x^{\mathcal{M}_k} - \bar{P}_c^{\mathcal{Q}}\|_2^2;
                                                \begin{split} & \ell_k^{\mathcal{Q}_k \to \mathcal{M}_k} = \ell_{CE}(\hat{\mathbf{y}}_x^{\mathcal{Q}_k}, y) + \ell_{CE}\left(\hat{\mathbf{y}}_x^{\mathcal{Q}_k}, \sigma(\bar{L}_c^{\mathcal{M}})\right) + \|z_x^{\mathcal{Q}_k} - \bar{P}_c^{\mathcal{M}}\|_2^2; \\ & \text{Update: } \psi_k^t \leftarrow \psi_k^{t-1} - \eta_\psi \nabla \ell_k^{\mathcal{M}_k \to \mathcal{Q}_k}, \phi_k^t \leftarrow \phi_k^{t-1} - \eta_\phi \nabla \ell_k^{\mathcal{Q}_k \to \mathcal{M}_k}; \end{split}
                                      end
                          end
                          // Stage II: Local KWAZ Mutual Learning
                         for epoch e = 1, \ldots, E_B do
                                      for batch (x,y) \in \mathcal{D}_k do
                                                  Compute base mutual learning losses:
                                                Compute base mutual learning losses: \ell_{\text{base}}^{\mathcal{M}_k \to \mathcal{Q}_k} = \text{KL}\left(\sigma(\hat{\mathbf{y}}_x^{\mathcal{M}_k}/\tau) \parallel \sigma(\hat{\mathbf{y}}_x^{\mathcal{Q}_k}/\tau)\right) \cdot \tau^2 + \|z_x^{\mathcal{M}_k} - z_x^{\mathcal{Q}_k}\|_2^2; \ell_{\text{base}}^{\mathcal{Q}_k \to \mathcal{M}_k} = \text{KL}\left(\sigma(\hat{\mathbf{y}}_x^{\mathcal{Q}_k}/\tau) \parallel \sigma(\hat{\mathbf{y}}_x^{\mathcal{M}_k}/\tau)\right) \cdot \tau^2 + \|z_x^{\mathcal{Q}_k} - z_x^{\mathcal{M}_k}\|_2^2; Generate SWAZ mixed samples: X_{\text{SWAZ}}^{\mathcal{M}_k \leftrightarrow \mathcal{Q}_k} = \text{HAPM}(x; \alpha^\star, g^\star); Compute semantic weak-awareness loss: \ell_{\text{SWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k} = \|z_{X_{\text{SWAZ}}}^{\mathcal{M}_k} - z_{X_{\text{SWAZ}}}^{\mathcal{Q}_k}\|_2^2 = \ell_{\text{SWAZ}}^{\mathcal{Q}_k \to \mathcal{M}_k}; Generate DWAZ mixed samples:
                                                   Generate DWAZ mixed samples:
                                                  X_{\mathrm{DWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k} = \mathrm{HAPM}(x; \beta_1^\star, g_1^\star), X_{\mathrm{DWAZ}}^{\mathcal{Q}_k \to \mathcal{M}_k} = \mathrm{HAPM}(x; \beta_2^\star, g_2^\star);
                                                  Compute decision weak-awareness losses:
                                               Compute decision weak-awareness rosses. \ell_{\mathrm{DWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k} = \mathrm{KL}\left(\sigma(\hat{y}_{X_{\mathrm{DWAZ}}^{\mathcal{M}_k} \to \mathcal{Q}_k}^{\mathcal{M}_k}/\tau) \parallel \sigma(\hat{y}_{X_{\mathrm{DWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k}}^{\mathcal{Q}_k}/\tau)\right) \cdot \tau^2; \ell_{\mathrm{DWAZ}}^{\mathcal{Q}_k \to \mathcal{M}_k} = \mathrm{KL}\left(\sigma(\hat{y}_{X_{\mathrm{DWAZ}}^{\mathcal{Q}_k \to \mathcal{M}_k}}^{\mathcal{Q}_k}/\tau) \parallel \sigma(\hat{y}_{X_{\mathrm{DWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k}}^{\mathcal{M}_k}/\tau)\right) \cdot \tau^2; Update models again: \psi_k^t \leftarrow \psi_k^t - \eta_\psi \nabla[\ell_{\mathrm{base}}^{\mathcal{M}_k \to \mathcal{Q}_k} + \ell_{\mathrm{SWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k} + \ell_{\mathrm{DWAZ}}^{\mathcal{M}_k \to \mathcal{Q}_k}]; \phi_k^t \leftarrow \phi_k^t - \eta_\phi \nabla[\ell_{\mathrm{base}}^{\mathcal{Q}_k \to \mathcal{M}_k} + \ell_{\mathrm{SWAZ}}^{\mathcal{Q}_k \to \mathcal{M}_k} + \ell_{\mathrm{DWAZ}}^{\mathcal{Q}_k \to \mathcal{M}_k}];
                        Aggregate and upload updated P_c^{\mathcal{M}_k}, P_c^{\mathcal{Q}_k}, L_c^{\mathcal{M}_k}, L_c^{\mathcal{Q}_k} to the server.
```

23

C Theoretical Proofs

The following notations and expressions are defined. $t \in 0, 1, ..., T-1$ is used to denote the t-th round of federated communication. The local loss function $\mathcal{L}_k(w_k)$ is defined over the parameter set w_k of the local model \mathcal{M}_k and proxy model \mathcal{Q}_k on client k. In each communication round, a total of $E=E_A+E_B$ local steps are conducted on client k in two stages. The start of the local update at communication round t is denoted as tE+0, where the first local iteration of Stage I begins after the global semantic and decision anchors are received from the server. Stage I involves E_A steps of local update, with parameter sequence denoted as $\{w_k^{tE+e}\}_{e=0}^{E_A}$, and $w_k^{tE+E_A}$ indicating the parameters at the end of this stage. Starting from $w_k^{tE+E_A}$, Stage II proceeds with E_B local update steps, with parameters denoted by $\{w_k^{tE+e}\}_{e=E_A}^{E_A+E_B}$, where $w_k^{tE+E_A+E_B}$ represents the final parameters after the t-th local training round. After Stage II, the local representations and decision outputs are uploaded to the server for global aggregation and update, initiating the next communication round. The learning rates on client k are unified into a scalar η , comprising η_{ψ} and η_{ϕ} .

