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ABSTRACT

After training on the source domain, deep learning models often struggle to gen-
eralize effectively to unknown target domains with differing data distributions.
This is an even more severe challenge when the target domain is not available.
In this paper, we tackle the problem of domain-generalized medical image seg-
mentation by introducing a novel semantic-guided contrastive generalization al-
gorithm, termed SgCG. The method aligns different multi-source domains based
on semantic distributions to learn domain-invariant features. Specifically, we im-
plement a novel contrastive generalization loss at the pixel level that incorporates
semantic distributions from the source domains. This approach facilitates the clus-
tering of pixel representations from the same category while effectively separating
those from different categories, thereby improving the model’s segmentation per-
formance while learning domain-invariant features. Furthermore, we establish an
upper bound estimation for the SgCG approach by integrating a contrastive gen-
eralization loss which includes an infinite number of both similar and dissimilar
pixel pairs. Despite the simplicity and straightforwardness of the approach, our
empirical analysis reveals mechanisms that can maximize the potential of SgCG.
We demonstrate the effectiveness of our approach using two public benchmarks
for generalizable segmentation in medical images, where it achieves state-of-the-
art performance.

1 INTRODUCTION

Image segmentation Wu et al. (2024), a long-standing research focus in computer vision, poses a
core challenge in medical image analysis. Within this domain, tasks may involve various imaging
techniques, including microscopic examination Schoch & Maywald (1956), Computed Tomogra-
phy (CT) Buzug (2011), X-rays Hessenbruch (2002) and Magnetic Resonance Imaging (MRI) Katti
et al. (2011). They can span different biomedical areas, such as retinal imaging, brain, thoracic, ab-
dominal, or even individual cells, and may target diverse structures like cardiac valves or ventricles.
This variety has led to the development of numerous specialized segmentation tools, each optimized
for specific tasks or closely related sets of tasks. In recent years, deep learning models have emerged
as the dominant approach for medical image segmentation Ouyang et al. (2022); Azad et al. (2024);
Song et al. (2022); Zhang et al. (2023), driving significant advancements in the field.

In the field of image segmentation Minaee et al. (2021), a major challenge is how to overcome the
performance drop of models when faced with out-of-distribution samples. This issue is particularly
prominent in the medical domain, as clinical researchers and other scientists continuously define
new segmentation tasks based on evolving population characteristics, scientific advancements, and
clinical objectives. However, domain adaptation Ben-David et al. (2006); You et al. (2019) re-
quires access to target domain data, which is often difficult to obtain in real-world scenarios due to
privacy concerns associated with medical data. Compared to domain adaptation, domain general-
ization Wang et al. (2021b) is a more general task that only requires training a labeled segmentation
model on the source domain, allowing it to generalize to unseen target domain data. The difficulty
of domain generalization in image segmentation tasks lies in the fact that, during training, target
domain data is typically unavailable, making it challenging for the model to learn the characteris-
tics of the target domain. A common solution is to enhance the diversity of training data through
image-level Luo et al. (2021); Chen et al. (2017) data augmentation. In simple terms, by expand-
ing the source domain dataset to include more representative diverse samples, the model’s ability to
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generalize to unknown domains can be improved, especially when only limited source domain data
is available. However, current methods for increasing diversity mainly focus on transformations in
the image space, making it more complex to generate images in new domains, as it is difficult to
specify or learn effective image synthesis strategies.

(a) Semantic Distribution

(𝜇3, Σ3)

(𝜇1, Σ1)

(𝜇2, Σ2)

(b) Augmented Semantic Distribution

(𝜇3, Σ3)

(𝜇1, Σ1)

(𝜇2, Σ2)

Figure 1: We sample directions from a zero-mean multivariate normal distribution with the estimated
covariance as the variance, and apply them to the features of the training samples in that class.

