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ABSTRACT

The rapid progress of generative models has enabled the synthesis of photorealistic
images that are often indistinguishable from real photographs, raising serious con-
cerns about misinformation and malicious use. While most existing AI-generated
image (AIGI) detection methods rely on supervised training with labeled syn-
thetic data, they struggle to generalize to unseen generators and incur substantial
overhead for retraining. In this work, we propose SpAN, a simple yet effective
training-free detection framework based on spectral analysis. Our key observation
is that upsampling operations in generative models inevitably introduce spectral
artifacts, which remain most pronounced at the axial Nyquist frequencies, even
when images appear realistic. Building on this insight, we design two techniques
to enhance detection reliability: (1) power calibration via azimuthal integration
to mitigate bias from image-specific frequency distributions, and (2) autoencoder-
based reconstruction to amplify residual artifacts and enable discrepancy-based
scoring between original and reconstructed images. Extensive experiments across
multiple datasets and generative models demonstrate that SpAN achieves robust
and generalizable detection performance. For example, SpAN outperforms other
training-free detection methods by a substantial margin (+0.241 AUROC) in the
Synthbuster benchmark, which contains recent generative models.

1 INTRODUCTION

Recent advances in generative models, including GANs (Huang et al., 2024) and diffusion mod-
els (Wang et al., 2024; Podell et al., 2023; Zhang et al., 2023; Zheng et al., 2023), have enabled the
synthesis of highly realistic images that are often indistinguishable from real photographs. These
AI-generated images (AIGIs) are now widely used for creative content generation (OpenAI, 2024),
artistic design (Adobe, 2023), and educational support (Synthesia AI, 2023). However, they also
raise serious concerns, such as deepfakes (Samantha Murphy Kelly, 2025), misinformation (Daniel
Dale, 2025), and potential misuse in security-sensitive domains (Elizabeth Howcroft, 2025). As a
result, reliable detection of AIGIs has become an urgent and important research problem.

Most existing AIGI detection methods rely on training-based detectors (Corvi et al., 2023; Kara-
georgiou et al., 2025; Dzanic et al., 2020; Chandrasegaran et al., 2021), where the detectors trained
on a labeled binary classification dataset of real and AI-generated images, e.g., ImageNet (Deng
et al., 2009) vs Stable Diffusion (Rombach et al., 2022). While these methods have shown effective,
they fundamentally suffer from several limitations: (i) they often fail to generalize to unseen gen-
erators or cross-domain scenarios (Jia et al., 2025), (ii), they require to collect AIGIs from diverse
generators, and (iii) the training-based detectors must be frequently updated to remain effective. All
these limitations could be problematic given the rapid development of new generative models.

To address these limitations, researchers have recently explored training-free approaches that detect
AIGIs without relying on specific generative models or predefined real-image distributions (Ricker
et al., 2024; He et al., 2024; Tsai et al., 2024; Brokman et al., 2025). For instance, AEROB-
LADE (Ricker et al., 2024) leverages reconstruction errors by passing an image through a pretrained
autoencoder (e.g., from Stable Diffusion), while RIGID (He et al., 2024) measures robustness to im-
age perturbations in the latent embedding space of self-supervised models such as DINOv2 (Oquab
et al., 2023). These approaches demonstrate the feasibility of AIGI detection without training. How-
ever, as generative models continue to improve (e.g., producing high-resolution images with accurate
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Figure 1: Overview of SpAN, the proposed training-free AIGI detection framework. SpAN first
measures the power gap ∆P between Pax, the power at axial Nyquist frequencies, and Pring, the
azimuthal integration of the high-frequency power. Then, the spectral discrepancy of ∆P between
the original image I and its reconstruction Î is used for our criterion cSpAN = ∆P (I)−∆P (Î).

high-level semantics and realistic low-level details), visual cues become increasingly subtle and un-
reliable. This motivates the following research question: rather than searching for elusive signals in
the image space, can we uncover systematic traces that persist even as image fidelity improves, for
example in the Fourier domain?