Assumption 1. Lipschitz Smoothness. The local loss function on any client k is assumed to satisfy the 1-Lipschitz smoothness condition. Specifically, for any parameter vectors $w_k^{t_1}$, $w_k^{t_2}$, it holds that:

$$\|\nabla \mathcal{L}_{k}^{t_{1}}(w_{k}^{t_{1}}; x, y) - \nabla \mathcal{L}_{k}^{t_{2}}(w_{k}^{t_{2}}; x, y)\| \le L_{1} \|w_{k}^{t_{1}} - w_{k}^{t_{2}}\|, \forall t_{1}, t_{2} > 0, (x, y) \in D_{k}$$
 (22)

Moreover, this can be further expressed as:

$$\mathcal{L}_{k}^{t_{1}} - \mathcal{L}_{k}^{t_{2}} \leq \langle \nabla \mathcal{L}_{k}^{t_{2}}, (w_{k}^{t_{1}} - w_{k}^{t_{2}}) \rangle + \frac{L_{1}}{2} \| w_{k}^{t_{1}} - w_{k}^{t_{2}} \|^{2}$$
(23)

Assumption 2. Unbiased Gradient and Bounded Variance. On client k, during the t-th local update, the batch gradient sampled at w_k^t is denoted as $g_{w,k}^t = \nabla \mathcal{L}_k^t(w_k^t; B_k^t)$, and it is assumed to satisfy unbiasedness and bounded variance:

Unbiasedness:

$$\mathbb{E}_{B_k^t \subset D_k}[g_{w,k}^t] = \nabla \mathcal{L}_k^t(w_k^t). \tag{24}$$

Bounded variance:

$$\mathbb{E}_{B_k^t \subseteq D_k} \left[\left\| \nabla \mathcal{L}_k^t(w_k^t; B_k^t) - \nabla \mathcal{L}_k^t(w_k^t) \right\|^2 \right] \le \sigma^2 \tag{25}$$

Assumption 3. Bounded Gradient in Global Alignment. Inspired by the theoretical bound on semantic alignment loss variation per round in FedProto, the first-stage local update iterations in FedKWAZ are defined, during which global semantic and decision alignment is performed on each client's local model. The resulting gradient shift from each single round is uniformly upper-bounded as:

$$\|\nabla \mathcal{L}_{k,\text{Global}_{\text{align}}}^{tE+e}\|^{2} \le \delta^{2}, \forall e \in \{0, 1, ..., E_{A} - 1\}, k \in \{0, 1, ..., N - 1\}.$$
(26)

Assumption 4. Bounded Gradient in KWAZ Alignment. Similarly, in the second stage of FedKWAZ (the KWAZ learning stage), the knowledge alignment operations (including SWAZ and DWAZ) performed between the local heterogeneous model and the proxy model on the client side are assumed to exhibit a unified bound on per-step gradient variation:

$$\|\nabla \mathcal{L}_{k,\text{KWAZ}_{\text{alien}}}^{tE+e}\|^{2} \le \gamma^{2}, \forall e \in \{E_{A}, E_{A}+1, ..., E_{A}+E_{B}-1\}, k \in \{0, 1, ..., N-1\}$$
 (27)

Lemma 1. Stage-I Bias. Given Assumptions 1, 2 and 3, After the completion of the first stage, the following inequality is satisfied for any client:

$$\mathbb{E}[\mathcal{L}_k(w_k^{tE+E_A})] \le \mathcal{L}_k(w_k^{tE+0}) - \left(\eta - \frac{L_1\eta^2}{2}\right) \sum_{e=0}^{E_A-1} \|\nabla \mathcal{L}_k(w_k^{tE+e})\|_2^2 + \frac{L_1E_A\eta^2\sigma^2}{2} + \eta E_A\delta^2$$
(28)

Lemma 2. Stage-II Bias. Given Assumptions 1, 2 and 4, After the completion of the second stage, the following inequality is satisfied for any client:

$$\mathbb{E}\left[\mathcal{L}_{k}(w_{k}^{tE+E_{A}+E_{B}})\right] \leq \mathbb{E}\left[\mathcal{L}_{k}(w_{k}^{tE+E_{A}})\right] - \left(\eta - \frac{L_{1}\eta^{2}}{2}\right) \sum_{e=E_{A}}^{E_{A}+E_{B}-1} \|\nabla \mathcal{L}_{k}(w_{k}^{tE+e})\|_{2}^{2} + \frac{L_{1}E_{B}\eta^{2}\sigma^{2}}{2} + \eta E_{B}\gamma^{2} \tag{29}$$

Theorem 1. One Complete Round of FL. Given the above lemma, for any client, after the two-stage mutual learning has been completed, the following inequality holds:

$$\mathbb{E}[\mathcal{L}_{k}(w_{k}^{tE+E_{A}+E_{B}})] \leq \mathcal{L}_{k}(w_{k}^{tE+0}) - \left(\eta - \frac{L_{1}\eta^{2}}{2}\right) \sum_{e=0}^{E_{A}+E_{B}-1} \|\nabla \mathcal{L}_{k}(w_{k}^{tE+e})\|_{2}^{2} + \frac{L_{1}(E_{A}+E_{B})\eta^{2}\sigma^{2}}{2} + \eta(E_{A}\delta^{2} + E_{B}\gamma^{2})$$
(30)

Theorem 2. *Non-convex Convergence Rate of FedKWAZ. Given Theorem 1, For any client and any constant* $\varepsilon > 0$ *, the following inequality holds:*

$$\frac{1}{T} \sum_{t=0}^{T-1} \sum_{e=0}^{E_A + E_B - 1} \left\| \nabla \mathcal{L}_k(w_k^{tE+e}) \right\|_2^2 \\
\leq \frac{\frac{1}{T} \sum_{t=0}^{T-1} \left[\mathcal{L}_k(w_k^{tE+0}) - \mathbb{E}[\mathcal{L}_k(w_k^{tE+E_A + E_B})] \right] + \frac{L_1(E_A + E_B)\eta^2 \sigma^2}{2} + \eta(E_A \delta^2 + E_B \gamma^2)}{\eta - \frac{L_1 \eta^2}{2}} < \epsilon$$
s.t. $0 < \eta < \frac{2(\epsilon - (E_A \delta^2 + E_B \gamma^2))}{L_1(\epsilon + (E_A + E_B)\sigma^2)}$. (31)

C.1 Proof of Lemma 1

Proof. In the e-th local update of the first stage $(e \in 0, 1, ..., E_A - 1)$, any client k is considered, and the result can be derived based on the Lipschitz smoothness in 1.

$$\begin{split} \mathbb{E}[\mathcal{L}_{k}(w_{k}^{tE+e+1})] &\overset{(a)}{\leq} \mathbb{E}\left[\mathcal{L}_{k}(w_{k}^{tE+e}) + \langle \nabla \mathcal{L}_{k}(w_{k}^{tE+e}), w_{k}^{tE+e+1} - w_{k}^{tE+e} \rangle + \frac{L_{1}}{2} \|w_{k}^{tE+e+1} - w_{k}^{tE+e}\|_{2}^{2}\right] \\ &\overset{(b)}{=} \mathcal{L}_{k}(w_{k}^{tE+e}) + \mathbb{E}\left[\langle \nabla \mathcal{L}_{k}(w_{k}^{tE+e}), -\eta g_{k}^{tE+e} \rangle + \frac{L_{1}}{2} \|\eta g_{k}^{tE+e}\|_{2}^{2}\right] \\ &= \mathcal{L}_{k}(w_{k}^{tE+e}) - \eta \mathbb{E}\left[\langle \nabla \mathcal{L}_{k}(w_{k}^{tE+e}), g_{k}^{tE+e} \rangle \right] + \frac{L_{1}\eta^{2}}{2} \mathbb{E}\left[\|g_{k}^{tE+e}\|_{2}^{2}\right] \\ &\overset{(c)}{=} \mathcal{L}_{k}(w_{k}^{tE+e}) - \eta \|\nabla \mathcal{L}_{k}(w_{k}^{tE+e})\|_{2}^{2} + \frac{L_{1}\eta^{2}}{2} \mathbb{E}\left[\|g_{k}^{tE+e}\|_{2}^{2}\right] \\ &\overset{(d)}{\leq} \mathcal{L}_{k}(w_{k}^{tE+e}) - \eta \|\nabla \mathcal{L}_{k}(w_{k}^{tE+e})\|_{2}^{2} + \frac{L_{1}\eta^{2}}{2} \left(\|\nabla \mathcal{L}_{k}(w_{k}^{tE+e})\|_{2}^{2} + \sigma^{2}\right) \\ &= \mathcal{L}_{k}(w_{k}^{tE+e}) - \left(\eta - \frac{L_{1}\eta^{2}}{2}\right) \|\nabla \mathcal{L}_{k}(w_{k}^{tE+e})\|_{2}^{2} + \frac{L_{1}\eta^{2}\sigma^{2}}{2} \end{split}$$

Step (a): Based on Assumption 1, \mathcal{L}_k is approximated near w_k^{tE+e} using a first-order Taylor expansion.

