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Abstract001

Large Language Models (LLMs) have become002
proficient in addressing complex tasks by lever-003
aging their extensive internal knowledge and004
reasoning capabilities. However, the black-box005
nature of these models complicates the task006
of explaining their decision-making processes.007
While recent advancements demonstrate the008
potential of leveraging LLMs to self-explain009
their predictions through natural language (NL)010
explanations, their explanations may not accu-011
rately reflect the LLMs’ decision-making pro-012
cess due to a lack of fidelity optimization on013
the derived explanations. Measuring the fidelity014
of NL explanations is a challenging issue, as015
it is difficult to manipulate the input context016
to mask the semantics of these explanations.017
To this end, we introduce FaithLM for ex-018
plaining the decision of LLMs with NL ex-019
planations. Specifically, FaithLM designs a020
method for evaluating the fidelity of NL ex-021
planations by incorporating the contrary ex-022
planations to the query process. Moreover,023
FaithLM conducts an iterative process to im-024
prove the fidelity of derived explanations. Ex-025
periment results on three datasets from multiple026
domains demonstrate that FaithLM can sig-027
nificantly improve the fidelity of derived expla-028
nations, which also provides a better alignment029
with the ground-truth explanations. Our source030
code is available at https://anonymous.031
4open.science/r/xLLM-305B/.032

1 Introduction033

Large language models (LLMs) exhibit remarkable per-034
formance in various natural language processing tasks,035
such as the GPT4 (Achiam et al., 2023), LLaMA (Tou-036
vron et al., 2023), and Claude (AnthropicAI, 2023).037
However, these language models are commonly re-038
garded as intricate black-box systems. The opacity of039
their internal mechanisms poses a significant challenge040
when trying to explain their decision-making process.041
The lack of transparency in LLMs, especially in API-042
accessed LLM services, inferences contradict the prac-043
tical requirements of stakeholders and are in opposi-044
tion to regulatory standards in various domains, such045
as GDPR (Goodman et al., 2017; Floridi, 2019). The046

imperative arises to develop explainability mechanisms 047
for LLMs, particularly for their use in high-stakes appli- 048
cations such as healthcare. 049

Numerous studies have attempted to enhance the 050
transparency of decision-making processes in LLMs 051
by providing natural language (NL) explanations. Ad- 052
vanced billion-level LLMs, such as GPT4 (Achiam et al., 053
2023), mainly leverage their reasoning abilities and in- 054
ternal knowledge for complex downstream problems. 055
However, this complexity poses challenges to faithfully 056
explain the underlying reasons behind their decisions 057
with natural language sentences. In this manner, recent 058
advancements are struggling to generate reliable NL ex- 059
planations for interpreting LLMs (Ye and Durrett, 2022). 060
Some work attempt to leverage powerful LLMs (Ma- 061
jumder et al., 2021; Chen et al., 2023b) with auxiliary in- 062
formation to generate NL sentences or chain-of-thought 063
(CoT) reasoning (Lanham et al., 2023; Radhakrishnan 064
et al., 2023; Chen et al., 2023a) as the explanations 065
to explain the decision-making process of LLMs. Al- 066
though existing work emerged that LLMs may possess 067
the ability to self-explain (Madsen et al., 2024; Wang 068
et al., 2022), or follow chain-of-thoughts to explain (Lyu 069
et al., 2023), their explanation-generating process usu- 070
ally overlooks the fidelity, a fundamental metric for eval- 071
uating the quality of explanations (Chuang et al., 2023; 072
Wang et al., 2023). Thus, the derived NL explanations 073
may not faithfully reflect the decision-making process 074
of LLMs (Zhao et al., 2023; Turpin et al., 2023). Mea- 075
suring the fidelity of NL explanations is a challenging 076
issue, as the NL explanations may provide crucial infor- 077
mation beyond the input context. This makes it hard to 078
mask the semantics of NL explanations by manipulating 079
the input tokens. 080

To overcome this challenge, we propose a method to 081
measure the fidelity of NL explanations. We give an 082
example to convey the motivation in Table 1. Specifi- 083
cally, the fidelity of an explanation can be measured by 084
leveraging its contrary explanation as extra conditions 085
of the input context, and observing the LLM’s output 086
difference compared with its initial output. Here, a con- 087
trary explanation refers to a statement with opposite 088
semantics to the original explanation. By incorporating 089
the contrary explanation to the input context, we can 090
identify an explanation as high fidelity if there is a sig- 091
nificant change in the LLM’s output, such as from No to 092
Yes. This change indicates that the crucial information 093
present in the original explanation is substituted with the 094
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Question and LLM Answer Faithful NL Explanation Question conditioned with Contrary NL Explanation

Question: Can the positive
pole from two magnets pull
each other closer?
Original Answer: No

Each magnet has a positive
pole and a negative pole,
and similar poles push
each other away.

Question: Each magnet has a positive pole and a negative
pole, and similar poles pull each other closer. Can the
positive pole from two magnets pull each other closer?
New Answer: Yes

Table 1: An example of measuring fidelity of NL explanations. The LLM first answers the question in No. Given
a faithful explanation “similar poles pull each other away," with its contrary NL explanation, the LLM changes
the answer from No to Yes when introduced contrary NL explanation as an extra condition to LLM. This example
indicates that the contrary explanation interrupts the LLM’s original prediction process with faithful information,
demonstrating that the information in an original explanation is faithful and aligns with LLM’s initial answer.

opposite meaning context in the contrary explanation,095
where the crucial information is essential to the LLM’s096
decision-making process. Based on this observation,097
we propose to extend the applicability of fidelity to the098
evaluation on NL explanations. This extension follows099
the integration of contrary explanations to represent the100
concepts of masking important features in traditional101
fidelity measurement.102

Building upon this approach for measuring the fi-103
delity of NL explanations, we introduce Faithful LLM104
Explainers (FaithLM) to generate faithful NL explana-105
tions for LLMs. Specifically, FaithLM adopts LLMs106
as explainers to generate the NL explanations and ex-107
planation trigger prompts, and iteratively optimizes the108
derived NL explanations and trigger prompts with the109
goal of fidelity enhancement. During the iterative pro-110
cess, FaithLM computes the fidelity of each derived111
explanation and optimized prompt based on our pro-112
posed fidelity measurement method, and progressively113
improves their fidelity through in-context learning. To114
demonstrate the effectiveness of FaithLM, we con-115
ducted several experiments on four different LLMs un-116
der three datasets from different domains. FaithLM117
achieved significantly higher fidelity performance in118
generating NL explanations and more closely matched119
the golden explanations compared with state-of-the-art120
baseline methods. In summary, our contributions can be121
summarized as follows:122

• Fidelity of NL Explanations: We propose to measure123
the fidelity of NL explanation by incorporating its124
contrary explanation into the query and observing125
LLM output difference.126

• Faithful LLM Explainers: FaithLM improves the127
fidelity of NL explanations, aiming at faithfully ex-128
plaining the decision-making process of LLMs.129

• Fidelity and Truthfulness: Experimental results on130
three datasets show that FaithLM can effectively131
improve the fidelity of NL explanations, revealing a132
better alignment with the ground-truth explanations133
than SoTA baseline methods.134