Inspired by implicit semantic data augmentation algorithms Wang et al. (2021a), we propose a
new perspective for addressing the domain generalization problem in semantic segmentation. Our
method learns domain-invariant features by attracting similar pixels and repelling dissimilar pix-
els in a pixel-wise representation, thereby reducing domain shift. We first estimate the covariance
matrix online for each category, capturing intra-class variation. Then, we sample directions from
a zero-mean multivariate normal distribution with the estimated covariance as variance, applying
these directions to the features of training samples from that category (see Figure. 1). This approach
generates diverse samples from the estimated distributions, enhancing source domain data. Sec-
ondly, we observe that enhancing the intra-class compactness and inter-class separability of pixel
representations can significantly improve the performance of dense pixel classifiers. Therefore, we
separate pixel-wise representations in both the source and target domains, implicitly defining an
infinite number of positive sample pairs for each pixel by sampling from the estimated distribu-
tions of the same category. Based on this, we design a pixel-level special contrastive loss function
for contrastive adaptation. We also derive an upper bound for this loss function, ensuring its ef-
fectiveness in practical applications. In essence, this represents a novel and robust alternative loss
function. Since explicit data samples do not need to be generated, we term our algorithm semantic-
guided contrastive generalization (SgCG). We recommend using the popular framework RAM Zhou
et al. (2022b) as a baseline to validate the effectiveness of our method SgCG. Experimental results
demonstrate that aligning source and target pixel representations with semantic distributions through
contrastive learning can effectively reduce domain discrepancies and enhance generalization capa-
bility in the target domain. In summary, our main contributions can be summarized as follows:

• We propose a novel semantic-guided contrastive generalization (SgCG) for medical image
segmentation, which encourages the source feature augmentations in an implicit manner.

• By deriving the upper bound of the expected contrastive loss using statistical data from the
distribution of each category, we enable the learning of invariant and distinctive pixel-wise
representations to be both straightforward and effective.

• Extensive empirical evaluations on several competitive benchmarks, including Fun-
dus Wang et al. (2020) and Prostate Liu et al. (2020), demonstrate that SgCG significantly
improves the baseline model. Additionally, analytical evidence is provided to validate its
effectiveness.
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2 METHOD

2.1 DEFINITION AND OVERVIEW

We define a set of K source domains, denoted as Ds, where each source domain contains Nk pairs

of images and their corresponding segmentation labels, represented as Ds =
{(

xk
i , y

k
i

)Nk

i=1

}K

k=1
.

Here, xk
i refers to the i-th image in the k-th source domain, while yki is the segmentation label for

that image. Our goal is to develop a medical image segmentation model Fθ that can be trained using
the source domain dataset Ds and possesses good generalization ability. We aim for the model Fθ

to perform well on unseen target domain Dt, where Dt = {xi}Nt

i=1, with xi being the i-th image in
the target domain and Nt representing the number of images in the target domain.

Segmentor 𝐹𝜃

C
lassifier

D1

D2

D3

(𝜇1, Σ1)

(𝜇2, Σ2)

(𝜇3, Σ3)

(a) Semantic Distributions 

(b) Contrastive Generalization

Figure 2: Framework of SgCG. By using semantic-guided contrastive generalization for comparative
matching of different semantics, features with the same semantic concept will be brought closer
together, while features with different semantic concepts will be pushed apart across domains.

Our proposed Semantic-guided Contrastive Generalization (SgCG) method for medical image seg-
mentation is illustrated in Figure 2. In front of our training pipeline, we introduce a self-supervision
domain-specific image restoration encoder-decoder module as our baseline Zhou et al. (2022b).
Then, the encoder-decoder segmentation model is trained by the semantic-guided contrastive gener-
alization loss of the source domain images, which can cluster of pixel representations from the same
category are obliged to cluster together and those from different categories are obliged to spread
out, boosting segmentation capability of the model. Finally, an upper bound on this formulation is
derived by implicitly involving the simultaneous learning of an infinite number of (dis)similar pixel
pairs, making it highly efficient.

2.2 IMPLICIT SEMANTIC DATA AUGMENTATION

Most traditional data augmentation in image segmentation methods Zhao et al. (2019); Xie et al.
(2023); Chen et al. (2022) make modifications directly on training images. In contrast, ISDA per-
forms data augmentation at the feature level which translating image features along meaningful
semantic directions. Such directions are determined based on the covariance matrices of deep fea-
tures. Specifically, for C-class classification problem, ISDA statistically estimates the class-wise
covariance matrices Σ̂ =

{
Σ̂1, Σ̂2, . . . , Σ̂C

}
in an online manner at each training iteration. For the

arbitrary source pixel i ∈ {1 , 2 , · · · , H ′ ×W ′} in F̂s, we sample transformation directions from
the Gaussian distribution N

(
0, λΣ̂yi

)
to get the augmented features. The mean of features from

the kth category is calculated as the average values of every single dimension in the feature vector,

µ′k =
1

|Λk|
∑

i∈{1 ,2 ,··· ,H′×W ′}

1[Ms,i=k]F̂s,i , (1)
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where | · | is the cardinality of the set, Λk according to its mask Ms,i ∈ RH′×W ′
downsampled from

ground truth label.F̂s,i ∈ RA is feature representation of source pixel i.

