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Abstract
In this paper we introduce the SCoRe1

(Submodular Combinatorial Representation
Learning) framework, a novel approach in
representation learning that addresses inter-class
bias and intra-class variance. SCoRe provides a
new combinatorial viewpoint to representation
learning, by introducing a family of loss functions
based on set-based submodular information
measures. We develop two novel combinatorial
formulations for loss functions, using the Total
Information and Total Correlation, that naturally
minimize intra-class variance and inter-class bias.
Several commonly used metric/contrastive learn-
ing loss functions like supervised contrastive loss,
orthogonal projection loss, and N-pairs loss, are
all instances of SCoRe, thereby underlining the
versatility and applicability of SCoRe in a broad
spectrum of learning scenarios. Novel objectives
in SCoRe naturally model class-imbalance with
up to 7.6% improvement in classification on
CIFAR-10-LT, CIFAR-100-LT, MedMNIST,
2.1% on ImageNet-LT, and 19.4% in object
detection on IDD and LVIS (v1.0), demonstrating
its effectiveness over existing approaches.

1. Introduction
Visual Object Recognition in real-world scenarios promi-
nently features a long-tail distribution, where abundant
(head) and rare (tail) objects coexist. The Open Long-Tail
Recognition (OLTR) benchmark, as introduced in (Liu et al.,
2019), tackles the dual challenges of imbalanced and few-
shot learning within a single, streamlined training frame-
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Figure 1. Objectives in SCoRe are resilient to inter-class bias
and intra-class variance in long-tail settings. Applying L(θ) to
(a) reduces inter-class bias by promoting inter-cluster separation
in (b) while reducing intra-class variance in (c) by inducing intra-
cluster compactness.

work. Notably, robust recognition necessitates that head and
tail classes share visual features to compensate for the sparse
examples in tail classes, a concept underscored in (Liu et al.,
2019; 2022). However, this sharing can inadvertently lead to
confusion and erroneous predictions between visually sim-
ilar objects also known as inter-class bias (Agarwal et al.,
2022; Wang et al., 2019b), depicted in Figure 1. More-
over, the prevalence of head classes often biases models (He
et al., 2016; Simonyan & Zisserman, 2015) towards them,
adversely affecting performance on tail classes. The consid-
erable variability within head classes, have been shown to
generate local sub-centers (Deng et al., 2020) that intensify
this bias and contribute to substantial intra-class variance,
also showcased in Figure 1. To effectively navigate these
complexities (further detailed in Section 2), the underly-
ing model must adeptly minimize both inter-class bias and
intra-class variance. We highlight in Section 2 that exist-

1

https://anaymajee.me/assets/project_pages/score.html
https://anaymajee.me/assets/project_pages/score.html


Submodular Combinatorial Representation Learning

Figure 2. Submodular functions f(A) in SCoRe model diversity
(A = Cluster 1) and cooperation (A = Cluster 2).

ing approaches adopt metric/contrastive learners like Sup-
Con (Khosla et al., 2020) to overcome the aforementioned
challenges. Although State-of-the-Art (SoTA) approach
SupCon shows appreciable variation to intra-class variance,
as shown in Figure 1, it fails to apply a significant penalty to
inter-class bias. This highlights the need for a joint objective
that can penalize both pitfalls during model training.

To address these limitations, we introduce a Submodular
Combinatorial Representation Learning (SCoRe) frame-
work presenting a family of combinatorial loss functions,
as outlined in Table 1, designed to effectively address the
dual challenges of intra-class variance and inter-class
bias in long-tail recognition. Our method leverages a
combinatorial perspective by formulating the input dataset
as a collection of sets (see Section 3), facilitating the use
of set-based functions (Fujishige, 2005) as potent learning
objectives. Specifically, SCoRe utilizes submodular func-
tions, which model cooperation (Jegelka & Bilmes, 2011)
(similarity) when minimized, and diversity (Lin & Bilmes,
2011; Kulesza, 2012) (dis-similarity) when maximized, due
to their property of diminishing marginal returns (Fujishige,
2005). This is illustrated in Figure 2 where a submodular
function f(A) over a set A has a low value in the presence
of low intra-class variance (cluster 1) modelling coopera-
tion and has a high value otherwise (cluster 2) modeling
diversity. We capitalize on these intrinsic properties of sub-
modular functions to design a family of objectives as shown
in Table 1 based on two well-known formulations- Total
Information and Total Correlation which model total feature
information and information gain on adding novel instances
in a class respectively. Instances in SCoRe are driven by the
strategic choice of submodular combinatorial functions as
discussed in Section 3.1 where some objectives inherently
demonstrate class-balancing (SCoRe-FL) while jointly
modelling inter-class bias and intra-class variance. We
demonstrate this in Figure 1(b, c) where SCoRe objectives
exhibit larger relative variations in tackling both intra-class
variance and inter-class bias compared to state-of-the-art
approaches, making them superior for model training. The
primary contributions of this paper are as follows:

• We introduce the novel SCoRe framework, introducing
a set-based combinatorial viewpoint to representation
learning under long-tail settings.

Figure 3. Overview of Combinatorial Objectives in SCoRe with
respect to contrastive and metric learners.

• We show that SCoRe generalizes several existing
metric/contrastive learning approaches like SupCon,
N-pairs and OPL losses which are instances of SCoRe
as shown in Figure 3 exhibiting combinatorial properties.

• Objectives in SCoRe learn better features within fewer
number of training epochs in the imbalanced (Figure 6)
setting while demonstrating faster convergence in the
balanced setting as noted in Appendix A.4).

• Lastly, introduction of SCoRe objective functions result
in outperforming State-of-the-Art (SoTA) approaches by
up to 7.6% for classification tasks and 19.4% for object
detection tasks for class-imbalanced settings like CIFAR-
10-LT, CIFAR-100-LT, MedMNIST, Imagenet-LT, IDD
and LVIS (v1.0).

2. Related Work
Long-tail Learning: Visual recognition tasks in long-tail
learning, which focus on learning from few over-represented
and many under-represented classes, have traditionally
tackled class imbalance in datasets through over-sampling
of rare classes (Chawla et al., 2002) or under-sampling of
abundant ones (Cui et al., 2019a; Zhang et al., 2021). How-
ever, these methods alter the original dataset’s distribution,
hindering model generalization. An alternative method is
re-weighting class probabilities during learning, either by
giving more weight to tail classes or restricting gradient
updates for abundant classes (Shu et al., 2019; Wang et al.,
2017; Zhou et al., 2020; Tan et al., 2020). Despite these
efforts, recent research (Zhou et al., 2020) suggests that
re-weighting strategies lead to sub-optimal representation
learning. Progress has been made through metric/contrastive
learning strategies (Cui et al., 2021; 2023; Li et al., 2021a;
Zhu et al., 2022) and two-stage training objectives requiring
extensive negative label information (Khosla et al., 2020;
Chen et al., 2020a) which are challenging to implement on
large datasets like ImageNet-LT (Liu et al., 2019). Vision
transformers (Dosovitskiy et al., 2021), combined with

2



Submodular Combinatorial Representation Learning

other techniques (Tian et al., 2022; Iscen et al., 2023),
have shown significant improvements, albeit at a high
computational cost. Recent SoTA approaches, such as (Cui
et al., 2021; 2023; Du et al., 2023; 2024), blend data
augmentation with contrastive learning. GPaCo innovates
with parametric learnable class centers (Chen et al., 2020b),
while GLMC (Du et al., 2023) introduces a loss combining
global MixUp (Zhang et al., 2018), local CutMix (Yun et al.,
2019), and a cumulative soft label reweighted loss. Notably,
all SoTA methods employ some form of contrastive
learning, underscoring its importance in long-tail learning.

Metric and Contrastive Learning: In supervised
learning, traditional models using Cross-Entropy (CE)
loss (Rumelhart et al., 1986) struggle with class imbalance
and noisy labels. Metric learning approaches (Deng et al.,
2019; Wang et al., 2018; Ranasinghe et al., 2021; Wang
et al., 2019a) address this by learning distance (Schroff
et al., 2015) or similarity (Deng et al., 2019; Wang
et al., 2018) metrics, promoting orthogonality in feature
space (Ranasinghe et al., 2021) and enhancing class-specific
feature discrimination. Contrastive learning, derived from
noise contrastive estimation (Gutmann & Hyvärinen,
2010), is prevalent in self-supervised learning (Chen
et al., 2020a; He et al., 2020; Chen et al., 2020b) where
label information is absent during training. In supervised
domains, SupCon (Khosla et al., 2020) focuses on learning
feature clusters, not just aligning features to centroids.
Triplet loss (Schroff et al., 2015) contrasts one positive
and negative pair, while N-pairs (Sohn, 2016) loss uses
multiple negative pairs, and SupCon uses multiple positive
and negative pairs. Lifted-Structure loss (Song et al., 2016)
contrasts positives with the hardest negatives. SupCon is
similar to Soft-Nearest Neighbors loss (Frosst et al., 2019),
maximizing class entanglements. Despite successes, these
methods rely on pairwise similarity metrics and may not
ensure disjoint cluster formation.

Submodular Functions are set functions that satisfy
a natural diminishing returns property. A set function
f : 2V → R (on a ground-set V) is submodular if it satisfies
f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ),∀X,Y ⊆ V (Fu-
jishige, 2005). These functions have been studied
extensively in the context of data subset selection (Kil-
lamsetty et al., 2024; Kothawade et al., 2022b; Jain et al.,
2023), active learning (Wei et al., 2015; Kothawade et al.,
2022a; Beck et al., 2021; Kaushal et al., 2019b) and
video-summarization (Kaushal et al., 2019a;c; 2021).
Submodular functions are capable of modelling diversity,
relevance, set-cover etc. which allows them to discriminate
between different classes or slices of data while ensuring
the preservation of most relevant features in each set. Very
recent developments in the field have applied submodular
functions like Facility-Location in metric learning (Oh Song
et al., 2017). Minimizing submodular functions f(A) over a

set A models cooperation (Jegelka & Bilmes, 2011) between
samples while maximizing submodular functions model
diversity (Lin & Bilmes, 2011) making these functions suit-
able for learning diverse feature clusters in representation
learning tasks which is yet to be studied in literature.