Contribution. In this paper, we mainly focus on spectral artifacts as a robust detection signal.
It is well known that upsampling operations (e.g., transposed convolutions) in generative models
introduce checkerboard patterns in the Fourier domain (Karageorgiou et al., 2025; Zhang et al.,
2019). In particular, the operations induce periodic replications in the power spectrum density, as
shown in Figure 2. Although subsequent convolutional layers can reduce them, residual artifacts
consistently remain at specific frequency locations. Our key observation is that these artifacts are
most pronounced at the axial Nyquist frequencies, i.e., (±0.5, 0) and (0,±0.5), because natural
images typically concentrate most of their power near the zero frequency (0, 0).

Based on our observation, we propose SpAN, a simple yet effective AIGI detection framework that
leverages Spectral Artifacts at Nyquist frequencies of AI-generated images. Our key idea is to use
the power at the axial Nyquist frequencies as the base criterion for detection. Since this can be
biased by image content, we introduce two complementary techniques. First, we calibrate the crite-
rion using azimuthal integration of high-frequency power, which mitigates bias from image-specific
frequency distributions. Second, we exploit the discrepancy between the criterion computed on the
original image and that on its autoencoder-based reconstruction, where the reconstruction process
deliberately introduces artifacts, thereby allowing the original image’s spectral characteristics to be
assessed relatively. By integrating these steps, our final criterion becomes more robust and reliable.
To the best of our knowledge, this work is the first to directly leverage spectral-domain information
in the Fourier space as a metric for training-free AIGI detection. The overall framework is illustrated
in Figure 1.

Extensive experiments demonstrate that our SpAN achieves state-of-the-art performance across stan-
dard AI-generated image detection benchmarks, Synthbuster (Bammey, 2023) and GenImage (Zhu
et al., 2023), as reported in Table 1 and 2, respectively. Notably, for high-resolution images (i.e.,
Synthbuster), our SpAN outperforms the second best baseline by a large margin (+0.241 AUROC).
Furthermore, SpAN exhibits robustness over image corruptions compared to other baselines, as
shown in Figure 4. These results highlights that spectral artifacts consistently exist across diverse
generative models, even when AI-generated images appear photorealistic. We believe our findings
shed light on fundamental properties of generation models and can inspire future advances in the
field of AI-generated image detection.
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2 PRELIMINARIES

2.1 PROBLEM STATEMENT: TRAINING-FREE AI-GENERATED IMAGE DETECTION

We formulate AI-generated image (AIGI) detection as the task of defining a classification criterion
that distinguishes between images synthesized by any generative model and real-world images cap-
tured from diverse sources (e.g., cameras, digital drawings). Concretely, given an image I ∈ I, our
goal is to design a score function c : I → R that assigns higher values to AI-generated images Dgen
and lower values to real-world images Dreal. In the standard evaluation practice, Dreal is sampled
from a real dataset such as ImageNet (Deng et al., 2009), and Dgen is constructed by a generative
model, e.g., Stable Diffusion (Rombach et al., 2022).

Most prior works (Karageorgiou et al., 2025; Wang et al., 2020; Tan et al., 2024), adopt a training-
based approach, using AI-generated images Dgen from a specific generative model to learn the score
c(·). While these methods have achieved strong detection performance, but they often fails to gen-
eralize to unseen generative models. Therefore, we mainly focus on a training-free setting where no
prior information of Dreal and Dgen is available in advance, and we aim to design a model-agnostic
score c(·) that remains effective across diverse generative models.

2.2 FREQUENCY ANALYSIS OF IMAGES

In computer vision, frequency information provides a complementary perspective to spatial-domain
representations, revealing structural patterns such as edges, textures, and periodic artifacts. These
characteristics are often more easily captured in the frequency domain, making spectral analysis a
powerful tool for image understanding and manipulation. Given an image I of H × W pixels, its
frequency representation can be obtained via the discrete Fourier transform (DFT):

F (u, v) =

W−1∑
x=0

H−1∑
y=0

I(x, y) · e−i2π(ux
W + vy

H ),

where (u, v) denote frequency coordinates. For convenience, the coordinates are often normalized
to the range [−0.5, 0.5]. This normalization places the zero frequency at the center of the spectrum,
with higher frequencies distributed toward the boundaries.

From the frequency coefficients F , one can compute the power spectrum density (PSD) as P (u, v) =
|F (u, v)|2, which quantifies the amount of power contained at each frequency. The PSD provides a
concise characterization of the distribution of frequency components in the image, enabling analysis
of whether most power is concentrated at low frequencies (e.g., smooth variations) or high frequen-
cies (e.g., fine details or noise).