Step (b): The update rule $w_k^{tE+e+1} = w_k^{tE+e} - \eta g_k^{tE+e}$ is applied, where g_k^{tE+e} denotes the stochastic gradient over the current batch.

Step (c): Based on Assumption 2 (unbiased gradients).

Step (d): From Assumption 2 (bounded variance of the gradient), it holds that

$$\mathbb{E}[\parallel g_k^{tE+e} - \nabla \mathcal{L}_k(w_k^{tE+e}) \parallel_2^2] \le \sigma^2 \tag{32}$$

From this, the following upper bound is derived:

$$\mathbb{E}[\|g_k^{tE+e}\|_2^2] \le \|\nabla \mathcal{L}_k(w_k^{tE+e})\|_2^2 + \sigma^2$$
(33)

By summing the single-step inequalities from e = 0 to $e = E_A - 1$, the following result is obtained:

$$\mathbb{E}[\mathcal{L}_k(w_k^{tE+E_A})] \le \mathcal{L}_k(w_k^{tE+0}) - \left(\eta - \frac{L_1\eta^2}{2}\right) \sum_{e=0}^{E_A-1} \|\nabla \mathcal{L}_k(w_k^{tE+e})\|_2^2 + \frac{L_1E_A\eta^2\sigma^2}{2}$$
(34)

Furthermore, based on Assumption 3 (bounded global alignment gradient in the first stage), a perround gradient variation upper bound δ^2 is introduced, leading to an extra term $\eta E_A \delta^2$ in the total sum. Finally, Lemma 1 is fully expressed as Eq. 28.

C.2 Proof of Lemma 2

Proof. Similarly, based on Assumptions 1, 2, and 4, after the second stage of FedKWAZ (KWAZ knowledge alignment stage), the expected local loss at any client k is shown to satisfy Eq. 29.

C.3 Proof of Theorem 1

Proof. By substituting Lemma 1 into the right-hand side of the inequality in Lemma 2, Eq. 30 can be obtained. \Box

C.4 Proof of Theorem 2

Proof. The left and right sides of Theorem 1 are swapped, and the gradient terms are rearranged:

$$\sum_{e=0}^{E_A+E_B-1} \|\nabla \mathcal{L}_k(w_k^{tE+e})\|_2^2
\leq \frac{\mathcal{L}_k(w_k^{tE+0}) - \mathbb{E}[\mathcal{L}_k(w_k^{tE+E_A+E_B})] + \frac{L_1(E_A+E_B)\eta^2\sigma^2}{2} + \eta(E_A\delta^2 + E_B\gamma^2)}{\eta - \frac{L_1\eta^2}{2}}.$$
(35)

In the total T rounds of federated communication training, the expectation of the above inequality is taken for t from 0 to T-1 and summed, yielding:

$$\frac{1}{T} \sum_{i=0}^{T-1} \sum_{e=0}^{E_A + E_B - 1} \| \nabla \mathcal{L}_k(w_k^{tE+e}) \|_2^2 \\
\leq \frac{\frac{1}{T} \sum_{t=0}^{T-1} \left[\mathcal{L}_k(w_k^{tE+0}) - \mathbb{E}[\mathcal{L}_k(w_k^{tE+E_A + E_B})] \right] + \frac{L_1(E_A + E_B)\eta^2 \sigma^2}{2} + \eta(E_A \delta^2 + E_B \gamma^2)}{\eta - \frac{L_1 \eta^2}{2}}.$$
(36)

The difference between the loss at the initial time and the optimal loss is defined as:

$$\Delta = \mathcal{L}_0 - \mathcal{L}^* > 0 \tag{37}$$

The expected loss function over T rounds is expressed as:

$$\frac{1}{T} \sum_{t=0}^{T-1} \left[\mathcal{L}_k(w_k^{t+0}) - E[\mathcal{L}_k(w_k^{tE+E_A+E_B})] \right] \le \frac{\Delta}{T}$$
 (38)

Hence, the original inequality can be further simplified as:

$$\frac{1}{T} \sum_{t=0}^{T-1} \sum_{e=0}^{E_A + E_B - 1} \| \nabla \mathcal{L}_k(w_k^{tE+e}) \|_2^2 \le \frac{\frac{\Delta}{T} + \frac{L_1(E_A + E_B)\eta^2 \sigma^2}{2} + \eta(E_A \delta^2 + E_B \gamma^2)}{\eta - \frac{L_1 \eta^2}{2}}.$$
 (39)

Let the expected norm of the modulus in the above equation be expected to converge to a constant ϵ :

$$\frac{\frac{\Delta}{T} + \frac{\mathcal{L}_1(E_A + E_B)\eta^2 \sigma^2}{2} + \eta(E_A \delta^2 + E_B \gamma^2)}{\eta - \frac{\mathcal{L}_1 \eta^2}{2}} < \epsilon \tag{40}$$

Since the number of training iterations T > 0, and $\Delta > 0$, the denominator must satisfy:

$$\epsilon(\eta - \frac{L_1 \eta^2}{2}) - \frac{L_1(E_A + E_B)\eta^2 \sigma^2}{2} - \eta(E_A \delta^2 + E_B \gamma^2) > 0$$
(41)

Thus, the upper bound of η is obtained as:

$$0 < \eta < \frac{2(\epsilon - (E_A \delta^2 + E_B \gamma^2))}{L_1(\epsilon + (E_A + E_B)\sigma^2)}$$
(42)

Since all of the quantities ϵ , L_1 , σ^2 , δ^2 , and γ^2 are positive finite constants, the constraint on the learning rate η exists in a non-empty solution set. When the learning rate η satisfies the above conditions, the expected norm of the local loss for any client can converge to the constant ϵ . According to the right-hand side of the above equation, except for the term divided by $\frac{1}{T}$, the remaining terms are constants. Therefore, the non-convex convergence rate of FedKWAZ is achieved as: O(1/T).

D Additional Experimental Details

D.1 Experimental Environment

All experiments are conducted on the PyTorch platform. The experiments are executed on four NVIDIA GeForce 4090 GPUs (24GB memory) across five supervised image classification datasets ².