2 Preliminaries135

2.1 Notations and Objectives136

We aim to explain the decisions of arbitrary targeted137
LLMs f(·) with NL explanations in a post-hoc man-138

ner. Given an input X , the targeted LLMs generate 139
an output Y = f(X). Our objective is to produce an 140
NL explanation ENL that faithfully explains the reasons 141
behind the prediction of Y = f(X). In this work, we 142
employ an LLM as the explainer g(·) to generate the 143
NL explanation ENL = g(· | X,Y ). However, the di- 144
rectly generated ENL under single-forward passing may 145
not be faithful and accurate, degrading the user’s trust 146
in the prediction made by the targeted LLM. To this 147
end, our work focuses on benefiting the explainer g(·) 148
to generate more faithful NL explanations regarding 149
the decision of f(·) in a post-hoc manner, where f(·) 150
can be either closed-source or open-source LLMs. 151

2.2 Post-hoc Explanations of LLMs 152

Recent research on LLM explanations has primarily 153
focused on post-hoc approaches due to the inaccessi- 154
bility of LLM weights and architectures. One group 155
of studies calculates importance scores for specific to- 156
kens (Lopardo et al., 2023; Huang et al., 2023), and 157
the other line of work generates natural language sen- 158
tences (Kumar and Talukdar, 2020; Chen et al., 2021, 159
2023b; Menon et al., 2023) and CoT reasoning (Lyu 160
et al., 2023; Chen et al., 2023a) as explanations by lever- 161
aging LLMs. Despite the advanced capability of pow- 162
erful LLMs to generate NL explanations, issues with 163
unreliability and non-fidelity persist. While studies like 164
Chen et al. (Chen et al., 2024) utilize internal model 165
weights aiming for reliable explanations generation, ac- 166
cessing these weights is challenging with closed-source 167
LLMs. Considering the non-accessibility of LLMs, such 168
as closed-source LLMs, our goal is to faithfully generate 169
NL explanations instead of exploring the internal mech- 170
anisms or neurons of LLMs to generate explanations. 171

2.3 Limitations of Traditional Fidelity on Natural 172
Language Explanations 173

The fidelity metric measures the fidelity of the given 174
explanation, which is broadly applicable when ground- 175
truth explanations are unavailable. In the NLP scenario, 176
fidelity has been used to evaluate the heatmap-formatted 177
explanations (Lopardo et al., 2023; Huang et al., 2023), 178
where the heatmap one highlights the important tokens 179
of the input. Specifically, fidelity evaluates the explana- 180
tion by removing the important tokens from the input 181
X and checking the prediction difference of the tar- 182
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geted LLM. Following the definition of fidelity (Miró-183
Nicolau et al., 2024). Given a sequence of tokens184
I = {t1, · · · , tM} ⊆ ENL, which is identified as an185
important component of explanation to the prediction of186
a targeted LLM Y = f(X). Following the traditional187
fidelity definition, the fidelity can be estimated as:188

Fidelity = f(X)− f(X \ I),189

where "X \ I" denotes token removal from X in I .190
If important component T achieves higher fidelity,191

this demonstrates that ENL comprises the crucial tokens192
that significantly influence the predictions of the tar-193
geted LLMs. However, it is challenging to evaluate194
the fidelity of NL explanations throughout the fidelity195
defined above, as the critical components in NL expla-196
nations may not contain in the input context X . For197
instance, as the example shown in Figure 1, the critical198
component “similar poles push each other away" in ENL199
does not explicitly appear in the input context. Thus,200
we cannot simply remove critical components from the201
question following the traditional definition. In this pa-202
per, we propose a solution to systematically address this203
obstacle by removing the critical components from the204
semantic level instead of the token level.205

3 FaithLM: The Explainer LLM206

Framework207

In this section, we systematically introduce the genera-208
tive explanation framework, FaithLM, which derives209
faithful explanations in natural language. The derived210
explanations are expected to accurately reflect the pre-211
dictive decision-making process of targeted LLMs with212
high fidelity. Specifically, we first introduce the Fidelity213
Evaluator in Section 3.1 to quantitatively assess the fi-214
delity of the NL explanations. Subsequently, FaithLM215
iteratively optimizes the fidelity of the derived expla-216
nations and searches for improved explanation trigger217
prompts using the proposed Fidelity Evaluator. The op-218
timization frameworks for these processes are detailed219
in Sections 3.2 and 3.3.220

3.1 Fidelity Evaluator for Natural Language221
Explanations222

Due to the limitation of the fidelity metric described223
in Section 2.3, we introduce the Fidelity Evaluator to224
directly assess the fidelity of NL explanations, as shown225
in Figure 1. Specifically, we first extend the original226
fidelity definition to evaluate the fidelity of NL expla-227
nations ENL. Finally, we introduce the fidelity evaluator228
that follows the proposed fidelity measurement criteria.229

Fidelity of NL Explanations. To assess the fidelity230
of NL explanations, we extend the traditional fidelity231
definition to equip it with special constraints regarding232
NL explanations. To address this challenge, we propose233
formulating the fidelity of NL explanation as the pre-234
diction difference caused by the “contrary explanation".235
Specifically, the contrary explanation ¬ENL is defined236

as a statement obtained opposite semantics to the given 237
NL explanation ENL. For instance, if the explanation is 238
"similar poles push each other away," then the contrary 239
explanation would be "similar poles pull each other 240
closer." To estimate the fidelity of ENL, we use the con- 241
trary explanation ¬ENL as an extra given condition to 242
the input queries, forming conditional LLM inferences 243
f(X | ¬ENL). This operation results in different predic- 244
tion results for targeted LLMs compared to the original 245
predictions, which compels the targeted LLMs to follow 246
contrary information from the explanations of the input 247
queries. In this manner, the fidelity SE of ENL can be 248
estimated by the prediction difference: 249

SE := f(X)− f(X | ¬ENL). (1) 250

This formulation aligns with the traditional definition 251
of fidelity by observing the prediction difference of 252
the LLM when considering input with and without the 253
component supplied by the explanations. 254

Fidelity Evaluator. Unreliable explanations derived 255
from LLMs often present incorrect predictions (Ye and 256
Durrett, 2022), which means that the relationship be- 257
tween the reliability of the explanations and the correct- 258
ness of predictions is significantly high. Motivated by 259
the observation, we propose a framework of the Fidelity 260
Evaluator as illustrated in Figure 1. Specifically, we 261
utilize a powerful LLM agent, such as GPT-3.5, to gen- 262
erate the contrary explanation ¬ENL regarding the origi- 263
nal ENL. The generation process for ¬ENL is guided by 264
the prompt provided in Appendix G. Given the contrary 265
explanation as a condition for the input context, the Fi- 266
delity Evaluator computes the fidelity scores according 267
to the difference of output logits f(X)− f(X | ¬ENL). 268
Intuitively, if the targeted LLMs’ output probability 269
changes significantly enough to flip the result (i.e., 270
judgements or choices), it implies that the contrary ex- 271
planations ¬ENL consist of the contrasting key messages 272
against ENL that can significantly impact the decision- 273
making process of the targeted LLM. This suggests that 274
the explanation ENL contains key components that sig- 275
nificantly support the inference of the targeted LLMs. 276

3.2 FaithLM on Fidelity-enhanced Explanation 277

In this section, we introduce an iterative framework 278
designed to progressively enhance the fidelity of NL 279
explanations. The primary goal of FaithLM here is to 280
generate faithful NL explanations with iterative fidelity- 281
enhanced optimization. 282

Fidelity-enhanced Explanation. The framework of 283
Fidelity-enhanced Explanation is illustrated in Fig- 284
ure 2(a). Since the initial explanation may be unre- 285
liable and unfaithful, we propose a fidelity-enhanced 286
optimization approach designed to progressively gener- 287
ate explanations with higher fidelity. We aim to explain 288
the response Y produced by the targeted LLM f(·) in 289
response to the given input queries X with NL expla- 290
nations ENL following the goal of fidelity enhancement. 291
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Figure 1: The framework of Fidelity Evaluator. The evaluator calculates the fidelity scores of the derived explanations
based on its contrary explanations.

