Under review as a conference paper at ICLR 2022

THE GUIDE AND THE EXPLORER: SMART AGENTS FOR
RESOURCE-LIMITED ITERATED BATCH REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Iterated batch reinforcement learning (RL) is a growing subfield fueled by the de-
mand from systems engineers for intelligent control solutions that they can apply
within their technical and organizational constraints. Model-based RL (MBRL)
suits this scenario well for its sample efficiency and modularity. Recent MBRL
techniques combine efficient neural system models with classical planning (like
model predictive control; MPC). In this paper we add two components to this
classical setup. The first is a Dyna-style policy learned on the system model using
model-free techniques. We call it the guide since it guides the planner. The second
component is the explorer, a strategy to expand the limited knowledge of the guide
during planning. Through a rigorous ablation study we show that exploration is
crucial for optimal performance. We apply this approach with a DQN guide and
a heating explorer to improve the state of the art of the resource-limited Acrobot
benchmark system by about 10%.

1 INTRODUCTION

John is a telecommunication engineer. His day job is to operate a mobile antenna. He has about
forty knobs to turn, in principle every five minutes, based on about a hundred external and internal
system observables. His goal is to keep some performance indicators within operational limits while
optimizing some others. In the evenings John dreams about using reinforcement learning (RL) to
help him with his job. He knows that he cannot put an untrusted model-free agent on the antenna
control (failures are very costly), but he manages to convince his boss to run live tests a couple of
days every month.

John’s case is arguably on the R&D table of a lot of engineering companies today. Al adoption
is slow, partly because these companies have little experience with Al, but partly also because the
algorithms we develop fail to address the constraints and operational requirements of these systems.
What are the common attributes of these systems?

* They are physical, not getting faster with time, producing tiny data compared to what
model-free RL (MFRL) algorithms require for training.

» System access is limited to a small number of relatively short live tests, each producing
logs that can be used to evaluate the current policy and can be fed into the training of the
next.

e They are relatively small-dimensional, and system observables were designed to support
human control decisions, so there is no need to filter them or to learn representations (with
the exception when the engineer uses complex images, e.g., a driver).

» Rewards are non-sparse, performance indicators come continually. Delays are possible but
usually not long.

» Safe operation even during live tests is crucial. Simulators and digital twins are more and
more available, but some systems are too complex to simulate from first principles.

The RL setup that fits this scenario is neither pure batch (offline; Levine et al. (2020)) as interacting
with the system is possible during short periods of time nor pure online as the policy can only be

Under review as a conference paper at ICLR 2022

updated offline between two interaction periods. We refer to it as iterated batch RL (Lange et al.
(2012) call it growing batch). Furthermore, we are interested in model-based RL (Deisenroth &
Rasmussen, 2011; Chua et al., 2018; Moerland et al., 2021) because 1) it is sample efficient (Chua
et al., 2018; Wang et al., 2019), ii) it works well on small-dimensional systems with dense rewards,
and iii) the system model (data-driven simulator) itself is an object of interest because it can ease
the adoption of data-driven algorithms by systems engineers.

Given a robust system model, simple model predictive control (MPC) agents using random shooting
(RS; Richards (2005); Rao (2010)) or the cross entropy method (CEM; de Boer et al. (2004)) have
been shown to perform remarkably well on many benchmark systems (Nagabandi et al., 2018; Chua
et al., 2018; Wang et al., 2019; Hafner et al., 2019; Kégl et al., 2021) and real-life domains such as
robotics (Yang et al., 2020). On the other hand, implementing successfully the seemingly elegant
Dyna-style approach (Sutton, 1991; Kurutach et al., 2018; Clavera et al., 2018; Luo et al., 2019),
when we learn model-free agents on the system model and apply them on the real system, remains
challenging especially on systems that require planning with long horizon. Our main finding is that
the Dyna-style approach can be an excellent choice for iterated batch RL by adding to it a decision-
time planning guided by the model-free policy and a dynamically self-tuning exploration. The key
is that exploration and bootstrapping with a value function estimate affords us shorter rollouts so
we can reduce the accumulation of errors that plagues the Dyna-style approach with long horizons
(Janner et al., 2019). We also innovate on the experimental framework (metrics, statistically rigorous
measurements), so we can profit from the modularity of the Dyna-style approach, tuning ingredients
(model, the MFRL guide policy, exploration, planning, bootstrapping) independently. This modular
approach makes engineering easier (as opposed to monolithic approaches like AlphaZero (Silver
etal., 2017)), which is an important aspect if we want to give the methodology to non-expert systems
engineers.

We demonstrate our GUIDE&EXPLORE approach on the small-dimensional but difficult Acrobot
system which is known to be especially tough for Dyna-style techniques (Wang et al., 2019). We
show in a rigorous ablation study how each ingredient adds a small but significant improvement,
achieving a 10% total margin over the current state of the art (Wang et al., 2019; Wang & Ba,
2020; Kégl et al., 2021). DYNAZERO (pure Dyna-style with an AlphaZero guide) also matches the
asymptotic performance with a larger sample complexity (3x) and computational (5x) price tag.

Table 1: Summary of previous scores and our results on resource-limited Acrobot (n: planning
rollouts, L: horizon). MAR is the episodewise mean reward measured on the second half of the
episodes where the algorithms have safely achieved their asymptotic performance. The two RS
rows are random shooting planning on the real system, requiring orders of magnitudes more system
access steps than MBRL. | and 1 mean lower and higher the better, respectively.

Method Style Sys acc steps | MAR 71

POPLIN-A (Wang & Ba, 2020) model-based MPC 50K 2.11640.010
PETS-RS (Chua et al., 2018; Wang et al., 2019) model-based MPC 50K 1.908+0.010
DARMDN-RS (Kégl et al., 2021) model-based MPC 20K 2.07540.010
RS(n =100, L = 10) model-free MPC 200K 2.10640.047
RS(n =100K, L = 20) model-free MPC 400M 2.58340.082
GUIDE&EXPLORE(n = 100, L = 10) model-based Dyna 20K 2.284+0.012
DYNAZERO(n = 500) model-based Dyna 20K 2.304+0.031

1.1 SUMMARY OF CONTRIBUTIONS

* A conceptual framework with interchangeable algorithmic bricks for iterative batch re-
inforcement learning, suitable to bring intelligent control into slow, physical, low-
dimensional engineering systems and the organizational constraints surrounding them.

* A rigorous experimental framework to optimize such systems.

* An ablation study that helped us find the combination of a neural model, a bootstrapping
DQN guide, and a heating explorer, which lead to a 10% jump in the state of the art on the
resource-limited Acrobot system.