D.2 Datasets

The sources of the datasets are detailed. The experiments are conducted based on five public multiclass datasets, covering natural and medical image recognition tasks, including: Cifar10 (https://pytorch.org/vision/main/generated/torchvision.datasets.CIFAR10.html), Cifar100 (https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR100.html), Flowers102 (https://pytorch.org/vision/stable/generated/torchvision.datasets.Flowers102.html), Tiny-ImageNet (http://cs231n.stanford.edu/tiny-imagenet-200.zip), and Skin-Lesions-14 (https://www.kaggle.com/datasets/ahmedxc4/skin-ds) are utilized.

D.3 Hyperparameter Settings

In addition to the hyperparameter settings provided in the main text, the hyperparameter configurations for each baseline method are also followed according to their original publications. Specifically, LG-FedAvg is configured with no additional hyperparameters; for FedGen, the noise dimension is set to 32, the generator learning rate is set to 0.1, and the hidden dimension is aligned with the feature dimension K, with 100 training rounds on the server. The distillation hyperparameters in FML are set as $\alpha = 0.5$ and $\beta = 0.5$; in FedKD, the proxy model's learning rate is set to 0.01 to match the client; the temperature range for distillation is set to $T_{\rm start} = 0.95$ and $T_{\rm end} = 0.95$; for FedDistill, $\gamma=1$ is applied. FedProto is configured with $\lambda=0.1$; in FedGH, the server learning rate is set to 0.01 to match the client; the representation dimension of the proxy model in FedMRL is set to 256. For FedTGP, λ is set to 0.1, the distillation margin threshold τ to 100, and the server training rounds to 100; in FedKTL, K is set to C, $\mu = 50$, $\lambda = 1$, with server learning rate $\eta_s = 0.01$, batch size $B_s = 100$, and server training rounds $E_s = 100$. Except for FedGen and FedKTL, where server-side training is performed using the Adam [16] optimizer, SGD [46] is applied for client- and server-side training in all other methods. In FedKWAZ, the HAPM module is employed to automatically search for optimal mixing strength parameters (α or β) using KDP within the range 0.1, 0.5, 1.0. The spatial granularity G is used to divide each input image into $\sqrt{G} \times \sqrt{G}$ local patches. Specifically, for CIFAR10 and CIFAR100 (input size $3 \times 32 \times 32$), as well as Flowers102 and Tiny-ImageNet (input size $3 \times 64 \times 64$), $G \in 64, 16, 4$; for Skin-Lesions-14 (input size $3 \times 28 \times 28$), $G \in 49, 16, 4$. In FedKWAZ, the KWAZ update frequency (i.e., the interval k for KDP-based HAPM parameter search) is fixed to once every 30 rounds to balance the ability to absorb prior knowledge and explore novel knowledge; the distillation temperature τ is set to 4. The training epoch E_A and E_B for the first and second stages are uniformly set to 1.

D.4 Detailed Setting of Model Heterogeneity

The primary test configuration for feature extractor heterogeneity is defined as $HtFE_8$, consisting of eight representative network architectures: 4-layer CNN [21], GoogleNet [29], MobileNet_v2 [27], ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152 [10]. Networks of ResNet18 and deeper are classified under the ResNet series and are used to construct multi-level heterogeneous configurations, including: $HtFE_1$ (containing only ResNet4, used to simulate a fully homogeneous scenario), $HtFE_2$ (composed of CNN and ResNet18, indicating slight heterogeneity), $HtFE_4$ (integrating CNN, GoogleNet, MobileNet_v2, and ResNet18 to simulate moderate heterogeneity), and

²Code is available at: https://github.com/ysml666/FedKWAZ

HtFE₉ (configured as extremely heterogeneous by combining ResNet4, ResNet6, ResNet8, ResNet10, ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152).

Regarding classifier heterogeneity, the HtC_4 scenario is constructed to include four types of classifiers composed only of fully connected (FC) layers, to simulate structural heterogeneity in decision-making. The four architectures are defined as: (1) single-layer FC (100-d), (2) two-layer FC (512-d \rightarrow 100-d) with a 512-d hidden layer, (3) two-layer FC (256-d \rightarrow 100-d), and (4) two-layer FC (128-d \rightarrow 100-d). In the $HtFE_8$ - HtC_4 scenario, the eight types of feature extractors and four types of classifiers are cross-combined according to client indices, thereby forming a test environment with simultaneous heterogeneity in both feature extraction and decision modules.

In mutual learning schemes, the proxy model structure is defined as a simple 4-layer CNN to suit methods such as FedKD, FML, and FedMRL that periodically upload parameters of the proxy models to the server, aiming to reduce communication overhead. In contrast, FedKWAZ avoids proxy model transmission entirely and instead constructs global semantic prototypes and decision anchors by aggregating local class-wise features and logits, the proxy model is still uniformly set as a 4-layer CNN to ensure consistency and fairness in experimental comparisons, and to eliminate the influence of model complexity as a confounding variable.

E Additional Experimental Results

E.1 Impact of Feature Dimensions

As shown in Table 5, most algorithms exhibit accuracy gains as the feature dimension increases from K=64 to K=256. At K=256, FedKWAZ attains an accuracy of 50.95%, surpassing FedKTL by 5.16% (Figure 7), indicating its strong capability in leveraging high-dimensional representations for effective knowledge interaction. When the feature dimension is further increased to K=1024, performance declines are observed in several methods, which can be attributed to elevated sparsity and reduced discriminative efficiency in overly expanded feature spaces. In contrast, FedKWAZ maintains competitive performance with 50.87% accuracy, supported by its KWAZ-guided knowledge coordination.

In addition, several federated learning baselines are outperformed by the Local method under certain configurations, as negative transfer under dual heterogeneity in data and model structures compromises collaborative training. FedKWAZ, by incorporating KWAZ-guided modeling of representation and decision discrepancies, effectively alleviates cross-model knowledge transfer bottlenecks and maintains consistent performance across diverse tasks and configurations.

Table 5: Impact of feature dimensions (K) on HtFE₈ model group performance on Cifar100.

	I		
	K = 64	K = 256	K = 1024
Local	39.24 ± 0.14	40.92 ± 0.11	40.25±0.18
FedDistill	38.93 ± 0.20	44.10 ± 0.15	42.56 ± 0.23
LG-FedAvg	39.66 ± 0.22	40.15 ± 0.14	41.25 ± 0.19
FedGen	38.75 ± 0.15	40.23 ± 0.19	40.43 ± 0.11
FedKD	40.54 ± 0.16	40.26 ± 0.17	41.08 ± 0.10
FedProto	31.84 ± 0.10	35.63 ± 0.12	34.14 ± 0.14
FML	38.40 ± 0.18	40.80 ± 0.11	40.59 ± 0.19
FedGH	38.19 ± 0.18	40.01 ± 0.15	38.48 ± 0.17
FedMRL	39.06 ± 0.14	41.90 ± 0.16	42.95 ± 0.12
FedTGP	47.05 ± 0.17	47.87 ± 0.27	47.43 ± 0.24
FedKTL	45.98 ± 0.15	45.79 ± 0.14	46.76±0.17
FedKWAZ	50.04 ± 0.13	50.95 ± 0.16	50.87 ± 0.12

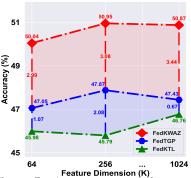


Figure 7: Accuracy comparison among FedKWAZ, FedTGP, and FedKTL.