In the first round of enhancement, the LLM explainer292
generates NL explanations ENL following human-crafted293
explanation trigger promptsPE provided in Appendix G.294
The explanations are then generated by the explainer295
g(PE |X,Y ). Starting from the second round till con-296
verge, FaithLM collects a trajectory T with the NL297
explanations ENL and their corresponding fidelity scores298
SE generated by Fidelity Evaluator. The collection pro-299
cess can be represented as T ← {T , [ENL, SE ]}, where300
T initially starts as an empty trajectory. Following this301
trajectory, the LLM explainer generates new explana-302
tions with the goal of achieving higher fidelity scores303
in subsequent iterations. This fidelity enhancement pro-304
cess is guided by the system prompts detailed in Fig-305
ure 13 of Appendix H.306

The trajectory T is continuously updated by incorpo-307
rating each newly derived explanation with its assessed308
fidelity score until the convergence. Regardless of any309
given explanation trigger promptsPE , FaithLM can all310
systematically guide the generation of NL explanations,311
progressively improving fidelity scores by following the312
reference path established in the trajectory.313

Algorithm of Fidelity-enhanced Explanation. The314
outline of FaithLM for Fidelity-enhanced Explanation315
is detailed in Algorithm 1. Specifically, in the first iter-316
ation, FaithLM generates the NL explanations using317
the human-craft prompts (line 1). starting from the sec-318
ond iteration till the convergence or optimization ends,319
FaithLM estimates the fidelity of the derived NL expla-320
nations (line 4). Then, we incorporate the explanation321
and its corresponding fidelity score to the trajectory (line322
5), and update the explanations with the goal of achiev-323
ing higher fidelity scores in subsequent iterations (line324
6). The iteration terminates at a predetermined step or325
ceases earlier as soon as FaithLM observes a flipping326
performance from the targeted LLM f(·).327

Algorithm 1 Fidelity-enhanced Explanation
Input: Input X , output Y , targeted LLMs f(·), human-
crafted prompt PE , and LLM explainer g(·).
Output: NL explanation ENL.
1: ENL ∼ g(PE |X,Y )
2: T = ∅
3: while steps not end and decision not flips do
4: Estimate the fidelity score SE of ENL
5: Append T ← T ∩ [ENL, SE ]
6: Update ENL ∼ g(T |X,Y )
7: end while

3.3 FaithLM on Trigger Prompt Optimization 328

Despite the success of enhancing fidelity in Section 3.2, 329
the low quality of the explanation trigger prompts PE 330
may still hinder the optimization process of receiving a 331
high-fidelity explanation. Given that the unknown pref- 332
erence for prompts from LLMs, human-crafted trigger 333
prompts used in Fidelity-enhanced Explanation Opti- 334
mization might lead to sub-optimal fidelity enhancement 335
in the derived explanations. In this section, we hereby 336
propose a new optimization pipeline under FaithLM, 337
aiming to optimize the trigger prompt PE for generating 338
explanations with higher fidelity. 339

Trigger Prompt Optimization. The framework of 340
Trigger Prompt Optimization is shown in Figure 2(b). 341
The framework aims to optimize the trigger prompt to 342
generate NL explanations with higher fidelity. Different 343
from the optimization goal in Section 3.2, the trajectory 344
in this task collects the trigger prompts PE and their 345
fidelity scores SP . The trajectory is constructed by the 346
system optimization prompts detailed in Figure 12. 347

To estimate the fidelity score for a trigger prompt, 348
FaithLM first adopts the randomly human-crafted trig- 349
ger prompt to guide the LLM explainers to generate NL 350
explanations, and then utilize the Fidelity Evaluator to 351
assess the fidelity of the derived explanation. The final 352
estimated score is averaged by the fidelity score SEi of 353
each instance i from the hold-out dataset (Xi,Y i) ∈ D. 354
Formally, the fidelity score for a trigger prompt PE is 355
as follows: 356

SP = EEi∼g(PE |Xi,Y i)

[
SEi

]
, (2) 357

where SEi represents the fidelity score of the explanation 358
Ei, which is generated by g(PE |Xi,Y i), as assessed 359
by the Fidelity Evaluator in Section 3.1. 360

During the optimization, the trajectory begins from 361
an empty set and starts to incorporate newly derived trig- 362
ger prompts with the fidelity scores in each optimization 363
iteration. Following this trajectory, the LLM explainer 364
generates a new trigger prompt with the goal of achiev- 365
ing higher fidelity scores of explanations in subsequent 366
iterations. After several rounds of iterations, FaithLM 367
ultimately yields an optimal explanation trigger prompt 368
with the highest fidelity score for the LLM explainer to 369
generate a more faithful NL explanation. 370

Algorithm of Trigger Prompt Optimization. The 371
outline of FaithLM for Trigger Prompt Optimization 372
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Figure 2: An overview of FaithLM framework for two differenent optimization objectives. The blue dotted line
reveals the trajectory to optimize the NL explanation (Section 3.2), and the red dotted line indicates the trajectory of
the explanation trigger prompt optimization (Section 3.3). “Traj. Prompt" denotes the trajectory system prompt
shown in Section H.

is detailed in Algorithm 2, which focuses on optimiz-373
ing the trigger prompt for generating NL explanations.374
Specifically, in each iteration, LLM explainer g(·) lever-375
ages the trigger prompt to generate the NL explanations376
and estimates its fidelity (lines 4-7). The fidelity scores377
of the trigger prompts average the fidelity scores of the378
entire hold-out dataset (lines 8). Afterward, the trajec-379
tory appends the trigger prompt with its corresponding380
fidelity score (line 9), and updates the trigger prompt381
as a new sequence of words to achieve higher fidelity382
scores (line 10). Through multiple iterations, FaithLM383
progressively guides the trigger prompt to generate ex-384
planations with higher fidelity scores, following the385
reference path established in the trajectory. The itera-386
tion process terminates at a predetermined 20 step in387
our experiments.388