To the best of our knowledge , we are the first to demonstrate
that combinatorial objectives using submodular functions
are superior in creating tighter and well-separated feature
clusters for representation learning. We are fore-runners in
showing through Section 4 that SCoRe generalizes several
existing contrastive learning approaches while some others
can be reformulated as a superior submodular variant.

3. SCoRe: Submodular Combinatorial
Representation Learning Framework

Supervised training for representation learning tasks pro-
ceed with learning a feature extractor F (I, θ) (Krizhevsky
et al., 2012; Simonyan & Zisserman, 2015; He et al., 2016)
which projects an input image I into a D dimensional fea-
ture space r, where r = F (I, θ) ∈ RD, given parameters θ.
A classifier Clf(r, θ) operates on the embeddings produced
by F to categorize an input image I in the input dataset T
into its corresponding class label ci, where i ∈ [1, 2, ...C].
From our discussions in Section 1, representation learning
in the long-tail setting requires the learning of generalizable
features in F (I, θ), minimizing the impact of inter-class
bias and intra-class variance. Previous literature in Sec-
tion 2 has shown promise in this directions by promoting
the learning of discriminative features by F (I, θ), attributed
to be a function of a learning objective L(θ).

SCoRe introduces a family of Combinatorial Loss
Functions, L(θ) as shown in Table 1, which trains the
feature extractor F over all classes C in the dataset
T . SCoRe differs from existing approaches in the field
through the introduction of a set-based combinatorial
viewpoint by defining a dataset T as a collection of sets,
T = {A1, A2, · · · , A|C|} over classes (now represented
as sets Ak) in T . Objectives in SCoRe further differ from
previous works, by adopting submodular functions (Fu-
jishige, 2005; Iyer et al., 2022) as learning objectives,
which inherently model cooperation (Jegelka & Bilmes,
2011) and diversity (Lin & Bilmes, 2011) by the virtue
of their diminishing marginal returns property (Fujishige,
2005). Adopting such a formulation in representation
learning thus enforces cooperation within each class while
promoting diversity between classes through L(θ), leading
to the learning of discriminative class-specific features.
Additionally, submodular functions model the information
contained in a set A (class in SCoRe) irrespective of its
size, motivating their application in long-tail settings. We
adapt this viewpoint in Section 3.1 and propose two distinct
formulations of combinatorial objectives - Total Information

3



Submodular Combinatorial Representation Learning

Table 1. Summary of various instantiations of SCoRe and their respective combinatorial properties (detailed derivations in section A.7
of the appendix).

Objective Function Equation L(θ)
Combinatorial

Property

Triplet Loss (Schroff et al., 2015)
∑|C|

k=1
1

|Ak|
[
∑

i,p∈Ak,
n∈V\Ak

max(0, D2
ip(θ)−D2

in(θ) + ϵ)] Not Submodular

SNN (Frosst et al., 2019)
∑|C|

k=1
−1
|Ak|

∑
i∈Ak

log
∑

j∈Ak
exp(Sij(θ)) +

1
|Ak|

log
∑

i∈Ak
j∈V\Ak

exp(Sij(θ)) Not Submodular

N-Pairs Loss (Sohn, 2016)
∑|C|

k=1
−1
|Ak|

∑
i,j∈Ak

Sij(θ) +
1

|Ak|
∑

i∈Ak
log(

∑
j∈V Sij(θ)− 1) Submodular

OPL (Ranasinghe et al., 2021)
∑|C|

k=1
1

|Ak|
(1−

∑
i,j∈Ak

Sij(θ)) +
1

|Ak|
∑

i∈Ak

∑
j∈V\Ak

Sij(θ) Submodular

SupCon (Khosla et al., 2020)
∑|C|

k=1[
−1
|Ak|

∑
i,j∈Ak

Sij(θ)] +
∑

i∈Ak

1
|Ak|

log(
∑

j∈V exp(Sij(θ))− 1) Submodular

Submod-Triplet
∑|C|

k=1
1

|Ak|
∑

i∈Ak
n∈V\Ak

S2
in(θ)−

∑
i,p∈A S2

ip(θ) Submodular

Submod-SNN
∑|C|

k=1
1

|Ak|
∑

i∈Ak
[log

∑
j∈Ak

exp(Dij(θ)) + log
∑

j∈V\Ak
exp(Sij(θ))] Submodular

SupCon-Var
∑|C|

k=1
−1
|Ak|

∑
i,j∈Ak

Sij(θ) +
1

|Ak|
∑

i∈Ak
log

∑
j∈V\Ak

exp(Sij(θ)) Submodular

SCoRe-GC [Sf ] (ours)
∑|C|

k=1
1

|Ak|
[
∑

i∈Ak

∑
j∈V\Ak

Sij(θ)− λ
∑

i,j∈Ak
Sij(θ)] Submodular

SCoRe-GC [Cf ] (ours)
∑|C|

k=1
λ

|Ak|
∑

i∈Ak

∑
j∈V\Ak

Sij(θ) Submodular

SCoRe-LogDet [Sf ] (ours)
∑|C|

k=1
1

|Ak|
log det(SAk (θ) + λI|Ak|) Submodular

SCoRe-LogDet [Cf ] (ours)
∑|C|

k=1
1

|Ak|
[log det(SAk (θ) + λI|Ak|)− log det(SV(θ) + λI|V|)] Submodular

SCoRe-FL [Cf / Sf ] (ours)
∑|C|

k=1
1

|V|
∑

i∈V\Ak
maxj∈AkSij(θ) Submodular

(LSf
(θ)) and Total Correlation (LCf

(θ)), that inherently
model inter-class bias and intra-class variance to learn
compact yet well-separated class-specific feature clusters.

Training and evaluation of models through the SCoRe frame-
work follows Khosla et al. (2020) and occurs in two stages.
The first stage trains F (I, θ) to learn discriminative features
through the newly introduced objectives L(θ), while the sec-
ond stage trains the classifier Clf(F (I, θ)) (F is frozen) us-
ing the standard cross-entropy loss (Rumelhart et al., 1986).

3.1. Combinatorial Loss Functions

Given an input data batch (referred to as ground set),

V =
|C|
∪

k=1
Ak, and a submodular function f(Ak; θ) over a

set Ak, we define a loss L(θ) which is an instantiation of
submodular information functions. Here, Ak is a set rep-
resenting each class in the dataset T , k ∈ [1, C] and f is
defined with similarity kernels S, which depends on the pa-
rameters θ. We propose two flavors of information measures
from (Iyer et al., 2022), the Total Submodular Informa-

tion: Sf (A1, A2, A3, . . . , A|C|) =
|C|∑
k=1

f(Ak) and the To-

tal Submodular Correlation: Cf (A1, A2, A3, . . . , A|C|) =∑|C|
k=1 f(Ak) − f(

|C|
∪

k=1
Ak). In context of representation

learning, Sf captures the total information contained in an
object class (referred to as set) Ak ∈ T while Cf captures
the gain in information when new features are added to the

set Ak. Using the aforementioned Sf and Cf formulations,
we can define two variants of combinatorial loss functions
L(θ) for long-tail recognition tasks:

LSf
(θ) =

|C|∑
k=1

1

Nf (Ak)
f(Ak; θ),

LCf
(θ) =

|C|∑
k=1

1

Nf (Ak)

[
f(Ak; θ)− f(

|C|
∪

k=1
Ak; θ)

] (1)

Where, Nf (Ak) is the normalization constant over each set
in T . As discussed in Section 3, minimizing a submodular
function f(Ak; θ) through L(θ) over a set Ak captures
cooperation (Jegelka & Bilmes, 2011; Iyer & Bilmes, 2015)
between samples in the set, while maximizing f(Ak; θ)
captures diversity / coverage (Lin & Bilmes, 2011; Iyer,
2015) between sets. Consequently, objective LSf

(θ) which
minimizes Sf enforces intra-cluster compactness by
maximizing cooperation within each set Ak (minimizing
f(Ak; θ) over each set Ak). Further, LCf

(θ) which
minimizes Cf enforces both intra-cluster similarity (first
term in LCf

) and inter-cluster separation (by maximizing
f(∪kAk)). LCf

achieves inter-cluster separation by maxi-
mizing diversity between orthogonal sets in T . We introduce
several instantiations of the above formulations in our frame-
work based on the choice of the underlying submodular
function f(Ak; θ) producing a family of objective functions
as shown in Table 1 for representation learning tasks.
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3.1.1. INSTANTIATIONS OF COMBINATORIAL
OBJECTIVES IN SCORE

By varying the choice of submodular function f(A) in
SCoRe we propose several novel objective functions in
Table 1. It is interesting to note that, our combinatorial
objectives adopt a pairwise similarity kernel Sij(θ) similar
to existing approaches discussed in Section 2. However,
SCoRe objectives utilize the similarity kernel only to
compute feature interactions between samples, differing
from existing approaches in the aggregation of pairwise
similarities to compute total information/ correlation
for a class Ak ∈ T . In practice, we adopt the cosine
similarity metric Sij(θ) as used in Khosla et al. (2020),

defined as Sij(θ) =
F (Ii,θ)

T·F (Ij ,θ)
||F (Ii,θ)||·||F (Ij ,θ)|| to produce three

novel instantiations namely - SCoRe-FL, SCoRe-GC and
SCoRe-LogDet based upon popular submodular functions
in Iyer (2015); Kaushal et al. (2019a;c) - Graph-Cut,
Facility-Location and Log-Determinant respectively.