For semantic-guided contrastive generalization information, we require either global category proto-
types or local category centroids. On the one side, we opt for an online fashion on the entire source
domain, aggregating mean statistics one by one to build global category prototypes. Mathmatically,
the online estimate algorithm for the mean of the kth category is given by:

µk
(t) =

nk
(t−1)µ

k
(t−1) +mk

(t)µ
′k
(t)

nk
(t−1) +mk

(t)

, (2)

As the feature vector F̂s,i is multi-dimensional, we use covariance for a better representation of the
variance between any pair of elements in the feature vector. The covariance matrix Σk for class k is
calculated as:

Σk
(t) =

nk
(t−1)Σ

k
(t−1) +mk

(t)Σ
′k
(t)

nk
(t−1) +mk

(t)

+
nk
(t−1)m

k
(t)

(
µk
(t−1) − µ′k

(t)

)(
µk
(t−1) − µ′k

(t)

)⊤

(
nk
(t−1) +mk

(t)

)2 , (3)

where Σ′k
(t) is the covariance matrix of the features between the kth category in the tth image.

It is noteworthy that K mean vectors and K covariance matrices are initialized to zeros. During
training, we dynamically update these statistics using Eq. 2 and Eq. 3 with source feature map from
the encoder-decoder network. The estimated semantic-guided contrastive generalization of semantic
statistics are more informative to guided the pixel representation learning of the source domains.

2.3 SEMANTIC-GUIDED CONTRASTIVE GENERALIZATION

In medical image segmentation, a few methods Wu et al. (2022); Chaitanya et al. (2020) utilize the
centroids of classification features as anchors to reduce domain shift, yielding promising results.
However, no one has attempted to consider the distances between features of different categories
within the source domain. Building on this, we designed a semantic-guided contrastive general-
ization approach aimed at learning similar/dissimilar pairs at the pixel level. This method seeks to
learn domain-invariant features to mitigate domain gaps through centroid-aware pixel contrast or
distribution-aware pixel contrast.We take an infinity limit on the number of M and N , where the ef-
fect of M and N is hopefully absorbed in a probabilistic way. With this application of infinity limit,
the statistics of the data are sufficient to achieve the same goal of multiple pairing. Mathematically,
as M and N goes to infinity, LM,N becomes the estimation of:

L∞
i = lim

M→∞
N→∞

LM,N
i

= −Eq+∼p(q+)

q−j ∼p(q−j )

log
eq

⊤
i q+/τ

eq
⊤
i q+/τ +

∑K−1
j=1 eq

⊤
i q

−
j /τ

, (4)

where p(q+) is the positive semantic distribution that has the same semantic label and p(q−j ) is the
jth negative semantic distribution that has different semantic label with respect to qi. The analytic
form of Eq. 4 itself is intractable, but Eq. 4 has a rigorous closed form of upper bound, which can
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be derived as:

− E
q+,q−j

log
eq

⊤
i q+/τ

eq
⊤
i q+/τ +

∑K−1
j=1 eq

⊤
i q−j /τ

= Eq+

[
log

[
e

q⊤i q+

τ +

K−1∑
j=1

E
q−j

e
q⊤i q

−
j

τ

]]
− Eq+

[
q⊤i q+

τ

]
(5)

≤ log

[
Eq+

[
e

q⊤i q+

τ +

K−1∑
j=1

E
q−j

e
q⊤i q

−
j

τ

]]
− q⊤i Eq+

[
q+

τ

]
(6)

= log

[
Eq+e

q⊤i q+

τ +

K−1∑
j=1

E
q−j

e
q⊤i q

−
j

τ

]
− q⊤i Eq+

[
q+

τ

]
(7)

= L̄i (8)

where the inequality Eq. 6 follows form the Jensen’s inequality on concave functions, i.e.,
E log(X) ≤ logE [X]. To facilitate our formulation, we need some further assumptions on the
feature distribution. Specifically, we assume that q+ ∼ N (µ+,Σ+) and q−j ∼ N (µ−

j ,Σ
−
j ), where

µ+ and Σ+ are respectively the statistics i.e., mean and covariance matrix, of the positive semantic
distribution for q, µ−

j and Σ−
j are respectively the statistics of the jth negative distribution.