Algorithm 2 Trigger Prompt Optimization.
Input: Hold-out dataset D, Targeted LLMs f(·), and LLM
explainers g(·).
Output: Optimal explanation trigger prompt PE .
1: Initialize human-crafted PE
2: Initialize T = {∅}
3: while (Steps Not End) do
4: for (Xi,Y i) ∼ D do
5: Ei ← g(PE |Xi,Y i)
6: Estimate the fidelity score Si of Ei
7: end for
8: SP = EEi∼g(PE |Xi,Y i)

[
SEi

]
9: Append T ← T ∩ (PE ,SP)

10: Update PE ← g(PE | D)
11: end while

4 Experiment389

In this section, we conduct experiments to evaluate390
the performance of FaithLM, aiming to answer the391
following three research questions: RQ1: How does392
FaithLM perform in generating explanations in terms393
of efficacy? RQ2: Can optimized explanation trig-394
ger prompts transfer between different datasets? RQ3:395
Does the configurations of LLMs affect the explanation396
performance of FaithLM?397

4.1 Dataset and Baseline 398

Datasets. We evaluate FaithLM on three datasets with 399
multiple tasks: ECQA (Aggarwal et al., 2021) dataset 400
on commonsense question-answer task, TrivaQA- 401
Long (Bai et al., 2023; Joshi et al., 2017) dataset on 402
reading comprehension task, and COPA (Kavumba 403
et al., 2019; Roemmele et al., 2011) dataset on com- 404
monsense causal reasoning task. More details of 405
datasets are provided in Appendix A. Baseline Meth- 406
ods. We compare FaithLM with two state-of-the-art 407
baseline methods: SelfExp (Madsen et al., 2024) and 408
Self-consistency (Wang et al., 2022). The for- 409
mer ones instruct LLMs to generate explanations using 410
prompt engineering under single-forward inference, and 411
the later ones leverage the outputs from the chain-of- 412
thought prompting process as the model explanations. 413

4.2 Experiment Settings 414

We introduce the experimental settings for evaluating 415
FaithLM. Two distinct types of explanation tasks and 416
evaluation settings are as follows. 417

Fidelity-enhanced Explanation In this task, our goal 418
is to produce NL explanations that exhibit a higher fi- 419
delity. The fidelity is exploited as a metric to evaluate 420
fidelity. FaithLM is evaluated across all testing in- 421
stances, where an NL explanation is generated for each 422
instance, and the averaged fidelity score is calculated, 423
serving as the reported metric to evaluate fidelity. 424

Explanation Trigger Prompt Optimization. In this 425
task, we aim to optimize the explanation trigger prompt 426
that benefits FaithLM in generating better explana- 427
tions. The optimization process is conducted on the 428
same dataset, where 30 instances are sampled as a hold- 429
off dataset in each optimization step from the training 430
set. During the optimization process, the fidelity score 431
of a trigger prompt is calculated as the average of the 432
fidelity scores from the selected instances. 433

Evaluation Metrics. The quality of the derived NL 434
explanation is evaluated under the fidelity and truthful- 435
ness metrics. The fidelity follows Section 3.1, which 436
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Figure 3: The fidelity evaluation of explanations from FaithLM on ECQA dataset (left), TriviaQA- Long (middle),
and COPA dataset (right). The reported scores are the average fidelity on testing instances in each step of fidelity-
enhanced optimization.
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Figure 4: Trustfulness evaluation of the NL explanations. Higher the proportion of “similar to ground-truth
explanation," the more consistent the derived explanations are with the ground-truth NL explanations.

observes the flipping rate of the targeted LLMs by in-437
corporating contrary explanations to the input. The438
evaluation of truthfulness assesses the correlation be-439
tween the derived NL explanations to the ground-truth440
explanations Specifically, we leverage GPT-3.5 and two441
well-trained natural language inference (NLI) models,442
Roberta-Large and XLNet-Large (Nie et al., 2020) from443
the huggingface hub (Wolf et al., 2019), as the eval-444
uators. With the same evaluators setup, the truthful-445
ness evaluation follows the settings from (Liu et al.,446
2023), and uses the evaluation prompt provided in Ap-447
pendix F. Specifically, the evaluators assess the derived448
explanations and ground-truth explanations, determin-449
ing whether the two sentences belong to “similar con-450
tent", “dissimilar content," or “non-relevant content".451
Higher the proportion of “similar content", the more452
consistent results with ground-truth NL explanations.453

Implementation Details. In the experiments, we ex-454
plore two variants of LLMs as the targeted LLMs f(·):455
Vicuna-7B (Chiang et al., 2023) and Phi-2 (Javaheripi456
and Bubeck, 2023), two types of LLMs as the explainers457
g(·) in FaithLM: GPT-3.5-Turbo and Claude-2 (An-458
thropic, 2023). The LLM agent for generating the con-459
trary explanations takes the same LLMs as those used by460
the explainers. All reported results are calculated from461
the average scores of 3 times repetitions with the grid462
search on the performance. The settings for predictors463
are uniform, with Phi-2 (2.7B) and Viucua-7B receiving464
identical hyperparameter configurations during the ex-465
periments conducted in this study. The hyper-parameter466
settings and device configuration, including temperature467

and total optimization steps, of FaithLM are given in 468
Appendix C and D, respectively. 469

4.3 Explanation Efficacy of FaithLM (RQ1) 470

Efficacy of Derived Explanations. We assess the ef- 471
ficacy of derived explanations under the fidelity met- 472
ric. FaithLM adopts the trajectory system prompts 473
in Figure 13 of Appendix H. The generation of con- 474
trary explanations is guided by the prompt in Table 8 of 475
Appendix G. 476

• Fidelity Evaluation. The results in Figure 3 demon- 477
strate that FaithLM achieves significantly higher fi- 478
delity scores across all three datasets compared with 479
two baselines after 20 steps of optimization. More- 480
over, the optimization curve of fidelity demonstrates 481
that 20 rounds of optimization are sufficient to con- 482
verge. A similar phenomenon occurs across different 483
settings of explainers and targeted LLMs. Additional 484
results are provided in Appendix E. 485

• Truthfulness Evaluation. To evaluate the truthful- 486
ness of explanations, we show the proportions of 487
“similar to ground-truth explanations" in the ECQA 488
dataset, as depicted in Figure 4. We leverage GPT 489
evaluators and well-trained NLI evaluators to assess 490
whether the given explanations are within similar con- 491
tent to ground-truth explanations. The results show 492
that FaithLM’s explanations are more consistent 493
with the ground-truth NL explanations, indicated by a 494
larger proportion of “similar to ground-truth explana- 495
tions" generated by FaithLM than baseline methods. 496
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Figure 5: The fidelity in different optimization steps of the trigger prompts (Algorithm 2) on the ECQA, TrivaQA,
and COPA datasets. The fidelity grows higher as the number of steps increases.
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(b) Transferability results of trigger prompts

Figure 6: Assessment on the adaptation of the optimized explanation trigger prompts. Figure (a) reveals the
robustness evaluation, and figure (b) illustrates the results on transferability.