SCoRe-FL based objective function minimizes the
maximum similarity Sij (where i ̸= j) between orthogonal
sets (different class labels).
Theorem 3.1. If f(A, θ) =

∑
i∈V

max
j∈A

Sij(θ) represents the

facility-location function over a set A then, LSf
(θ) and

LCf
(θ) shown in Equation (2) represents the SCoRe-FL

objective with Nf (Ak) = |V|. Both LSf
(θ) and LCf

(θ)
differ by a constant.

LSf
(θ) =

|C|∑
k=1

1

|V|
∑

i∈V\Ak

max
j∈Ak

Sij(θ) + 1,

LCf
(θ) =

|C|∑
k=1

1

|V|
∑

i∈V\Ak

max
j∈Ak

Sij(θ)

(2)

Evident in its form in Equation (2), SCoRe-FL promotes
large inter-cluster separation by minimizing the similarity
between the hardest negative pair between V \ Ak and
Ak.Additionally, SCoRe-FL inherently introduces a
class balancing property making it an inevitable choice for
learning in long-tail settings detailed in Section 3.1.3.

SCoRe-GC objective minimizes the feature similarity
between representations of a positive set Ak and the
remaining negative sets V \ Ak while maximizing the
similarity among features in each set Ak.

Theorem 3.2. If f(A, θ) =
∑

i∈A,j∈V

Sij(θ) −

λ
∑

i,j∈A Sij(θ) represents the Graph-Cut function over
a set A then, LSf

(θ) and LCf
(θ) shown in Equation (3)

represents the SCoRe-GC objective, normalized by |Ak|.

LSf
(θ) =

|C|∑
k=1

1

|Ak|

[ ∑
i∈Ak,

j∈V \Ak

Sij(θ)− λ
∑

i,j∈Ak

Sij(θ)

]
,

LCf
(θ) =

|C|∑
k=1

λ

|Ak|
∑
i∈Ak,

j∈V \Ak

Sij(θ)

(3)

The hyper-parameter λ Lin & Bilmes (2011) controls
the weightage of the loss to intra-class compactness over
inter-cluster separation and is ablated upon in Table 7.
It is interesting to note that SCoRe-GC jointly models
inter-cluster separation and intra-cluster compactness.
Minimizing the first term in SCoRe-GC (−

∑
i,j∈Ak

Sij)
promotes intra-cluster compactness, while the second term
(
∑

i∈Ak

∑
j∈V\Ak

Sij(θ)) penalizes cluster overlaps i.e.
promoting inter-class separation. Note that Orthogonal
Projection Loss (OPL) and a version of Triplet Loss are
special cases of of the GC based loss function.

SCoRe-LogDet presents an unique perspective by mod-
elling the volume of a set Ak in the embedding space.
Theorem 3.3. If f(A, θ) = log det(SA(θ) + λI|A|)
represents the Log-Determinant function over a set A then,
LSf

(θ) and LCf
(θ) shown in Equation (4) represents the

SCoRe-LogDet objective which models the volume of each
set Ak ∈ T . I|Ak| and I|V| indicate identity terms and
Nf (Ak) = |Ak|, introduced for numerical stability.

LSf
(θ) =

|C|∑
k=1

1

|Ak|
log det(SAk

(θ) + λI|Ak|),

LCf
(θ) =LSf

(θ)−
|C|∑
k=1

1

|Ak|
log det(SV(θ) + λI|V|)

(4)

Minimizing SCoRe-LogDet over a set Ak through LSf

minimizes the cluster volume of Ak inherently reducing
intra-class variance. LCf

(which empirically we see works
better) captures both intra-cluster similarity and inter-cluster
dissimilarity by additionally maximizing the diversity in the
feature space V . Note that the additive term I|Ak| indicates
an identity term introduced for numerical stability.

Proofs for all theorems are provided in Appendix A.6.
Our experiments in Section 4 indicate that adopting
set-based objectives defined in SCoRe outperforms existing
metric/contrastive loss functions.

3.1.2. SCORE GENERALIZES EXISTING
METRIC/CONTRASTIVE LEARNING OBJECTIVES

From the formulations in Table 1 we observe that SCoRe
generalizes to several metric/contrastive learning ob-
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Figure 4. Resilience to Intra-Class Variance and Inter-Class Bias under the Long-tail setting. Case 1 demonstrates no intra-class
variance and inter-class bias, while case 2 demonstrates larger variance for the head class wile case 3 demonstrates larger variance for the
tail class inducing inter-cluster overlaps. The details of the experiment have been enclosed in Appendix A.2.

jectives which inherently demonstrate combinatorial
properties. We provide proofs in Appendix A.7. N-
pairs (Sohn, 2016) and OPL (Ranasinghe et al., 2021) and
SupCon (Khosla et al., 2020) are all instances of SCoRe and
are submodular (in the Sf form), exhibiting combinatorial
properties. On the other hand, Triplet (Schroff et al., 2015)
and SNN (Frosst et al., 2019) losses are not instances of
SCoRe in their original form while their algebraically mod-
ified forms - Submod-Triplet and Submod-SNN as shown
in Table 1 are instances of SCoRe and outperform their
non-submodular counterparts.

Analyzing SoTA approach SupCon as shown in Table 1
we decompose it into an intra-class (−

∑
i,j∈Ak

Sij)
and an inter-class (log(

∑
i∈Ak,j∈V exp(Sij)) term. The

inter-class term is computed over V which includes Ak,
enforcing separation between samples in Ak which is
counter intuitive to the task at hand, hindering its capability
to overcome inter-class bias. This is demonstrated by the
low variation in the SupCon objective in the presence of
large inter-class bias in Figure 1(b). To overcome this pitfall
in SupCon we introduce, SupCon-Var (row 9 of Table 1)
which minimizes the maximum similarity between a set Ak

and V \ Ak in the inter-class term emerging as a stronger
objective over SupCon in overcoming inter-class bias (the
intra-class term is similar to SupCon).

3.1.3. CONTRASTING INSTANTIATIONS OF SCORE

In this section we discuss some of the properties of
combinatorial objectives, through experiments on synthetic
data (refer Figure 4) which upholds our claim towards their
application in long-tail recognition tasks. Although their
properties largely depends on the choice of the submodular
function f(Ai; θ) we enlist some unique ones favorable to
long-tail settings.

• SCoRe Objectives model Information in a Set. Unlike
exiting approaches, the novel formulations in SCoRe
model total information (LSf

) contained in a class (Ak)
and the gain in information when new instances are added
to Ak (LCf

), irrespective of the the size of the class. This
viewpoint in representation learning is novel to SCoRe.

• SCoRe-FL demonstrates inherent Class-balancing,
equally weighting tail classes in contrast to head ones
in model training. Unlike SoTA approaches (Khosla
et al., 2020; Zhu et al., 2022; Chen et al., 2020a) that
scale linearly with the size of the set |Ak|, SCoRe-FL
has an inverse relation, and scales with respect to V \Ak

(
∑

i∈V\Ak
maxj∈Ak

Sij(θ)). This inherently introduces
class balancing critical in long-tail settings. Figure 4
shows that, with increase in variance of the tail class
(marked in orange) over the head class in case 3, SCoRe-
FL and SCoRe-GC provide a larger relative penalty to the
model than SoTA contrastive learners (Khosla et al., 2020;
Chen et al., 2020a). Interestingly, the relative penalty
applied by SCoRe-FL is significantly larger in case 3 than
in case 2, where the variance of the head class (marked
in blue) is larger than the tail. This highlights the class-
balancing behavior in SCoRe-FL, thereby establishing
its effectiveness in long-tail recognition tasks.

• SCoRe-LogDet is a volumetric function and models the
volume of a feature cluster (Fujishige, 2005), minimizing
which shrinks the cluster volume resulting in reduced
intra-class variance (LSf

). Additionally, maximizing the
cluster volume over all sets (LCf

) in the dataset maxi-
mizes diversity among clusters mitigating inter-class bias.

4. Experiments
We perform experiments on several long-tail vision bench-
marks to show the effectiveness of objectives in SCoRe.

4.1. Datasets and Experimental Setup

CIFAR-10-LT consists of 10 disjoint classes with im-
balance factors (IFs) ranging from 10 to 100 (Liu et al.,
2019). The dataset is created by randomly sampling the
balanced CIFAR-10 (Krizhevsky, 2009) dataset based on
an exponentially decaying function with IF as rate of decay.
Additionally, we introduce a pathological benchmark based
on a step distribution by exploiting the hierarchy already
available (living vs non-living objects) in the dataset. The
data distributions of the adopted benchmarks are depicted
in Figure 7(a, b).
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Table 2. Multi-class classification performance (Top1-Accuracy %) of combinatorial objectives in SCoRe (shaded in Green ) against
existing approaches in Longtail recognition for CIFAR-10-LT and CIFAR-100-LT datasets for varying Imbalance Factors (IF).