A key concept in spectral analysis is the Nyquist frequency fN , defined as half of the sampling rate
along each dimension. After coordinate normalization, this corresponds to the highest representable
frequency at u = ±fN and v = ±fN where fN = 0.5. Frequencies beyond this limit cannot be
uniquely represented and are instead folded back into the base spectrum, a phenomenon known as
aliasing. Formally, due to the periodicity of DFT, F (u+1, v) = F (u, v) and F (u, v+1) = F (u, v).

3 METHODOLOGY

In this section, we propose SpAN, a simple yet effective training-free AIGI detection framework us-
ing Spectral Artifacts at Nyquist frequencies of AI-generated images. To illustrate our framework,
we first describe our observation of spectral artifacts at the axial Nyquist frequencies (Section 3.1).
We then suggest a calibration technique for the artifacts to consider the amount of high-frequency in-
formation (Section 3.2). Finally, we design our detection criterion based on the spectral discrepancy
between an input image and its reconstruction (Section 3.3). The overall framework is illustrated in
Figure 1.

3.1 SPECTRAL ARTIFACTS AT AXIAL NYQUIST FREQUENCIES

We begin by describing our key observation on the spectral artifacts exhibited by generative mod-
els. It is widely known that a common artifact in images synthesized by generative models is the
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Figure 2: Visualization of the power spectrum density (PSD) of real-world and generated images,
each sampled from the RAISE-1K (Dang-Nguyen et al., 2015) and Firefly (Adobe, 2023) in the
Synthbuster (Bammey, 2023) benchmark, respectively. The images at the first row correspond to the
raw image and its upsampled image via single transposed convolution. The second row correspond
to the PSD of the image in the same column.

appearance of checkerboard patterns in the frequency domain (Karageorgiou et al., 2025). Prior
work has shown that these artifacts arise from the use of transposed convolutions of stride 2, where
zeros are inserted in a “bed-of-nails” fashion during upsampling. This operation induces a periodic
replication in the power spectrum density (PSD), as formally proven by Zhang et al. (2019).

Even when convolutional layers are subsequently applied, these artifacts do not fully vanish, espe-
cially at specific frequency regions. We find that the artifacts are most clearly preserved at the axial
Nyquist frequencies, i.e., (±fN , 0) and (0,±fN ). This can be attributed to the fact that natural im-
ages typically exhibit their highest power near the zero frequency (0, 0), and thus such upsampling
operations also leads to relatively high power concentrated at the axial Nyquist frequencies.

For example, consider a real image I ∈ RC×H×W and its PSD shown in Figure 2a. After up-
sampling I to another image Iup ∈ RC×2H×2W by a single transposed convolution as shown in
Figure 2a(2), in the PSD of Iup, the midpoint of each edge of the spectrum acquires a significant
power, the power of which is widely deviated from its adjacent region. In particular, the power of
point A (i.e., P (0, 0)) in the original image I is conveyed not only to the corresponding point A∗

in the upsampled image Iup, but also to midpoints of each side edge (e.g., P (−fN , 0), P (fN , 0)),
due to the periodic replication caused by the transposed convolution. Although the generated image
in Figure 2b(1) has exhibits fewer checkboard artifacts as it is generated through multiple convo-
lutional layers, significant power still remains along the central axis of the spectrum, including the
axial Nyquist frequencies.

From this observation, one can expect that the power at the axial Nyquist frequencies is high for
AI-generated images due to the use of transposed convolutions, while real images have a low power
at the frequencies. Motivated by this, we propose to use the power as a simple criterion for AIGI
detection, formally defined as:

Pax(I) =
1

4

∑
(u,v)∈{(±fN ,0),(0±fN )}

P (u, v),

where P (u, v) denotes the PSD at frequency (u, v) of the image I . In practice, we simply compute
the average of nearest points of the axial Nyquist frequencies in the discrete PSD.