For any random variable x that follows Gaussian distribution x ∼ N (µ,Σ), where µ is the expec-
tation of x, Σ is the covariance matrices of x, we have the moment generation function Wang et al.
(2021a) that satisfies:

E
[
ea

⊤x
]
= ea

⊤µ+ 1
2
a⊤Σa . (9)

Under the Gaussian assumption q+ ∼ N (µ+,Σ+) , q−j ∼ N (µ−
j ,Σ

−
j ), along with Eq. 9, we find

that Eq. 7 for a certain pixel representation qi immediately reduces to:

L̄i = log

[
e

q⊤i µ+

τ
+

q⊤i Σ+qi
2τ2 +

K−1∑
j=1

e
q⊤i µ

−
j

τ
+

q⊤i Σ
−
j

qi

2τ2

]
− q⊤i µ+

τ
(10)

= − log
e

q⊤i µ+

τ
+

q⊤i Σ+qi
2τ2

e
q⊤
i

µ+

τ
+

q⊤
i

Σ+qi

2τ2 +
∑K−1

j=1 e
q⊤
i

µ
−
j

τ
+

q⊤
i

Σ
−
j

qi

2τ2

+
q⊤i Σ+qi
2τ2

. (11)

The overall loss function with regard to each feature map in the source and target domain thereby
boils down to the closed form whose gradients can be analytically solved for:

Lfeat =
1

|Fs|
∑
i∈Fs

L̄i +
1

|Ft|
∑
j∈Ft

L̄j , (12)

where |Fs| and |Ft| are respectively numbers of pixels in Fs and Ft. Based on this, an effective
semantic distribution-aware contrastive loss is yielded to mitigate domain discrepancy via learning
discriminative pixel representations.

2.4 TRAINING PROCEDURE

Aside from applying contrastive adaptation to the penultimate feature maps of the network, we
training a popular method RAM Zhou et al. (2022b) as a baseline which design a domain-specific
image restoration module and random amplitude mixup module for medical image segmentation
to further validate the effectiveness of the proposed method. Overall, we can formulate our whole
framework as a multi-task learning paradigm. The total training loss are as follows:

L = Lram + λLfeat (13)

where λ controls the trade-off between the RAM loss and the contrastive generalization loss. The
pseudo-label is illustrated in Algorithm. 1.
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Algorithm 1: SgCG algorithm.
Input:
1) The pre-trained U-Net network.

2) The source domain Ds =
{(

xk
i , y

k
i

)Nk

i=1

}K

k=1
.

3) The maximum iterations K, and hyper-parameters λ.
1 Initialize statistics {µk}Kk=1 and {Σk}Kk=1 using S.
33 for l← 0 to L do
55 for k← 0 to K do
77 Randomly sample a batch source image Is with Ys from S.
99 Compute the feature maps Fs, segmentation outputs Os , Ot and pixel-level prediction

Ps.
1111 Estimate current mean values {µk

(t)}
K
k=1 via Eq. 2 and covariance matrices {Σk

(t)}
K
k=1

via Eq. 3.
12 end
1414 Separate pixel-wise representations of all source domains Ds in the feature space and

output space according to their masks Ms.
1616 Train Φθ using losses Lram and Lfeat.
17 end
18 return Φθ

3 EXPERIMENTS

3.1 EXPERIMENT DATASETS

We evaluated our method on two public domain generalization medical image segmentation datasets
including Fundus Wang et al. (2020) and Prostate Liu et al. (2020).

Fundus dataset contains retinal fundus images from four different medical centers, primarily used
for optic cup and disc segmentation. Each domain has been divided into training and test sets.
During the preprocessing stage, we followed previous studies Zhou et al. (2022b) to center-crop all
images in the Fundus dataset, using a bounding box of 800 × 800. Subsequently, we randomly
resized and cropped each image to obtain a 256× 256 region as input for the network. We will train
our model on the training set of the source domain and evaluate it on the testing set of the target
domain.

Prostate dataset collected T2-weighted MRI prostate images from six different data sources, specif-
ically for prostate segmentation. All images were cropped to the 3D prostate region, and the 2D
slices in the axial plane were resized to 384 × 384. During model training, we fed the 2D slices of
prostate images into our model and normalized the data for both datasets individually to intensity
values in the range of [−1, 1].

