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Summary
Model-based reinforcement learning (RL) leverages learned world models to plan ahead or

train in imagination. Recently, this approach has significantly improved sample efficiency and
performance across various challenging domains ranging from playing games to controlling
robots. However, there are fundamental limits to how accurate the long-term predictions of a
world model can be, for example due to unstable environment dynamics or partial observability.
These issues are further exacerbated by the compounding error problem. Model-based RL is
therefore generally limited to short rollouts with the world model, and consequently struggles
with long-term credit assignment. We argue that this limitation can be addressed by modeling
the outcome of temporally extended skills instead of the effect of primitive actions. To this
end, we propose a mutual-information-based skill learning objective that ensures predictable,
diverse, and task-related behavior. The resulting skills compensate for perturbations and drifts,
enabling stable long-horizon planning. We thus introduce Stable Planning with Temporally
Extended Skills (SPlaTES), a sample-efficient hierarchical agent consisting of model predictive
control with an abstract skill world model on the higher level, and skill execution on the lower
level.

Contribution(s)
1. We introduce SPlaTES, a sample-efficient hierarchical RL algorithm that learns temporally

extended skills on the lower level, and an abstract world model predicting skill outcomes
on the higher level. Both levels are model-based and perform model predictive control over
different timescales.
Context: Existing model-based hierarchical agents either do not use an abstract world
model for planning (Hafner et al., 2022), are restricted to a pre-defined symbolic abstraction
of the environment (Achterhold et al., 2023), or require a pre-collected dataset with high-
quality skill behavior (Shi et al., 2023) for offline learning.

2. We show that our mutual-information-based skill learning objective results in diverse and
predictable skill outcomes. The temporal extent of the skills enables error-correcting be-
havior contributing to the stability of the high-level dynamics.
Context: Like Gregor et al. (2016) and Achterhold et al. (2023), we consider the mutual
information of the skill outcome and skill vector conditioned on the start state. However,
we show empirically that transforming such a sparse reward into a dense one is crucial for
obtaining good performance. We furthermore condition on the intra-skill time step and start
state to enable robust error compensation.

3. Planning over entire episodes enables SPlaTES to solve challenging long-horizon tasks
without resorting to temporal difference learning for long-term credit assignment. Our
empirical evaluation shows that SPlaTES outperforms competitive skill-based and model-
based baselines.
Context: Distilling the behavior of the hierarchical agent into a flat TD-MPC2 model
(Hansen et al., 2024) results in decreased performance and myopic behavior. We con-
clude that SPlaTES performs long-term credit assignment on time scales that are difficult to
achieve with non-hierarchical temporal difference learning.
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Abstract

Model-based reinforcement learning (RL) leverages learned world models to plan ahead1
or train in imagination. Recently, this approach has significantly improved sample ef-2
ficiency and performance across various challenging domains ranging from playing3
games to controlling robots. However, there are fundamental limits to how accurate4
the long-term predictions of a world model can be, for example due to unstable envi-5
ronment dynamics or partial observability. These issues are further exacerbated by the6
compounding error problem. Model-based RL is therefore generally limited to short7
rollouts with the world model, and consequently struggles with long-term credit as-8
signment. We argue that this limitation can be addressed by modeling the outcome of9
temporally extended skills instead of the effect of primitive actions. To this end, we10
propose a mutual-information-based skill learning objective that ensures predictable,11
diverse, and task-related behavior. The resulting skills compensate for perturbations12
and drifts, enabling stable long-horizon planning. We design a sample-efficient hierar-13
chical agent consisting of model predictive control with an abstract skill world model14
on the higher level, and skill execution on the lower level. We demonstrate that our15
algorithm, Stable Planning with Temporally Extended Skills (SPlaTES), solves a range16
of challenging long-horizon continuous control problems, outperforming competitive17
model-based and skill-based methods.118

1 Introduction19

Learning a world model is a promising route to obtaining competent and versatile agents. In many20
environments, learning the approximate dynamics is fast, and enables a shift from trial and error to21
more targeted problem solving via planning or learning from synthetic experience. Consequently,22
model-based reinforcement learning (RL) recently reached unprecedented sample efficiency and23
asymptotic performance in many challenging domains (Schrittwieser et al., 2020; Hafner et al.,24
2021; Hansen et al., 2024). However, due to compounding model errors, these methods are in25
general limited to rolling out the model for a small number of time steps. This severely reduces26
their ability to solve complex tasks that require longer rollout horizons to discover good solutions.27
Unfortunately, improving the accuracy of the world model is costly and quickly leads to diminishing28
returns, in particular in environments with stochastic or unstable dynamics.29

Alternatively, short model rollouts can be complemented with a learned value function to capture30
the impact of actions on future rewards. Although such hybrid methods have achieved remarkable31
results on hard long-horizon tasks (Hafner et al., 2024), their ability to perform long-term credit32
assignment is still limited: Learning from short model rollouts requires temporal difference (TD)33
learning, which can become unstable for the high discount factors required for discovering non-34
myopic behavior. Undesirable artifacts in learned value functions can furthermore stall progress35
(Bagatella & Martius, 2023). Moreover, the problematic combination of function approximation,36
bootstrapping and off-policy training, known as the ‘deadly triad‘ (Sutton et al., 1998), is at the37

1Videos can be found here. Code will be available after publication.
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center of many modern model-based frameworks (Hansen et al., 2024). Hence, solving long-term38
credit assignment efficiently remains an open challenge for model-based RL methods.39

Interestingly, humans excel at long-horizon planning despite our inaccurate short-term predictions.40
The key to this remarkable ability is abstraction: Instead of planning fine-grained movements, we41
usually leverage skills to solve complex problems. When boiling a pack of pasta, we can rely on our42
hands to open the tap to fill water into the pot, to put the pot on the stove, to turn on the stove, and43
so on, all without having to worry about detailed movements. Crucially, even unforeseen events –44
like the pot slowly slipping out of our hand – have little to no impact on the overall outcome as we45
automatically readjust our grasp. Hence, thinking in terms of predictable skills instead of primitive46
actions replaces unstable or stochastic environment dynamics with a benign, stable abstract world47
model, suitable for long-horizon planning.48

We propose to replicate this strategy by learning temporally extended skills alongside an abstract49
world model that predicts skill outcomes. These outcomes should be diverse for different skills,50
but predictable for each individual skill. We therefore maximize the mutual information between51
the transition induced by the skill and the skill vector (Eysenbach et al., 2019). Concretely, we52
train the skills with RL using an approximation to the mutual information derived from the abstract53
world model (Sharma et al., 2020b). Since each skill lasts for multiple time steps, it can detect54
and counteract errors in its trajectory. Intuitively, by training the skills to realize what the world55
model predicts and the world model to predict what the skills achieve, stable high-level dynamics56
are obtained. Our proposed method Stable Planning with Temporally Extended Skills (SPlaTES)57
consists of (i) learning the temporally extended skills in tandem with the abstract world model,58
while (ii) using them for model predictive control (MPC).59