Under review as a conference paper at ICLR 2022

2 RELATED WORK

The MBRL subfield has seen a proliferation of powerful methods, but most of them miss the spe-
cific requirements (solving problems irrelevant in this scenario like representation learning or sparse
rewards) and missing others (limited and costly system access; data taking and experimentation
through campaigns, live tests; safety) (Hamrick, 2019).

The Dyna framework developed by Sutton (1991) consists in training an agent from both real ex-
perience and from simulations from a system model learned from the real data. Its efficient use of
system access makes it a natural candidate for iterated batch RL. The well-known limitation of this
approach is the agent overfitting the imperfect system model (Grill et al., 2020). A first solution
is to use short rollouts on the model to reduce error accumulation as done in Model-Based Policy
Optimization (MBPO; Janner et al. (2019)). Another solution is to rely on ensembling techniques
for the model. Kurutach et al. (2018)’s ME-TRPO is based on an ensemble of models and Trust
Region Policy Optimization (TRPO; Schulman et al. (2015)). At each TRPO step a transition is
sampled from a randomly picked model of the ensemble, preventing the policy from overfitting one
model. An ensemble is also used in Model-Based Meta-Policy Optimization (MP-MPO; Clavera
et al. (2018)) where each model of the ensemble is seen as a different task used to meta-learn a pol-
icy. The meta-policy is then able to quickly adapt to any of the dynamics model and is more robust
to model inaccuracies. Instead of learning the model and then the policy from the model, Stochastic
Lower Bound Optimization (SLBO; Luo et al. (2019)) alternates between model and policy updates.
In our ITERATEDMBRL skeleton (Fig 1), this strategy would couple the LEARN and MFRL steps,
which we do not study in this paper. We note that according to the results shown in Fig 1.(a) and
Table 1 in Wang et al. (2019), ME-TRPO, SLBO and MB-MPO alone (pure Dyna, without plan-
ning) are clearly suboptimal on the Acrobot system', similar to the performance obtained by our
pure Dyna DQN (Section 4). Finally, Yu et al. (2020) and Kidambi et al. (2020) use a Dyna-style
approach in the context of pure batch RL where no further data collection and therefore no further
model updates are assumed.

The idea of using a guide and a value function when planning is not novel (Silver et al., 2017; Schrit-
twieser et al., 2020; Wang & Ba, 2020; Argenson & Dulac-Arnold, 2020). We were greatly inspired
by these elements in our objective of building smarter agents as they can make the search more
efficient and thus lead to a better performance. POPLIN-A (Wang & Ba, 2020) relies on behavior
cloning (using only real experience, unlike our Dyna-style approach that mainly uses the model),
but their guide is similar to our approach. During the planning, they add random noise to the actions
recommended by a deterministic policy network and update the noise distribution using a CEM
strategy. In a similar way our GUIDE&EXPLORE strategy also adds a carefully controled amount
of noise to the recommended actions. Our results highlight the importance of a well-calibrated ex-
ploration, which also contributes to the understanding of POPLIN-A. Argenson & Dulac-Arnold
(2020) and Lowrey et al. (2019) both found that bootstrapping with a value estimate improves the
performance of simple guided MPC strategies. The popular AlphaZero (Silver et al., 2017) and
MuZero (Schrittwieser et al., 2020) algorithms also rely on a guide and a value function for their
Monte Carlo Tree Search (MCTS). We implement a Dyna-style version of AlphaZero, which we call
DYNAZERO. The principal issue of MuZero (Schrittwieser et al., 2020) in our micro-data iterated
batch RL context is that it does not control the number of system access steps: it needs to simulate a
lot from the real environment to establish the targets for the value function. In these two algorithms
the guide is updated from the results obtained during the search that it guided, a procedure known
as Dual Policy Iteration (Sun et al., 2018). We prefer experiencing with Dyna-style approaches first
to leverage popular MFRL algorithms and defer the study of Dual Policy Iteration to future work.

Our results show that planning is an important ingredient, a claim already made by Hamrick et al.
(2021). They use MuZero to run their ablation study while we prefer using an explicit model for
practical reasons explained in the introduction. Besides planning we also study the importance of
exploration.

!The conversion from Wang et al. (2019): our mean reward per episode of 200 steps = their return/200 4 1.

Under review as a conference paper at ICLR 2022

3 THE FRAMEWORK FOR RESOURCE-LIMITED ITERATIVE BATCH RL

3.1 THE FORMAL SETUP

Let 71 = ((31, ai),...,(sr, aT)) be a system trace consisting of T steps of observable-action

pairs (s¢, a;): given an observable s; of the system state at time ¢, an action a; was taken, leading

to a new system state observed as s;;1. The observable vector s; = (si,..., sfs) contains d;

numerical or categorical variables, measured on the system at time ¢. The action vector a; contains
d, numerical or categorical action variables, typically set by a control function a; = w(s;) of
the current observable s; (or by a stochastic policy a; ~ 7(s;); we will also use the notation
m : 8¢ ~ a;). The performance of the policy is measured by the reward r; which we assume to
be a function of the observables s;. Given a trace 77 and a reward r; obtained at each step ¢, we
define the mean reward as R(77) = % Zthl r¢.> The system model p : (s¢,as) ~» 8441 can be a
deterministic point predictor or a probabilistic (generative) model that, besides the point prediction
E {p(si+1|(st,ar))}, also provides information on the uncertainty of the prediction and/or to model
the randomness of the system (Deisenroth & Rasmussen, 2011; Chua et al., 2018).

3.2 A NOTE ON TERMINOLOGY

By model we will consistently refer to the learned transition or system model p (never to any policy).
Rollout is the procedure of obtaining a trace 7 from an initial state s; by alternating a model or
real system p and a policy 7 (Fig 1). We decided to rename what Silver et al. (2017) calls the
prior policy to guide since prior clashes with Bayesian terminology (as, e.g., Grill et al. (2020);
Hamrick et al. (2021) also note), and guide expresses well that the role of this policy is to guide
the search/planning. Sometimes the guide is also called the reactive policy (Sun et al., 2018) since
it is typically an explicit function or conditional distribution £ : s ~» « that can be executed or
drawn from rapidly. We will call the (often implicit) policy 7 : s ~» a resulting from the guided
plan/search the actor (sometimes also called the non-reactive policy since it takes time to simulate
from the model, before each action). We will learn the guide £ using MFRL mainly on the model
p, but, when possible, off-policy (since m # &) data (system trace T) obtained by acting on the real
system will also be used. In that sense, through the data from the real system, planning is part of
training the guide. However, since from the point of view of the MFRL guide, the model p is the
world, we will not use the term planning to refer to the rollouts of the model p and the guide £ when
training the guide on p, rather we will reserve planning to the guided search procedure that results
in acting on the real system.