Efficacy of Explanation Trigger Prompts. We first497
show prompt optimization curves of explanation trigger498
prompts on three different datasets, and then leverage499
the optimal explanation trigger prompts to generate ex-500
planations via FaithLM. In the experiments, we ran-501
domly select 15 instances from the training dataset in502
each optimization round, and compute the average fi-503
delity scores of the newly derived trigger prompts. After504
the progress is terminated, we evaluate the optimized505
trigger prompts on the testing set. The optimization step506
is uniformly established at 50 rounds across different507
explainer and targeted LLMs.508

• Trigger Prompt Optimization Curve. Figure 5509
demonstrates the optimization curves of three datasets.510
We display the explainer as GPT-3.5-Turbo and511
Claude-2 and the explainer as Vicuna-7B. We ob-512
serve that the optimization curve exhibits a generally513
ascending trend as the step progresses, interspersed514
with multiple waves throughout the optimization pro-515
cedure. This indicates that FaithLM generates bet-516
ter explanation trigger prompts after the optimization.517
More results of optimization curves on remaining518
datasets are provided in Appendix E.519

• Explanation Generation by Optimized Trigger520
Prompts. We utilize the optimized explanation trig-521
ger prompts to generate explanations following Al-522
gorithm 1. The results are displayed in Figure 6(a),523
including the experiments conducted using all three524
datasets with Claude-2 as the explainer and Vicuna-525
7B as the targeted LLM. We observe that optimized526
explanation trigger prompts obtain higher fidelity527
scores than the initial human-crafted trigger prompt528

in generating explanations. This trend is consistent 529
across all datasets, regardless of whether the expla- 530
nations are refined by Algorithm 1. Additionally, the 531
optimized trigger prompts are effective in improving 532
the fidelity of the derived explanations with or without 533
the optimization of FaithLM. 534

A Case Study of FaithLM. The case studies illus- 535
trate the evolving trend via FaithLM, including de- 536
rived NL explanations, explanation trigger prompts, 537
and contrary explanations in Appendix I. These stud- 538
ies demonstrate that the explanations generated by 539
FaithLM are informative and readable, which enables 540
humans to understand the reasons behind the decision- 541
making process of LLMs. 542

4.4 Transferability of Optimized Trigger Prompt 543
(RQ2) 544

We assess the transferability of ultimately optimized 545
trigger prompts across different unseen datasets within 546
the same domain, as depicted in Figure 6(b). Specifi- 547
cally, we transfer the optimized trigger prompts from the 548
ECQA to the Social-IQA dataset, and from the COPA to 549
the XCOPA datasets, without any additional optimiza- 550
tion. Specifically, the Social-IQA dataset is dedicated to 551
commonsense question-answering (similar to the ECQA 552
dataset), while the XCOPA dataset specializes in causal 553
reasoning (similar to the COPA dataset). We adopt the 554
Vicuna-7B as the targeted LLM, and Claude-2 as the 555
explainer on these transfer tasks. The fidelity of the 556
derived NL explanation on the target dataset is shown 557
in Figure 6(b). The optimized trigger prompts show 558
better explanation efficacy than human-crafted prompts 559
when it is transferred in similar domain. This shows that 560
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Figure 7: Ablation studies on evaluating contrary explanation. The results show that contrary explanations obtain
opposite meanings to the derived explanations.
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Figure 8: Robustness Analytics of FaithLM in differ-
ent decoding settings, which are Temperature (left) and
Top-p strategies (right).

the optimized trigger prompts generated by FaithLM561
possess a great property of data transferability.562

4.5 Robustness Analytics of Configuration in563
FaithLM (RQ3)564

In this section, the robustness test of the explainer LLMs565
is conducted under the analytics of hyper-parameters566
that are highly dependent on the outputs of LLMs. We567
focus on two different hyper-parameters: Temperature568
and Top-p. The experiments are conducted under the569
explainer GPT-3.5-Turbo and the predictor Vicuna-7B.570
We evaluate the following temperatures and top-p of571
the explainer LLM in the range of {0.3, 0.6, 0.9}. The572
results are shown in Figure 8. We observe that the ex-573
plainer LLMs perform inferior when the temperature574
and Top-p are low, reflecting that the lower exploration575
of explainer LLM may degrade the optimization ability576
in explanation generation. The explainer LLMs are en-577
couraged to obtain the temperatures and top-p around578
0.9. The small values of the temperatures and top-p579
may lead to low flexibility in updating new explanations.580
In contrast, large temperatures and top-p may impact581
explainer LLMs disobeying the given optimization tra-582
jectory. Thus, in the main experiments, all reported583
performances are under the settings of temperature 0.9584
and top-p 0.9, achieving the best performance for gener-585
ating explanations.586

4.6 Ablation Studies on Contrary Explanation in587
FaithLM (RQ3)588

The quality of contrary explanations ¬ENL determines589
the efficacy of FaithLM. We leverage the powerful590

LLMs as the LLM agent to generate contrary explana- 591
tions, requesting the delivery of high-quality opposite- 592
meaning outputs from their original NL explanations. 593
In this section, we evaluate the quality of contrary expla- 594
nations, aiming to observe the semantic differences be- 595
tween the original NL explanations and their contrary ex- 596
planations. To examine the quality, we employ the GPT 597
classifier and two well-trained NLI classifiers, Roberta- 598
Large and XLNet-Large (Nie et al., 2020). We leverage 599
each classifier to distinguish whether the relationship 600
between the “original NL explanations" and “contrary 601
explanations" belong to the category of “similar mean- 602
ing (entailment)," “dissimilar meaning (contradiction)," 603
or “non-relevant (neutral)." We follow the evaluation 604
settings from (Liu et al., 2023) on GPT-classifier with 605
evaluation prompt provided in Table 7 of Appendix F. 606

The results are shown in Figure 6 under the randomly 607
sampled 100 instances from the ECQA and COPA 608
datasets. We observe that the two NLI classifiers achieve 609
up to 86% and 82% in the “dissimilar meanings"" cat- 610
egory on the ECQA and COPA datasets, respectively. 611
The results of the GPT-classifier demonstrate that the 612
derived explanations from SelfExp obtain more non- 613
faithful information than FaithLM, risking the LLM 614
agent of Fidelity Evaluator in generating non-relevant 615
information as the contrary explanations. Case studies 616
are provided in Appendix I to show the informativeness 617
and readability of contrary explanations. 618

5 Conclusion 619

In this paper, we introduce FaithLM to explain 620
the decision-making process of LLMs. Specifically, 621
FaithLM employs a fidelity enhancement strategy to 622
progressively refine the fidelity of derived explanations 623
and explanation trigger prompts. FaithLM conducts 624
an iterative process to improve the fidelity of derived 625
explanations. Experimental results on three datasets 626
demonstrate the effectiveness of FaithLM in terms 627
of the high fidelity of derived explanations, and bet- 628
ter alignment with the ground-truth explanations of the 629
datasets. For future work, we plan to extend FaithLM 630
to explore high-impact applications, particularly in do- 631
mains like healthcare, where the need for transparency 632
is critical. This is especially important given the grow- 633
ing reliance on black-box LLMs, which raise significant 634
ethical and regulatory concerns. 635