In high-dimensional environments in particular, it is crucial that the learned skills focus on what60
matters for the task. Most hierarchical RL (Sutton et al., 1999) methods that tackle long-horizon61
tasks use domain knowledge to define a subgoal or skill space that captures task-relevant parts of62
the state (Eysenbach et al., 2019; Nachum et al., 2018; Levy et al., 2019; Sharma et al., 2020b).63
We show that learning a low-dimensional abstract latent space by fitting the reward and propagating64
gradients back to the encoder is possible for sufficiently dense rewards. By learning skills that65
control the transitions in this space, we obtain task-related behavior. Hence, we do not need access66
to a handcrafted latent space or reward function.67

Our contributions are: (i) We propose SPlaTES, a sample-efficient hierarchical RL method that68
learns temporally extended skills on the lower level, and an abstract world model over skill outcomes69
on the higher level. Both levels are model-based and perform MPC on different timescales. (ii) We70
show that our skill learning objective yields diverse, predictable, task-related, and error-correcting71
behavior. (iii) Planning over entire episodes enables SPlaTES to outperform competitive model-72
based and skill-based methods on a range of challenging long-horizon continuous control tasks.73

2 Preliminaries74

In reinforcement learning (RL) an agent is trained to maximize the cumulative reward based on in-75
teractions with the environment. The environment can be formalized as a Markov Decision Process76
(MDP),M = (S,A, p, r, ρ0, γ), where S denotes the state space,A the action space, p (s′ | s, a) the77
probability (density) of transitioning from state s into s′ when choosing action a, r : S × A → R78
the reward function, ρ0 the distribution of the initial state, and γ ∈ [0, 1) the discount factor. In79
the infinite horizon setting, the RL objective is the maximization of the expected discounted return80
Gπ = Eat∼π(·|st),s0∼ρ0

[
∑∞

t=0 γ
tr(st, at)] when following a policy π : S → ∆(A).81

In model-based RL, the agent learns a dynamics model p̂ (s′ | s, a) and a reward model r̂ (s, a)82
from transitions (s, a, r, s′). The combination of p̂ and r̂ yields a world model, which can be used83
to perform rollouts in imagination by repeatedly sampling from the transition probability. At time84
step t, define ŝt = st. For a horizon H and a fixed action sequence at, . . . , at+H , the recursive85
relation ŝt+k+1 ∼ p̂ (· | ŝt+k, at+k) defines a model rollout which may be used with any model-free86
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algorithm to train a policy. Alternatively, the world model may be used directly for planning by87
optimizing the return-to-go

∑H
k=0 r̂(ŝt+k, at+k) with respect to the action sequence. We use iCEM88

(Pinneri et al., 2021) for this purpose, a zero-order optimization method adapted for continuous89
control. By replanning after each time step in a model predictive control (MPC) fashion, errors from90
imperfect model learning or optimization can be mitigated to some extent.91

3 Challenges in long-horizon predictions92

Taking the same sequence of actions in the environment and in a world model usually leads to tra-93
jectories that deviate after a small number of time steps. There are several reasons for this mismatch:94

closed-loop open-loop prediction

Figure 1: Taking a fixed sequence
of actions in the real environment
(open-loop in orange) and in the
world model (prediction, dashed in
black) results in trajectories that
quickly diverge. A stable low-
level policy (or skill) can compen-
sate perturbations and ensure that
prediction and reality stay close to
each other (closed-loop in blue).

(i) Approximation errors in the dynamics model may result95
in a small error ϵ after every time step, even in deterministic96
environments, ŝ = p̂ (s, a) = p (s, a) + ϵ. (ii) Partial observ-97
ability denies the world model access to the full, accurate state98
of the environment. This may be due to missing or noisy mea-99
surements. (iii) Stochasticity inherent to the environment ren-100
ders the transitions non-deterministic. (iv) Unstable dynam-101
ics (Slotine et al., 1991) prevent already present errors from102
shrinking or can even increase them over time. In chaotic en-103
vironments (Ott, 2002), even small errors in the initial state104
can lead to large discrepancies after a short amount of time.105

Small errors from these sources can add up when repeatedly106
applying the learned dynamics model, leading to the com-107
pounding error problem (Lambert et al., 2022). Hence, long-108
term predictions in many complex environments become in-109
feasible for all practical purposes. Even the predictions of an110
accurate world model will quickly diverge from the true dy-111
namics in such a system (see figure 1). Trying to circumvent112
the compounding error problem by directly predicting several113
steps ahead can improve the accuracy in certain environments114
(Neitz et al., 2018; Lambert et al., 2021) but cannot solve the115
fundamental problem of predicting outcomes in unstable sys-116
tems.117

4 Method118

Taking inspiration from how humans solve long-horizon problems, we propose to plan over tempo-119
rally extended skills instead of primitive actions. While the environment as such may have undesir-120
able properties like unstable or stochastic dynamics, suitable skills can mitigate these. We therefore121
aim to construct a planning-friendly abstraction of the environment by learning low-level skill poli-122
cies that are trained to “achieve what an abstract world model predicts”. By training such skills123
in tandem with an abstract world model, long-horizon planning becomes feasible. The rest of this124
section introduces our method Stable Planning with Temporally Extended Skills (SPlaTES).125

4.1 Abstract POMDP126

We first define an abstraction of the environment that is more suitable for long-horizon planning than127
the original MDP. As we want to discard any expendable details, we choose the form of a partially128
observable MDP (POMDP) (Kaelbling et al., 1998), that operates on a coarser timescale.129

To implement temporal abstraction, we transfer control to a skill for K ∈ N+ time steps. During130
this time interval, the skill policy chooses primitive actions. We furthermore identify a skill by a skill131
vector ā ∈ Ā = [−1, 1]dĀ . Choosing a continuous skill representation allows for smoothly interpo-132
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lating between behaviors which has advantages over discrete skills in domains like manipulation or133
locomotion (Sharma et al., 2020b).134

To facilitate planning, we map environment states to a more compact representation acting as an135
information bottleneck. As this potentially discards information, we may lose the Markov property136
and technically obtain only observations of the environment. Nevertheless, we refer to these repre-137
sentations as abstract states, as they are used for planning. To ensure that the encoder f : S → S̄138
focuses on task-relevant parts of the state, we train a reward function on the abstract state space139
S̄ and propagate gradients back to the encoder. Clearly, this requires the reward to be sufficiently140
dense. We furthermore choose a low-capacity encoder to ensure that it is selecting aspects of the141
state rather than pre-computing the reward. Crucially, this provides us with a space that is sufficiently142
low-dimensional for a diversity-maximizing skill learning objective, as detailed in section 4.3.143