Method CIFAR-10-LT CIFAR-100-LT
IF=100 50 10 100 50 10

CE 70.4 74.8 86.4 38.3 43.9 55.7
Focal Loss (Lin et al., 2017) 70.38 76.72 86.66 38.41 44.32 55.78

Class/ Weight Balanced

BBN (Zhou et al., 2020) 79.82 82.18 88.32 42.56 47.02 59.12
CB-Focal (Cui et al., 2019b) 74.6 79.3 87.1 39.6 45.2 58
LogitAjust (Menon et al., 2021) 80.92 - - 42.01 47.03 57.74
weight balancing (Alshammari et al., 2022) - - - 53.35 57.71 68.67

Augmentation Based
Mixup (Zhang et al., 2018) 73.06 77.82 87.1 39.54 54.99 58.02
RISDA (Chen et al., 2022) 79.89 79.89 79.89 50.16 53.84 62.38
CMO (Park et al., 2022) - - - 47.2 51.7 58.4

Ensemble Classifier RIDE (3 experts) + CMO (Wang et al., 2021) - - - 50 53 60.2
RIDE (3 experts) (Wang et al., 2021) - - - 48.6 51.4 59.8

SSL-Pretraining

KCL (Kang et al., 2021) 77.6 81.7 88 42.8 46.3 57.6
TSC (Li et al., 2022) 79.7 82.9 88.7 42.8 46.3 57.6
SSD (Li et al., 2021b) - - - 46.0 50.5 62.3
BCL (Zhu et al., 2022) 84.32 87.24 91.12 51.93 56.59 64.87
PaCo (Cui et al., 2021) 85.11 87.07 90.79 52.0 56.0 64.2
PaCo + SCoRe-FL (ours) 85.61 87.49 91.80 53.71 56.84 65.13

One-Stage training GLMC (Du et al., 2023) 88.50 91.04 94.90 58.0 63.78 73.43
GLMC + SCoRe-GC (ours) 89.38 90.32 94.67 60.01 63.16 73.50
GLMC + SCoRe-FL (ours) 92.33 93.87 94.93 61.33 64.90 73.78

CIFAR-100-LT is an extension of (Krizhevsky, 2009)
with fine-grained labels. CIFAR-100-LT is also created by
sampling its balanced counterpart based on an exponentially
decaying function (IFs ranging from 10 to 100) but contains
several few-shot classes (less than 20 instances per class).

ImageNet-LT introduced in (Liu et al., 2019), is a subset
of the ImageNet (Deng et al., 2009) dataset consisting of
115.8K images from 1000 categories. The dataset shows
severe imbalance following an exponentially decreasing
distribution with a maximum and minimum of 1280 and
5 images per class.

MedMNIST (Yang et al., 2023) demonstrates real-world
imbalance in medical datasets. We adopt the OrganAMNIST
and DermaMNIST subsets of MedMNIST as they present
extreme class-imbalance. OrganAMNIST consists of 41072
axial slices from CT volumes, highlighting 11 distinct organ
structures while DermaMNIST contains 8010 samples of
7 different varieties of pigmented skin lesions. The data
distributions of the adopted benchmarks are depicted in
Figure 7(c, d).

IDD (Varma et al., 2019) depicts ∼ 41K real-world traffic
scenarios characterized by longtail imbalance, high traffic
density and large variability among object classes (Majee
et al., 2021). IDD consists of ∼ 31K training examples
and 10.2K validation images for the object detection task.
Figure 8 depicts the data distribution of IDD highlighting
the imbalance in the dataset.

LVIS (Gupta et al., 2019) dataset encapsulates 1203
commonplace objects from the MS-COCO (Lin et al., 2014)
detection dataset (which consisted of 80 total classes) with
extreme imbalance among classes. Every category in LVIS
is assigned a distinct identifier from WordNet (Miller, 1995).

Table 3. Longtail Recognition performance (Top-1 Acc %) on
ImageNet-LT dataset. We show that objectives in SCoRe(shaded
in Green ) generalize to existing SoTA approaches with improved
overall performance. * indicates models trained with ResNet-50 as
backbone.

Method ImageNet-LT
Many Med Few All

CE* (Baum & Wilczek, 1987) 64.0 33.8 5.8 41.6
SupCon* (Khosla et al., 2020) 53.4 2.9 0.0 22.0
CB-Focal* (Cui et al., 2019b) 39.6 32.7 16.8 33.2
LDAM* (Cao et al., 2019) 60.4 46.9 30.7 49.8
KCL* (Kang et al., 2021) 61.8 49.4 30.9 51.5
TSC* (Li et al., 2022) 63.5 49.7 30.4 52.4
BCL (Zhu et al., 2022) 67.9 54.2 36.6 57.1
RIDE (Wang et al., 2021) (3 experts) 66.4 53.9 35.6 56.2
PaCo (Cui et al., 2021) (400 epochs) 63.6 55.6 34.9 55.6
PaCo + SCoRe-GC (ours) 69.4 44.5 16.7 50.2
PaCo + SCoRe-FL (ours) 68.9 55.8 32.3 57.5
GLMC (Du et al., 2023) 70.1 52.4 30.4 56.1
GLMC + SCoRe-GC (ours) 68.7 52.4 31.5 55.7
GLMC + SCoRe-FL (ours) 71.4 56.2 36.6 59.3

The training dataset comprises a total of 100,000 images,
encompassing 1.3 million instances, and the validation set
contains 20,000 images.

For CIFAR-10-LT and CIFAR-100-LT experiments (refer
Table 2) we follow the experimental setup of (Du et al.,
2023) and adopt a ResNet-32 (He et al., 2016) backbone.
We adopt the setup of PaCo (Cui et al., 2023) for the experi-
ments on ImageNet-LT with a ResNeXt-50 (Xie et al., 2016)
backbone. Additionally, for contrasting against existing met-
ric/contrastive learners under long-tail settings of CIFAR-10
and MedMNIST (refer Table 5) we follow the experimental
setup of (Khosla et al., 2020) with a ResNet-50 (He et al.,
2016) backbone. Finally, we adopt the Faster-RCNN +
FPN (Lin et al., 2017) architecture with a ResNet-101 back-
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Table 4. Object detection performance on IDD and LVIS
datasets: Applying our combinatorial objectives on a Faster-
RCNN + FPN model produces the best Mean Average Precision
(mAP ) on real-world class-imbalanced settings.

Method Backbone and head mAP mAP50 mAP75

India Driving Dataset (IDD)
YOLO -V33(Redmon & Farhadi, 2018) Darknet-53 11.7 26.7 8.9
Poly-YOLO4 (Hurtı́k et al., 2020) SE-Darknet-53 15.2 30.4 13.7
Mask-RCNN4 (He et al., 2017) ResNet-50 17.5 30.0 17.7
Retina-Net (Lin et al., 2017) ResNet-50 + FPN 22.1 35.7 23.0
Faster-RCNN (Ren et al., 2015) ResNet-101 27.7 45.4 28.2
Faster-RCNN + FPN ResNet-101 + FPN 30.4 51.5 29.7
Faster-RCNN + SupCon ResNet-101 + FPN 31.2 53.4 30.5
Faster-RCNN + SCoRe-GC [Cf ] ResNet-101 + FPN 33.6 56.0 34.6
Faster-RCNN + SCoRe-FL [Sf/Cf ] ResNet-101 + FPN 36.3 59.5 37.1

LVIS Dataset
Faster-RCNN + FPN ResNet-101 + FPN 14.2 24.4 14.9
Faster-RCNN + SupCon ResNet-101 + FPN 14.4 26.3 14.3
Faster-RCNN + SCoRe-GC [Cf ] ResNet-101 + FPN 17.7 29.1 18.3
Faster-RCNN + SCoRe-FL [Sf/Cf ] ResNet-101 + FPN 19.1 30.5 20.3

bone in the Detectron22 framework for experiments on IDD
and LVIS datasets. We train all our models on 2 NVIDIA
A6000 GPUs with code released at https://github.
com/amajee11us/SCoRe.git. More details on the
datasets, experimental setup and hyper-parameters for
individual experiments in section A.2 of the appendix.

4.2. Results on Long-tail Image Classification

Benchmark Results: At first, we conduct experiments on
the long-tail benchmarks of CIFAR-10-LT, CIFAR-100-LT
and ImageNet-LT outlined in (Liu et al., 2019). To the SoTA
approaches in long-tail recognition - PaCo and GLMC, we
introduce the proposed combinatorial objectives in SCoRe
as auxiliary supervision head. For the results on CIFAR-10-
LT and CIFAR-100-LT we adopt the benchmark published
in GLMC (Du et al., 2023) with addition of combinatorial
objectives as tabulated in Table 2. We compare objectives in
SCoRe against class balancing (row 2,3) / weight balancing
techniques (row 4,5), augmentation based approaches (rows
6, 7, 8) and approaches adopting auxiliary supervision
(mostly self-supervised) in training (rows 9 - 14). We
observe that addition of SCoRe objectives, specifically
SCoRe-FL improves overall performance across various
degrees of imbalance (denoted as IF in Table 2), upto
1.11% over PaCo and 4.33% over GLMC (IF=100) for the
CIFAR-10-LT dataset. In particular, the gain in performance
is significant under severe imbalance (IF=100) whereas, in
a more balanced setting (IF=10) the performance boost is
incremental. We show that the aforementioned observation
continues to hold in CIFAR-100-LT (containing fine-grained
labels and few-shot classes) with 3.29% gain over PaCo and
5.74% gain over GLMC (IF=100), where introduction of
combinatorial objectives boosts performance in all settings
significantly on ones with large imbalance (IF=100).

Secondly, experiments conducted on ImageNet-LT shown
in Table 3 clearly demonstrates the supremacy of objectives

2https://github.com/facebookresearch/
detectron2

3Results are from (Hurtı́k et al., 2020).

Table 5. Multi-class classification performance (Top1-Accuracy
%) of combinatorial objectives in SCoRe (shaded in Green )
against existing approaches in metric learning and their submodular
instances (shaded in blue ) on Class-Imbalanced CIFAR-10-LT
(columns 2 - 3) and MedMNIST (columns 4 - 5) datasets.