3.2 EVALUATION

For evaluation, we employ commonly used metrics: the Dice coefficient (Dice) and average surface
distance (ASD) to quantitatively assess the segmentation results for both the overall area and surface
shape. A higher Dice coefficient indicates better performance, while ASD has the opposite impli-
cation. To mitigate randomness, we conducted three repeated experiments and report the average
performance.

3.3 IMPLEMENTATION DETAILS

We chose RAM Zhou et al. (2022b) as our baseline model and have adopted a U-Net-based encoder-
decoder architecture for our segmentation framework. Our segmentation decoder is designed to learn
domain-invaraint feature, closely mirroring the RAM decoder. The model train for 400 epochs on the
Fundus dataset and 200 epochs on the prostate dataset, utilizing a batch size of 8 for each dataset.
To optimize our model, we employed the Adam optimizer, initiating the learning rate at 0.001.
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Furthermore, to ensure a stable training process, we introduced a polynomial decay schedule for the
learning rate adjustments. Consistent with the original paper, we retained the same experimental
settings for all other models and baselines.

3.4 COMPARATIVE EXPERIMENTS

Comparison on Fundus: We start by conducting comparative experiments on the Funds dataset.
The results of the Dice coefficient for various models are shown in Table 1, while the experimental
findings for the Average Surface Distance (ASD) are presented in Table 2. By observing the results,
it is evident that SgCG (Ours) outperforms all baseline models (SOTA) in terms of generalization
performance across each domain. In the Dice coefficient metrics presented in Table 1, SgCG (Ours)
averages 0.61% higher than RAM (baseline), with improvements of 1.17%/0.17% in Domain 1,
and 1.58%/0.96% in Domain 2. In the ASD metrics shown in Table 2, smaller values indicate
better performance; our model similarly achieves higher generalization across nearly every domain
compared to all models, resulting in an average ASD reduction of 0.78% compared to SOTA. These
findings demonstrate that our model exhibits strong generalization capabilities on the Funds dataset,
outperforming all current models.

Table 1: Dice coefficient of different methods on Fundus segmentation task (%). We mark the top
results in bold.

Task Optic Cup/Disc Segmentation

Unseen Site Domain 1 Domain 2 Domain 3 Domain 4 Avg.

Source 81.44/95.52 77.20/87.96 85.11/94.56 72.30/90.97 85.63
JiGen Carlucci et al. (2019) 82.45/95.03 77.05/87.25 87.01/94.94 80.88/91.34 86.99
BigAug Zhang et al. (2020) 77.68/93.32 75.56/87.54 83.33/92.68 81.63/92.20 85.49
SAML Liu et al. (2020) 83.72/95.03 77.68/87.57 84.20/94.49 82.08/92.78 87.19
FedDG Liu et al. (2021a) 81.72/95.62 77.87/88.71 83.96/94.83 81.90/93.37 87.25
DoFE Wang et al. (2020) 84.17/94.96 81.03/89.29 86.54/91.67 87.28/93.04 88.50
RAM Zhou et al. (2022b) 85.48/95.75 78.82/89.43 87.44/94.67 85.84/94.10 88.94
SgCG 86.65/95.92 80.40/90.39 87.48/95.07 86.27/94.18 89.55

Table 2: Average Surface Distance (ASD) of different methods on Fundus segmentation task (voxel).
We mark the top results in bold.

Task Optic Cup/Disc Segmentation

Unseen Site Domain 1 Domain 2 Domain 3 Domain 4 Avg.

JiGen Carlucci et al. (2019) 18.57/9.43 17.29/19.53 9.15/6.99 15.84/12.14 13.62
BigAug Zhang et al. (2020) 22.61/12.53 17.95/17.64 11.48/10.33 11.57/9.36 14.18
SAML Liu et al. (2020) 17.08/9.01 16.72/18.63 10.87/7.87 16.28/8.64 13.14
FedDG Liu et al. (2021a) 18.57/7.69 15.87/16.93 11.09/7.28 10.23/7.51 11.90
DoFE Wang et al. (2020) 16.07/7.78 13.44/17.06 10.12/10.75 8.14/7.29 11.26
RAM Zhou et al. (2022b) 16.05/7.12 14.01/13.86 9.02/7.11 8.29/7.06 10.32
SgCG 14.62/7.31 12.96/12.21 8.46/6.57 7.54/6.64 9.54

Table 3: Dice coefficient of different methods on Prostate segmentation task (%). We mark the top
results in bold.