E.2 Homogeneous Models Setting

To further investigate the role of data heterogeneity in isolation, all clients are configured with identical model architectures across three homogeneous settings: ResNet10, ResNet18, and ResNet34, in addition to the original HtFE₁ (ResNet4) baseline listed in Table 2. By removing model-level

heterogeneity, these experiments focus solely on the impact of non-IID data distributions on federated knowledge transfer. As shown in Table 6, FedKWAZ consistently outperforms all baseline methods under each homogeneous configuration. These results demonstrate that, even without structural differences across models, the proposed dual-stage mutual learning framework remains effective by explicitly aligning both representation semantics and decision behaviors across clients. This joint alignment enables FedKWAZ to bridge knowledge gaps induced purely by data distribution shifts, thereby ensuring stable performance improvements under non-IID conditions.

E.3 Performance on Fashion-MNIST under Pathological and Dirichlet Data Settings

On the Fashion-MNIST [40] dataset, the HtCNN₈ model group is adopted to accommodate the grayscale single-channel input, with partition details listed in Table 8. A comprehensive evaluation of all methods is conducted under both Pathological and Practical non-IID settings. As shown in Table 7, FedKWAZ consistently yields the highest accuracy in both scenarios. Although FMNIST presents relatively modest classification complexity and most methods perform well, FedKWAZ maintains a consistent performance lead. In addition, Figure 8 presents the t-SNE [34] visualization of learned feature representations under the pathological setting for representative mutual learning baselines (FML, FedKD, FedMRL) and FedKWAZ. Compared to these baselines, the features produced by FedKWAZ exhibit stronger intra-class compactness and inter-class separability, reflecting enhanced semantic consistency under model heterogeneity and data distribution shift, and supporting improved cross-model knowledge transfer.

Table 6: Performance using homogeneous models on Cifar100 in the practical setting.

Architectures	ResNet10	ResNet18	ResNet34
Local	45.38±0.16	42.57±0.12	41.62±0.14
FedDistill	44.78 ± 0.18	44.12 ± 0.21	43.62 ± 0.23
LG-FedAvg	47.11 ± 0.17	44.53 ± 0.15	44.04 ± 0.20
FedGen	47.02 ± 0.22	44.53 ± 0.13	44.27 ± 0.11
FedKD	45.13 ± 0.11	41.32 ± 0.15	40.26 ± 0.12
FedProto	40.67 ± 0.25	40.23 ± 0.18	38.02 ± 0.15
FML	46.37±0.16	43.07 ± 0.17	40.25 ± 0.12
FedGH	45.30 ± 0.12	43.29 ± 0.14	41.84 ± 0.10
FedMRL	47.36±0.09	45.67 ± 0.10	45.40 ± 0.12
FedTGP	47.05±0.38	45.79 ± 0.35	47.43 ± 0.33
FedKTL	51.20±0.15	50.10±0.14	48.17±0.12
FedKWAZ	52.35±0.11	52.47 ± 0.14	51.75±0.12

Table 7: Performance on FMNIST using the HtCNN₈.

Settings	Pathological Setting	Practical Setting
Local	99.38±0.05	97.22±0.09
FedDistill	99.42±0.04	97.44 ± 0.03
LG-FedAvg	99.37±0.05	97.22 ± 0.04
FedGen	99.34±0.06	97.34 ± 0.05
FedKD	99.40±0.07	97.36 ± 0.03
FedProto	99.39±0.03	97.35 ± 0.02
FML	99.41±0.05	97.34 ± 0.04
FedGH	99.38±0.04	97.36 ± 0.03
FedMRL	99.45 ± 0.05	97.08 ± 0.04
FedTGP	99.52±0.06	97.53 ± 0.05
FedKWAZ	99.60±0.03	97.61±0.04

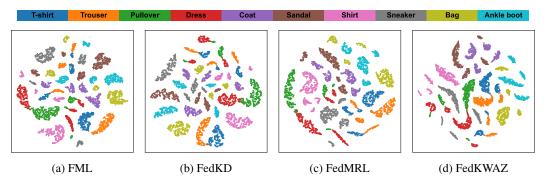


Figure 8: T-SNE visualization of features extracted by FML, FedKD, FedMRL and FedKWAZ on FMNIST under pathological partition.

E.4 Performance under Low Client Participation Rates and High Client Drop Rates

On the Cifar10 dataset (Dirichlet distribution, 100 clients), client participation is systematically restricted to simulate federated scenarios with limited and unstable communication. Participation rates of 5% and 10% are adopted, corresponding to only 5 or 10 randomly selected clients contributing to each round, while aggregation uses updates only from the clients participating in that round. For FML, FedKD, and FedMRL, global proxy models are constructed by aggregating local proxy models

Table 8: The model architectures in the HtCNN₈ group. Convolutional layers are represented as "[5×5 , 32]" indicating a convolution with kernel size 5×5 and 32 output channels, and " 2×2 max pooling" refers to a max pooling layer with kernel size 2×2 .

	Sequentially Connected Feature Extractors	Classifiers
CNN1	Conv $(5 \times 5, 32)$, 2×2 max pool, 512-d fc	10-d fc
CNN2	Conv $(5 \times 5, 32)$, 2×2 max pool, Conv $(5 \times 5, 64)$, 2×2 max pool, 512-d fc	10-d fc
CNN3	Conv $(5 \times 5, 32)$, 2×2 max pool, 2×512 -d fc	10-d fc
CNN4	Conv $(5 \times 5, 32)$, 2×2 max pool, Conv $(5 \times 5, 64)$, 2×2 max pool, 2×512 -d fc	10-d fc
CNN5	Conv $(5 \times 5, 32), 2 \times 2$ max pool, 1024-d fc, 512-d fc	10-d fc
CNN6	Conv $(5 \times 5, 32)$, 2×2 max pool, Conv $(5 \times 5, 64)$, 2×2 max pool, 1024-d fc, 512-d fc	10-d fc
CNN7	Conv $(5 \times 5, 32)$, 2×2 max pool, 1024-d fc $\times 2$, 512-d fc	10-d fc
CNN8	Conv $(5 \times 5, 32)$, 2×2 max pool, Conv $(5 \times 5, 64)$, 2×2 max pool, 1024-d fc, 512-d fc $\times 2$	10-d fc

from all clients. In contrast, FedKWAZ performs global aggregation using class-wise prototypes and logits from all clients to form semantic representations and decision anchors. As reported in Table 9, overall performance degrades as participation rate decreases. Nonetheless, FedKWAZ consistently achieves the highest accuracy at both 5% and 10% settings, demonstrating strong resilience to client sparsity. Figure 9 further illustrates the prediction matrix at 10% participation, where FedKWAZ exhibits sharper diagonal confidence compared to other methods, indicating improved inter-class separation and stronger decision reliability under sparse client engagement.

Table 9: Performance of FML, FedKD, FedMRL and FedKWAZ under low client participation rates and high client drop rates.