3.3 EXPERIMENTAL SETUP: THE ITERATED BATCH MBRL

For rigorously studying and comparing algorithms and algorithmic ingredients, we need to fix not
only the simulation environment but also the experimental setup. We parameterize the iterated batch
RL loop (Fig 1) by four parameters:

¢ the number of episodes N ,
* the number of system access steps 7" per episode,
* the planning horizon L, and

* the number of generated rollouts n at each planning step.

N and T are usually set by hard organizational constraints (number N and length 7" of live tests) that
are part of the experimental setup. Our main goal is to measure the performance of our algorithms at
a given (and challengingly small) number of system access steps N x 1. Planning happens in silico,
and so n and L (and so the total number of calls N x T x n x L to the simulator/system model
p) are softer constraints determined by the (physical) time between two steps and the computational
resources available for the planning.

In benchmark studies, such as this paper, we argue that fixing N, T, n, and L is important for
making the problem well defined (taking some of the usual algorithmic choices out of the input of

>We use the mean reward (as opposed to the fotal reward, a.k.a return), since it is invariant to episode length
and its unit is more meaningful to systems engineers.

Under review as a conference paper at ICLR 2022

RoLLOUT(m, p, 81,T):
1 T+ {}
2 fort < 1toT:
3 a; «~m(8t) > draw action from policy
4 T < T U(st,a¢) > update trace
5 St41 «~ p(8t,ar) > draw next state
6 return 7
ITERATEDMBRL (prear, So, 79, N, T, L, n):
1 81 «~ 8y > draw initial state
2 7@ « RoLLOUT (W(O),preal, S1, T) > initial random trace
3 for 7 < 1to N: > for N episodes
4 p(7) LEARN(UL T(T/)) > learn system model
5 7(7) AcTOR (7@, 7V, p(™), U7, T, L,n)
6 s1 «~ Sy > draw initial state
7 T(+1) «+ ROLLOUT (W(T),preal, 81, T) > episode trace
8 return UY_, 7(7)

Figure 1: The iterated batch MBRL loop. pea : (8¢, a:) ~ Sy11 is the real system (so Line 7
is what dominates the cost) and p : (s, at) ~ S;4+1 can be the real system or the system model in
ROLLOUT. & is the distribution of the initial state of the real system. 7 : s, ~» a, is an initial
(typically random) policy and in ROLLOUT 7 : s; ~» ay is any policy. IV is the number of episodes;
T is the length of the episodes; L is the planning horizon and n is the number of planning trajectories
used by the actor policies 7(7). 7 = 1,..., N is the episode index whereas ¢t = 1,...,T is the
system (or model) access step index. LEARN is a supervised learning (probabilistic or deterministic
time-series forecasting) algorithm applied to the collected traces and ACTOR is a wrapper of the
various techniques that we experiment with in this paper (Fig 2). An ACTOR typically updates
771 using the model p{) in an n x L planning loop, but it can also access the initial policy 7(®)
and the trace U:,:lT(T/) collected on pye, up to episode 7.

the optimizer), affording meaningful comparison across papers and steady progress of algorithms.
As in all benchmark designs, the goal is to make the problem challenging but not unsolvable. That
said, we are aware that these choices may change the task and the research priorities implicitly but
significantly (for example, a longer horizon L will be more challenging for the model but may make
the planning easier), so if the MBRL community can agree, it would make sense to carefully design
several settings (quadruples N — T — n — L) on the same environment.

Our main operational cost is system access step so we are looking for any-time algorithms that
achieve the best possible performance at any episode 7. Hence, in the MBRL iteration (Fig 1), we
use the same traces 7 (™), rolled out in each iteration (Line 7), to 1) update the model p (Line 4) and
the actor policy (Line 5) and ii) to measure the performance of the techniques (Section 3.5).

3.4 MODEL-BASED ACTOR POLICIES: GUIDE AND EXPLORE

Our main contribution is a Dyna-style GUIDE&EXPLORE strategy (Fig 2). The gist is to learn a
guide policy ¢ using a model-free RL technique on the model p and on the traces collected on the
real system 7. It is known that the guide £, executed as an actor m = £ on the real system, does
not work (we also confirm it in Section 4), partly because & overfits the model (Fig 5 in Kurutach
et al. (2018); Grill et al. (2020)), partly because the goal of 7 is not only to exploit the traces
T = UN_, T collected so far and model p = LEARN(T), but also to collect data to self-improve
p and &/ in the next episode 7. This second reason is particular in our iferated batch setup: in
pure batch RL, exploration is not an issue. We explore implicitly because of the randomness of
planning (HETEROGENEOUSRS in Fig 3), but it turns out that it needs to be augmented by explicit
exploration strategies. To show this, we experiment with two strategies, i) HEATING: modulating

Under review as a conference paper at ICLR 2022

the temperature of the guide distribution £(a|s), and ii) EPSGREEDY: choosing a random action
with probability ¢ (Fig 4). The novelty of our approach is that, instead of constant 7" and ¢, tuned as
hyperparameters, we use a set of temperatures [1;]7_; and probabilities [¢;]?_; to further diversify
the search and to let the planner to dynamically choose the right amount of randomization when
selecting the best trace in Line 4 in Fig 3. Finally, similarly to Lowrey et al. (2019); Argenson &
Dulac-Arnold (2020), we found that bootstrapping the planning with the learned value function at
the end of each rollout trace (BOOTSTRAP in Fig 3) is crucial for optimizing the performance with
a short horizon.

The main competitor of our GUIDE&EXPLORE actor is an actor that delegates all planning and
exploration to the Monte-Carlo tree search of Silver et al. (2017)’s ALPHAZERO (Fig 4).