Task Prostate Segmentation

Unseen Site Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6 Avg.

Source 85.30 87.56 82.33 87.37 80.49 81.40 84.04
JiGen Carlucci et al. (2019) 85.45 89.26 85.92 87.45 86.18 83.08 86.22
BigAug Zhang et al. (2020) 85.73 89.12 84.49 88.02 81.95 87.63 86.19
SAML Liu et al. (2020) 85.88 88.72 85.03 88.44 86.72 87.56 87.05
FedDG Liu et al. (2021a) 86.12 89.24 85.30 88.95 85.93 86.65 87.03
DoFE Wang et al. (2020) 88.89 87.88 85.08 89.06 86.15 87.03 87.34
RAM Zhou et al. (2022b) 87.56 89.35 86.88 87.34 86.98 88.02 87.68
SgCG 87.96 90.42 87.23 89.17 86.78 88.32 88.34

Comparison on Prostate: To further demonstrate the generalization and robustness of SgCG (Ours)
in medical image segmentation, we conduct comparative experiments on the Prostate dataset. It is
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Table 4: Average Surface Distance (ASD) of different methods on Prostate segmentation task
(voxel). We mark the top results in bold.

Task Prostate Segmentation

Unseen Site Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6 Avg.

Source 1.22 1.95 4.68 1.51 3.95 4.23 2.92
JiGen Carlucci et al. (2019) 1.11 1.81 2.61 1.66 1.71 2.43 1.89
BigAug Zhang et al. (2020) 1.13 1.78 4.01 1.25 1.92 1.89 2.00
SAML Liu et al. (2020) 1.08 1.56 2.49 1.42 2.01 1.87 1.73
FedDG Liu et al. (2021a) 1.32 1.68 2.32 1.37 2.18 1.95 1.80
DoFE Wang et al. (2020) 0.92 1.44 2.88 1.46 1.92 1.63 1.71
RAM Zhou et al. (2022b) 1.09 0.83 2.32 1.32 1.64 1.21 1.40
SgCG 0.92 0.74 2.17 1.02 1.67 0.93 1.24

important to note that, since most models provide complete code only for the Fundus dataset, we
encounter discrepancies when attempting to reproduce the performance of comparative models on
the Prostate dataset using the parameters outlined in the original papers. The Dice coefficient results
for different models on the Prostate dataset are presented in Table 3, while the experimental results
for the Average Surface Distance (ASD) are shown in Table 4. As shown in the tables, SgCG (Ours)
outperforms all baseline models (SOTA) in nearly all areas. In the Dice coefficient metrics presented
in Table. 3, SgCG (Ours) averages 0.68% higher than RAM (baseline). In the ASD metrics shown
in Table. 4, SgCG (Ours) reduces the value by 0.16% compared to RAM (baseline).

Table 5: Ablation Study of key components in our method on Fundus Segmentation Task (%). We
mark the top results in bold.

Dice coefficient

RAM SgCG Domain 1 Domain 2 Domain 3 Domain 4 Avg.

✓ - 85.48/95.75 78.82/89.43 87.44/94.67 85.84/94.10 88.94
✓ ✓ 86.65/95.92 80.40/90.39 87.48/95.07 86.27/94.18 89.55

Average Surface Distance (ASD)
✓ - 16.05/7.12 14.01/13.86 9.02/7.11 8.29/7.06 10.32
✓ ✓ 14.62/7.31 12.96/12.21 8.46/6.57 7.54/6.64 9.54

Table 6: Ablation Study of key components in our method on Prostate Segmentation Task (%). We
mark the top results in bold.

Dice coefficient

RAM SgCG Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6 Avg.