	Client Partic	ipation Rate	Client Drop Rate			
[5%	10%	90%	95%		
FML	79.54±0.10	80.40±0.12	81.55±0.14	81.12±0.11		
FedKD	79.41 ± 0.11	79.67 ± 0.10	80.66 ± 0.16	80.48 ± 0.13		
FedMRL	80.92 ± 0.12	81.08 ± 0.15	81.65 ± 0.13	81.39 ± 0.10		
FedKWAZ	82.85±0.09	83.71±0.11	84.37±0.12	83.93±0.13		

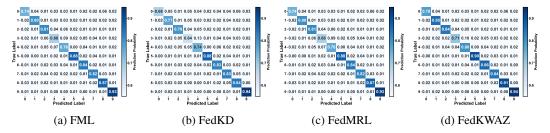


Figure 9: Confusion matrices of FML, FedKD, FedMRL, and FedKWAZ on Cifar10 under dirichlet partition with a client participation rate of 0.1, showing the prediction probability for each class.

To further evaluate communication disruptions, a Client Drop Rate experiment is conducted. In this setting, all 100 clients participate in local training, but only a portion are able to upload their knowledge due to simulated dropout. Dropout rates of 90% and 95% are used, meaning that only 10 or 5 clients successfully contribute to global aggregation. As shown in Table 9, these settings yield better accuracy than the 10% and 5% participation scenarios, suggesting that consistent local participation—even under partial upload failure—helps preserve training efficacy and partially compensates for reduced aggregation scale.

These results collectively confirm that FedKWAZ, empowered by its dual-stage knowledge transfer mechanism and lightweight semantic anchoring, maintains robust knowledge integration even under extreme communication sparsity and unstable client availability, effectively addressing practical challenges in real-world federated deployments.

E.5 Impact of SWAZ and DWAZ

The individual contributions of SWAZ and DWAZ to the second-stage mutual learning in FedKWAZ are further investigated. Specifically, experiments are conducted by selectively enabling either SWAZ or DWAZ while disabling the other, and performance is assessed on the Skin-Lesions-14 and Flowers102 datasets under both Dirichlet and Pathological data partitions. As reported in Figure 10, DWAZ consistently achieves higher accuracy than SWAZ, indicating that decision-level alignment exerts a more immediate influence on cross-model knowledge transfer. This observation highlights the critical role of decision space consistency in federated mutual learning. Furthermore, the full FedKWAZ—combining both SWAZ and DWAZ—achieves the highest performance across all scenarios, confirming the complementary nature of semantic and decision-level discrepancy modeling. These findings underscore the necessity of jointly capturing both representational and predictive misalignments to optimize knowledge transfer between heterogeneous models.

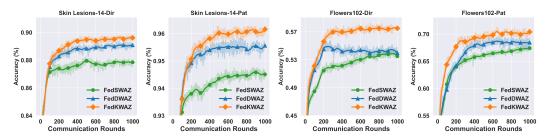


Figure 10: The contributions of SWAZ and DWAZ to performance.

E.6 Impact of Feature Shift

To further assess the robustness of each method under feature shift scenarios, a heterogeneous data experiment is constructed in which each client is provided with a complete set of class labels, but the visual characteristics of the data—such as style, texture, and viewpoint—differ substantially across domains. Two widely adopted domain generalization benchmarks are selected: PACS [18], comprising 9,991 images from 7 categories across 4 domains (Art, Cartoon, Photo, Sketch), and OfficeHome [35], containing 15,588 images from 65 categories over 4 domains (Art, Clipart, Product, Real). For each dataset, samples are split into training and test sets with a 3:1 ratio, and each domain is treated as a distinct client, simulating federated feature heterogeneity.

In model allocation, the HtFE₄ architecture configuration is adopted, where heterogeneous backbones—including a 4-layer CNN, GoogleNet, MobileNet_v2, and ResNet18—are deployed across clients to emulate the hardware and model diversity typical in real-world federated environments. Figure 11 illustrates the domain-induced feature shift across different domains in PACS and OfficeHome for a representative category, highlighting the substantial variation in visual statistics. Table 10 summarizes the per-domain test accuracy at the final communication round and the overall average accuracy achieved at the optimal round for each method. Notably, the average accuracy is not obtained via direct averaging over individual client scores but is instead computed based on the total number of correct predictions across all test samples, yielding a more comprehensive and balanced measure of global performance.

As presented in Table 10 and Figure 12, FedKWAZ consistently demonstrates faster convergence, improved communication efficiency, and higher per-domain accuracies. In addition, it achieves the highest aggregated performance, significantly surpassing all baselines. These results suggest that FedKWAZ effectively addresses the representational and decision-level mismatches induced by feature shift through its dynamic KWAZ-based localization and targeted enhancement strategy, thereby enabling more reliable knowledge transfer across heterogeneous clients.

Table 10: Test accuracy (%) comparison of various federated learning methods on PACS and OfficeHome datasets. Each column represents the accuracy on one domain, while "Avg" indicates the mean accuracy across all domains.

	PACS				OfficeHome					
Methods	Art	Cartoon	Photo	Sketch	Avg	Art	Clipart	Product	Real	Avg
Local	40.23±0.09	78.64 ± 0.11	58.61±0.07	73.04 ± 0.11	65.51±0.18	14.50±0.14	47.25±0.14	33.96 ± 0.08	18.53±0.17	30.96±0.18
FedDistill	42.66 ± 0.20	78.60 ± 0.14	60.77 ± 0.21	77.72 ± 0.25	68.63 ± 0.24	16.14±0.15	49.73 ± 0.20	48.47 ± 0.13	$20.83 {\pm} 0.15$	36.16 ± 0.16
LG-FedAvg	40.04 ± 0.14	76.62 ± 0.23	60.77 ± 0.23	74.47 ± 0.19	65.79±0.15	14.00±0.19	46.43 ± 0.13	37.84 ± 0.10	19.08 ± 0.12	31.57±0.08
FedGen	40.43±0.18	78.84 ± 0.31	57.18 ± 0.08	69.38 ± 0.16	65.99±0.17	12.85±0.21	47.25 ± 0.21	33.96 ± 0.30	11.10±0.24	31.08±0.27
FedKD	42.40 ± 0.08	78.50 ± 0.21	62.44 ± 0.23	76.16 ± 0.15	67.03±0.16	16.31±0.18	45.60 ± 0.08	36.76 ± 0.16	18.62 ± 0.17	30.18±0.15
FedProto	41.75±0.21	77.65 ± 0.20	61.57±0.24	73.75 ± 0.26	66.31±0.24	16.39 ± 0.08	48.64 ± 0.21	33.06 ± 0.23	14.59 ± 0.15	29.67±0.18
FML	42.21±0.18	78.67 ± 0.08	59.57±0.10	71.92 ± 0.22	65.11±0.15	15.17±0.13	43.95 ± 0.26	33.34 ± 0.19	17.42 ± 0.23	30.83±0.14
FedGH	39.65±0.15	78.52 ± 0.13	59.33 ± 0.26	76.50 ± 0.19	66.67±0.23	15.49±0.15	47.53 ± 0.16	41.89 ± 0.18	16.42 ± 0.08	32.39±0.10
FedMRL	39.45±0.17	78.40 ± 0.15	60.29 ± 0.13	76.40 ± 0.26	67.39±0.19	15.82±0.23	51.77±0.14	37.59 ± 0.13	17.81 ± 0.26	33.11±0.19
FedTGP	38.47±0.23	$76.45{\pm}0.34$	$63.16 {\pm} 0.30$	78.94 ± 0.32	68.71 ± 0.36	14.28±0.22	47.60 ± 0.28	33.77 ± 0.34	$18.26{\pm}0.26$	30.73±0.32
FedKWAZ	$42.77 {\pm} 0.21$	78.91 ± 0.13	63.51 ± 0.26	79.04 ± 0.19	$69.43 {\pm} 0.23$	$17.16 \!\pm\! 0.15$	$54.96 \!\pm\! 0.48$	$55.50 \!\pm\! 0.18$	$28.90 \!\pm\! 0.08$	$41.70 \!\pm\! 0.10$

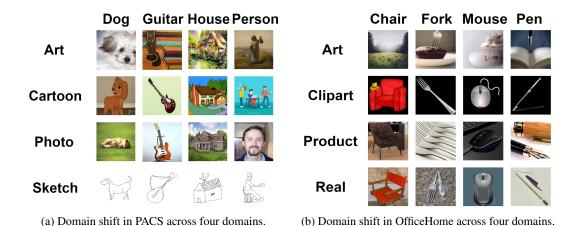


Figure 11: Visualization of feature shift across different domains in PACS and OfficeHome datasets.