8



6 Limitations636

One significant limitation of FaithLM associated with637
the carbon emissions during the experiments. To gen-638
erate better faithfulness and truthfulness of the derived639
explanations, FaithLM requires iterating a few rounds640
of optimization during the explanation derivation. This641
leads to extra computational resources to proceed. The642
extra computational power is thus required for optimiz-643
ing FaithLM leads to considerable energy consump-644
tion, which, in turn, results in a significant carbon foot-645
print. As the demand for more sophisticated LLMs646
continues to grow, so does their environmental impact.647
This limitation underscores the urgent need to explore648
and adopt more sustainable practices and technologies649
in the development and learning FaithLM with fewer650
optimization steps to mitigate their ecological footprint.651
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Appendix869

A Details about Datasets870

The experiments are conducted on the three NLU datasets. The details of the datasets are provided as follows:871

• ECQA (Aggarwal et al., 2021). ECQA is an extension of the CQA dataset (Talmor et al., 2019). Specifically,872
based on the CQA dataset, it annotates the positive or negative properties and golden explanations for the QA873
pairs. Due to API cost budgets, we evaluate our framework on the first 500 instances in the ECQA dataset.874

• TriviaQA LongBench (Joshi et al., 2017). TriviaQA LongBench (TriviaQA-Long) is a reading comprehension875
dataset. It includes 300 question-answer-evidence triples sourced from the Longbench (Bai et al., 2023) dataset1.876
This dataset features question-answer pairs crafted by trivia enthusiasts, accompanied by independently sourced877
evidence documents, providing supervision for answering these questions.878

• Balanced COPA (Roemmele et al., 2011; Kavumba et al., 2019). The Balanced COPA (COPA) dataset is a879
collection of 500 questions for commonsense causal reasoning. Each question consists of a premise and two880
alternatives, where the task is to select the alternative that more plausibly has a causal relation with the premise.881

B Related Work882

B.1 Post-hoc Explanation883

Post-hoc explanation techniques have undergone significant development and discussion, driven by the widespread884
adoption of black-box ML models across various data modalities. A multitude of post-hoc algorithms has been885
introduced from two aspects: local and global explanations (Molnar, 2022; Du et al., 2019). Explanations aim to886
explain the reasoning behind an individual model for each input instance, while global explanations aim to uncover887
the overall functioning of a complex model (Chuang et al., 2023). Considering various purposes of explanation,888
the explanation techniques mainly showcase the explanation from two perspectives, including feature attributions889
and counterfactual examples. Feature attribution aims to provide users with important scores for each feature’s890
impact on model predictions, while counterfactual examples aim to offer alternative instances that explicitly assist891
users in grasping the model’s decision-making process. In recent years, with the growing proficiency and wide892
usage of black-box LLMs, especially closed-source LLMs service, post-hoc explanations have become increasingly893
prominent and have garnered significant attention in NLP research due to the inaccessibility of LLMs’ model894
weights and structure (Zhao et al., 2023).895

B.2 Explainability of LLMs896

The majority of explanation efforts in LLM research have centered on delivering explanations. One group of studies897
calculates importance scores for specific tokens (Lopardo et al., 2023; Huang et al., 2023), another line of progress898
generates NL explanations by leveraging the pre-trained LLMs with internal model knowledge sources (Kumar and899
Talukdar, 2020; Chen et al., 2023b; Menon et al., 2023), the other group of work leverages LLMs themselves to900
generate chain-of-thought (CoT) reasoning (Lanham et al., 2023; Radhakrishnan et al., 2023; Chen et al., 2023a,a)901
as the self-explanations through the one feed-forward inference process. Furthermore, some studies aim to yield902
counterfactual explanations by pre-trained LLMs to assist users in better understanding the decision-making process903
from LLMs (Chen et al., 2021, 2023a). Although NL explanations offer fantastic human-understandable insights904
than token-wise explanations, the explanations can lose their fidelity via one feed-forward inference process of905
pre-trained LLMs. Unreliability and non-fidelity of NL explanations are still a concern (Ye and Durrett, 2022;906
Turpin et al., 2023). Given our primary aim of producing faithful explanations, our efforts are to generate NL907
explanations to improve the likelihood of accurately representing the decision-making process of LLMs.908

B.3 LLMs as Optimizers909

LLMs as optimizers is a novel paradigm, describing optimization problems in natural language and utilizing910
the reasoning capabilities of LLMs for optimizing (Yang et al., 2023). Depicting optimization problems in911
natural language enables the optimization of diverse tasks without defining formal specifications, such as prompt912
optimization (Yang et al., 2023; Cheng et al., 2023; Guo et al., 2023), agent learning (Shinn et al., 2023), and model913
labeling (Thomas et al., 2023). Based on this optimization paradigm, our work introduces a generative explanation914
framework with a novel estimation method of sentence-level fidelity.915

1https://huggingface.co/datasets/THUDM/LongBench/
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C Hyper-parameter Settings of FaithLM 916

The hyper-parameters of FaithLM are given in Table 2. The configuration for explainers is consistent across 917
Claude-2 and GPT-3.5-Turbo, provided that the parameters are adjustable. Likewise, the settings for predictors 918
are uniform, with Phi-2 and Viucua-7B receiving identical hyperparameter configurations during the experiments 919
conducted in this study. 920

Dataset ECQA TriviaQA-Long COPA

Fidelity-enhanced
Optimization

Optimization Steps 20 20 20
Temperature of Predictor LLMs 0.7 0.5 0.7
Temperature of Explainer LLMs 0.9 0.9 0.9
Top-P of Explainer LLMs 0.9 0.9 0.9

Trigger-oriented
Optimization

Optimization Steps 50 100 100
Sampled Instances 30 30 30
Temperature of Predictor LLMs 0.7 0.5 0.7
Temperature of Explainer LLMs 0.9 0.9 0.9
Top-P of Explainer LLMs 0.9 0.9 0.9

Table 2: Hyper-parameters and optimization settings in FaithLM.

D Computation Infrastructure and Costs 921

D.1 Computation Infrastructure 922

For a fair comparison of testing algorithmic throughput, the experiments are conducted based on the following 923
physical computing infrastructure in Table 3. 924

Device Attribute Value

Computing infrastructure GPU
GPU model Nvidia-A40
GPU number 1
GPU Memory 46068 MB

Table 3: Computing infrastructure for the experiments.

D.2 Computation Costs 925

The computational costs associated with FaithLM primarily differ from the inference costs of local LLMs and the 926
expenses related to API-accessed LLMs. The computational costs depend on the parameter scale and variants of 927
LLMs used in the FaithLM framework, shown in Table 4 and 5. 928

ECQA TrivaQA COPA

Execution Time (Sec.) ∼3 ∼5 ∼3
Execution Cost ($) ∼0.01 ∼0.04 ∼0.01

Table 4: Computing costs of FaithLM with GPT-3.5 on each dataset.

bs=32 bs=64 bs=96

Execution Time (Sec.) ∼3 ∼5 ∼3
Memory Cost (GB) ∼28GB ∼43GB ∼59GB

Table 5: Computing costs of FaithLM with Vicuna-7B under different batch size (bs).
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E Additional Experimental results of FaithLM929

E.1 Optimization Procedure of derived explanations930

We demonstrate more evaluation results on derived explanations from FaithLM. The outcomes depicted in Figure 9931
reveal that FaithLM attains notably higher fidelity scores across all three datasets following 20 steps of optimization.932
Additionally, Figure 9 illustrates the evolution of the optimization process during the generation of explanations.933
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Figure 9: The fidelity evaluation of derived explanations from FaithLM under different settings of predictors and
explainers.