RSACTOR (7‘('(0), P opn T, L, n):

1 return HETEROGENEOUSRS ([r(V]7_, , p, L, n) > planning

GUIDE&EXPLOREACTOR (7(?), 7P p T L, n):

1 ¢ +— MFRL (ﬂprev, P, ’T) > guide policy (“Dyna-style”)
2 [0i]"_, < EXPLORE (77(0)7 &,n) > a set of guided explorer policies
3 return HETEROGENEOUSRS ([p;]’_1, p, L, n) > planning

ALPHAZEROACTOR (70, 7P p T, L, n):

1 return ALPHAZERO (7(?), 70" p T, L x n)

Figure 2: Model-based ACTORs (policies executed on the real system). RSACTOR is a classical
random shooting planner that uses the random policy 7(°) for all rollouts. Since the random policy
has no value estimate, only TOTALREWARD can be used as VALUE in Fig 3/Line 3 of HETEROGE-
NEOUSRS. GUIDE&EXPLOREACTOR first learns a Dyna-style guide policy & on the model p (more
precisely, updates the previous guide contained in 7P). It can also use the traces 7 collected on
the real system. It then “decorates” the guide by (possibly n different) exploration strategies (Fig 4),
and runs these reactive guide&explore policies [p;]!"_; in the HETEROGENEOUSRS planner, either
using the raw TOTALREWARD or the total reward bootstrapped by the value estimate of the guide
policy £ (BOOTSTRAP) in Fig 3/Line 3. ALPHAZEROACTOR calls ALPHAZERO which plans and
explores internally, using Monte-Carlo tree search, with a budget of L x n simulator calls.

3.5 METRICS

We use two rigorously defined and measured metrics (Kégl et al., 2021) to assess the performance
of the different algorithmic combinations. MAR measures the asymptotic performance after the
learning has converged, and MRCP measures the convergence pace. Both can be averaged over
seeds, and MAR is also an average over episodes, so we can detect statistically significant differences
even when they are tiny, leading to a proper support for experimental development.

MEAN ASYMPTOTIC REWARD (MAR). Our measure of asymptotic performance, the mean
asymptotic reward, is the mean reward MR(7) = R (TT(T)) in the second half of the episodes (after

convergence; we set IV in such a way that the algorithms converge after less than N/2 episodes)
MAR = 2 3% | MR(r).

MEAN REWARD CONVERGENCE PACE (MRCP(7)). To assess the speed of convergence, we
define the mean reward convergence pace MRCP(7) as the number of steps needed to achieve mean

reward 7, smoothed over a window of size 5: MRCP(7) = T x arg min,. (1 ST MR(7) > 77) .

5 T'=7-2
The unit of MRCP(7) is system access steps, not episodes, first to make it invariant to episode length,
and second because in micro-data RL the unit of cost is a system access step. For Acrobot, we use
7 = 1.8 in our experiments, which is roughly 70% of the best achievable mean reward.

Under review as a conference paper at ICLR 2022

TOTALREWARD (7):

1 return 7' x R(7) > total reward (a.k.a return) of trace
BooTsTRAP(V, &) (T):

1 return 7 x R(7W) 4+ aV (TW[L, 1]) vtotal reward + value of last state
HETEROGENEOUSRS ([p;]7_y,p, L, n)[s]:

1 for i < 1 ton:

2 T < RoLLOUT(p;, p, s, L) > ith roll-out trace

3 V() « VALUE (T(i)) > total reward of T or bootstrap

4 1" < arg max; 1740 > index of the best trace

5 return 7 7)[1, 2] > first action of the best trace

Figure 3: VALUE estimates on rollout traces and HETEROGENEOUSRS: random shooting with
a set of policies. TOTALREWARD and BOOSTRAP are two ways to evaluate the value of a rollout
trace. The latter adds the value of the last state to the total reward, according to a value estimate
V : s — RT, weighted by a hyperparameter . They are called in Line 3 of HETEROGENEOUSRS
which is a random shooting planner that accepts n different shooting policies [p;]?_, for the n
rollouts used in the search. As usual, it returns the first action a% = 7()[1,2] of the best trace
T = ((s1,a}),...,(s%, ak)). Its parameters are the shooting policies [p;]7;, the model p, and
the number n and length L of rollouts, but to properly define it, we also need the state s which we
plan from, so we use a double argument list ()[].

HEATINGEXPLORE (79, £, n)([s]:

1 for i < 1 ton: T
{(als)
2 pials) = ;
Y E(@]s) /T
3 return [p;|"_,

EPSGREEDYEXPLORE(7(?), &, n)[s]:

1 for i + 1 ton:

argmax, {(als) with probability (1 — &;),
2 pi(als) =1) . N

79 (a) with probability ¢;.
3 return [p;|"_,

Figure 4: Exploration strategies. HEATINGEXPLORE heats the guide action distribution &(als)
to n different temperatures, and EPSGREEDYEXPLORE changes the best action to a random ac-
tion 7(9) ~» @ with different probabilities. The temperatures [T;]?_, and probabilities [¢;]7_, are
hyperparameters.

4 EXPERIMENTS

4.1 THE ACROBOT BENCHMARK ENVIRONMENT

Acrobot is an underactuated double pendulum with four observables s; = [0, 02, 01, 2] which are
usually augmented to six by taking sine and cosine of the angles (Brockman et al., 2016); 6 is the
angle to the vertical axis of the upper link; 6 is the angle of the lower link relative to the upper link,
both being clipped to [—7, 7]; 61 and 6 are the corresponding angular momenta. For the starting
position s; of each episode, all four state variables are sampled uniformly from an approximately
hanging and stationary position s] € [—0.1,0.1]. The action is a discrete torque on the lower link
a € {—1,0,1}. The reward is the height of the tip of the lower link over the hanging position
7(8) =2 — cos; — cos(f1 + 62) € [0,4].

We chose this rather than the sparse variable-episode-length version r(s) =
I[{2 — cosf1 — cos(f1 + 62) > 3} (Sutton, 1996) since it corresponds better to the continuous aspect
of engineering systems.

Under review as a conference paper at ICLR 2022

Acrobot is a small but relatively difficult and fascinating system, so it is an ideal benchmark for
continuous-reward engineering systems. Similarly to Kégl et al. (2021), we set the number of
episodes to N = 100, the number of steps per episode to 7' = 200, the number of planning
rollouts to » = 100, and the horizon to L = 10. With these settings, we can identify four dis-
tinctively different regimes (see the attached videos): i) the random uniform policy 7(°) achieves
MAR ~ 0.1 — 0.2 (Acrobot keeps approximately hanging), ii) reasonable models with random
shooting or pure Dyna-style controllers achieve MAR ~ 1.4 — 1.6 (Acrobot gains energy but moves
its limb quite uncontrollably), iii) random shooting n = 100, L = 10 with good models such as
PETS (Chua et al., 2018; Wang et al., 2019) or DARMDN (Kégl et al., 2021) keep the limb up and
manage to have its tip above horizon on average MAR =~ 2.0 — 2.1 (previous state of the art), and iv)
in our experiments we could achieve a quasi perfect policy (Acrobot moves up like a gymnast and
stays balanced at the top) MAR = 2.7 — 2.8 using random shooting with n = 100 K, L = 20 on the
real system, giving us a target and a possibly large margin of improvement. Acrobot is also an ideal
benchmark for making our point since it turned out quite challenging for Dyna-style techniques in
Wang et al. (2019)’s benchmarks (MAR ~ 1.6 — 1.7).