✓ - 87.56 89.35 86.88 87.34 86.98 88.02 87.68
✓ ✓ 87.96 90.42 87.23 89.17 86.78 88.32 88.34

Average Surface Distance (ASD)

✓ - 1.09 0.83 2.32 1.32 1.64 1.21 1.40
✓ ✓ 0.92 0.74 2.17 1.02 1.67 0.93 1.24

3.5 FURTHER PERFORMANCE ANALYSIS

3.5.1 ABLATION STUDY

We conduct ablation studies on the two components of SgCG to better demonstrate our contri-
butions: the RAM module and the Semantic-guided Contrastive Generalization module. Table 5
and Table 6 present the segmentation performance of different variants of SgCG for the Funds and
Prostate datasets. We observe that utilizing the contrastive generalization module consistently im-
proves overall performance. This enhancement increases the similarity of pixel features with their
corresponding semantic concepts and boosts discrimination power for mismatched pairs. Moreover,
our contrastive generalization method equipped with a simple self-supervised learning strategy can
further boost the performance.
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Figure 3: Hyperparameter analysis experiments were carried out on Funds and Prostate data sets
respectively. (a) is the result of the Funds dataset, and (b) is the result of the Prostate dataset.

3.5.2 PARAMETER ANALYSIS EXPERIMENT

To validate the robustness of our model concerning parameter sensitivity, we conducted an analysis
of the hyper-parameter λ. This analysis, performed on the Funds dataset and generalized across
four domains, is illustrated in Figure 3. The results indicate that the model maintains good accuracy
within a certain range of parameter values, confirming that our model’s λ demonstrates robustness
and insensitivity to variations.

Figure 4: Visualization of the segmentation results for the Fundus dataset. The red contours repre-
sent the boundaries of the ground truth, while the green and blue contours indicate the predictions.

3.5.3 VISUALIZATION OF THE SEGMENTATION

To further demonstrate the effectiveness of our method, we provide visualizations of the segmen-
tation experiments on the Fundus and Prostate datasets in Figure 4 and Figure 5. It is clear that
our method accurately segments the target structures in unseen domain images, producing smoother
boundaries compared to other methods that may fail to achieve this. There is some evidence that a
well-structured pixel embedding space provides the best of both worlds: reducing distribution shift,
plus promoting the source task.

3.5.4 CONVERGENCE ANALYSIS

The convergence results of our improvement Lfeat across four domains on the Funds dataset are
shown in Figure 6 (a) and (b). The left side of the figure displays our loss, while the middle shows
the changes in the Dice coefficient for the Optic Cup/Disc Segmentation of our model on the Funds
dataset. The right side presents the changes in Average Surface Distance (ASD) for the same seg-
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Figure 5: Visualization of the segmentation results for the Prostate dataset. The red contours repre-
sent the boundaries of the ground truth, while the green contours indicate the predictions.

(a) Domain1 Loss Convergence (b) Domain1Dice Coefficence (c) Original (d) SgCG

Figure 6: (a) Loss Convergence and Dice Coffeicence obtained by Domain1 experiment on the
Funds dataset. (b) A visualization analysis was performed on the Fundus datasets experiment.

mentation task. It is evident from the figure that our loss rapidly converges with the improvement in
model performance, demonstrating the effectiveness of our approach. The performance presents a
show better-shaped curve and outperforms state-of-the-art significantly on the corresponding tasks.

3.5.5 T-SNE VISUALIZATION

To enhance our understanding and intuition, we employ t-SNE visualization Van der Maaten & Hin-
ton (2008) to graphically represent the learned representations obtained from the SgCG method,
as depicted in Figure 6 (c) and (d). This comparison is made against the original method to high-
light differences. The process begins with the random selection of an image from the source do-
main. Subsequently, we project its high-dimensional latent features onto a two-dimensional plane.
Through these t-SNE visualizations, it becomes evident that the representations derived from the
SgCG method form distinct clusters. This observation underscores the method’s ability to effec-
tively discriminate between different features, showcasing the power of contrastive generalization.

4 CONCLUSION

In this paper, we present a novel semantic-guided contrastive generalization for medical image
segmentation. To improve the generalization in DG segmentation, we introduce a particular con-
trastive loss at pixel label, which implicitly involves the joint learning of an infinite number of
similar/dissimilar pixel pairs for each pixel-wise representation of the source domains. Finally, we
get an error bound on this formulation which can assess the extent of our approach to the practi-
cal applications. Our method can successfully adapt the segmentation model to the unseen target
domain through pixel-wise alignment guided by semantic distributions. The experimental results
demonstrate the superiority of SgCG on various benchmarks.
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A APPENDIX

A.1 RELATED WORK

In the area of medical image segmentation Elnakib et al. (2011); Shen et al. (2010), domain gener-
alization (DG) Zhou et al. (2022a); Li et al. (2017; 2021); Qiao et al. (2020); Muandet et al. (2013)
has emerged as a critical area of research, focusing on developing models that can generalize well
across different datasets and imaging environments. For a new segmentation problem, models are
typically from scratch, requiring substantial design and tuning. Existing DG methods mainly include
meta-learning methods Liu et al. (2021b;a; 2020), feature-based methods Wang et al. (2020); Song
et al. (2022) and data-based methods Zhao et al. (2019); Zhang et al. (2023); You et al. (2024).