Objective Function
CIFAR-10-LT MedMNIST

LongTail Pathological OrganMNIST Derma
IF=10 Step (Axial) MNIST

Cross-Entropy (CE) 86.44 74.49 81.80 71.32
Triplet Loss (Schroff et al., 2015) 85.94 74.23 81.10 70.92
N-Pairs (Sohn, 2016) 89.70 73.10 84.84 71.82
Lifted Structure Loss (Song et al., 2016) 82.86 73.98 84.55 71.62
SNN (Frosst et al., 2019) 83.65 75.97 83.85 71.87
Multi-Similarity Loss (Wang et al., 2019a) 82.40 76.72 85.50 71.02
SupCon (Khosla et al., 2020) 89.96 78.10 87.35 72.12
Submod-Triplet (ours) 89.20 74.36 86.03 72.35
Submod-SNN (ours) 89.28 78.76 86.21 71.77
SupCon-Var (ours) 90.81 81.31 87.48 72.51
SCoRe-GC [Sf ] (ours) 89.20 76.89 86.28 69.10
SCoRe-GC [Cf ] (ours) 90.83 87.37 87.57 72.82
SCoRe-LogDet [Cf ] (ours) 90.80 87.00 87.00 72.04
SCoRe-FL [Cf / Sf ] (ours) 91.80 87.49 87.22 73.77

in SCoRe which demonstrate combinatorial properties by
outperforming SoTA approaches like PaCo (Cui et al., 2023)
and GLMC (Du et al., 2023) by 2.1% (All category) and
3.6% respectively. Introduction of combinatorial objectives
like SCoRe-FL significantly improves performance on the
tail classes without significant loss in performance on head
ones reinstating the inherent class-balancing property of
SCoRe-FL. However, we observe a drop in performance
in performance in the few-shot (Few) and comparable
performance in many shot (Many) settings. This can be
attributed to the objectives guiding the model to overfit on
the tail classes during training. For all datasets in the afore-
mentioned benchmarks, it is interesting to note that SCoRe
objectives augment the underlying architecture in existing
SoTA approaches (Cui et al., 2023) thus demonstrating the
generalizability of our objectives in this domain.

Generalization to Existing Metric/Contrastive Learners:
Table 5 compares the performance of the newly introduced
objectives in SCoRe against existing metric/contrastive
learners on the framework in (Khosla et al., 2020). We con-
duct experiments on the Longtail (IF=10) and step distribu-
tions of the CIFAR-10 dataset (refer Appendix A.2). The
combinatorial objectives in SCoRe, namely the SCoRe-FL
objective shows a 2% and 7.6% improvement over SupCon
for the longtail and step distributions respectively. Even
the reformulated submodular objectives - Submod-Triplet,
Submod-SNN and SupCon-Var demonstrate upto 3.5%,
3.7% and 4.11% respectively over their non-submodular
counterparts. Further, we demonstrate the effectiveness
of the SCoRe objectives on the naturally imbalanced
OrganAMNIST and DermaMNIST subsets of MedMNIST
in Table 5 (columns 4,5). SCoRe objectives outperform
SoTA approaches by 0.25% (as shown by SCoRe-GC over
SupCon) and 1.5% (as shown by SCoRe-FL over SupCon)
for OrganMNIST and DermaMNIST respectively. Similar
to CIFAR-10 benchmark we also observe that, submodular
counterparts of existing contrastive losses consistently
outperform their non-submodular counterparts.
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Figure 5. Comparison of Confusion Matrix plots between (a) SupCon (Khosla et al., 2020), (b) Graph-Cut (GC), (c) Log Determinant,
and (d) Facility Location (FL) for the longtail imbalanced setting of CIFAR-10 dataset. We show a significant reduction in inter-class bias
when employing combinatorial objectives in SCoRe characterized by reduced confusion between classes.

Figure 6. SCoRe demonstrates faster learning of discriminative
representations in CIFAR-10 with fewer training epochs for both
longtail and step imbalanced settings.

Discriminative Clustering and Convergence: We
compare confusion matrix plots on predicted class labels
after stage 2 of model training for the CIFAR-10-LT
(IF=10) dataset. Plots in Figure 5 show that SupCon shows
∼ 22% overall confusion with elevated confusion between
the animal hierarchy of CIFAR-10. Both SCoRe-GC and
SCoRe-LogDet demonstrate confusion between structurally
similar objects like cat and dog (4-legged animals). Inter-
estingly, a significant drop in confusion is observed when
adopting SCoRe-FL with a minimum of 8.2%. The reduc-
tion in confusion by objectives proposed in SCoRe points
to a reduction in inter-class bias (Majee et al., 2021). This
is correlated to reducing the impact of class-imbalance due
to formation of discriminative feature clusters.

Finally, from Figure 6 we show that SCoRe facilitates
the learning robust feature representations within
significantly fewer training epochs. Although we see a
larger performance gain in the long-tail setting (SCoRe-FL)
(Figure 6(a,b)), SCoRe demonstrates a faster convergence in
the balanced setting as well as discussed in Appendix A.4.

4.3. Results on Class-Imbalanced Object Detection

We benchmark the performance of our approach against
SoTA object detectors which adopt Focal Loss (Lin et al.,

2017), data-augmentations etc. At first, we introduce a
contrastive learning based objective (SupCon) in the box
classification head of the object detector and show that
contrastive learning outperforms standard model training
(using CE loss) on IDD by 3.6 % (1.9 mAP50 points) and
10.6% (2.8 mAP50 points) on LVIS datasets. Secondly, we
introduce the objectives in SCoRe to the box classification
head and show that they outperform the SoTA as well as
the contrastive learning objective (Khosla et al., 2020). The
results in Table 4 show that the SCoRe-FL and SCoRe-GC
objectives outperform the SoTA method by 6.1 mAP50

and 2.6 mAP50 points respectively on IDD, alongside 6.1
mAP50 and 4.7 mAP50 points respectively on LVIS. Addi-
tionally, from the class-wise performance on IDD as shown
in Figure 8, SCoRe objectives demonstrate a sharp rise in
performance (mAP50 value) of the rare classes (a maximum
of 6.4 mAP points for Bicycle class) over SoTA objectives.

5. Conclusion
The SCoRe framework introduces a novel family of
combinatorial objectives based on submodular information
measures, designed to address long-tail imbalance in
real-world vision tasks. A key strength of SCoRe is its
ability to present new methodologies alongside generalizing
to existing metric and contrastive learners. Empirically,
SCoRe demonstrates remarkable effectiveness, achieving
up to 5.74% improvement in classification tasks on datasets
like CIFAR-10-LT, CIFAR-100-LT and MedMNIST, 2.1%
on ImageNet-LT and an impressive 19.4% enhancement
in object detection on challenging datasets such as the
Indian Driving Dataset (IDD) and LVIS. The integration
of combinatorial counterparts of existing objectives further
underscores SCoRe’s versatility, leading to significant
performance gains and validating its efficacy in managing
class imbalance. SCoRe’s bridging of novel and established
learning strategies marks a substantial contribution to the
field, offering a robust solution for real-world applications.
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A. Appendix
A.1. Notations

Following the problem definition in Section 3 we introduce several important notations in Table 6 that are used throughout
the paper.

Table 6. Collection of notations used in the paper.
Symbol Description

T The training Set. |T | denotes the size of the training set.
V Ground set containing feature vectors from all classes in T .

F (x, θ) Convolutional Neural Network used as feature extractor.
Clf(., .) Multi-Layer Perceptron as classifier.

θ Parameters of the feature extractor.
Sij(θ) Similarity between images i, j ∈ T .
Dij(θ) Distance between images i, j ∈ T .

p Positive sample which is of the same class ci as the anchor a.
n Negative sample which is of the same class ci as the anchor x.
Ak Target set containing feature representation from a single class k ∈ ci.
f(A) Submodular Information function over a set A.
Sf Variant of submodular information function denoting total information in the ground set V .
Cf Variant of submodular information function denoting total correlation in the ground set V .
L(θ) Loss value computed over all classes ci ∈ C.

f(Ak, θ) Instantiation of objective functions in SCoRe over a set/class Ak given parameters θ.
AK Actinic Keratoses

BCC Basal Cell Carcinoma
KLL Keratosis-Like-Lesions
DF Dermatofibroma
M Melanoma

MN Melanocytic Nevi
VL Vascular Lesions

A.2. Experimental Setup : Additional Information

In this section we iron out the dataset details, training and inference settings of various datasets/tasks encompassed in the
SCoRe framework.

A.2.1. CLASS-IMBALANCED IMAGE CLASSIFICATION ON CANNONICAL BENCHMARKS

CIFAR-10-LT and CIFAR-100-LT: Following the discussion on the choices of datasets introduced by the OLTR (Liu
et al., 2019) benchmark in Section 4 we vary the Imbalance Factors (IF) of an exponentially decaying function to sample the
CIFAR-10 and CIFAR-100 datasets to create their respective long-tail counterparts. We vary the imbalance factors between
10, 50 and 100 to produce pathologically imbalanced datasets. The higher the value of IF, the larger is the number of tail
classes a sample of which for IF=10 is depicted in Figure 7. Additionally we introduce a step function based imbalance
setting which exploits the hierarchy already available in CIFAR-10. The CIFAR-10 dataset can be broadly classified into
animal and automobile classes. We use this information to subsample the animal (chosen at random) class objects to create
an imbalanced step data distribution. The distributions of the dataset is depicted in Figure 7.

For contrasting against SoTA metric/contrastive learners in Table 5, we train our models by adopting the training strategy of
(Khosla et al., 2020) and release the codebase at https://github.com/amajee11us/SCoRe.git. For stage 1 we
train a ResNet-50 backbone with a batch size of 512 (1024 after augmentations) with an initial learning rate of 0.4, trained
for 1000 epochs with a cosine annealing scheduler and a temperature for the combinatorial objectives to be 0.7. In stage 2
we freeze the backbone and use the output of the final pooling layer to train a linear classifier Clf with a batch size of 512
and a constant learning rate of 0.8.
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Figure 7. Data Distribution of CIFAR-10 and MedMNIST datasets under the class-imbalanced setting. Subfigure (a,b) depicts the
longtail and step based pathological class imbalanced settings in CIFAR-10 and (c,d) depicts the naturally imbalanced OrganAMNIST
and DermaMNIST6datasets respectively.