3.2 POWER CALIBRATION VIA AZIMUTHAL INTEGRATION

The distribution of frequency components may vary across images depending on their content, re-
sulting in different amounts of high-frequency information and dominant frequency directions. Con-
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Figure 3: The distribution of Pax(I), ∆P (I), ∆P (Î) and ∆P (I)−∆P (Î). For visualization, 1000
images are sampled from Midjourney and ImageNet in the GenImage benchmark, respectively. The
vertical dashed-line denotes the mean value of each distribution.

sequently, the power at the axial Nyquist frequencies Pax(I) may be biased by the amount of high-
frequency information. To calibrate this, we normalize Pax(I) using the azimuthal integration of
power at the same frequency magnitude as follows:

∆P (I) = logPax(I)− logPring(I) where Pring(I) =
1

2π

∫ 2π

0

P (fN cosϕ, fN sinϕ)dϕ.

To examine the efficacy of this calibration technique, we calcuate Pax(I) and ∆P (I) for 1000 Ima-
geNet (Deng et al., 2009) images and 1000 Midjournery-generated (Midjourney Inc., 2023) images,
and visualize their distributions in Figure 3a and 3b, respectively. Although Pax(I), the power at the
Nyquist frequencies, is not a sufficient detection metric (see Figure 3a), its calibrated version ∆P
provides much stronger discriminative power. These results highlight the importance of assessing
how strongly certain artifacts appear relative to the overall frequency distribution, rather than relying
solely on absolute power values.

In practice, the azimuthal integration is approximated by averaging the power over all frequency
points that fall within a ring of width δ around the target magnitude as follows:

Pring(I) =
1

|R(fN , δ)|
∑

(u,v)∈R(fN ,δ)

P (u, v),

where R(r, δ) = {(u, v) : r − δ ≤
√
u2 + v2 < r} denotes the set of frequency points that fall

within the ring of radius r and width δ.

3.3 SPECTRAL ARTIFACT DETECTION WITH RECONSTRUCTION

The calibrated power ∆P introduced in Section 3.2 may not be sufficient as a criterion when arti-
facts are relatively weak, such as in low-resolution generated images. To further enhance detection
capability, we exploit the difference between an original image and its autoencoder-based recon-
struction. The key idea is that the reconstruction can be regarded as an AI-generated image, since
the autoencoder inevitably performs upsampling operations (e.g., transposed convolutions) that gen-
erate grid-aligned spectral artifacts. Therefore, if the spectral discrepancy between the original and
reconstructed images is large, the original is likely a real-world image because real images often
have less artifacts; otherwise, it is likely to have been generated by a generative model.

Based on this intuition, we propose to use the discrepancy in the calibrated power ∆P between an
original image I and its reconstruction Î = D(E(I)), where E and D are the encoder and decoder of
an autoencoder, respectively. Formally, our final detection criterion cSpAN(·) is defined as follows:

cSpAN(I) = ∆P (I)−∆P (Î)

=
(
logPax(I)− logPring(I)

)
−
(
logPax(Î)− logPring(Î)

)
.

This criterion is particularly effective for high-resolution images, which tend to exhibit stronger
spectral artifacts due to multiple upsampling operations in a generation process. For low-resolution
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images, we upsample the image I while preserving its aspect ratio before feeding it into the autoen-
coder. This step ensures that the reconstruction process induces sufficient spectral artifacts, thereby
making our discrepancy-based score a more reliable detection signal.

We further examine the effectiveness of this reconstruction-based technique by visualizing the dis-
tributions of ∆P (I), ∆P (Î), and ∆P (I) − ∆P (Î) in Figure 3b-d, respectively. For generated
images, comparing the calibrated power of the original image ∆P (I) with that of the reconstructed
image ∆P (Î) shows little difference (e.g., ∆P (I) ≈ 1 → ∆P (Î) ≈ 1.6 in average), since artifacts
are already present in the original. In contrast, for real images, new artifacts are introduced during
reconstruction, leading to a significant increase (e.g., ∆P (I) ≈ 0 → ∆P (Î) ≈ 2.5 in average).
Consequently, when examining the distribution of our final score cSpAN = ∆P (I) − ∆P (Î), we
observe substantially improved discriminative power.