E.2 Additional Optimization Curve of Explanation Trigger Prompt934

We demonstrate more evaluation results on the optimization curve of explanation trigger prompts of FaithLM. The935
optimization curve shown in Figure 10 generally displays an upward trend with the progression of steps, interspersed936
with several fluctuations throughout the optimization process. This suggests that FaithLM can successfully937
generate improved explanation trigger prompts after optimization.938
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Figure 10: The optimization curve of explanation trigger prompts on ECQA (left), TriviaQA-Long (middle), and
COPA dataset (right).

E.3 Additional Experiments on Diverse Domains of Dataset939

We further have conducted additional experiments on one new MedMCQA dataset (Pal et al., 2022) in the healthcare940
domain. We evaluate the FaithLM using a fidelity assessment under Natural Language Explanation Generation941
settings. All experimental configurations follow the settings in Section 4.2. The experimental results are shown942
in the table below. We observe that FaithLM outperforms the baseline method, which is consistent with the943
experimental results across other domain datasets that were evaluated in our work.944

SelfExp Self-consistency FaithLM

Fidelity 0.6956 0.4715 0.9565

Table 6: Additional experimental results on MedMCQA dataset.

E.4 Additional Experiments on Truthfulness Evaluation945

We further lunch additional experiments on all evaluators with different evaluation settings to measure the relevance946
between derived explanations and ground-truth explanations. The evaluators assesses their relevance using a947
GPT-Score in GPT evaluator on a scale of one to five. If the two provided explanations are classified under the948
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“similar content" category or receive a GPT-Score close to five, this indicates that the derived explanations are highly 949
similar to ground-truth explanations. 950
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Figure 11: Truthfulness evaluation with ground-truth explanation under GPT-score settings.

F Details of Evaluation Prompt Usage 951

We provide a listing of the evaluation prompts in Table 7 utilized in assessing the performance of FaithLM. The 952
first row reveals the evaluation prompt on comparing the derived explanation with the ground-truth (GT) explanation 953
in the ECQA dataset in Section 4.3; and the second row demonstrates the evaluation prompt on activating the GPT 954
classifier and the GPT scorer for assessing contrary explanations in Section 4.6. 955

Evaluation Task Evaluation Prompts

Ground-truth Explanation Given a user instruction and two AI assistant responses, your job is to
classify whether the relation of two responses in S1 and S2 belongs to
G-1, G-2, or G-3. The meaning of class is as follows: (G-1) relevant
contents, (G-2) irrelevant contents, or (G-3) irrelevant contents. Judge
responses holistically, paying special attention to whether two responses
have similar contents. Judge responses with only ONE class label as your
final answer. S1:{derived explanation}. S2:{GT-Explanation}. Please
ONLY response your in either G-1, G-2, or G-3; THERE SHOULD BE
NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

GPT classifier for Contrary Ex-
planations

Given a user instruction and two AI assistant responses, your job is to
classify whether two responses in S1 and S2 belong to G-1, G-2, or G-3.
The meaning of class is as follows: (G-1) same semantic meaning, (G-2)
opposite semantic meaning, and (G-3) no relation. Judge responses holis-
tically, paying special attention to whether two responses have the same
semantic meaning. Judge responses with only ONE class label as your
final answer. S1:{derived explanation}. S2:{Contrary Explanations}.
Please ONLY respond in either G-1, G-2, or G-3; THERE SHOULD BE
NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

GPT scorer of Contrary Expla-
nations

Given a user instruction and two AI assistant responses, your job is to
rate from ONE to FIVE to judge whether two responses in S1 and S2
have the same semantic meaning or not. A FIVE score refers to being to-
tally the same, and ONE score refers to being totally the opposite. Judge
responses holistically, paying special attention to whether two responses
have the same semantic meaning. The judge responds with the rates
between ONE and FIVE. S1:{derived explanation}. S2:{Contrary Ex-
planations}. Please ONLY respond to the rate value; THERE SHOULD
BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 7: Evaluation Prompts given to GPT-3.5-Turbo used in assessing the efficacy of FaithLM.

15



G Details of Prompts Usage in FaithLM956

We provide a listing of the prompts in Table 7 utilized in FaithLM in different tasks. The first row demonstrates the957
initial explanation trigger prompt leveraging in both fidelity-enhanced optimization and trigger-oriented optimization.958
The second row shows the prompt for the LLM agent to generate the contrary explanations.959

Conducted Task Evaluation Prompts

Explanation Generation Please provide objective explanations of why the model generates the an-
swers to the given questions based on your thoughts. Explain the reason
why the model provides the answer, no matter if it is wrong or correct.
Make sure not to answer the questions or provide any suggestions to
better answer the questions by yourself. Q:{Question}. A:{Targeted
LLM-generated Answer}.

Contrary Explanations
Generation

Please generate one example of obtaining the opposite meaning from
a given sentence. Make sure you output sentences only. Sen-
tences:{derived explanation}.

Table 8: The example of prompts that are given to two explainer LLMs and LLM agent for contrary explanation.

H Trajectory System Prompts Usage in FaithLM960

We present a detailed listing of the trigger-oriented trajectory prompt in Figure 12 and the explanation-oriented961
prompt in Figure 13, as utilized within the FaithLM framework.962

H.1 Trigger-oriented Trajectory Prompt963

System instruction: Your task is to generate the general prompts <INS> for language model
generating model explanations of each question. Below are some previous prompts with their
scores in the Inputs. The score is calculated as the flipping answer rates and ranges from 0 to 1.

Inputs: The following exemplars show how to apply your text:
Text: Please provide objective explanations of why model generates the answers.
Score: 0.21

Text: Provide a concise, objective explanation of only the key reasoning or assumptions that likely
led the model to generate this specific response.
Score: 0.53

· · · · · ·

Trajectory Instruction: Generate a prompt <INS> that is different from all prompt <INS> in
Inputs above and has a higher score than all the prompts <INS> from Inputs. The prompts should
begin with <INS> and end with <INS> and follow the format of the examples in Inputs. The
prompts should be concise, effective, and generally applicable to all problems above.

Response: <A Newly Generated Trigger Prompt>

Figure 12: A examples of trigger-oriented trajectory prompt. This prompt populates in both LLM explainers,
which are Cluade2 and GPT-3.5-Turbo. The output of FaithLM optimized under trigger-oriented trajectory prompt
is append after the Response label.
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H.2 NL Explanation-oriented Trajectory Prompt 964

System instruction: You have some texts along with their corresponding scores. The texts are the
possible explanation of the following given question and answer. The texts are arranged in random
order based on their scores, where higher scores indicate better quality. The scores are calculated
as how relative the texts are toward the given question and answer as the explanation. The scores
range from 0 to 1 based on your output text.

