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Abstract. Recent developments in Neural Radiance Fields (NeRF) have
showcased notable progress in the synthesis of novel views. Nevertheless,
there is limited research on inpainting 3D scenes using implicit repre-
sentations. Traditional approaches utilizing 3D networks for direct 3D
inpainting often falter in high-resolution settings, mainly due to GPU
memory constraints. This paper introduces Hi-NeRF, an innovative 3D
inpainting approach designed to remove arbitrary 3D objects by hybridiz-
ing 2D inpainting strategies with NeRF techniques. Recognizing that
prevailing 2D inpainting methods often fail to grasp the 3D geometric
intricacies of scenes, we leverage the unique capability of NeRF in cap-
turing these structures. Additionally, we propose a multi-view perceptual
loss (MVPL) to harness multi-view data, ensuring that 2D inpainting and
implicit 3D representations can mutually compensate for each other. Fur-
thermore, we refine the output from the Segment Anything Model (SAM)
using image dilation to produce accurate multi-view masks. To finalize
the process, we employ Instant-NGP to efficiently retrieve 3D-consistent
scenes from 3D-consistent inpainted images. As there is no multi-view 3D
scene datasets with corresponding masks, we construct both real-world
and synthetic scenes for the multi-view 3D scene inpainting task, which
serves as a benchmark dataset. Experimental results on both indoor and
outdoor scenes highlight the superiority of our approach over the existing
2D inpainting methods and NeRF-based baselines.

Keywords: Multi-view Scenes Synthesis · 2D Inpainting · Neural Ra-
diance Fields · 3D Scene Inpainting.

1 Introduction

Scene-inpainting endeavors to eliminate undesired content, synthesize views for
missing regions and maintain overall 3D consistency in both appearance and
structure, which is a pivotal task in numerous applications [14,26,47,28,41,12].
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Currently, there are various ways to represent 3D scenes, including voxels,
point clouds, meshes, and multi-view images. Wang et al. [36] used RGB-D data
to reconstruct 3D meshes, and evaluated the proposed method on both real-world
and synthetic datasets. PointR [44] and PointDETR [45] leverage transformer
encoder-decoder architectures to facilitate 3D completion on point clouds while
struggling to capture fine-grained details.

However, 3D scene inpainting presents more serious challenges when adopting
explicit representation, primarily due to the requirement for more computational
memory. Additionally, the limited advancement in 3D sensors also makes 3D data
collection both inefficient and costly.

Motivated by two considerations, we capture 2D images from different per-
spectives of 3D scenes. One reason for transitioning 3D scenes to 2D images is
the comparative efficiency of 2D inpainting. This approach adeptly sidesteps the
complications of directly training 3D networks. Indeed, it is more expensive to
increase spatial resolution in 3D representations than in 2D images. Another
reason is that 2D images are ubiquitous and large labeled datasets are avail-
able. These images can be rapidly inpainted by 2D inpainters. The prowess of
advanced image inpainters [49,34], which extract generic features from compre-
hensive image databases like ImageNet [5], FFHQ [15], and Places2 [50], can be
harnessed for this purpose.

Nevertheless, a notable drawback with existing 2D inpainting methods is that
they cannot generate perceptually convincing appearances, and fail to grasp key
3D structures, such as consistent geometry and appearance across different view-
points. This arises because 2D inpainters typically operate without leveraging
multi-view information, instead, they inpaint each view in isolation. This pa-
per tries to utilize implicit representation to remove undesirable objects from
target scenes while ensuring that the substituted areas are consistent with the
surrounding context and preserve a visually acceptable 3D structure.

The advent of neural radiance fields (NeRF) [23] breaks the barrier from
multi-view images to high-quality realistic 3D scene synthesis. Recently, sev-
eral works [21] have successfully applied NeRF to editing and manipulating 3D
scenes. One of the subtasks related to editing is removing unwanted objects
and inpainting 3D scenes. Compared to the explicitly discontinuous form of
point clouds or meshes in 3D scenes, NeRF is swiftly becoming a mainstream
3D representation method due to the adoption of implicit function fitted by a
straightforward MLP network and its ability to leverage geometric consistency.
Furthermore, the self-supervised training feature of NeRF is inherently capa-
ble of learning the appearance and geometric consistency across multiple views.
This inherent strength of NeRF addresses the drawback of 2D inpainters that
typically treat each view of 3D scenes in isolation.