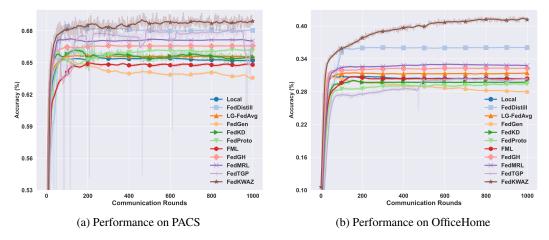


Figure 12: Comparison of test accuracy across various methods on PACS and OfficeHome datasets.

E.7 Effectiveness of HAPM vs. Hard Sample Selection

To further verify the effectiveness of the proposed Hierarchical Adaptive Patch Mixing (HAPM) module, we conducted additional comparative experiments to evaluate its advantage over naïve image distillation and local hard-sample selection strategies in facilitating cross-model knowledge transfer. The experiments were performed on two representative datasets, CIFAR-10 and Flowers102.

The compared methods include:

FedKD (Original): The private and proxy models align their features and logits using only original local images.

FedKD + Local Hard Sample Enhancement: The top 10%, 30%, and 50% local samples with the highest feature MSE and logits KL divergence were selected for enhanced distillation.

FedKWAZ (Full Framework): HAPM generates perturbed mixed samples, and KDP identifies semantic–decision weak zones (SWAZ and DWAZ) for fine-grained mutual learning.

Table 11: Performance comparison between FedKD, hard sample-enhanced FedKD (top 10%, 30%, 50% samples), and FedKWAZ on CIFAR-10 and Flowers102 datasets.

Model	CIFAR-10	Flowers102
FedKD (Original)	86.31	46.67
FedKD + top 10% hard sample	86.91	50.02
FedKD + top 30% hard sample	86.72	50.95
FedKD + top 50% hard sample	86.55	49.05
FedKWAZ	90.39	57.52

- (1) As shown in Table 11., the performance gain from hard-sample enhancement exhibits dataset-dependent trends. On CIFAR-10, selecting the top 10% of hard samples yields the best result, while expanding the selection ratio slightly decreases performance. This indicates that the most challenging samples are highly informative, but excessive inclusion introduces redundancy and noise.
- (2) On Flowers 102, the best performance is achieved with the top 30% hard samples. Since this dataset has fewer training samples, an overly strict selection (e.g., 10%) limits generalization, whereas a moderate 30% ratio provides a better balance between informativeness and coverage.
- (3) Overall, although selecting high-divergence samples can improve distillation, its effect is sensitive to the chosen ratio and lacks robustness. In contrast, FedKWAZ, equipped with HAPM for generating structurally diverse and perturbed samples and KDP for dynamically identifying discrepancy zones, consistently outperforms all hard-sample-based variants—achieving +4.08% gain on CIFAR-10 and +10.85% on Flowers102.

These results demonstrate that HAPM provides a more generalizable and stable mechanism for discrepancy exposure, eliminating the need for fixed selection thresholds and enabling models to better identify and assimilate knowledge weak-aware zones (KWAZ). Consequently, FedKWAZ supports more effective and fine-grained mutual distillation under heterogeneous federated learning settings.

E.8 Correlation between HAPM Parameters and Client Properties

We investigate how the HAPM mixing parameters correlate with client properties. Eight clients (ID 0–7) are assigned private models in ascending capacity order: **4-layer CNN < MobileNet_V2 < GoogLeNet < ResNet18 < ResNet34 < ResNet50 < ResNet101 < ResNet152.** All clients use the same 4-layer CNN as the proxy model. On the **Flowers102** dataset (102 classes), we set the mixing strengths $\alpha, \beta \in \{0.1, 0.5, 1.0\}$, the spatial granularity $g \in \{4, 16, 64\}$, and the update frequency k = 30. Over 1000 rounds, 33 updates yield $8 \times 33 = 264$ HAPM configurations per client, each comprising $\{\text{SWAZ}: (\alpha^*, g^*)\}$ and $\{\text{DWAZ}: (\beta_1^*, g_1^*), (\beta_2^*, g_2^*)\}$.

Because KWAZ-guided mutual learning operates solely on local data, cross-client data heterogeneity has limited influence on **local parameter selection**; we therefore focus on **model architectural differences**. Based on the capacity gap between private and proxy models, clients are grouped into **Group A** (small gap, IDs 0–3; private models from 4-layer CNN to ResNet18) and **Group B** (large gap, IDs 4–7; private models from ResNet34 to ResNet152).

Mixing strength (α, β) . Smaller α or β induces stronger information mixing, amplifying intermodel discrepancies. Empirically, α^* , β_1^* , and β_2^* most frequently take **0.1** (244, 233, and 220 times, respectively), indicating that KDP often prefers smaller mixing strengths to expose cross-model gaps. Smoother settings (0.5 or 1.0) occur **26 times in Group A** and **69 times in Group B**, showing that

when private and proxy models differ substantially, even smoother mixing can still form distinct discrepancy regions that benefit transfer and alignment.

Spatial granularity (g). A smaller g produces fewer (larger) patches—coarser fusion—while a larger g yields finer local mixing. The most frequent choice for g^* , g_1^* , and g_2^* is $\mathbf{16}$ (238, 225, and 217 times, respectively), suggesting a medium granularity that balances discrepancy revelation and image recognizability. When g=4, Group A appears $\mathbf{15}$ times vs. Group B $\mathbf{38}$ times; when g=64, Group A appears $\mathbf{41}$ times vs. Group B $\mathbf{18}$ times. Thus, larger structural gaps favor coarser mixing (larger patch areas) to construct discrepancy regions, whereas more similar models benefit from finer mixing to explicitly stimulate subtle mismatches.

Overall, these results indicate that FedKWAZ exhibits **structure-aware behavior**: HAPM/KDP adaptively select mixing strengths and granularities according to the degree of architectural heterogeneity across clients.

E.9 Variance and Stability Analysis of Dynamically Selected HAPM Parameters

To examine the dynamic behavior and stability of the HAPM parameters, we recorded the values of six key parameters $(\alpha^*, \beta_1^*, \beta_2^*, g^*, g_1^*, g_2^*)$ selected by each client at every communication round and analyzed three representative rounds—the **30**th, **510**th, and **990**th—as summarized in Table 12.

Table 12: Selected HAPM parameters across clients at rounds 30, 510, and 990.