Inputs: The following exemplars show how to apply your text:
Text: The model generates the answer "farmland" because an apple tree is likely found in
abundance in farmland.
Score: 0.0

Text: The model generates the answer "farmland" because apple trees require open spaces and
fertile soil, both of which are commonly found in farmland.’
Score: 1.0

· · · · · ·

Trajectory Instruction: You replace <EXP> with your text. We say your output is bad if your
output obtains lower scores than the previous text, and we say your output is good if your output
obtains higher scores than the previous text. Please provide new objective text to describe why the
answers are given to the questions based on your thoughts. Explain the reason, no matter if the
answer is wrong or correct. Make sure not to answer the questions or provide any suggestions to
better answer the questions by yourself. Every explanation should begin with <EXP>. Make sure
not to repeat the input queries and answers. Please only output the explanation sentences.

Response: <A Newly Generated Trigger Prompt>

Figure 13: A examples of explanation-oriented trajectory prompt. This prompt populates in both LLM explainers,
which are Cluade2 and GPT-3.5-Turbo. The output of FaithLM optimized under trigger-oriented trajectory prompt
is append after the Response label.
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I Case Studies of FaithLM965

I.1 Explanations Generation966

We demonstrate the case studies of explanation results generated by FaithLM after fidelity-enhanced optimization967
in the following two Figure 14 and Figure 15. The results show that FaithLM can generate faithful explanations968
that truly express the decision-making process of targeted LLMs.969

Case Study 1
Question: What is the cause of the Promise? Premise: The movie tickets sold out.
Choices: [choice] It was opening day for the movie. [choice] The movie received poor reviews.
Ground Truth: The movie received poor reviews.
LLM Answer: It was opening day for the movie. (wrong)
derived explanation: The model likely selected that answer because opening day tends to have
very high demand for movies, often resulting in sold out showings. While there could be other
reasons for the sell out, high opening day demand is a reasonable explanation given the limited
context provided.

Case Study 2
Question: What is the effect of the Promise? Premise: I drilled a hole in the wall.
Choices: [choice] A mouse crawled out of the hole. [choice] Dust blew out of the hole.
Ground Truth: Dust blew out of the hole.
LLM Answer: Dust blew out of the hole. (correct)
derived explanation: Dust exiting the hole in the wall is a reasonable effect to expect when
drilling into a wall. Without further context, there is no reason to assume a mouse coming out
of the hole is likely based solely on the premise that a hole was drilled. The model selected the
choice directly supported by the information provided in the premise.

Figure 14: Case Study: derived explanations (Dataset: COPA; Targeted Model f(·): Claude-2; Explainer g(·):
Vicuna)

Case Study 1
Question: Where would you get a dog if you do not have one?
Choices: [choice] pet store [choice] outside [choice] neighbor’s house [choice] park [choice] rug
Ground Truth: store
LLM Answer: store (correct)
Derived explanation: The model suggested "pet store" as the place to get a dog if you don’t
already have one because pet stores are a common retail business where people can purchase
dogs as pets.

Case Study 2
Question: Where would you put coins if you want to bring them with you?
Choices: [choice] medium [choice] water fountain [choice] wishing well [choice] desk [choice]
purse
Ground Truth: purse
LLM Answer: desk (wrong)
Derived explanation: The model may have predicted "desk" because desks often have drawers
or containers where coins could be stored temporarily. However, a purse is the most practical
option for carrying coins when leaving.

Figure 15: Case Study: Derived explanations (Dataset: ECQA; Targeted Model f(·): Claude-2; Explainer g(·):
Phi)
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I.2 Explanation Trigger Prompts 970

The demonstrations in the explanation trigger prompts generated by FaithLM in Figure 16. The results show that 971
FaithLM can generate explanation trigger prompts that lead explainer LLMs to generate explanations and obtain 972
higher fidelity. 973

Initial Explanation Trigger Prompt:
Please provide objective explanations of why model generates the answers to the given questions
based on your thoughts. Explain the reason why the model provides the answer, no matter if it is
wrong or correct. Make sure not to answer the questions or provide any suggestions to better
answer the questions by yourself.

Optimized Trigger Prompt (Dataset: ECQA; Targeted Model f(·): Phi-2; Explainer g(·): Claude-2):
Explain your reasoning clearly and impartially based solely on the factual inputs, without
assumptions. Succinctly identify factual connections and provide clarification if helpful. I tried
distilling this down to: clear, impartial reasoning solely from the facts; succinctly identifying
factual connections without assumptions; and providing clarification if helpful. The aim
is simplified yet effective guidance that remains focused and broadly applicable to explain
reasoning across diverse queries.

Optimized Trigger Prompt (Dataset: COPA; Targeted Model f(·): Vicuna-7B; Explainer g(·):
Claude-2):
Provide a concise, objective explanation of only the key reasoning or assumptions that likely
led the model to generate this specific response, without repeating the original input or
assessing quality. Use the <EXP> tag and avoid adding any personal perspectives. I have
focused on providing clear, minimal guidelines to elicit explanations that specifically convey
the core logic behind each individual response from the model’s perspective, rather than
overall performance evaluation or subjective opinions. The key aspects aim to produce focused
explanations to better understand the model’s reasoning, while maintaining brevity and objectivity.

Optimized Trigger Prompt (Dataset: TriviaQA; Targeted Model f(·): GPT-3.5; Explainer g(·):
GPT-3.5):
Create concise and insightful explanations for the model’s answers by thoroughly analyzing the
relevant information in the passages and their connection to the given questions. Begin each ex-
planation with <EXP> and avoid introducing new information or personal opinions. Use precise
and concise language to focus on the key points and enhance the clarity and comprehensibility of
the explanations. Strive for brevity without sacrificing coherence to ensure the explanations are
easily understandable by a wide range of readers. Avoid repetition of the questions or answers
and provide valuable insights into the model’s reasoning process to improve the effectiveness and
impact of the explanations.

Figure 16: Case Study: Generation of Explanation Trigger Prompts
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I.3 Contrary Explanation974

We demonstrate results on contrary explanations leveraged in Fidelity Evaluator. The results in Figure 17 show that975
the contrary explanation obtains the opposite meaning of the given explanation.976

Case Study 1
Question: The child wanted to test electricity, so what did he feel as a result?
Choices: [choice] cause fire [choice] shock [choice] short fuse [choice] kill if used improperly
[choice] produce heat
Ground Truth: shock
LLM Answer: cause fire (wrong)
Given Explanation: The model likely incorrectly associated testing electricity with igniting
a fire, rather than understanding that direct contact can cause an electric shock. It failed to
comprehend the potential outcomes of unsafe electrical contact.
Contrary Explanation: The model correctly predicted that testing electricity would not cause a
fire. It likely fully understood that direct contact with electricity can cause a shock rather than
ignite a fire.

Case Study 2
Question: Where would you put coins if you want to bring them with you?
Choices: [choice] medium [choice] water fountain [choice] wishing well [choice] desk [choice]
purse
Ground Truth: purse
LLM Answer: purse (correct)
Given Explanation: A purse is a personal item that people often carry with them when going
places. It has compartments to store small items like coins, so putting coins in your purse allows
you to easily bring them along wherever you go.
Contrary Explanation: The purse is not a good place to put coins if you don’t want to bring
them with you, because purses are designed for other items, not coins.

Figure 17: Case Study: Contrary Explanation (Dataset: ECQA; Targeted Model f(·): Claude-2; Explainer g(·):
Vicuna)
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