However, combining NeRF with 2D inpainting presents two significant chal-
lenges. First, there is a pressing demand for multi-view images with correspond-
ing masks. However, suitable datasets remain still absent in the current land-
scapes. Second, simply inpainting multiple views independently leads to ren-
dering blurry results. To handle these two challenges, we first construct a new
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dataset and refine the latest release of the Segment Anything Model (SAM)
to automatically generate accurate masks, which mitigates the labor cost of
human-annotation masks. Subsequently, we iteratively update the parameters
of 2D inpainters in a self-training manner. Specifically, we re-train NeRF with
the initial 2D inpainted results as input. This enables NeRF to produce geo-
metrically consistent inpainted outputs across varying viewpoints, facilitating
the subsequent optimization of the 2D inpainter parameters. Finally, instead of
simply combining a 2D inpainter and a 3D reconstructor, we propose a multi-
view perceptual loss to guide the whole 3D inpainting process iteratively, which
ensures the generation of 3D-consistent inpainted images.

Overall, our contributions are summarized as follows:

– We propose a novel 3D inpainting method to reconstruct 3D-consistent in-
painted scenes from multi-view 2D images by hybridizing 2D inpainting with
implicit representation.

– We design a multi-view perceptual loss to obtain view-consistent and per-
ceptually acceptable outcomes.

– We construct a benchmark dataset tailored for 3D scene completion, paving
the way for subsequent research in this domain.

– We conduct extensive experiments on both indoor/outdoor scenes and syn-
thesis/real scenes, which demonstrate that our method is not only superior
to 2D inpainters but also outperforms NeRF-based 3D inpainting methods.

2 Related Work

Image inpainting. Image inpainting, which is a popular task in computer vi-
sion and image processing, has received considerable attention [10,38]. Early
works for filling masked regions in corrupted images can roughly be classified
into two categories: diffusion-based [2] and patch-based [4]. With the develop-
ment of adversarial training and transformers, various variants of 2D inpaint-
ing approaches [46,35,49,29] for improving visual fidelity have been developed.
LaMa [34] applies fast Fourier convolutions to enhance the inpainting network
architecture and achieves outstanding performance, even in challenging scenar-
ios. Despite the booming research on 2D inpainting, only a few works of 3D in-
painting are reported, which remains an under-explored task. Our work focuses
on consistent 2D inpainting of multi-view objects or scenes to obtain reliable
information for NeRF, with which eventually to synthesize 3D scenes.
Image segmentation. As a fundamental task in computer vision, Image seg-
mentation includes interactive segmentation [39], edge detection [1], foreground
segmentation [33], semantic segmentation [32], instance segmentation [19], and
panoptic segmentation [17]. Traditional methods rely on pre-processing and clus-
tering [40]. With the development of deep learning, numerous advanced ap-
proaches are proposed. The CNN-based methods have become the mainstream,
which typically employ an encoder-decoder structure to keep more detailed in-
formation. Recently, transformer-based models [3] achieve state-of-the-art per-
formance with more complex training pipeline and higher computation cost. The
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latest Segmentation Anything Model (SAM) [18] is a great advance. In this pa-
per, we employ SAM to generate multi-view masks to indicate which objects are
to be removed from 3D scenes.
Novel view inpainting with NeRF. Neural radiance fields (NeRF) [23] have
substantially driven the advance of computer vision in recent two years. Unlike
previous voxel, point cloud, and mesh-based methods, NeRF employs a multi-
layer perceptron (MLP) network to learn and represent the radiance fields in a
3D scene from a set of posed images. Instant-NGP [27] is based on NeRF and
significantly improves the training speed. The success of NeRF has inspired a
variety of works [25,9] on scene manipulation, including scene completion and
synthesis of novel views. These methods concentrate on modifying colors or dis-
torting shapes and lack integration with 2D methods. NeRF-In[20] is the first
method that combines 2D inpainting with NeRF. However, it fails to address the
problem of inconsistency and merely reduces the number of views utilized for
fitting, which degrades the quality of the final results. In this paper, we incor-
porate 2D inpainting with NeRF to complete challenging real-world scenes that
are view-consistent and photorealistic. Moreover, we leverage Instant-NGP as a
rapid and powerful 3D implicit representation for the efficient reconstruction of
scenarios from view-consistent inpainted images.

3 Preliminary

Neural radiance fields (NeRF) [23] introduce a neural implicit function FΘ :
(x, θ, ϕ) → (c, σ), where the scene coordinate x = (x, y, z) and the azimuthal
and polar viewing angles (θ, ϕ) are taken as input to output a volume density σ
and an RGB color c = (r, g, b). This 5D function FΘ is typically implemented by
one or more Multi-Layer Perceptrons (MLPs) and Θ denotes the parameters of
F . Theoretically, the rendered RGB color C(r) can be calculated via integrating
the predicted densities and colors along a ray r(t) = o + tv in NeRF. Due to
the continuity of output value (c, σ) along the ray, the volume rendering integral
equation [22] is numerically approximated by the following quadrature rule:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, Ti =

i−1∑
j=1

σjδj (1)

where r denotes a ray, N is the number of samples, and δi = ti+1 − ti is the
distance between the i-th point and its following point, Ti is the accumulated
transmittance. In the basic NeRF model, this is implemented by designing an
MLP in two stages.