Meta-learning divides a set of source domains into meta-train and meta-test subsets, employing
meta-optimization to iteratively update model parameters, thereby enhancing performance on the
meta-test subset and simulating the scenario of inferring on unseen domains. Liu et al.Liu et al.
(2021b) incorporate designed constraints into the gradient-based meta-learning approach, enabling
the model to extract robust anatomical features useful for predicting segmentation masks in a semi-
supervised manner. FedDG Liu et al. (2021a) introduces a novel problem setting for federated
domain generalization and presents an innovative approach that utilizes continuous frequency space
interpolation alongside a boundary-oriented episodic learning scheme. SAML Liu et al. (2020)
employs a shape-aware meta-learning strategy to enhance model generalization in prostate MRI
segmentation. However, the meta-optimization process is highly time-consuming, as it requires
considering all potential splitting results of the meta-train and meta-test subsets during training.

Feature-based approaches utilize domain-adaptive feature calibration or learn domain-invariant fea-
tures to address domain generalization. DoFE Wang et al. (2020) introduces a novel domain code
prediction branch and learning strategy to measure the similarities between input test images and
various source-domain data, facilitating domain-oriented feature embedding. GLFRNet Song et al.
(2022) proposes two innovative modules: a global feature reconstruction module and a local feature
reconstruction module, aimed at addressing the issues of insufficient global context feature extrac-
tion and spatial information restoration within encoder-decoder networks. However, these methods
do not explicitly obtain domain-invariant features for domain generalization, nor do they effectively
separate features into purely domain-specific and domain-invariant representations, which limits
their performance in this area.

Data-based approaches typically employ various data augmentation strategies to enhance the
model’s generalizability. Zhao et al.Zhao et al. (2019) introduced a learning-based method for data
augmentation, demonstrating its effectiveness in one-shot medical image segmentation. Zhang et
al.Zhang et al. (2023) utilized the Segment Anything model to augment image inputs for commonly
used medical image segmentation models. MONA You et al. (2024) established a set of objectives
that significantly enhance segmentation quality. However, the effectiveness of data augmentation
largely depends on its ability to cover the data distribution in unseen domains, necessitating empiri-
cal settings and potentially data-specific modifications.

A.2 COMPARISON METHODS AND SETTINGS

To better validate our results, we compared our outcomes with several models, including Source,
JiGen Carlucci et al. (2019), BigAug Zhang et al. (2020), SAML Liu et al. (2020), FedDG Liu
et al. (2021a), DoFE Wang et al. (2020), and RAM Zhou et al. (2022b).

Source Zhou et al. (2022b) model was trained using all source domain data with U-Net.

JiGen Carlucci et al. (2019) learns semantic labels in a supervised manner and broadens its under-
standing of the data through a self-supervised domain generalization approach that solves a jigsaw
puzzle using self-supervised signals on the same images.

BigAug Zhang et al. (2020) is a data augmentation-based deep stacked transformation method for
domain generalization.

SAML Liu et al. (2020) is a gradient-based meta-learning approach that explicitly simulates domain
transfer through virtual meta-training and meta-testing during training.
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Figure 7: Loss Convergence and Dice Coefficient obtained by all domain on the Funds dataset
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FedDG Liu et al. (2021a) is a generalizable method suitable for medical image segmentation, uti-
lizing an effective continuous frequency space interpolation mechanism and a boundary-focused
scenario learning paradigm.

DoFE Wang et al. (2020) introduces a domain knowledge base to learn and remember prior infor-
mation extracted from multiple source domains, employing domain-focused aggregated features to
enhance the domain-invariant feature representation of the original image features.

RAM-DSIR Zhou et al. (2022b) integrates the segmentation model with a self-supervised domain-
specific image restoration (DSIR) module, designed as a multi-task paradigm, along with a Random
Amplitude Mixing (RAM) module to combine low-frequency information from images across dif-
ferent domains for generalizable medical image segmentation domain generalization.
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