In summary, the abstract POMDP M̄ =
(
S, Ā, p̄π, r̄π, ρ0, S̄, f, γ̄

)
(i) operates on a coarser time144

scale, with K time steps in the environment corresponding to one time step in M̄; (ii) inherits the145
state space S and the initial state distribution ρ0 from the original MDP M; (iii) is controlled by146
conditioning the skill policy π(· | . . . , ā) on a skill vector ā ∈ Ā; (iv) transitions from one state147
st ∈ S to the next state st+K ∈ S via the dynamics p̄π induced byM and the skill policy π; (v)148
accumulates the original reward along a transition r̄π =

∑t+K
n=t r(sn, an), where actions are sampled149

according to π; and (vi) provides learned compact observations s̄ := f(st) ∈ S̄. Our skills can be150
considered as a continuous version of options (Sutton et al., 1999) with a fixed temporal extent. In151
addition, we introduce partial observability through the encoder f .152

4.2 Abstract world model153

The abstract world model ˆ̄M is trained to predict the next abstract state s̄′ = st+K , as well as the154
reward r̄π accumulated during the K steps of executing a skill.155

The skill policy and partial observability introduce stochasticity to the transitions of the POMDP156
M̄, even if the original MDPM is deterministic. As K steps elapse in the environment during one157
abstract step, and due to partial observability, the distribution of s̄′ can furthermore become multi-158
modal. To take the stochasticity and multimodality into account, we realize the abstract dynamics159
model ˆ̄p (s̄′|s̄, ā) as a mixture of Gaussians, similar to Sharma et al. (2020b). Learning a distribution160
over the next abstract state additionally allows for taking chaotic or highly unstable dynamics into161
account that are too complex to be modeled precisely.162

Note that the POMDP M̄ is non-stationary, since the skill policy π is changing during training. The163
abstract world model therefore has to track these changes. Moreover, abstract transitions (s̄, ā, r̄, s̄′)164
become outdated quickly. Together with the temporal abstraction, this implies that the data for165
learning the abstract world model is very limited. In principle, importance sampling (IS) could be166
applied to outdated transitions if the skill policy is known. However, as the importance weights167
would correspond to a product of all K action probabilities in one skill execution, they in practice168
become very small. We therefore found that IS does not help, similar to Shi et al. (2023).169

4.3 Skill learning170

The abstract actions ā are temporally extended skills. To make long-term planning in M̄ success-171
ful, these skills should i) lead to predictable outcomes, ii) be useful for the considered family of172
RL problems, and iii) be diverse, i.e. allow for flexible control of the underlying MDP.173

Similar to Dynamics-Aware Unsupervised Discovery of Skills (DADS) (Sharma et al., 2020b), we174
choose to implement predictability and diversity with a mutual-information-based objective. More175
concretely, we define the skill learning objective as the maximization of the mutual information of176
the skill vector ā and the abstract state s̄′ = f (st+K) at termination of the skill. Since we are177
interested in controlling the transitions in the abstract POMDP, we condition the skill on the abstract178

4



Long-Horizon Planning with Predictable Skills

chosen skill

abstract state space

diverse skills

environment

environment

abstract world model

planning over skills

1

1

2

2
3

3

dynamics model

reward model

en
co

de
r

Algorithm 1: SPlaTES

t← 0; s← s0
while training do

s̄← f(s); r̄ = 0 1

ā← iCEM(s̄; ˆ̄M)[0] 2

for k = 0 to K do 3

a ∼ π (· | s, k, s̄, ā)
s′, renv ← env.step(a)
r ←ϕ(f(s′); s̄, ā)

− ϕ(f(s); s̄, ā)

TDMPC2← (s, a, r, s′)
TDMPC2.update()
r̄ ← r̄ + renv; s← s′

end
ˆ̄M← (s̄, ā, r̄, f(s))
ˆ̄M.update()

end

Figure 2: Left: Our proposed hierarchical algorithm SPlaTES in three steps; 1 Encode the environ-
ment state to obtain an abstract state. 2 Plan (with iCEM) a skill sequence starting from the abstract
state, which maximizes the episode return. 3 Execute the first skill in the sequence for K steps.
Do high-level MPC by starting from 1 again. Right: Pseudocode for SPlaTES. The skill policy π
denotes the action distribution induced by TD-MPC2 with MPC enabled.

state s̄ = f (st). This yields the following optimization objective for the skill policy π:179

π∗ = argmax
π

I(s̄′; ā | s̄) = argmax
π

H(s̄′ | s̄)−H(s̄′ | s̄, ā) . (1)

Intuitively, I(s̄′; ā | s̄) corresponds to the amount of information that is revealed about the next ab-180
stract state when being presented with the skill vector. It is instructive to split the mutual information181
into a difference of two terms (see RHS of equation 1): Maximizing the entropy of the next state s̄′182
conditioned on the current state s̄ makes sure the skills can realize a diverse set of transitions in the183
abstract state space. Minimizing the entropy of s̄′ conditioned on s̄ and the skill vector ā ensures184
that a specific skill reaches a predictable next state, which is, in contrast to Sharma et al. (2020b), an185
abstract state.186

Evaluating I(s̄′; ā | s̄) poses two challenges: Firstly, it requires access to the abstract dynamics187
p̄ (s̄′|s̄, ā), and secondly, it involves integration over realizations of the random variable ā. Following188
Sharma et al. (2020b), we tackle the first issue by approximating the dynamics with our world189
model ˆ̄p (s̄′|s̄, ā), and the second by Monte Carlo sampling. A detailed derivation of the resulting190
approximation191

I(s̄′; ā | s̄) ≈ Es̄,ā,s̄′ [ϕ(s̄
′; s̄, ā)] (2)

with the potential192

ϕ(s̄′; s̄, ā) := log
ˆ̄p (s̄′ | s̄, ā)

1
N

∑N
i=1

ˆ̄p (s̄′ | s̄, ā)
, (3)

can be found in Appendix C.193

To learn the skills, we maximize Es̄,ā,s̄′ [ϕ(s̄
′; s̄, ā)] with RL. To this end, the potential difference194

between consecutive time steps serves as a dense reward195

r(st+k, a, st+k+1; s̄) := ϕ(f(st+k+1); s̄, ā)− ϕ(f(st+k); s̄, ā) , (4)
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for every intra-skill time step k ∈ [0, . . . ,K − 1].196

We use TD-MPC2 (Hansen et al., 2024), a model-based RL method for continuous control that in-197
corporates short-horizon planning, to learn the skill policy. In preliminary tests it achieved higher198
sample efficiency than model-free algorithms. When sampling a batch from the replay buffer, we199
recompute the skill learning reward as it changes as the abstract world model gets updated. Further-200
more, we slightly modify TD-MPC2 to keep track of k, s̄, and ā when rolling out its model.201