4.2 MODELS, GUIDES, AND ACTORS

Following Kégl et al. (2021), we tried different system models (Fig 1/Line 4) from the family of
Deep Autoregressive Mixture Density Networks (DARMDN) and decided to use DARMDN(1)et,
an autoregressive network trained probabilistically (the output of the net for each observable di-
mension is a single Gaussian learned by minimizing the negative log-likelihood loss) and sampled
deterministically (the mean of the Gaussian). In Kégl et al. (2021) this was the best model using
random shooting; Table 4 in the Appendix confirms this using our best actor.

In principle, any MFRL technique working with discrete action space and providing a value function
and a policy can be used as a guide £ when applying ITERATEDMBRL to the Acrobot system
(Fig 2/Line 1). We experimented with Deep Q Networks (DQN; Mnih et al. (2015)) and PPO
(Schulman et al., 2017). For the DQN, following Janner et al. (2019), short rollouts starting from
real observations are performed on the model to sample transitions which are then placed in an
experience replay buffer, along with the real transitions observed during the rollouts (Fig 1/Line 7).
The DQN is then updated by sampling batches from this buffer. For DQN alone (without planning),
an e-greedy strategy is used for its training (¢ decaying as more training samples are used) and at
decision time (¢ = 0.05).

For actors (Fig 1/Line 5, Fig 2), we start from the simple DQN(e = 0.05) or PPO guide which is in-
teracting with the system without planning. We then add different ingredients to these simple agents
to improve the performance. Adding (n, L) to the name of the agent means that we use the agent to
guide a planning of n rollouts with horizon L. It is important to note here that planning without ex-
ploration using the greedy guide is, in our case, equivalent to no planning since both the model p and
the guides ¢ are deterministic. XXX-HEATINGEXPLORE and XXX-EPSGREEDYEXPLORE refer
to the additional use of the associated exploration strategies (Fig 1/Line 2, Fig 4). When a fixed ¢ is
used for the exploration strategy, we add it as an explicit parameter, e.g., EPSGREEDYEXPLORE(e).
No parameters means that a different € or temperature is used for each of the n rollouts. By default
the value estimate is the TOTALREWARD (Fig 3). We add BOOTSTRAP when we use bootstrapping
by the value function estimate. Finally, we also apply AlphaZero (Silver et al., 2017) in a Dyna-style
fashion (Fig 2) which we refer to as DYNAZERO.

Appendix A contains detailed information on the various algorithmic choices.

4.3 RESULTS

Table 2 and Figure 5 present our the results with the main actors. We see that planning with explo-
ration and bootstrapping gives the best results among all the DQN actors. The approach beats the
previous state of the art: both RSACTOR(n = 100, L = 10) from Kégl et al. (2021) and POPLIN-A
(Wang & Ba (2020); Table 1) by 10% in terms of MAR. PPO is slightly suboptimal compared to
DQN. DYNAZERO matches the best MAR but converges three times slower and takes about five
times more computational time, mainly because, unlike random shooting, MCTS cannot easily be
parallelized.

Table 2 and the detailed ablation study in Appendix B show that all ingredients add to the perfor-
mance. Although DQN alone (DQN(e = 0.05)) is far better than a random policy, it is clearly not

Under review as a conference paper at ICLR 2022

sufficient to obtain a reasonable actor. Using it as a planning guide (DQN(n = 100, L = 10)-
EPSGREEDYEXPLORE(¢e = 0.05)) significantly improves the performance but remains worse than
random shooting RSACTOR(n = 100, L = 10). To propel the Dyna-style actor above simple MPC,
we need to fine tune exploration. We found that allowing the planner to choose the right amount is a
robust and safe approach. The final improvement was attained by adding value bootstrapping to the
heated explorer/planner; bootstrapping does not improve the e-greedy actor, possibly because the
value estimate of the guide ¢ is off on random actions, unlike in the heating exploration when the
explorer “softly” increases the probability of actions, given by the guide. As a reference, we also
include a simple but costly RSACTOR(n = 100K, L = 10). It would not be officially accepted in
our benchmark as we restrict n to 100 and L to 10, but it can serve as a target to reach.

Table 2: Agent evaluation results. MAR is the Mean Asymptotic Reward showing the asymp-
totic performance of the agent and MRCP(1.8) is the Mean Reward Convergence Pace showing the
sample-efficiency (the number of system access steps required to achieve a mean reward of 1.8). |
and 1 mean lower and higher the better, respectively. Except for DYNAZERO all the agents were run
for 10 seeds with the & giving the 90% confidence interval.

Agent MAR + MRCP(1.8) |
RSAcTOR(n = 100K, L = 20) 2.474£0.022 2280.0+£580.0
RSAcCTOR(n = 100, L = 10) 2.075+0.01 2620.04+320.0
DQN(e = 0.05) 1.4424+0.014 NaN =+NaN
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(¢ = 0.05) 1.932+0.012 3540.0+520.0
DQN(n = 100, L = 10)-HEATINGEXPLORE 2.1964+0.014 1900.0+180.0
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE 2.2034+0.012 1880.0+100.0
DQN(n = 100, L = 10)-HEATINGEXPLORE-BOOTSTRAP 2.283+0.012 2180.0£280.0
PPO 1.578+0.03 NaN =+NaN
PPO(n = 100, L = 10)-HEATINGEXPLORE 2.161£0.019 2520.0£600.0
DYNAZERO 2.304+0.031 6000.0£=NaN

25 Agent
' — DON
DQN planning with multi-temperature exploration
2.0 — DQN planning with multi-temperature exploration and value bootstrap
: — DynaZero

T° — Random Shooting (previous state of the art)

g 15

2

=

3 1.0

£

0.5
0.0 T
0 8,000 16,000

system access step

Figure 5: Learning curves obtained with different agents. Mean reward is between 0 (hanging) and
4 (standing up). Episode length is 7' = 200, number of epochs is N = 100 with one episode per
epoch. Except for DYNAZERO, mean reward curves are averaged across ten seeds. Areas with
lighter colors show the 90% confidence intervals.

5 CONCLUSION

In this paper we show that an offline Dyna-style approach can be successfully applied on the Ac-
robot system where previously Dyna-style algorithms were failing. Our empirical results exhibit the
importance of using a planning guided by a policy with the correct amount of exploration. We thus
propose a strategy to automatically fine-tune exploration and add bootstrapping with a value func-
tion estimate to further improves the performance. This combination leads to an improvement over
the previous state of the art by 10% while respecting the same resource constraints. Future work
includes modelling the uncertainties of the value estimates so as to use them for better exploration.