Further, for contrasting against existing SoTA approaches in Long-Tail recognition as shown in Table 2 for both CIFAR-10
and CIFAR-100 datasets, we introduce the objectives defined in SCoRe into the existing frameworks of SoTA approaches
like GLMC (Du et al., 2023) and PaCo (Cui et al., 2021). For PaCo we replace its contrastive objective - MoCo (He et al.,
2020) with the combinatorial objectives in SCoRe, while for GLMC we introduce our novel objectives to contrast between
local and global features in the original architecture.

ImageNet-LT : Unlike CIFAR-10, ImageNet (Deng et al., 2009) dataset presents a large scale image recognition
benchmark. Similar to CIFAR-10 authors in (Liu et al., 2019) subsample this dataset to introduce a pathological imbalance.
In contrast to CIFAR-10 ImageNet contains 1000 classes and the longtail version ImageNet-LT contains severe imbalance
with a maximum of 1280 and minimum of 5 instances for a particular class in the dataset4.

For the ImageNet-LT dataset we follow the training and inference strategy adopted by PaCo (Cui et al., 2023) with
modifications to the objective functions which are released at https://github.com/amajee11us/SCoRe/blob/
main/objectives/combinatorial/PaCoFL.py (for SCoRe-FL loss function). Unlike the CIFAR-10 dataset
PaCo adopts a one stage training strategy where we train the model for 400 epochs on a ResNeXt-50 (Xie et al., 2016)
backbone with an initial learning rate of 0.1 and a cosine annealing scheduler. The model is trained on 4 GPUs, with a batch
size of 32 on each GPU and a temperature for the combinatorial objectives to be 0.7. The results on the longtail distribution
of ImageNet-LT benchmarked against several approaches in Longtail learning have been depicted in Table 3.

A.2.2. CLASS-IMBALANCED MEDICAL IMAGE CLASSIFICATION

In contrast to pathological imbalance introduced in cannonical benchmarks we conduct our experiments on two subsets of
MedMNIST (Yang et al., 2023) dataset which demonstrate a natural class-imbalanced setting.

OrganAMNIST dataset consists of axial slices from CT volumes, highlighting 11 distinct organ structures for a multi-class
classification task. Each image is of size [1× 28× 28] pixels. The OrganAMNIST dataset contains 34581 training and 6491
validation samples of single channel images highlighting various modalities of 8 different organs.

DermaMNIST subset presents dermatoscopic images of pigmented skin lesions, also resized to [3× 28× 28] pixels. This
dataset supports a multi-class classification task with 7 different dermatological conditions. Although the DermaMNIST has
RGB images, it is a small scale dataset with a total of 7007 training samples and 1003 validation samples.

Similar to CIFAR-10 we train our models on MedMNIST datasets using the two stage training strategy outlined in SCoRe at
https://github.com/amajee11us/SCoRe.git. For both these subsets used in our framework, pixel values were
normalized to the range [0, 1], and we relied on the standard train-test splits provided with the datasets for our evaluations.
The results from the experiments are discussed in Section 4. For both data subsets we train the model for 500 epochs in
stage-1 with a ResNet-50 backbone, a batch size of 256 and a cosine annealing scheduler. For stage-2 we use the frozen
feature extractor and train a classifier with a batch size of 128 for 100 epochs with early stopping.

4The dataset as been adapted from https://liuziwei7.github.io/projects/LongTail.html.
6Abbreviations are included in section A.1 of the appendix.
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Figure 8. The effect of class-imbalance on the performance metrics (mAP50) for the object detection task of the India Driving Dataset
(IDD). As the class frequency (shown as blue line) decreases, proposed objectives in SCoRe (shown in red) consistently outperforms
SoTA approaches like SupCon (shown in green) in detecting rare road objects like bicycle, traffic light etc. in IDD.

A.2.3. CLASS-IMBALANCED OBJECT DETECTION

IDD-Detection (Varma et al., 2019) dataset demonstrates an unconstrained driving environment, characterized by natural
class-imbalance, high traffic density and large variability among object classes. This results in the presence of rare classes
like autorickshaw, bicycle etc. and small sized objects like traffic light, traffic sign etc. There are a total of 31k training
images in IDD and 10k validation images of size [3× 1920× 1080] with high traffic density, occlusions and varying road
conditions.

The architecture of the object detector is a Faster-RCNN (Ren et al., 2015) model with a ResNet-101 backbone alongside
the Feature Pyramidal Network (FPN) as in (Lin et al., 2017) to handle varying object sizes. Our framework also draws
inspiration from FSCE (Sun et al., 2021) with proposed modifications to the objective functions. We initialize our Faster-
RCNN + FPN model with pretrained weights from a ImageNet trained model and fine-tune the model on IDD / LVIS (full
dataset). We keep the Region Proposal Network (RPN) and the ROI pooling layers unfrozen to adapt to the rare classes. We
also double the maximum number of proposals kept after Non-Maximal Suppression (NMS), bringing more proposals from
rare classes to the foreground. We consider only half the number of proposals from the ROI pooling layer (top 256 out of
512) for computing the loss function. This forces the objective function to better penalize the object detector for predicting
low objectness scores for objects belonging to the rare classes. The model is trained for 17000 iterations with a batch size of
8 and an initial learning rate of 0.02. A step based learning rate scheduler is adopted to reduce the learning rate by 10x
at 12000 and 15000 iterations respectively. The results for the class-wise performance on the IDD dataset is depicted in
Figure 8.

LVIS (Gupta et al., 2019) dataset depicts an extreme case of longtail imbalance with a large number of tail classes. The
dataset consists of 1203 classes created by extending the label set in MS-COCO (Lin et al., 2014) (consisting of just 80
classes). We adopt the version v1.0 of LVIS for our experiments and conduct our experiments on Faster-RCNN+FPN
architecture adopting a ResNet-101 backbone with a batch size of 16, initial learning rate of 0.06 and repeat factor sampling
for a total of 180,000 iterations. Similar to IDD , the step based learning rate scheduler is adopted to reduce the learning rate
by 1/10 at regular intervals.

A.3. Experiments on Synthetic Datasets

The aim of the experiments on synthetic datasets in SCoRe is to demonstrate the variation of SCoRe objectives to - inter-class
bias and intra-class variance and class-imbalance in long-tail settings.

To demonstrate resilience to inter-class bias we vary the inter-cluster separation between three disjoint clusters with constant
variance of 0.05 as shown in Figure 9. In Figure 9(a) we plot the variation of the losses introduced in Table 1 to inter-
class bias arising to increased overlaps between feature clusters. We observe a large variation to inter-class bias in
SCoRe objectives over existing SoTA methods demonstrating their resilience to the phenomenon (since the loss would be
minimized during back-propagation).

To demonstrate resilience to intra-class variance, we keep the inter-cluster distance (separation between the extremities
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Figure 9. Resilience of instantiations in SCoRe towards Intra-Class Variance (a) and Inter-Class Bias (b) in representation learning
tasks demonstrated through pathologically created synthetic benchmarks.

of two clusters) between two clusters to be constant and vary the variance within each cluster in the range of [0.01, 0.1].
Similar to above we plot the variation of losses in Table 1 through Figure 9(b). The plots show that SCoRe objectives,
especially SCoRe-FL demonstrates a relatively large variation to increase in intra-class variance over existing SoTA
approaches like SupCon (Khosla et al., 2020) establishing combinatorial objectives to be resilient to the phenomenon.

Note, that for our experiments all synthetic data-points lie in the first quadrant and thus we adopt the Radial Bias Field
(RBF) kernel (Killamsetty et al., 2021) as the similarity metric for computing Sij .

A.4. Ablation Study : SCoRe Objectives Learn Discriminative Features with Fewer Training Rounds

Figure 10. Ablation Study: SCoRe demonstrates faster learn-
ing of discriminative representations even on the balanced
setting of CIFAR-10 dataset.

In this experiment we compare the number of training epochs
in stage 1 required to learn discriminative feature representa-
tions for various instances of SCoRe against SoTA contrastive
learner (SupCon). In stage 1 we train our models (with varying
objectives) for various number of epochs in the range of [100,
1000] on the balanced and imbalanced settings of the CIFAR-10
dataset. We keep the remaining hyperparameters constant by
training our models with a initial learning rate of 0.4, batch size
of 512, temperature 0.7 and a cosine annealing scheduler. For
each of these trained models from stage 1 we train the classifier
Clf in stage 2 until convergence and report the Top-1 Accu-
racy %. Although, the performance (Top-1 Accuracy %) of our
models in balanced setting is lower than the SoTA contrastive
learners we observe in Figure 10 that combinatorial objectives
like SCoRe-FL learn robust representations within very few
training rounds in stage 1 of model training as compared to
SoTA approach SupCon (Khosla et al., 2020). Interestingly, in
the imbalanced setting as shown in Figure 6 models trained with combinatorial objectives in SCoRe (SCoRe-FL, SCoRe-GC
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and SCoRe-LogDet) learn better discriminative features within fewer number of epochs in stage 1. This allows model
developers to rapidly train generalizable feature extractors for several downstream applications.

A.5. Ablation Study : Effect of λ on performance of Graph-Cut based Objective

Table 7. Ablation study on the effect of λ
on the performance of Graph-Cut based com-
binatorial objective in SCoRe.

λ
Top-1 acc

CIFAR-10 (longtail)
0.5 83.65
1.0 89.96
1.5 87.11
2.0 85.86

In this section we perform experiments on the hyperparameter λ introduced in
Graph-Cut based combinatorial objective in SCoRe. The hyper-parameter λ
is applied to the sum over the penalty associated with the positive set forming
tighter clusters. This parameter controls the degree of compactness of the
feature cluster ensuring sufficient diversity is maintained in the feature space.
For SCoRe-GC to be submodular it is also important for λto be greater than
or equal to 1 (λ ≥ 1). For this experiment we train the two stage framework
in SCoRe on the longtail CIFAR-10 dataset for 500 epochs in stage 1 with
varying λ values in range of [0.5, 2.0] and report the top-1 accuracy after stage
2 model training on the validation set of CIFAR-10. Table 7 shows that we
achieve highest performance for λ = 1 for longtail image classification task on
the CIFAR-10 dataset. We adopt this value for all experiments conducted on GC in this paper.