Crucially, the reward in equation 4 encourages skills to be predictable relative to where they started,202
and consequently depends on s̄. This requires the skill policy to be conditioned on s̄ as well. Since203
the skill execution has a finite horizon K, we additionally condition on the intra-skill step k (Pardo204
et al., 2018). Hence, the skill policy has the form π (at+k | st+k, k, s̄, ā). This conditioning allows205
the skills to compensate perturbations and drifts as they can detect any mismatch between where206
they are after k steps relative to s̄ and where they intend to be (see figure 1). This ability distinguishes207
our temporally extended skills from the memoryless skills DADS learns, and greatly contributes to208
the stability of our abstract world model. To ensure that the skills can be successfully chained, we209
furthermore bootstrap when the skill vector changes. As we want all possible transitions between210
skills to work, we replace the Q-function in the TD-target with a version trained to fit the expected211
Q-value over all possible next skills in this case (see section C.3).212

Applying common diversity-maximizing skill learning objectives directly in complex environments213
usually leads to behaviors that are not task-related. A common fix is the manual definition of a214
subspace that captures what is essential for the task, e.g. the x-y coordinate of an agent in a maze215
(Eysenbach et al., 2019; Sharma et al., 2020b). By instead learning the encoder based on reward and216
value prediction, we are more flexible and less reliant on domain knowledge, while still ensuring217
that the learned skills are useful for the (family of) tasks we are interested in.218

4.4 The hierarchical agent: Abstract planning over task-related skills219

Equipped with suitable skills and an abstract world model, we can now construct a hierarchical220
agent that solves the RL problem. To this end, we perform model predictive control (MPC) using221
the CEM method with the abstract world model on the higher level, and execute the skill policy on222
the lower level. Intuitively, the higher level breaks the task down into a sequence of skills, while the223
lower level executes them. We train all elements of the hierarchy online and in tandem, meaning224
that the abstract world model shapes the skill reward via equation 4, and the behavior of the skill225
policy in turn determines the abstract world model. Hence, the skills are trained to fit the abstract226
world model and vice versa. Figure 2 presents an overview of the algorithm.227

Training the world model of the POMDP outlined above automatically inherits its abstractions. This228
provides several benefits for planning: Firstly, the required MPC horizon is reduced by a factor of K229
(the length of one skill execution), and the state and action spaces are low dimensional. Combined230
with the stability of the skills, planning over whole episodes instead of a small number of time231
steps becomes feasible. Secondly, as replanning the sequence of skills only happens every K steps,232
the computational cost of MPC is reduced by a factor of K2 compared to planning over the same233
effective horizon with a low-level model. Furthermore, the skills are trained to efficiently move234
through the abstract state space which encodes everything that is crucial for the task. Together with235
temporal abstraction, this greatly enhances exploration and automatically focuses it on the task (as236
conveyed by the reward function).237

Moreover, the hierarchical agent is able to correct its mistakes on two time scales: Firstly, small238
perturbations can be compensated by reflex-like behavior of the skills on the lower-level (think239
stumbling or something slipping from the agent’s grasp). Secondly, MPC will automatically adjust240
the plan for the rest of the episode in a more deliberate way should the agent deviate further from241
the intended path. We provide further implementation details in section C.3.242

6



Long-Horizon Planning with Predictable Skills

DADS SPlaTES DADS SPlaTES

a1

a
2

Skill space

Figure 3: Left: Skills applied to a velocity-controlled point mass under a perturbation. DADS:
Predictions are marked by dashed lines. SPlaTES: Predictions of the abstract world model are
marked by crosses, actual states at the end of skill executions by circles. SPlaTES compensates the
perturbation and stays close to the prediction while DADS cannot recover from it. Right: Execution
of a fixed skill sequence with a quadruped. A force is applied in one time step (red arrow).
SPlaTES corrects the resulting deviation while DADS cannot.

5 Experiments243

We aim to answer the following questions with our empirical evaluation of SPlaTES:244

1. Are the learned skills predictable, diverse, and useful for the task?245
2. How does SPlaTES compare to existing methods in terms of sample-efficiency and asymptotic246

performance, in particular on challenging long-horizon tasks?247
3. Can we distill the hierarchical SPlaTES model into a flat TD-MPC2 agent?248

We compare to three baselines that cover model-based RL, hindsight relabeling, and skill discovery:249

TD-MPC2 (with HER) (Hansen et al., 2024), a model-based RL method tailored to continuous250
control that achieves state-of-the-art sample efficiency by combining MPC with a learned policy251
and Q-function. We additionally combine TD-MPC2 with Hindsight Experience Replay (HER) to252
test if hindsight enables the agent to escape local optima.253

DADS (Sharma et al., 2020b), a skill discovery method based on mutual information estimation with254
a reward similar to equation 3. Unlike SPlaTES, DADS does not implement temporal abstraction,255
i.e., it tries to learn skills that control atomic transitions. DADS furthermore requires privileged256
information in the form of a projection to a compact latent space that encodes what matters for the257
task, e.g., the x-y coordinates for locomotion. To decouple the impact of the skill learning objective258
from the underlying RL algorithm, we implement a TD-MPC2-based version of DADS and use the259
same MPC code as for SPlaTES (see Appendix D for details).260

Our empirical evaluations are conducted in different variations of the following environments:261

Fetch Pick & Place (Plappert et al., 2018): A robot arm with a two-fingered parallel gripper manip-262
ulating a block on a desk. The action specifies a desired displacement of the end effector and gripper263
fingers. To make the task harder, we added a variant in which the robot has to lift the block over a264
barrier to reach the goal (Fetch P&P Barrier).265

Ant Maze (Fu et al., 2020): A torque-controlled quadruped navigating a maze. Long-term credit266
assignment is critical in this environment as going around a wall sometimes temporarily increases267
the distance to the goal. We terminate the episode when the quadruped flips over as no algorithm268
learned to reverse this (Ant Maze Medium). We added a harder, slightly larger variant which269
requires the agent to push a block aside to reach one of the goals (Ant Maze Push).270

5.1 Skill analysis271

This section analyzes the skills learned by SPlaTES in isolation, to verify that they are predictable,272
diverse, and useful. For the sake of clarity, we first consider a toy environment with a velocity-273
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Fetch Pick & Place Barrier Ant Maze Medium

Figure 4: SPlaTES predictions for random
brown-noise skill sequences. Most of the work
space of the robot and the quadruped maze are
covered.