Round	Client ID	$lpha^*$	eta_1^*	eta_{2}^{*}	g^*	g_1^*	g_2^*
30	0	0.1	0.1	0.1	16	16	16
30	1	0.1	0.1	0.1	16	64	16
30	2	0.1	0.1	0.1	16	16	16
30	3	0.1	0.5	0.1	16	4	16
30	4	0.1	0.1	0.1	16	16	16
30	5	0.1	0.1	0.5	16	16	64
30	6	0.1	1.0	0.1	16	16	16
30	7	0.5	0.1	0.1	4	16	16
510	0	0.1	0.1	0.1	16	16	64
510	1	0.1	0.1	0.1	16	16	16
510	2	0.1	0.1	0.1	16	64	16
510	3	0.1	0.1	0.5	16	16	16
510	4	0.1	0.1	0.1	16	16	16
510	5	0.1	0.1	0.5	64	16	16
510	6	1.0	0.1	0.1	16	4	16
510	7	0.1	0.5	0.1	16	16	4
990	0	0.1	0.1	0.1	16	16	16
990	1	0.1	0.1	0.1	16	16	16
990	2	0.1	0.1	0.1	16	16	16
990	3	0.1	1.0	0.1	4	16	16
990	4	0.1	0.1	0.1	16	16	16
990	5	0.1	0.1	0.1	16	16	4
990	6	0.5	0.1	0.1	16	4	16
990	7	0.1	0.1	0.5	16	16	16

Inter-client variance. In the 510^{th} round, the variance of α^* reached 0.089, mainly because Client 6 (ResNet101, significantly more complex than the CNN proxy model) selected $\alpha^* = 1.0$. In such cases, clients with higher model capacities tend to prefer smoother mixing strategies to generate samples with stronger transferability. In contrast, in the 30^{th} round, the variance of g_1^* reached 285.75, primarily due to Client 1 (MobileNet_V2, a lightweight model) selecting $g_1^* = 64$, which is considerably higher than others. This observation suggests that when the private model is structurally close to the proxy model, the system adapts by employing finer-grained mixing strategies to better expose cross-model discrepancies.

Intra-client variance. Client 4 consistently selected identical values for all six parameters across rounds 30, 510, and 990, indicating strong internal stability. Similarly, most clients (Clients 0, 1, 2, and 5) maintained stable parameter selections across rounds, demonstrating that the KDP mechanism enforces a high degree of strategic consistency within each client.

Overall, FedKWAZ exhibits **low intra-client variance** (strong stability within clients) and **relatively high inter-client variance** (clear differentiation across clients). These findings confirm that FedKWAZ possesses a **structure-aware and adaptive KDP mechanism**, capable of dynamically adjusting mixing strategies according to model heterogeneity, thereby enhancing both robustness and transfer effectiveness in federated knowledge distillation.

F Visualizations of Data Distributions



Figure 13: Top row (a–c) illustrates the **practical non-IID** scenario ($\beta=0.1$) on CIFAR-10, CIFAR-100, and Flowers102. Bottom row (d–f) shows the **pathological non-IID** setting (s=2/2/20) on FMNIST, Skin-Lesions-14, and Tiny-ImageNet. In each plot, each circle represents the class-wise data distribution of a client, and the size of the circle corresponds to the number of samples.

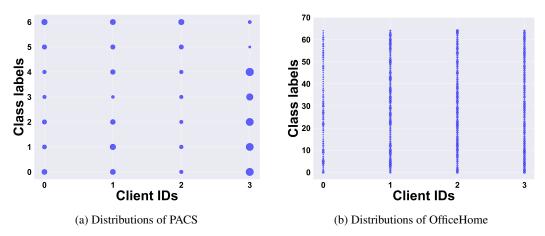


Figure 14: The data distributions of clients on PACS and OfficeHome, where each domain is assigned to an individual client. The size of each circle reflects the number of samples.

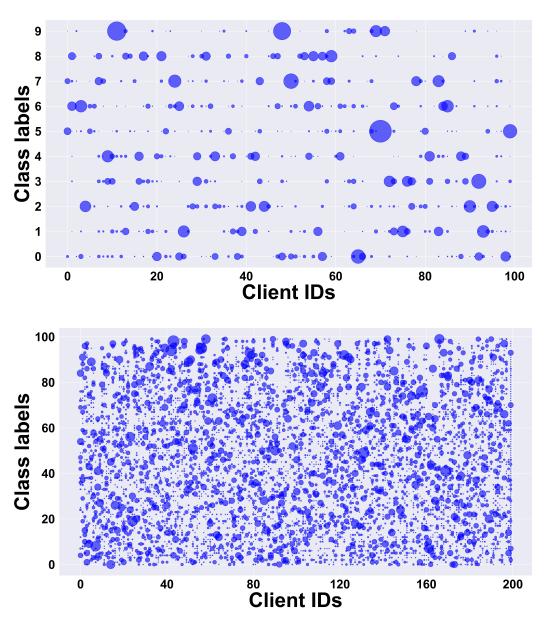


Figure 15: Data distributions of clients on Cifar10 and Cifar100 under practical settings ($\beta=0.1$). The number of clients is 100 for Cifar10 and 200 for Cifar100, respectively. The size of each circle indicates the number of samples held by each client.

G Limitations

During the prediction distillation stage, a fixed temperature hyperparameter ($\tau=4.0$) is employed. While the empirical results demonstrate consistent performance across heterogeneous model structures and data distributions, potential remains for optimizing distillation effectiveness by dynamically adjusting the temperature in response to model complexity or input data characteristics, which may further enhance system-level efficiency.

In the default experimental configuration, the feature dimension is uniformly set to K=512. To assess the impact of dimensionality, additional experiments are conducted with $K=64,\,256,\,$ and 1024 on the Cifar100 dataset. As datasets differ in their demands for feature expressiveness, determining feature dimensionality in accordance with data-specific properties warrants further investigation to improve representational capacity and adaptation across tasks.

H Broader Impacts

In the context of heterogeneous federated learning, a fine-grained mutual learning framework based on Knowledge Weak-Aware Zones (KWAZ) is proposed, yielding several broader impacts:

Enhanced adaptability of heterogeneous models. By explicitly modeling Semantic Weak-Aware Zones (SWAZ) and Decision Weak-Aware Zones (DWAZ), the proposed framework enables effective cross-architecture knowledge transfer. This design improves generalization under dual heterogeneity, supporting deployment in real-world scenarios with varying data distributions and model configurations.

Reduced communication overhead and improved privacy. By transmitting only class-level feature prototypes and prediction distributions, rather than full model parameters, the approach substantially reduces communication bandwidth consumption. Furthermore, as neither model structures nor weights are exposed, the system exhibits enhanced resistance to privacy leakage.

Improved system efficiency via faster convergence. The targeted refinement of KWAZ-guided distillation accelerates alignment in feature and decision spaces, enabling faster model convergence. This yields improved energy efficiency compared to conventional output-aligned distillation, contributing to the sustainability of large-scale distributed learning.

Broadened application potential. The architecture-agnostic design accommodates diverse client models and devices, promoting practical deployment in heterogeneous environments such as health-care, smart manufacturing, and urban sensing systems. This broadens the real-world applicability of federated learning across domains.