Under review as a conference paper at ICLR 2022

6 REPRODUCIBILITY STATEMENT

All the code to produce our results will be made publicly available after publication. Details for the
implementations of ITERATEDMBRL, the different exploration strategies, the system models, and
the different MFRL agents are also provided in Section A.

10

Under review as a conference paper at ICLR 2022

REFERENCES

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. CoRR, abs/2008.05556,
2020. URL https://arxiv.org/abs/2008.05556.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAl gym, 2016.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems 31, pp. 4754-4765. Curran Associates, Inc., 2018.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-Based Reinforcement Learning via Meta-Policy Optimization. In 2nd Annual Confer-
ence on Robot Learning, CoRL 2018, Ziirich, Switzerland, 29-31 October 2018, Proceedings,
volume 87 of Proceedings of Machine Learning Research, pp. 617-629. PMLR, 2018.

Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tutorial on the
cross-entropy method. Annals of Operations Research, 134, 2004.

Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: A model-based and data-efficient
approach to policy search. In Proceedings of the International Conference on Machine Learning,
2011.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis
Antonoglou, and Remi Munos. Monte-Carlo tree search as regularized policy optimization. In
Proceedings of the 37th International Conference on Machine Learning, pp. 3769-3778. PMLR,
2020. URL https://proceedings.mlr.press/v119/grill20a.html.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2555-2565, 2019.

Jessica Hamrick, Abram Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Witherspoon,
Thomas Anthony, Lars Buesing, Petar Velikovi, and Theophane Weber. On the role of planning
in model-based deep reinforcement learning. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, To appear, 2021. URL https://openreview.net/forum?id=
IrM64DGB21.

Jessica B Hamrick. Analogues of mental simulation and imagination in deep learning. Current
Opinion in Behavioral Sciences, 29:8—16, 2019. ISSN 2352-1546. doi: https://doi.org/10.1016/j.
cobeha.2018.12.011. URL https://www.sciencedirect.com/science/article/
P1i/S2352154618301670. Artificial Intelligence.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Sheila A. Mcllraith and Kilian Q. Weinberger (eds.),
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence (EAAI-18), pp. 3207-3214. AAAI Press, 2018.

G. Zacharias Holland, Erin J. Talvitie, and Michael Bowling. The Effect of Planning Shape on
Dyna-style Planning in High-dimensional State Spaces. arXiv preprint arXiv:1806.01825, 2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Balazs Kégl, Gabriel Hurtado, and Albert Thomas. Model-based micro-data reinforcement learn-
ing: what are the crucial model properties and which model to choose? In 9th International
Conference on Learning Representations, ICLR 2021, 2021. URL https://openreview.
net/forum?id=p5uylG94S68.

11

https://arxiv.org/abs/2008.05556
https://proceedings.mlr.press/v119/grill20a.html
https://openreview.net/forum?id=IrM64DGB21
https://openreview.net/forum?id=IrM64DGB21
https://www.sciencedirect.com/science/article/pii/S2352154618301670
https://www.sciencedirect.com/science/article/pii/S2352154618301670
https://openreview.net/forum?id=p5uylG94S68
https://openreview.net/forum?id=p5uylG94S68

Under review as a conference paper at ICLR 2022

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL: Model-
Based Offline Reinforcement Learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 21810-
21823. Curran Associates, Inc., 2020.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=SJJinbWRZ.

Sascha Lange, Thomas Gabel, and Martin A. Riedmiller. Batch reinforcement learning. In Rein-
forcement Learning, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
1d=Byey7n05FQ.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorith-
mic Framework for Model-based Deep Reinforcement Learning with Theoretical Guarantees. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=BJelE2R5KX.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529-533, 2015.

Thomas M. Moerland, Joost Broekens, and Catholijn M. Jonker. Model-based reinforcement learn-
ing: A survey. arXiv preprint arXiv:2006.16712, 2021.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation, ICRA 2018, pp. 7559-7566. IEEE, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pp. 8024-8035.
Curran Associates, Inc., 2019.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dor-
mann. Stable baselines3. https://github.com/DLR-RM/stable-baselines3,2019.

Anil Rao. A survey of numerical methods for optimal control. Advances in the Astronautical
Sciences, 135, 01 2010.

Arthur George Richards. Robust constrained model predictive control. PhD thesis, Massachusetts
Institute of Technology, 2005.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, and et al. Mastering
Atari, Go, chess and shogi by planning with a learned model. Nature, 588(7839):604609, Dec
2020. ISSN 1476-4687. doi: 10.1038/s41586-020-03051-4. URL http://dx.doi.org/
10.1038/s41586-020-03051-4.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust Region
Policy Optimization. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pp. 1889—1897, Lille, France, 07-09
Jul 2015. PMLR.

12

https://openreview.net/forum?id=SJJinbWRZ
https://openreview.net/forum?id=Byey7n05FQ
https://openreview.net/forum?id=Byey7n05FQ
https://openreview.net/forum?id=BJe1E2R5KX
https://openreview.net/forum?id=BJe1E2R5KX
https://github.com/DLR-RM/stable-baselines3
http://dx.doi.org/10.1038/s41586-020-03051-4
http://dx.doi.org/10.1038/s41586-020-03051-4

Under review as a conference paper at ICLR 2022

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm, 2017.

Wen Sun, Geoffrey J Gordon, Byron Boots, and J. Bagnell. Dual policy iteration. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 2(4):160163, July 1991. ISSN 0163-5719.

Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (eds.), Advances in Neural
Information Processing Systems 8, pp. 1038—1044. MIT Press, 1996.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. In 8th Inter-
national Conference on Learning Representations, ICLR 2020, 2020.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforce-
ment learning. arXiv preprint arXiv:1907.02057, 2019.

Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Tingnan Zhang, Jie Tan, and Vikas Sindhwani. Data
efficient reinforcement learning for legged robots. In Leslie Pack Kaelbling, Danica Kragic, and
Komei Sugiura (eds.), Proceedings of the Conference on Robot Learning, volume 100, pp. 1-10,
2020.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. MOPO: Model-based Offline Policy Optimization. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 14129-14142. Curran Associates, Inc., 2020.

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan O. Lambert, André Biedenkapp, Kurtland Chua,
Frank Hutter, and Roberto Calandra. On the importance of hyperparameter optimization for
model-based reinforcement learning. In Arindam Banerjee and Kenji Fukumizu (eds.), The 24th
International Conference on Artificial Intelligence and Statistics, AISTATS 2021, volume 130 of
Proceedings of Machine Learning Research, pp. 4015-4023. PMLR, 2021.