Fetch Pick & Place Barrier Ant Maze Medium

Figure 5: SPlaTES plans on the Fetch P&P Bar-
rier and Ant Maze Medium tasks. Note that the
skill sequence extends over the whole episode.

controlled point mass. To probe the ability of the learned skills to compensate perturbations, we add274
temporally sparse noise of fixed magnitude and random direction to the velocity during training.275

The left side of figure 3 compares DADS to SPlaTES skills under a perturbation perpendicular to276
the predicted change in the state. While both methods learn a set of diverse skills, they differ in277
their robustness to noise: As SPlaTES is trained to produce predictable transitions over K time278
steps, its skills compensate the perturbation rapidly and stay close to the predicted trajectory. This279
reflex-like behavior is realized by the skill policy and does not require MPC. DADS, on the other280
hand, is oblivious of deviating from the predicted trajectory and maintains an offset. The right side281
of figure 3 shows DADS and SPlaTES controlling a quadruped. At one time step, a large force is282
applied (marked by a red arrow). In this high-dimensional environment, the same behavior occurs:283
SPlaTES corrects the error resulting from the force while DADS cannot. We analyze this example284
in more detail in section A.2.285

In principle, MPC can help correct errors but in real-world applications it is often infeasible to run it286
at every time step due to computational constraints. It is therefore desirable to distill error-correcting287
behavior into a fast skill policy which can work with low-frequency plans.288

Figure 4 shows trajectories predicted by the abstract SPlaTES world model based on brown-noise289
sequences of skill vectors. Although the latent state space is learned only from the reward signal,290
the skills focus on manipulating the block or moving the quadruped. They are thus useful for the291
task. The temporal extent of the skills moreover facilitates exploration. The sampled skill sequences292
consequently cover most of the work space and maze.293

5.2 Comparative analysis294

Does planning over predictable skills enable model-based RL to solve long-horizon continuous con-295
trol tasks? To answer this question, we compare SPlaTES to a set of competitive baselines on296
increasingly challenging variants of two RL domains (de Lazcano et al., 2023). All learning is done297
online and from scratch. We use a dense reward proportional to the negative Euclidean distance298
to the goal, as our focus is on task-related behavior rather than intrinsic motivation. All tasks are299
continuing, i.e., the environment does not terminate when the goal is reached but truncates after a300
time limit. On the higher level, SPlaTES plans over the whole episode, corresponding to an effective301
horizon of up to 1400 environment steps.302

Figure 6 shows how the success rates of the baselines and SPlaTES evolve during training. Note303
that HER, DADS and HAC require access to the reward function and goal projection while SPlaTES304
does not. All methods solve the basic Fetch Pick and Place task with SPlaTES being competitive305
in terms of sample efficiency. On the more challenging Fetch Pick and Place Barrier task SPlaTES306
quickly discovers how to lift the block over the barrier. In contrast to this, TD-MPC2 remains in the307
local optimum of pressing the block against the base of the barrier. Despite having a two-times larger308
MPC horizon and replanning every time step, DADS only inconsistently finds the path across the309
barrier later in the training. HER only succeeds in less than half of the seeds in finding a trajectory310
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Ant Maze Medium Ant Maze PushFetch Pick & Place Fetch P & P Barrier

 require reward function and goal projection

Figure 6: Success rates over the course of training. The shaded areas indicate the region between
the 20% and 80% percentiles across five seeds. The lines correspond to the median. Methods using
privileged information such as the reward function and the goal projection are rendered as dotted
lines.

around the barrier. Note that we tried HER with a dense and a sparse reward and report results for311
whichever worked best on each environment.312

On the two Ant Maze tasks TD-MPC2 and DADS can solve combinations of initial position and313
goal that can be connected by greedily following the gradient of the reward function while sliding314
along walls. Only SPlaTES succeeds in more challenging episodes that require going around an315
obstacle for an extended period of time before turning back towards the goal again. In principle,316
increasing the MPC horizon in TD-MPC2 and DADS should enhance performance but in practice317
this is infeasible because (i) rolling the model out for hundreds of time steps becomes prohibitively318
expensive, and (ii) the quality of the predictions drastically deteriorates. We found HER not to work319
in this setting. We hypothesize that the lack of success could be caused by a complete lack of overlap320
between environment and hindsight goals, and a lack of exploration due to the danger of flipping321
over and terminating. Hence, only SPlaTES performs well on these challenging long-horizon tasks.322
We additionally compare to a model-free hierarchical baseline (Levy et al., 2019) in section A.3,323
and find that it learns considerably slower than SPlaTES.324

The superior asymptotic performance of SPlaTES on the more challenging tasks can be attributed325
to two factors: improved exploration and better long-term credit assignment. Figure 4 illustrates326
how temporally extended skills in combination with brown noise in the iCEM sampling process327
aid exploration. To test whether SPlaTES improves credit assignment, we distill the hierarchical328
agent into a flat TD-MPC2 model. To this end, we begin by training SPlaTES until the performance329
plateaus. We then start to train a TD-MPC2 agent in parallel which has access to the replay buffer330
of the SPlaTES skills. We additionally switch randomly (within episodes) between the two agents331
to make sure new experience is collected in the whole maze. Figure 7 shows that this process leads332
to a new agent with close-to-optimal performance on Fetch Pick & Place Barrier. However, on the333
long-horizon tasks Ant Maze Medium and Ant Maze Large, the performance of the distilled agent334
is significantly lower than that of SPlaTES despite having access to successful trajectories. For the335
medium-sized maze the decrease in the success rate can be attributed to failing to reach the goal336
exactly. On Ant Maze Large, on the other hand, myopic behavior reappears in the distilled agent337
(we show an example case in section A.1). We thus conclude that the long-term credit assignment338
achieved by SPlaTES via abstract planning is difficult to reproduce with flat TD learning.339

5.3 Ablative analysis340

To gauge the impact of different components of SPlaTES on its performance, we ablate them indi-341
vidually on Ant Maze Medium in figure 8. Replacing the learned encoder with a hand-crafted one342
(encoder oracle) brings only a very modest performance benefit. Using the Q-function conditioned343
on the next skill vector directly in the skill-learning TD-target instead of a learned approximation344
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Fetch P & P Barrier Ant Maze Medium Ant Maze Large

Figure 7: Distillation of the hierarchical
SPlaTES agent into a flat TD-MPC2 model. The
success rate increases on the Fetch Pick & Place
Barrier task, whereas it drops significantly in the
more challenging Ant Maze environments.

oracle encoder

no skill-averaged value

sparse skill reward

two phases

Figure 8: Ablations of SPlaTES on Ant Maze
Medium. Oracle encoder: A handcrafted en-
coder; No skill-averaged value: Bootstrap di-
rectly from Q function at end of skill; No k and
s̄: No conditioning on intra-skill step and start
state; Two phases: Learn skills first, then plan;
Sparse skill reward: Give equation 3 as reward
at end of skill.

of the expectation over all skill values results in a noisier target, and a decrease in performance of345
15%. Ablating the conditioning of the skill policy (on the intra-skill time step and the abstract state346
the skill started in) removes the ability to correct errors in the skill trajectory. This results in a per-347
formance drop of about 45%. Dividing training into a skill learning phase with random skill vectors348
and a planning phase with frozen skills results in a low success rate. Hence, guiding the skills with349
high-level planning is useful for learning relevant skills. Finally, providing the approximation of the350
mutual information ϕ ( equation 3) as a sparse reward at the end of each skill execution in place351
of the dense increments ϕ(s̄′) − ϕ(s̄) has the greatest impact on performance. Skill learning slows352
dramatically, resulting in a success rate of around 5%.353