A.6. Proof of theorems of Submodular Combinatorial Objectives

A.6.1. FACILITY LOCATION

In this section we show proofs for the introduced LSf
and LCf

for the facility location function in Theorem 3.1.

Proof. The facility location function over a set A can be represented as f(A) =
∑
i∈V

max
j∈A

Sij . Theorem 3.1 instantiates this

function in SCoRe to define two combinatorial objectives LSf
and LCf

as presented by Equation (2) in the main paper.

From the definition of LSf
, the SCoRe-FL (LSf

) objective can be derived as LSf
(θ) =

|C|∑
k=1

1
|V|f(Ak, θ). Substituting the

instance of FL f(Ak, θ) =
∑
i∈V

max
j∈Ak

Sij in the equation we get:

LSf
(θ) =

1

|V|

|C|∑
k=1

f(Ak, θ)

=
1

|V|

|C|∑
k=1

∑
i∈V

max
j∈Ak

Sij

=
1

|V|

|C|∑
k=1

∑
i∈V\Ak

max
j∈Ak

Sij +

|C|∑
k=1

∑
i∈Ak

max
j∈Ak

Sij

LSf
(θ) =

1

|V|

|C|∑
k=1

∑
i∈V\Ak

max
j∈Ak

Sij + |V|, since
∑
i∈Ak

max
j∈Ak

Sij is a constant over the set Ak

Now, considering the Cf formulation in Equation (1) and substituting f(Ak, θ) we get:

LCf
(θ) =

1

|V|

[ |C|∑
k=1

f(Ak, θ)− f(
|C|
∪

k=1
Ak, θ)

]

LCf
(θ) =LSf

(θ)− 1

|V|
f(

|C|
∪

k=1
Ak, θ)
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We know that
|C|
∪

k=1
Ak = V . Thus,

LCf
(θ) =

1

|V|

|C|∑
k=1

∑
i∈V\Ak

max
j∈Ak

Sij + |V| − f(V, θ)

=
1

|V|

|C|∑
k=1

∑
i∈V\Ak

max
j∈Ak

Sij + |V| −
∑
i∈V

max
j∈V

Sij

=
1

|V|

|C|∑
k=1

∑
i∈V\Ak

max
j∈Ak

Sij , since
∑
i∈V

max
j∈V

Sij is a constant over the ground set V

Thus, we show that both LSf
as well as LCf

versions of the Facility-Location (SCoRe-FL) function introduced in
Theorem 3.1 are instances of the SCoRe framework.

A.6.2. GRAPH-CUT

In this section we show proofs for the introduced LSf
and LCf

for the Graph-Cut function in Theorem 3.2.

Proof. The Graph-Cut function over a set A can be represented as f(A) =
∑

i∈A,j∈V \A
Sij(θ) − λ

∑
i,j∈A Sij(θ). Theo-

rem 3.2 instantiates this function in SCoRe to define two combinatorial objectives LSf
and LCf

as presented by Equation (3)
in the main paper.

From the definition of LSf
, the SCoRe-GC (LSf

) objective can be derived as LSf
(θ) =

|C|∑
k=1

1
|Ak|f(Ak, θ). Substituting the

instance of GC f(Ak, θ) in the equation we get:

LSf
(θ) =

|C|∑
k=1

1

|Ak|
f(Ak, θ)

=

|C|∑
k=1

1

|Ak|
∑

i∈Ak,j∈V

Sij(θ)−
λ

|Ak|
∑

i,j∈Ak

Sij(θ)

=

|C|∑
k=1

1

|Ak|
∑

i∈Ak,j∈V \Ak

Sij(θ) +
1

|Ak|

|C|∑
k=1

∑
i∈Ak,j∈Ak

Sij(θ)−
λ

|Ak|
∑

i,j∈Ak

Sij(θ)

Here, the term
|C|∑
k=1

∑
i∈Ak,j∈Ak

Sij(θ) represents a sum of pairwise similarities over all sets in V . Thus, its value is a constant

for a fixed training/ evaluation dataset. Using this condition and ignoring the constant term, we can show that :

LSf
(θ) =

|C|∑
k=1

1

|Ak|

[ ∑
i∈Ak,j∈V \Ak

Sij(θ)− λ
∑

i,j∈Ak

Sij(θ)

]
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Now, considering the Cf formulation in Equation (1) and substituting f(Ak, θ) we get:

LCf
(θ) =

|C|∑
k=1

1

|Ak|
f(Ak, θ)− f(

|C|
∪

k=1
Ak, θ)

LCf
(θ) =LSf

(θ)− 1

|Ak|
f(

|C|
∪

k=1
Ak, θ)

We know that
|C|
∪

k=1
Ak = V . Thus,

LCf
(θ) =

|C|∑
k=1

1

|Ak|

 ∑
i∈Ak,j∈V \Ak

Sij(θ)− λ
∑

i,j∈Ak

Sij(θ)

−

1

|Ak|

 ∑
i∈

⋃|C|
k=1 Ak,j∈V \

⋃|C|
k=1 Ak

Sij(θ)− λ
∑

i,j∈
⋃|C|

k=1 Ak

Sij(θ)


Since the sets Ak are disjoint, we can simplify the expression as :

|C|∑
k=1

1

|Ak|

[ ∑
i,j∈Ak

Sij(θ) =
∑

i,j∈
⋃|C|

k=1 Ak

Sij(θ)

]

This leads to a cancellation of the terms involving λ in LCf
(θ):

LCf
(θ) =

|C|∑
k=1

1

|Ak|
∑

i∈Ak,j∈V \Ak

Sij(θ)

Thus, we show that both LSf
as well as LCf

versions of the Graph-Cut (SCoRe-GC) function introduced in Theorem 3.2 are
instances of the SCoRe framework. In the final equation shown in Section 3.1.1 we multiply LCf

with a hyper-parameter λ
to control the penalization of the cross similarity between sets Ak and V \Ak.

A.6.3. LOG-DETERMINANT

In this section we show proofs for the introduced LSf
and LCf

for the LogDet function in Theorem 3.3.

Proof. The submodular function f(Ak, θ) for Log-Determinant is denoted as log det(SAk
+ λI|A∥|) with λI as the identity

term used for numerical stability (empirically). Substituting f(Ak, θ) in the LSf
formulation in Equation (1) we get:

LSf
(θ) =

|C|∑
k=1

1

|Ak|
f(Ak, θ)

=

|C|∑
k=1

1

|Ak|
log det(SAk

(θ) + λI|Ak|)

This leads to the Sf formulation of the LogDet objective in SCoRe. Now, considering the Cf formulation in Equation (1)
and substituting f(Ak, θ) we get:

LCf
(θ) =

|C|∑
k=1

1

|Ak|
f(Ak, θ)− f(

|C|
∪

k=1
Ak, θ)

LCf
(θ) =LSf

(θ)− 1

|Ak|
f(

|C|
∪

k=1
Ak, θ)
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We know that
|C|
∪

k=1
Ak = V . Thus,

LCf
(θ) =

|C|∑
k=1

1

|Ak|
log det(SAk

(θ) + λI|Ak|)−
1

|Ak|
f(V, θ)

=LSf
(θ)− 1

|Ak|
log det(SV(θ) + λI|V|)

=

|C|∑
k=1

1

|Ak|

[
log det(SAk

(θ) + λI|Ak|)− log det(SV(θ) + λI|V|)

]

Thus, we show that both LSf as well as LCf
versions of the Log-Determinant (LogDet) function introduced in Theorem 3.3

are instances of the SCoRe framework.

A.7. Proof of Submodularity for Existing Metric/Contrastive Learners

In this section we discuss in depth the submodular counterparts of three existing objective functions in contrastive learning.
We provide proofs that these functions are non-submodular in their existing forms and can be reformulated as submodular
objectives through modifications without changing the characteristics of the loss function.

A.7.1. TRIPLET LOSS AND SUBMOD-TRIPLET LOSS

Theorem A.1. The Triplet loss L(θ), depicted in row 2 of Table 1 is not an instance of SCoRe in its original form while
the slightly modified form, Submod-Triplet L(θ) =

∑|C|
k=1

1
|Ak|

∑
i∈Ak

n∈V\Ak

S2
in(θ)−

∑
i,p∈A S2

ip(θ) is an instance of SCoRe

(Sf version) with the submodular function f(A, θ) =
∑

i∈A
n∈V\A

S2
in(θ)−

∑
i,p∈A S2

ip(θ), defined over a set A.

Triplet Loss : Here we provide the proof of non-submodularity for the Triplet loss discussed in Theorem A.1.

Proof. We first show that the Triplet loss is not necessarily submodular. The reason for this is the Triplet loss is of the
form:

∑
n∈V

∑
i,p∈A Din −

∑
i,p∈A Dip. Note that this is actually supermodular since −

∑
i,p∈A Dip is submodular and∑

i,p,n∈A Dip is submodular. As a result, the Triplet loss is not necessarily submodular.

Submod-Triplet : Here we provide the proof for the Submod-Triplet loss in Theorem A.1.

Proof. Submodular Triplet loss (Submod-Triplet) is exactly the same as Graph-Cut where we use λ = 1 and the similarity
as the squared similarity function. Thus, this function is submodular in nature.