4 EXPERIMENT

We design our experiments to validate the followings:

• Does our metric achieve strong performance in diverse AIGI detection tasks? (§4.1)

• How much does each component contribute to overall performance ? (§4.2)

• Is our method robust over corruptions on the raw images ? (§4.3)

Evaluation Benchmark. We conducted evaluations on two widely used benchmarks in the field
of AI-generated image detection: Synthbuster (Bammey, 2023) and GenImage (Zhu et al., 2023).
The Synthbuster benchmark is composed of high-resolution images generated from 9 recent diffu-
sion models, including commercial models, such as Firefly (Adobe, 2023), Midjourney (Midjourney
Inc., 2023), DALL-E 2 (Ramesh et al., 2022), DALL-E 3 (Ramesh et al., 2023), and Stable Diffu-
sion (Rombach et al., 2022), and real images are come from the subset of the Raise-1k dataset (Dang-
Nguyen et al., 2015), which contains up to 4K resolution (that is, 3840 × 2160) images. The Gen-
Image benchmark contains relatively low-resolution images from 8 different generators. It includes
images generated from GAN (Brock et al., 2018) and diffusion models where resolution ranges from
128 × 128 to 1024 × 1024. The detection performance is measured by the area under ROC curve
(AUROC).

Implementation Details. For implementing our method, the ring width is set to δ = 0.01, and
SDv1.4 is used for the autoencoder. For amplifying artifacts, we increased the image resolution by
doubling its size until the smaller side of the image becomes at least 1024 pixels, preserving the
original aspect ratio. For a complete evaluation on Synthbuster and GenImage benchmarks, we used
2 NVIDIA RTX 4090 GPUs, each taking 3.5 and 40 hours, respectively.

Baselines. We compare our performance with recent training-free AIGI detection methods,
RIGID He et al. (2024), MINDER Tsai et al. (2024), AEROBLADE Ricker et al. (2024), and Man-
ifold Bias Brokman et al. (2025). To reproduce the result of AEROBLADE we used SDv1.4 as
the autoencoder, identical to our selection of the autoencoder. For Manifold Bias, we follow the
official code provided by the authors that applies SDv2 as the latent diffusion model. Finally, we
follow the original setting of the authors, where the VIT-L14 version of the DINOv2 is applied as
the feature extractor. In case of RIGID and MINDER, we used the thresholds and pretrained model,
DINOv2 Oquab et al. (2023) as indicated in the paper.

4.1 MAIN RESULT

Tables 1 and 2 are the evaluation results of our method and beselines on the Synthbuster and GenIm-
age benchmarks. At the Synthbuster benchmark, our method exhibits the best performance among
4 other baselines achieving +0.241 AUROC at than the second best performing method, AEROB-
LADE. While AEROBLADE performs competitive where the generative model matches the in-
spected autoencoder, it fails to generalize on the proprietary models. Especially, we observe a no-
table gap between SpAN and the baselines on detecting recent AI-generated images, supporting the
generalizability of SpAN.
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Table 1: AI-generated image detection performance (AUROC) in the Synthbuster benchmark (Bam-
mey, 2023). We denote bold, and underline as the best method and second best method.

Method Firefly GLIDE SDXL SDv2 SDv1.3 SDv1.4 DALL-E 3 DALL-E 2 Midjourney Mean

RIGID 0.519 0.868 0.757 0.615 0.448 0.446 0.442 0.596 0.593 0.587
MINDER 0.440 0.568 0.472 0.721 0.656 0.668 0.346 0.445 0.345 0.518

AEROBLADE 0.592 0.954 0.668 0.567 0.950 0.950 0.486 0.392 0.769 0.703
Manifold Bias 0.493 0.779 0.562 0.749 0.544 0.549 0.379 0.607 0.424 0.565
SpAN (ours) 0.945 0.893 0.988 0.948 0.994 0.994 0.948 0.795 0.989 0.944

Table 2: AI-generated image detection performance (AUROC) of proposed method and baselines in
the GenImage Zhu et al. (2023) benchmark. We denote bold and underline as the best method and
second-best method.