6 Related work354

Model-based RL uses learned world models (Schmidhuber, 1990) to predict state transitions and355
rewards. This enables differentiating through the model (Deisenroth & Rasmussen, 2011), planning356
(Hafner et al., 2019b), or generating synthetic experience for model-free RL algorithms (Sutton,357
1991; Hafner et al., 2019a). Recently, the latter two approaches have been combined in hybrid meth-358
ods that plan over a small number of time steps while accounting for long-term effects with a learned359
value function (Schrittwieser et al., 2020; Hansen et al., 2022). The problem of compounding model360
errors (Lambert et al., 2022) has been addressed in several ways: Increasing one-step model ac-361
curacy by improving data collection or architecture choices can increase performance (Plaat et al.,362
2023), but does not address all of the challenges discussed in section 3. Branching off short rollouts363
from observed states (Janner et al., 2019) avoids compounding model errors but neglects long-term364
credit assignment. Directly predicting states multiple time steps in the future can increase accuracy365
in some environments (Neitz et al., 2018; Asadi et al., 2019), but results are generally highly depen-366
dent on the data-collection policy (Lambert et al., 2021). Predicting entire trajectories from offline367
data is a promising research direction but also entangles policy and environment dynamics (Janner368
et al., 2021; Ding et al., 2024). Finally, keeping track of epistemic and aleatoric uncertainty (Chua369
et al., 2018) can quantify the problem but does not directly enable longer rollouts.370

Hierarchical RL (HRL) (Hutsebaut-Buysse et al., 2022) splits up decision making into multiple,371
interconnected levels of abstraction: A higher level chooses temporally extended courses of actions372
and a lower level executes them (Dayan & Hinton, 1992). Thus, the problem horizon is reduced by373
temporal abstraction, facilitating credit assignment and exploration. The options framework (Sutton374
et al., 1999; Barto & Mahadevan, 2003; Bacon et al., 2017) formalizes the notion of closed-loop375
courses of action (also referred to as skills). Many HRL frameworks break long-horizon tasks down376
into a sequence of subgoals (Nachum et al., 2018), enabling sample-efficient hindsight relabeling377
techniques (Andrychowicz et al., 2017; Levy et al., 2019). However, the projection to the subgoal378
space is usually designed manually, as learning it is challenging (Nachum et al., 2019; Choi et al.,379
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2021). Picking a subgoal furthermore requires checking whether it is feasible in the given situation380
(Zhang et al., 2023). In contrast to this, the skills we learn are always applicable, which simplifies381
planning. Hansen et al. (2022) learn partial option models, predicting the outcome of options when382
available, but use a fixed set of handcrafted options. Hafner et al. (2022) learn a latent goal space,383
but do not use an abstract model for planning. Park et al. (2023) use an intermediate representation384
of an offline-learned value function as goal space, which is, however, not directly applicable in385
the online case when no high-quality value function is available yet. Shi et al. (2023) learn skills386
together with a model of skill outcomes offline, and solve downstream tasks with MPC. The success387
of this approach hinges on the quality of the pre-collected dataset, and does not explicitly encourage388
predictability of skill coutcomes.389

Skill discovery aims to learn useful behaviors that can be combined to solve downstream tasks.390
Gregor et al. (2016) propose Variational Intrinsic Control (VIC), which maximizes the mutual infor-391
mation (MI) between a skill and the state it terminates in conditioned on the start state. The main392
differences to our skill-learning objective are: (i) We use a dense reward (equation 4), (ii) we use a393
forward model instead of a discriminator to approximate MI (Sharma et al., 2020b), (iii) we condi-394
tion the skill policy on the intra-skill time step k as discussed in section 4.3, and (iv) we consider395
a learned abstract state. Gregor et al. (2016) furthermore argue that training VIC becomes unstable396
when combined with function approximation. However, we found that our reward combined with397
appropriate learning rates for the model and skill policy results in stable training for SPlaTES. Ey-398
senbach et al. (2019) maximize the MI between the skill vector and the next state, approximating399
it with a discriminator. This results in diverse skills that seek out different parts of the state space400
but are not necessarily predictable on shorter time scales. Sharma et al. (2020b), on the other hand,401
focus on controlling atomic transitions by additionally conditioning on the current state. We pro-402
pose to strike a balance by controlling abstract, temporally extended transitions. Achterhold et al.403
(2023) learn skills using a given discrete state abstraction to play physically-embedded board games.404
The discrete skills are trained with the sparse VIC reward, and correspond to actions in a symbolic405
forward model, which is then used for high-level planning. Various unsupervised skill learning406
methods use inductive biases to discover meaningful skills when neither a compact latent space nor407
a task reward are given (Park et al., 2022; 2024; Machado et al., 2018).408

7 Conclusion409

In this work, we introduced SPlaTES, a sample-efficient hierarchical RL algorithm that learns tem-410
porally extended skills on the lower level, and an abstract world model that predicts skill outcomes411
on the higher level. We have demonstrated that our skill learning objective results in (i) diverse,412
predictable, and task-related behavior, and (ii) the ability to counteract errors, which improves the413
reliability of long model rollouts. By performing MPC on different timescales on both levels of the414
model-based hierarchy, we outperform competitive model-based, skill-based and hierarchical base-415
lines on challenging long-horizon tasks. Distilling the hierarchical agent into a flat TD-MPC2 model416
resulted in the reoccurrence of myopic behavior, indicating that our model-based hierarchy performs417
credit assignment at time scales that are difficult to achieve with non-hierarchical TD learning.418

Limitations: While learning the encoder removes the requirement to design it manually, we still419
need to choose an appropriate dimension for the abstract state. Moreover, using gradients from the420
high-level reward loss for encoder learning requires sufficiently dense rewards. Although taking a421
high-level value function into account could lift this requirement, we found learning such a value422
function challenging, particularly in the early phase of training. More generally, temporal abstraction423
results in a scarcity of training data on the higher level. Therefore, more sample-efficient supervised424
learning methods or appropriate data augmentation techniques are needed to further improve sample425
efficiency.426
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Supplementary Materials602

The following content was not necessarily subject to peer review.603
604

A Additional results605

In this section, we provide additional results and visualizations, comparing SPlaTES to baselines606
and analyzing its skill training.607

A.1 Distillation of a SPlaTES agent into a flat TD-MPC2 model608

As discussed in section 5.2, distilling a SPlaTES agent into a flat TD-MPC2 agent on Ant Maze609
Large resulted in a significant drop in the success rate for two reasons: (i) The agent often does not610
match the goal position precisely enough, and (ii) it regresses to myopic behavior that leads it into611
local minima instead of going around obstacles. Note that the task is continuing and lasts for a 1000612
time steps. We used a discount factor of 0.995 as we did not see any improvements in training from613
scratch or distillation when increasing it in grid searches. Figure 9 shows an example of issue (ii),614
i.e., myopic behavior reappearing even though the hierarchical agent generates close to optimal data.615

(a) SPlaTES (b) Distilled TD-MPC2 agent

Figure 9: Failure to distill long-horizon behavior into flat TD-MPC2 agent: Even though the distilled
TD-MPC2 agent has access to clos-to-optimal data generated by the hierarchical agent, it regresses
to suboptimal, myopic behavior.