A.7.2. SOFT-NEAREST NEIGHBOR (SNN) LOSS AND SUBMOD-SNN LOSS

Theorem A.2. The Soft-Nearest Neighbor (SNN) loss L(θ), depicted in row 3 of Table 1 is not submodular in its original
form while the slightly modified form, Submod-SNN loss L(θ) =

∑|C|
k=1

1
|Ak|

∑
i∈Ak

[log
∑

j∈Ak
exp(Dij(θ)) +

log
∑

j∈V\Ak
exp(Sij(θ))] is an instance of SCoRe (Sf version) with the submodular function f(Ak; θ) =∑

i∈Ak
[log

∑
j∈Ak

exp(Dij(θ)) + log
∑

j∈V\Ak
exp(Sij(θ))].

SNN Loss: Here we provide the proof of non-submodularity for the SNN loss discussed in Theorem A.2.

Proof. From the set representation of the SNN loss we can describe the objective L(θ) as in Equation 5 . This objective
function can be split into two distinct terms labelled as Term 1 and Term 2 in the equation above.

L(θ) =

|C|∑
k=1

−
∑
i∈Ak

[log
∑
j∈Ak

exp(Sij(θ))︸ ︷︷ ︸
Term 1

− log
∑

j∈V\Ak

exp(Sij(θ))]︸ ︷︷ ︸
Term 2

(5)
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We prove the objective to be submodular by considering two popular assumptions :
(1) The sum of submodular function over a set of classes Ai, i ∈ C, the resultant is submodular in nature.
(2) The concave over a modular function is submodular in nature.
To prove that L(θ,Ak) is submodular in nature it is enough to show the individual terms (Term 1 and 2) to be submodular.
Note that the sum of submodular functions is submodular in nature. Considering F (A) =

∑
j∈Ak

Sj for any given i ∈ Ak,
we see that log

∑
j∈Ak

exp(Dj(θ)) to be modular as it is a sum over terms exp(Dj(θ)).
We also know from assumption (2) (Fujishige, 2005), that the concave over a modular function is submodular in nature, log
being a concave function. Thus, log

∑
j∈Ak

exp(Sj) is submodular function for a given i ∈ Ak. Unfortunately, the negative
sum over a submodular function cannot be guaranteed to be submodular in nature. This renders SNN to be non-submodular
in nature.

Submod-SNN Loss : Here we provide the proof of submodularity for the submodular function f(Ak; θ) of the
Submod-SNN loss discussed in Theorem A.2. The variation of SNN loss described in Table 1 can be represented as an
instance of f(Ak; θ) as shown in Equation 6. Similar to the set notation of SNN loss we can split the equation into two
terms, referred to as Term 1 and Term 2 in the equation above.

f(Ak; θ) =
∑
i∈Ak

[log
∑
j∈Ak

exp(Dij(θ))︸ ︷︷ ︸
Term 1

+ log
∑

j∈V\Ak

exp(Sij(θ))︸ ︷︷ ︸
Term 2

] (6)

Proof. Considering F (A) =
∑

j∈Ak
Sj for any given i ∈ Ak, we prove log

∑
j∈Ak

exp(Dj(θ)) to be modular, similar to
the case of SNN loss. Further, using assumption (2) mentioned above we prove that the log (a concave function) over a
modular function is submodular in nature. Finally, the sum of submodular functions over a set of classes Ak is submodular
according to assumption (1). Thus the term 1,

∑
i∈Ak

log
∑

j∈Ak
exp(Dij(θ)) in the equation of Submod-SNN is proved

to be submodular in nature.

The term 2 of the equation represents the total correlation function of Graph-Cut (LCf
(θ)). Since graph-cut function has

already been proven to be submodular in (Fujishige, 2005; Iyer et al., 2022) we prove that term 2 is submodular.

Finally, since the sum of submodular functions is submodular in nature, the sum over term 1 and term 2 which constitutes
L(θ) can also be proved to be submodular.

A.7.3. N-PAIRS LOSS AND ORTHOGONAL PROJECTION LOSS (OPL)

In Table 1 both N-pairs loss and OPL has been identified to be submodular in nature. In this section we provide proofs of
Theorem A.3 and Theorem A.4 to show they are submodular in nature.

N-pairs Loss : The N-pairs loss L(θ) can be represented in set notation as described in Equation 7 and has been discussed
to be submodular according to Theorem A.3.

Theorem A.3. The N-pairs loss L(θ) =
∑|C|

k=1
−1
|Ak| [

∑
i,j∈Ak

Sij(θ)] +
1

|Ak| [
∑

i∈Ak
log(

∑
j∈V Sij(θ)− 1)] is an instance

of SCoRe (Sf version) with the submodular function f(A, θ) = −
∑

i,j∈A Sij(θ) +
∑

i∈A log(
∑

j∈V Sij(θ)− 1), defined
over set A.

Proof. Similar to SNN loss, we can split the equation for f(Ak; θ) into two distinct terms.

f(Ak; θ) = −[
∑

i,j∈Ak

Sij(θ)︸ ︷︷ ︸
Term 1

+
∑
i∈Ak

log(
∑
j∈V

Sij(θ)− 1)]︸ ︷︷ ︸
Term 2

(7)

The first term (Term 1) in N-pairs is a negative sum over similarities, which is submodular in nature (Fujishige, 2005). The
second term (Term 2) is a log over

∑
j∈V Sij(θ)− 1, which is a constant term for every training iteration as it encompases

the whole ground set V . The sum of Term 1 and Term 2 over a set Ak is thus submodular in nature.

OPL : The Orthogonal Projection loss can be represented as Equation 8 in its original form and discussed to be submodular
according to Theorem A.4 in the main paper.
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Theorem A.4. The Orthogonal Projection loss (OPL) L(θ) =
∑|C|

k=1
1

|Ak| (1 −
∑

i,j∈Ak
Sij(θ)) +

1
|Ak|

∑
i∈Ak

∑
j∈V\Ak

Sij(θ) is an instance of SCoRe(Sf version). OPL largely represents the Graph-Cut (GC) function
which is also an instance of SCoRe with the submodular function f(A, θ) = (1−

∑
i,j∈A Sij(θ)) +

∑
i∈A

∑
j∈V\A Sij(θ),

defined over a set A with Nf (Ak) = |Ak|.

Proof. Similar to above objectives we split the equation for f(Ak; θ) into two distinct terms and individually prove them to
be submodular in nature.

f(Ak; θ) = (1−
∑

i,j∈Ak

Sij(θ))︸ ︷︷ ︸
Term 1

+(
∑
i∈Ak

∑
j∈V\Ak

Sij(θ))︸ ︷︷ ︸
Term 2

(8)

The Term 1 represents a negative sum over similarities in set Ak and is thus submodular in nature. The Term 2 is exactly
LCf

of Graph-Cut (GC) with λ = 1 and is also submodular in nature. Since the sum of two submodular functions is also
submodular, the underlying function f(Ak; θ) in L(θ,Ak) as in Equation (8) is also submodular.

A.7.4. SUPERVISED CONTRASTIVE (SUPCON) LOSS

Theorem A.5. The SupCon loss L(θ) =
∑|C|

k=1[
−1
|Ak|

∑
i,j∈Ak

Sij(θ)] +
∑

i∈Ak

1
|Ak| log(

∑
j∈V exp(Sij(θ))− 1) depicted

in row 4 of Table 1 is an instance of SCoRe (Sf version) with the submodular function f(Ak, θ) = −[
∑

i,j∈Ak
Sij(θ)] +∑

i∈Ak
[log(

∑
j∈V\Ak

exp(Sij(θ))− 1)], defined over a set A and normalization factor Nf (Ak) = |Ak|.

The combinatorial formulation of SupCon as in Equation 9 can be defined as a sum over the set-function L(θ,Ak) as
described in Theorem A.5 of the main paper.

f(Ak; θ) = −
∑

i,j∈Ak

Sij(θ)︸ ︷︷ ︸
Term 1

+
∑
i∈Ak

log(
∑
j∈V

exp(Sij(θ))− 1)︸ ︷︷ ︸
Term 2

(9)

Proof. The Term 1 of SupCon is a negative sum over similarities of set Ak and is thus submodular. The Term 2 contains
a sum of the exponent of similarities (

∑
j∈V exp(Sij(θ)) − 1) which is a modular term as the sum is computed over

the complete ground set V . The logarithm over this term constituting the complete inter-class term represents a concave
over modular function which is submodular in nature. Thus, the underlying function f(Ak; θ) for the SupCon loss L(θ)
represented in Theorem A.5 is submodular in nature.

A.7.5. SUPCON-VAR LOSS

Theorem A.6. The SupCon-Var loss L(θ) =
∑|C|

k=1
−1
|Ak| [

∑
i,j∈Ak

Sij(θ)] +
1

|Ak|
∑

i∈Ak
[log(

∑
j∈V\Ak

exp(Sij(θ)))]

is an instance of SCoRe (Sf version) with the submodular function f(Ak, θ) = −[
∑

i,j∈Ak
Sij(θ)] +∑

i∈Ak
[log(

∑
j∈V\Ak

exp(Sij(θ)))], defined over a set Ak, for k ∈ [1, C] and normalization factor Nf (Ak) = |Ak|.

The submodular variant of SupCon (SupCon-Var) as shown in Equation 10 can be split into two terms indicated as Term 1
and Term 2.

f(Ak; θ) = −[
∑

i,j∈Ak

Sij(θ)]︸ ︷︷ ︸
Term 1

+
∑
i∈Ak

[log(
∑

j∈V\Ak

exp(Sij(θ)))︸ ︷︷ ︸
Term 2

] (10)

Proof. The Term 1 of the function f(Ak; θ) in SupCon-Var is a negative sum over similarities of set Ak and is thus
submodular. The Term 2 of the equation is also submodular as it is a concave over the modular term

∑
j∈V\Ak

exp(Sij(θ),
with log being a concave function. Thus, the LSf

form of SupCon-Var is also submodular represented as the sum of two
submodular functions is submodular in nature.
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