Method ADM BigGAN GLIDE Midjourney SDv1.4 SDv1.5 VQDM Wukong Mean

RIGID 0.874 0.974 0.952 0.778 0.682 0.682 0.915 0.699 0.820
MINDER 0.768 0.681 0.582 0.450 0.607 0.596 0.882 0.676 0.655

AEROBLADE 0.856 0.981 0.989 0.918 0.982 0.984 0.732 0.983 0.928
Manifold Bias 0.727 0.925 0.852 0.510 0.675 0.673 0.874 0.653 0.736
SpAN (ours) 0.791 0.957 0.935 0.975 0.975 0.977 0.857 0.973 0.930

4.2 ABLATION STUDY

Component Ablation Study. We observed the contribution of each component of our score cSpAN ,
by sequentially adding each component suggested from §3.1 to §3.3. As shown in Table 3, purely us-
ing the averaged power at axial Nyquist points yield less discriminative result, because the absolute
value may vary within both generated images and real-world images. However, by calibrating Pax
by Pring, we could achieve significant increase in performance, even without using any reconstruc-
tion process. As visualized in Figure 3b,d and indicated in the third row of the Table 3, subtracting
∆P (Î) widens the gap, initially observed at the distribution of ∆P (see Figure 3d). This may be
attributed to the fact that the reconstruction process ‘cancels out’ the artifacts of the original image,
shifting the overall distribution of real-world images to the negative direction of the axis. Finally,
by applying upsampling to original images before reconstruction, the value of ∆P (Î is intensified
in case of real-world images, resulting in the best performance.

Table 4: Ablation study on ring width δ at the Syn-
thbuster benchmark. The best result is denoted in
bold.

δ = 0.16 0.08 0.04 0.02 0.01 0.005

0.934 0.943 0.943 0.943 0.944 N/A

Choice of parameter. We also performed abla-
tion on the parameter or architecture design to
demonstrate that our method is not overly de-
pendent on specific conditions. The width of
the ring δ at Pring designates the broadness of a
region that is used for calibration. We tracked
the difference in the evaluation metric while in-
creasing δ in the power of 2 from 0.01. As reported in Table 4, AUROC is preserved within the gap
of 0.001 until δ = 0.08, indicating the consistency of our method to size of the adjacent calibration
region. Note that decreasing δ less than 0.01 makes it unavailable to define Pring, as the width of the
ring becomes too small for frequency points to fall within the region.

Table 5: Ablation on autoen-
coder variants at the Synth-
buster benchmark. The best
result is in bold.

KD v2.1 SD v2 SD v1.4

0.857 0.860 0.944

Choice of Autoencder. When selecting autoencoder, we trailed on
3 different autoencoders including SDv1.4, SDv2 (Rombach et al.,
2022), and Kandinsky v2.1 (Arseniy Shakhmatov, 2023). Although
SD v1.4 gives the best performance, replacing with other autoen-
coders still outperformed other baseline models, which supports in-
variance of our method to the choice of a specific model. This sug-
gests that our method can benefit from common autoencoders which
exhibit artifacts during upsampling in the generation process.

4.3 ROBUSTNESS TO CORRUPTIONS

For practical deployment in real-world scenarios, AIGI detectors must remain robust when ap-
plied to web-collected images that may undergo various perturbations such as JPEG compres-
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Table 3: Component ablation study of our method on the GenImage benchmark. For component
analysis, 1,000 images are sampled per each generative model with its corresponding real images.
‘Ups.’ denotes the upsampling process before reconstruction. ‘✓ ’ and ‘ ✗ ’ denotes that the compo-
nent is used, and not used respectively.

Component Pax ∆P ∆P −∆P̂ AUROC

Nyquist Frequency (§3.1) ✓ ✗ ✗ 0.573
+ Power Calibration (§3.2) ✓ ✓ ✗ 0.849
+ Autoencoder-based reconstruction (§3.3) ✓ ✓ ✓ 0.930

Figure 4: Robustness to image corruptions of our method and baselines. For each corruption from
(a) to (c), images are compressed by quality q, cropped by ratio r and resized back to its original
size, or blurred by standard deviation σ. Our method shows consistent superior result over other 2
baselines, validating its robustness to image perturbations.

sion. To evaluate this, we further assess the performance of SpAN on both real and AI-generated
images under such perturbations. Specifically, we sample 500 real images from the Raise-1k
dataset (Dang-Nguyen et al., 2015) and 500 generated images from each model in the Synthbuster
benchmark (Bammey, 2023). We then test three types of perturbations: JPEG compression, cropping
and resizing, and Gaussian blurring, following (Ricker et al., 2024; Frank et al., 2020). The results
of SpAN and the baselines are presented in Figure 4. As shown, SpAN maintains strong robustness
and consistently outperforms the baselines even under the most severe perturbation conditions.