A.2 Execution of a fixed skill sequence with a perturbation616

In section 5.1, qualitative results for an Ant quadruped executing a fixed skill sequence while being617
pushed by a large force in one time step have been shown to illustrate the compensation of pertur-618
bations by SPlaTES. In figure 10, ten rollouts generated by DADS and SPlaTES in this scenario are619
shown and analyzed. We conclude that error-correcting behavior occurs consistently when using620
SPlaTES.621

A.3 Comparison to a hierarchical baseline622

In this section, we compare SPlaTES to a hierarchical baseline. Hierarchical Actor-Critic (HAC)623
(Levy et al., 2019) is a model-free hierarchical RL algorithm that breaks a task down into a series624
of subgoals. The high-level policy chooses the next subgoal whereas the low-level policy pursues625
it. Hindsight relabeling is used to improve sample efficiency. HAC requires privileged information626
in the form of a map to the subgoal space and the reward function. We use the gym-compatible627
implementation of HAC from Gürtler et al. (2021).628

We did not succeed in getting HAC to learn on the environments considered in the main text. We629
hypothesize that there are several factors contributing to this failure to learn: (i) The Fetch variants630
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Figure 10: Execution of a fixed skill sequence with the Ant quadruped while experiencing a force
to the negative x direction in a single time step. Trajectories are rendered as black, translucent
lines, and x-y coordinates at multiple of the control interval K of SPlaTES are shown as colored,
translucent circles. At multiples of K time steps, a Gaussian is fitted to the x-y coordinates, and
depicted as colored circles. The x-y coordinate predicted by the world model is shown as a cross at
these time steps. Note how SPlaTES compensates the ’kick’, while DADS maintains the offset in
its trajectory which is caused by it.

have sparse interactions with the object which is known to cause issues, in particular with methods631
that relay on hindsight relabeling (as a vast majority of the hindsight goals and actions correspond to632
the cube being stationary). (ii) The considered environments (except for Fetch Pick & Place) have633
almost no overlap between hindsight goals and environment goals in the initial phase of training.634
(iii) HAC terminates the low-level episode after each skill and is thus not learning to chain skills. In635
the Ant environments this results in the flipping over at the end of skills.636

To be able to compare to HAC, we modified Ant Maze Medium by making the actuators weaker637
by a factor of 10. This was also done in Levy et al. (2019), probably to avoid issue (iii). To also638
circumvent issue (ii), we give the higher level access to the dense reward function. These changes639
resulted in HAC learning, albeit slowly. Figure 11 shows the return of SPlaTES and HAC on this640
modified environment (as the success rate stays at zero for the longest part of training). SPlaTES641
outperforms HAC in terms of sample efficiency, probably due to (i) TD-MPC2’s sample efficiency642
on the lower level, (ii) the dense skill learning reward, and (iii) better targeted exploration due to643
high-level planning with the abstract world model.644

re
tu
rn

Figure 11: Comparison of SPlaTES to HAC on a modified version of Ant Maze Medium with a
‘weaker’ Ant: SPlaTES outperforms HAC in terms of learning speed.

A.4 Decoder645

To analyze what aspects of the state the learned encoder extracts, we trained a decoder independently646
of training SPlaTES (no gradients were allowed to flow back). Figure 12 shows the normalized647
reconstruction error (normalized root mean square error) of different components of the states and648
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relative offset to the desired goal and norm of this offset. We conclude that the encoder focuses on649
the achieved and desired goal as they are crucial for fitting the reward.650
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Figure 12: Reconstruction error of observation dimensions from latent state and context(normalized
root mean square error): A decoder is trained (without propagating any gradients to the model) to
reconstruct the observation from the latent state and context.

A.5 Visualizations651

We provide additional visualizations of the learned skills in this section.652

Figure 13: Predicted distributions of the abstract state delta after a skill execution at different stages
of training (Ant Maze Environment): Twelve skills are sampled uniformly on the unit circle in skill
vector space and color coded. The next state distributions predicted by the abstract world model are
visualized by color, with transparency determined by density. Note how at the intermediate training
stage some probability mass is at the origin for all skills. This corresponds to the skill being unable
to move, for example due to being off the ground or stuck on an edge. In the final model (right), this
probability mass mostly disappeared as the skills have become competent at locomotion.

B Algorithm653

We give additional details on the algorithm in this section, in particular the derivation of the skill654
learning reward and implementation details.655
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C From mutual information to learning temporally extended skills656

This section describes in detail how we approximate the mutual information in equation 2, and how657
we use it to define a dense skill learning reward.658

C.1 Approximating the mutual information659

To obtain our skill learning reward, we first have to approximate the mutual information of the next660
abstract state and the skill vector, conditioned on the current skill vector,661

I(s̄′; ā | s̄) = H(s̄′ | s̄)−H(s̄′ | s̄, ā) (5)

=

∫ ∫
p (s̄, ā, s̄′) log

p (s̄′ | s̄, ā)
p (s̄′ | s̄)

dā ds̄′ ds̄ (6)

= Es̄,ā,s̄′

[
log

p̄ (s̄′ | s̄, ā)
p (s̄′ | s̄)

]
. (7)

The joint distribution of abstract state, skill vector, and next state reads662

p (s̄, ā, s̄′) = p (s̄) p (ā | s̄) p̄ (s̄′ | s̄, ā) . (8)

We would like the skills to fill the whole skill vector space uniformly, i.e., we want to maximize663
the diversity of all available skills, and not only those chosen by the planner. We therefore choose a664
uniform distribution for the skill vector, ā ∼ U(Ā) and sample independently from the abstract state665
s̄. In practice p (ā | s̄) is determined by the high-level planning, interleaved with randomly sampled666
skills for exploration. This will be accounted for by importance sampling in the next subsection.667
The joint distribution therefore simplifies to668

p (s̄, ā, s̄′) = p (s̄) p (ā) p̄ (s̄′ | s̄, ā) . (9)

We now follow Sharma et al. (2020b) for the rest of the derivation. We first obtain a variational669
lower bound for the mutual information by replacing the true dynamics p̄ of the abstract POMDP670
with the approximation ˆ̄p our world model learned,671