13

Under review as a conference paper at ICLR 2022

A IMPLEMENTATION DETAILS

A.1 CODE AND DEPENDENCIES

Our code will be made publicly available after publication to ease the reproducibility of all our
results. We use Pytorch (Paszke et al., 2019) to build and train the neural network system models
and policies. To run the ITERATEDMBRL experiments we use the r1_simulator (https:
//github.com/ramp-kits/rl_simulator) python library developed by Kégletal. (2021)
which relies on Open AI Gym (Brockman et al., 2016) for the Acrobot dynamics. For the PPO agent
we use the StableBaselines3 implementation (Raffin et al., 2019).

A.2 MODELS AND AGENTS

It is known that carefully tuning hyperparameters of deep reinforcement learning algorithms is cru-
cial for success and fair comparisons (Henderson et al., 2018; Zhang et al., 2021). To reduce the
computational cost and consider a reasonable search space the models and the agents were opti-
mized independently. For the systems models we use the same hyperparameters as the ones used in
Kégl et al. (2021). Please refer to Appendix D in Kégl et al. (2021) for a complete description of the
hyperparameter search and the selected hyperparameters.

The DQN is a neural network with one hidden layer of 64 neurons. The input and hidden layers
are both made of a linear layer followed by the ReLLU activation function. The output layer is a
linear layer. At the start of each epoch of ITERATEDMBRL, the system model is trained using
all the data collected at the previous epochs and the DQN is updated offline from both transitions
generated with the model and the real observed transitions. Following Janner et al. (2019) and
Holland et al. (2019), short rollouts starting from real observations are performed on the model to
sample transitions which are then placed in an experience replay buffer with total size 25,000. The
real transitions observed during the rollouts on the real system are also placed in this buffer. We train
and act with an e-greedy strategy with an ¢ decaying as we see more samples. The decay schedule
is given by max (0.6 — 0.001375¢,0.05) where ¢ is the current number of steps realized on both the
model and the real system. The DQN is updated by sampling batches of size 64 from this buffer.
To generate transitions from the model we use a total number of 1800 steps. Each rollout starts
from a randomly sampled real observation and performs 50 steps before being reset to a new real
observation. The DQN is updated after each two steps. We use a target network which is updated
after every 400 steps. Finally the learning rate is set to 0.0001 and the discount factor to 1. To obtain
these values for the different hyperparameters, we started from default values and carefully tuned
them to achieve the best performance.

The PPO agent is also updated offline at the start of each epoch with the model. We rely on the Sta-
bleBaselines3 (Raffin et al., 2019) implementation using the default Multi-Layer Perceptron policy.
A total of 15000 steps are generated and each rollout resets from a real observation each 20 steps.

For DYNAZERO we modified the version of AlphaZero available at https://github.com/
tmoer/alphazero_singleplayer. For the policy-value network we use two hidden layers
with 64 neurons each. The input and hidden layers are both made of a linear layer followed by the
ELU activation function. The output layer for the policy is a softmax layer and a linear layer for the
value. The constant c in the UCT rule is set to 1.5 and the discount factor to 0.9. The policy-value
network is updated at the beginning of each epoch by performing rollouts on the model, reset after
each 50 steps. The total number of steps performed on the model at each update is 400. Data are
put in a buffer of size 10,000. The batch size is set to 64 and the learning rate to 0.001. Finally the
number of MCTS searches at each step is set to 500.

A.3 EXPLORATION
For the multi-¢ exploration strategy based on EPSGREEDYEXPLORE we use one ¢ value for each

of the n = 100 rollouts: {0.001,0.01,0.02,...,0.99}. For the multi-temperature HEATING-
EXPLORE strategy, we first normalized the) values by their maximum value, Q(s,a) =

14

https://github.com/ramp-kits/rl_simulator
https://github.com/ramp-kits/rl_simulator
https://github.com/tmoer/alphazero_singleplayer
https://github.com/tmoer/alphazero_singleplayer

Under review as a conference paper at ICLR 2022

Q(s,a)/ maxy Q(s,a’), before applying a softmax:

¢@la50)/T;

pi(a|5t) - Za, e@(a’,st)/Ti

where {T;,1 < i < n} is an increasing sequence of temperatures. A large temperature gives a
uniform distribution, whereas a low temperature corresponds to taking arg max Q(a, s;). Different
shapes of sequences were tried (linear, logarithmic, exponential, polynomial, logistic), and best
performance was obtained with a logistic schedule (with a linear end). The exact values will be
provided in the code.

A.4 BOOTSTRAPPING

For DQN the value estimate is computed by taking the maximum of the Q values over the actions.
The a parameter is set to 0.6.

B ABLATION STUDY

B.1 ACTORS

We show in this section that a guided planning and exploration are needed to obtain the best result.
Remove either planning or exploration and you will obtain suboptimal performance. To support
this claim we ran an ablation study with EPSGREEDYEXPLORE. EPSGREEDYEXPLORE makes it
easy to control the degree of exploration through the € parameter. Setting € to 0 corresponds to no
exploration and is equivalent to using the guide greedily without planning (n = 1 and L = 1) as our
model is used deterministically when sampled from. Setting ¢ to 1 corresponds to full exploration
and is equivalent to the purely random RSACTOR(n = 100, L = 10). Figure 6 shows the results
obtained by DQN(e = 0.05), DQN with a forced e-greedy scheme at decision time with ¢ = 0.4
and no planning (DQN(e = 0.4)), and DQN with planning and fixed ¢ values (DQN(n = 100,
L = 10)-EpsGREEDYEXPLORE(e) for ¢ € {0.0001,0.01,0.05,0.1,0.2,0.4,0.8,0.99,0.9999}).
All the results are also put in Table 3.

First, we see that planning definitely helps when comparing the performance of DQN(e = 0.4)
which uses no planning but forces the exploration with ¢ = 0.4 and the performance of DQN(n =
100, L = 10)-EPSGREEDYEXPLORE(e = 0.4) which uses planning and the same fixed value of ¢.
Second, as expected, the closer ¢ is to 0 the closer the performance is to DQN(e = 0.05), and the
closer ¢ is to 1 the closer the performance is to RSACTOR(n = 100, L = 10). With a well-chosen
¢ between these two extremes, say € = 0.4, we obtain a better performance than either extremes.

We can thus claim that planning is required and planning with a correct amount of exploration. Our
EPSGREEDYEXPLORE or HEATEDEXPLORE exploration strategies, used with multiple € or tem-
peratures values allows for the automatic and dynamic selection of the good amount of exploration.