4.4 CASE STUDY

In this subsection, we show specific cases of how our method can behave according to the charac-
teristics of the generated images in the Fourier domain. Figure 5 shows a generated image from
DALL-E3 (Ramesh et al., 2023) and ADM (Dhariwal & Nichol, 2021), and its counterpart con-
verted by the discrete Fourier transform, respectively. For 5a, which is comprised of high-frequency
details, our method can behave better by capturing the artifact from the raw state of the generative
image, resulting in relatively high cSpAN. This is mainly since ∆P (I) is big enough to cancel the
effect of subtracting ∆P (Î). In contrast, an over-blurry image, such as in Figure 5b, can uninten-
tionally mimic the distribution of a real-world image in the Fourier domain, which paradoxically
becomes relatively difficult to detect. However, considering that recent generative models are be-
coming closer to real-world images imitating high-frequency details, this property can become an
advantage in the near future. Also, compared to the previous reconstruction-based model, which
has the assumption that generated images are harder to reconstruct, our method has the strength to
handle high complexity images by observing the artifact of the upsampling process.

5 RELATED WORKS

5.1 TRAINING-FREE AI-GENERATED IMAGE DETECTION

To address the rapid proliferation of generative models, training-free detection methods which do
not require AIGIs for training have recently emerged. Most existing approahces leverage the pre-
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Figure 5: A set of generated image and its power spectrum density map each sampled from DALL-
E3 in the Synthbuster benchmark, (Ramesh et al., 2023) and ADM (Dhariwal & Nichol, 2021) in
the GenImage benchmark.

trained representations of large foundation models (e.g., DINOv2 (Oquab et al., 2023)) for detection.
For instance, Ricker et al. (2024) measures the perceptual distance between an original image and
its reconstruction by the Latent Diffusion Model (LDM) autoencoder, based on the observation that
images generated by LDMs exhibit lower reconstruction error when evaluated by the corresponding
LDM. On the other hand, He et al. (2024) and Tsai et al. (2024) exploit the robustness of self-
supervised vision foundation models to perturbations like Gaussian noise or blurring, under the
hypothesis that real images are inherently more robust to such distortions. Brokman et al. (2025)
assumes that real data are more likely to reside on the latent-space manifold of the LDM. In contrast
to these approaches, which primarily depend on predictions from pre-trained models, we demon-
strate that image-specific frequency information remains highly effective for detecting AIGIs in a
training-free regime.

5.2 AI-GENERATED IMAGE DETECTION VIA FREQUENCY ANALYSIS

Several training-based AIGI methods have leveraged frequency information as the key representa-
tions (Li et al., 2024; Dzanic et al., 2020; Chandrasegaran et al., 2021) Durall et al. (2020) pointed
out the spectral distortion in the images generated from the CNN-based model and utilized the gap
to detect deep-fake images. Frank et al. (2020) investigates the artifacts in GAN-generated images
in the frequency domain by applying the discrete cosine transform (DCT), and indicates the artifact
as a result of upsampling techniques. Another approach is to learn a deepfake detector with a per-
turbation generator as in Jeong et al. (2022). Karageorgiou et al. (2025) employs masked spectral
learning to learn the spectral distribution of real images, considering generated images as out-of-
distribution samples. Although analysis based on the Fourier domain has been used as a distinctive
factor for discriminating generated images, this difference has not been utilized in a training-free set-
ting. We object to modeling this difference by observing the artifacts that generated images reveal
when transformed into the Fourier domain.

6 CONCLUSION

In this work, we propose SpAN, a simple yet effective training-free AIGI detection method inspired
by the spectral artifacts of generated images observed in the Fourier domain. By comparing the
energy gap near the axial Nyquist frequency before and after image reconstruction, we could robustly
discriminate AI-generated images from real-world images. Extensive experiments demonstrate the
effectiveness of our framework across diverse benchmarks and types of generative models, as well
as its robustness to image perturbations. We hope that our research will be expanded to exploit other
artifacts residing in generated images in the training-free setting of AIGI detection.
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