I(s̄′; ā | s̄) = Es̄,ā,s̄′

[
log

p̄ (s̄′ | s̄, ā)
p (s̄′ | s̄)

]
(10)

= Es̄,ā,s̄′

[
log

ˆ̄p (s̄′ | s̄, ā)
p (s̄′ | s̄)

]
+ Es̄,ā

[
DKL

(
p̄ (s̄′ | s̄, ā) || ˆ̄p (s̄′ | s̄, ā)

)]
(11)

≥ Es̄,ā,s̄′

[
log

ˆ̄p (s̄′ | s̄, ā)
p (s̄′ | s̄)

]
, (12)

where we used the non-negativity of the Kullback-Leibler divergence.672

Maximizing the variational lower bound involves minimizing the Kullback-Leibler divergence. We673
realize this by maximizing the log likelihood of the abstract transitions when training the abstract674
world model.675

We approximate the marginal distribution p (s̄′ | s̄) with Monte Carlo sampling. To this end, we676
sample N skill vectors āi ∼ U(Ā), replace the integration with an average, and approximate the677
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dynamics of the POMDP with the world model again:678

p (s̄′ | s̄) =
∫

p(ā)p̄ (s̄′ | s̄, ā) dā (13)

≈ 1

N

N∑
i=1

p̄ (s̄′ | s̄, ā) (14)

≈ 1

N

N∑
i=1

ˆ̄p (s̄′ | s̄, ā) (15)

(16)

This yields the following approximation for the mutual information:679

I(s̄′; ā | s̄) = Es̄,ā,s̄′

[
log

ˆ̄p (s̄′ | s̄, ā)
1
N

∑N
i=1

ˆ̄p (s̄′ | s̄, ā)

]
(17)

C.2 From mutual information maximization to an RL reward680

We now consider skill learning via RL. One skill learning RL episode corresponds to the execution681
of one skill for K time steps, starting in the abstract state s̄ = f(st) and ending in s̄′ = f(st+K).682
The skill policy is conditioned on ā. The distribution p (ā, s̄) therefore plays a similar role as a683
distribution of goals or tasks in multitask RL.684

We can now tentatively identify the expected return of an RL episode with the approximated mutual685
information686

Es̄,ā [G] = Es̄,ā

[
ρ (s̄, ā) log

ˆ̄p (s̄′ | s̄, ā)
1
N

∑N
i=1

ˆ̄p (s̄′ | s̄, ā)

]
. (18)

Define the potential687

ϕ(s̄′; s̄, ā) := log
ˆ̄p (s̄′ | s̄, ā)

1
N

∑N
i=1

ˆ̄p (s̄′ | s̄, ā)
, (19)

and the dense reward688

r(st+k, a, st+k+1; s̄) := ϕ(f(st+k+1)); s̄, ā)− ϕ(f(st+k); s̄, ā) . (20)

Then the return becomes a telescoping sum and the expected return is equal to the mutual informa-689
tion up to a constant term (as s̄ and ā are fixed during a skill learning RL episode) which does not690
influence the optimal skill policy,691

Es̄,ā [G] = Es̄,ā [ϕ(s̄
′; s̄, ā)− ϕ(s̄; s̄, ā)] . (21)

Hence, applying any suitable RL algorithm to the reward defined in equation 20 , maximizes an692
approximation to the mutual information I(s̄′; ā | s̄).693

C.3 Implementation details694

In this section, we provide details on the implementation of SPlaTES. We will release the code and695
the configuration files once the paper is accepted.696

Skill learning is implemented with a modified version of TD-MPC2 as it provides sample-efficient697
learning. Our modifications are (i) to keep track of the intra-skill time step k, and the abstract start698
state s̄ of the skill, and the skill vector during rollouts (ii) to bootstrap from an additional learned699
Q-function (see below) at the end of a skill execution, (iii) to implement support for vectorized en-700
vironments as we train with 12 environment instances for computational efficiency. We furthermore701
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transform the state linearly before calculating the skill learning reward. This linear transformation is702
learned as the inverse of the covariance matrix of the abstract state deltas in the replay buffer. This703
ensures that length scales when calculating the skill learning reward are not arbitrary but correspond704
to typical changes brought about by the execution of a skill. We furthermore fix the standard devia-705
tion of the abstract world model when calculating the skill reward (similar to Sharma et al. (2020b)).706
This prevents premature convergence of the skills as it makes sure that the skills still repel each other707
in the abstract state space, even if they are already relatively precise. We use a skill duration K of708
10 for the Fetch environments and 50 for the Ant Maze environments.709

An acceleration of skill learning in the initial phases of training can be achieved with a symmetry710
breaking phase. Initially, the randomly initialized skill policies do not manage to change the abstract711
state significantly. This makes the world model collapse to predicting very small, unstable skill712
deltas. As a result, the skill learning reward does not consistently encourage the skill to move into a713
specific direction in the abstract skill space. This issue can lead to a prolonged phase of ‘collapsed’714
skills. To help the skills to differentiate, we initially calculate the skill learning reward with a random715
linear transition model. This breaks the symmetry and accelerates learning. We then switch to the716
learned model to learn the actual skill dynamics.717

Improving exploration in skill learning is crucial for sample efficiency. We therefore clip the skill718
learning reward from below at zero for the initial phases of training on the Fetch tasks. This ensures719
that there is no penalty for exploring by moving the cube. We apply the same trick to the DADS720
baseline to ensure a fair comparison. On the Ant environments, we found this not to be necessary721
due to the absence of sparse contacts.722

Encoder learning is implemented with a simple linear encoder as we found this to be sufficient723
for learning from states. It furthermore ensures that the encoder does not partly perform non-linear724
transformations needed for reward fitting. We split the output of the encoder up into a state s̄ and725
a context c̄, f : S → S̄ × C̄. The role of the context is to encode information about the task that726
are fixed in each episode. We therefore penalize changes to the context within an episode with a727
simple squared error. The context is only fed to the reward function but not to the learnd abstract728
transition function. We found this distinction between state and context to not be strictly necessary729
but to improve generalization and the ability to visualize the abstract world model. We choose a730
dimension of 2 for the abstract state space on for the Ant Maze environments, and 3 for the Fetch731
variants. This corresponds to the intrinsic spatial dimension.732

D Baselines733

We implemented DADS with a custom version of TD-MPC2 to enable a fair comparison to SPlaTES.734
As with our method, we added (i) the skill vector which is unchanged during rollouts, and (ii)support735
for vectorized environments. As the MPPI planner of TD-MPC2 does not provide probabilities for736
actions, we could not implement the offline version of DADS (Sharma et al., 2020a). However, we737
think that the gains in sample efficiency from using model-based TD-MPC2 outweigh the disadvan-738
tage of not being able to use importance sampling.739

We combined HER with TD-MPC2 in a similar way, by keeping track of the goal instead of the740
skill vector. Hindsight relabeling was then implemented when sampling from the replay buffer.741
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