B.2 MODELS

In Table 4 we compare the performances of models from Kégl et al. (2021) when applied with
our best agent DQN(n = 100, L = 10)-HEATINGEXPLORE-BOOTSTRAP. Most models be-
long to the family of Deep (Autoregressive) Mixture Density Networks with D components,
D{AR}MDN(D){4e}, trained by minimizing the negative log-likelihood. The ‘det’ suffix means
that the model is sampled from deterministically, returning the mean of the predicted distribution.
DARNNS are Deep Autoregressive Neural Networks point-estimating a mean by minimizing the
mean squared error and estimating a constant variance using the residual errors. These models are
homoscedastic with a variance independent of the input. The reader can also refer to Kégl et al.
(2021) for a complete description of these models. In the paper we use the second best model
DARMDN(1)4e over the non-autoregressive DMDN(1)4e; because we find autoregressive models
to be easier to use in practice on real-life projects due to their ability to model dependence between
the observable dimensions and to model different feature types. We also note that, as observed in
Kégl et al. (2021) with RSACTOR(n = 100, L = 10), the deterministic versions perform slightly
better than the stochastic ones, in general.

15

Under review as a conference paper at ICLR 2022

DQN(n =100, L = 10)-EpsGreedyExplore(g)

2.2 e e —e—————) S
2.0 =

o !

5 /

= 18 !

[7] H

o

(V) *

s 16 !

=]

=

s |4

T

s 14

)

<

c

8 1.2

s —— DQN(g =0.05): DQN with £ =0.05 at decision time
10 — DQN(e =0.4): DQN with £ = 0.4 at decision time

—— Random Shooting (previous state of the art)
DQN planning with multi-epsilon exploration

0.81 -4- DQN(n=100, L= 10)-EpsGreedyExplore(s)

0.0 0.2 0.4 0.6 08 10

Figure 6: Mean asymptotic rewards (MAR) of DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(¢)
obtained for different values of . Error bars and areas in lighter colors represent the 90% confi-
dence intervals. When ¢ is close to 0 the performance is close to DQN while for ¢ close to 1 the
performance is close to the RSACTOR agent. Our multi-¢ exploration strategy is able to select the
best € automatically and dynamically.

Table 3: Importance of planning and exploration. MAR is the Mean Asymptotic Reward showing
the asymptotic performance of the agent and MRCP(1.8) is the Mean Reward Convergence Space
showing the sample-efficiency performance as the number of system access steps required to achieve
a reward of 1.8. | and 1 mean lower and higher the better, respectively. The + values are 90%
Gaussian confidence intervals.

Agent MAR MRCP(1.8) |
DQN(e = 0.4) 1.20940.013 NaN =£NaN
DQN(e = 0.05) 1.44240.014 NaN =£NaN

DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(e = 0.0001) 1.4754+0.062 NaN =+NaN
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(¢ = 0.01) 1.664+0.032 NaN =+NaN
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(e = 0.05) 1.93240.012 3540.04520.0
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(e = 0.1) 2.00940.031 2400.0+-
RSACTOR(n = 100, L = 10) 2.075+0.01 2620.0+320.0
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(¢ = 0.9999) 2.107+0.042 2000.0+—
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(e = 0.99) 2.11840.046 2400.0%-

DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(e = 0.2) 2.15140.034 2400.0+-
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(e = 0.8) 2.19640.037 2000.0%-
DQN(n = 100, L = 10)-EPSGREEDYEXPLORE(e = 0.4) 2.20440.01 1910.0+£140.0

C RSACTOR PERFORMANCE ON THE REAL SYSTEM

We present the results one can obtain on the real system with an RSACTOR and different values of
the planning horizon L and the number of generated rollouts n in Fig 7. For the considered planning
horizons a larger number of generated rollouts lead to a better performance. We also observed in our
simulations that for the Acrobot to stay balanced, it was necessary (although not always sufficient) to
have a reward larger than 2.6. We see from Fig 7 that this can be achieved with a simple agent such
as RSACTOR but at the price of a very large number of generated rollouts. The goal is therefore to
design a smarter agent that can come as close as possible to this performance with a limited budget.

16

Under review as a conference paper at ICLR 2022

Table 4: Model evaluation results with for our best guide&explore strategy DQN(n = 100,
L = 10)-HEATINGEXPLORE-BOOTSTRAP. MAR is the Mean Asymptotic Reward showing the
asymptotic performance of the agent and MRCP(1.8) is the Mean Reward Convergence Space show-
ing the sample-efficiency performance as the number of system access steps required to achieve a
reward of 1.8. | and 1 mean lower and higher the better, respectively. The performances are com-
puted from 10 random repetitions of ITERATEDMBRL.

Model MAR 1 MRCP(1.8) |
DMDN (1)et 2.30820.011 1860.04:240.0
DARMDN(1)a ~ 2.29740.012 2180.0+170.0
DARMDN(1) 2.29440.012 2060.0-190.0
DMDN(1) 227140011 2120.04400.0

DARMDN(10) 2.264+0.011 2840.04+720.0
DARMDN(10)¢er 2.2444£0.013 1960.0£160.0

DARNN e 2.22240.011 2640.0+510.0
DARNN, 2.177+0.011 3380.0+430.0
DMDN(10) 2.1484+0.015 5080.0+1070.0
2.8
2.6
2.4+
e r—s
g 2.2 /—‘
g
o 2.0
o
g 1.8
o 1.8+ . .
z Planning horizon L
1.6+ e 10
1.4 20
e 30

100 1,000 10,000 100,000 1,000,000
Number of generated rollouts n

Figure 7: Performance obtained with RSACTOR on the real Acrobot system for different planning
horizons L and number of generated rollouts n. The plot shows the mean rewards obtained for sev-
eral randomly initialized episodes of 200 steps. The error bars give the associated 90% confidence
intervals. Note that since Acrobot has a discrete action space with three actions, the total number
of different rollouts for h = 10 is n = 3'© = 59,049. The performance shown for h = 10 and
n = 100,000 thus only requires n = 59,049 rollouts.

17

	Introduction
	Summary of contributions

	Related work
	The framework for resource-limited iterative batch RL
	The formal setup
	A note on terminology
	Experimental setup: the iterated batch MBRL
	Model-based actor policies: guide and explore
	Metrics

	Experiments
	The Acrobot benchmark environment
	Models, guides, and actors
	Results

	Conclusion
	Reproducibility statement
	Implementation details
	Code and dependencies
	Models and agents
	Exploration
	Bootstrapping

	Ablation study
	Actors
	Models

	RSActor performance on the real system