Since the process is fully differentiable, a mean square loss function is used
to update the MLP parameters Θ as follows:

Lmse =
∑
r∈R

∥(Ĉc(r)− C(r))∥22 + ∥(Ĉf (r)− Ci(r))∥22, (2)

where R denotes a batch of rays. C(r) is the ground truth, Ĉc(r) and Ĉf (r) are
the coarse and fine volume predicted RGB colors of ray r, respectively. Besides,
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positional encoding is also employed before the MLP for mapping the input
coordinates to a higher dimensional space, which helps represent high-frequency
details.

NeRF achieves excellent performance in realistic view synthesis with densely
captured images from calibrated cameras. For this reason, we utilize the output
of NeRF to re-weight the parameters of a 2D inpainter and then obtain view-
consistent inpainted results.

4 Method

Our proposed framework, named Hi-NeRF, aims to generate realistic 3D scene
reconstructions through consistent inpainting of multi-view objects or scene cap-
tures. Firstly, we employ the latest SOTA large vision model SAM to generate
the original masks of the object we want to remove from the multi-view images.
To enable the collaboration between 2D inpainting and implicit 3D represen-
tation, our approach learns an inpainted NeRF model from the output of the
original 2D inpainter. Next, the parameters of the 2D inpainter are updated
by utilizing the rendered views and their corresponding masks. Meanwhile, we
leverage the output of NeRF as appearance and geometry prior to enhancing
the fitting of the 2D inpainter. Finally, we propose a multi-view perceptual loss
to exploit global context and aggregate multi-view information. An overview of
our approach can be seen in Fig. 1.
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Fig. 1. The framework of Hi-NeRF. Given multi-view images and corresponding masks
as input, the initial inpainted results are utilized to train NeRF. Then, the parameters
of 2D inpainter are updated by using the rendering views and corresponding masks.
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4.1 Problem Formulation

Our task is to inpaint scenes from multi-view images with the guidance of cor-
responding masks. Given multi-view input images, we need to set up viewpoints
for rendering each scene. Then the camera pose for each set of images is recon-
structed using a dense structure-from-motion pipeline [31]. We denote the set
of original multi-view images as I = {I1, I2, ..., Ik}. The corresponding mask set
are denoted as M = {M1,M2, ...,Mk}. Let Fθ represents the initial parameter of
2D inpainter, we formulate the i-th initial inpainted multi-view image as follow:

Ĩi = Fθ(Ii,Mi), (i = 1, 2, ..., k) (3)

Ii and Mi are the i-th view and corresponding mask, respectively. We define
the set of inpainted images as Ĩ = {Ĩ1, Ĩ2, ..., Ĩk}. Note that these multi-view
images are inpainted independently, and directly supervising a NeRF using the
inpainted views may lead to blurry results due to the 3D inconsistencies between
each inpainted views. Our goal is to synthesize a sequence of novel inpainted
views and overcome the problems mentioned above.
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Fig. 2. Left: the process of generated multi-view masks by our Refined Segment Any-
thing Model (RSAM). Right: the key processes of Hi-NeRF. Parameter iteratively
updated with rendering views.

4.2 Refined Segment Anything Model (RSAM)

We utilize the Segment Anything Model (SAM)[18] to identify specific objects
in multi-view images based on sparse points, indicating the regions requiring
inpainting. These sparse points are subsequently leveraged across all views to
derive multi-view masks. As depicted in Fig.2, this method encompasses three
principal components. Firstly, the prompt encoder integrates positional encod-
ings with convolutions to characterize both sparse and dense prompts. Secondly,
the image encoder employs a pre-trained Vision Transformer (ViT) to efficiently
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process high-resolution inputs, optimizing both speed and performance. Lastly,
drawing from self-attention and cross-attention concepts, the streamlined mask
decoder incorporates a revised transformer decoder block, merging prompt and
image embeddings.

Let S(·) and Ii ∈ RH×W×3 represent the model of SAM and the input RGB
images, the output segmented images can be denoted as:

Ŝi = S (Ii) (i = 1, 2, . . . , k). (4)

To convert the segmented images into initial object masks, we define the following
transformation function:

f(x) =

{
255, if x belong to mask region
0, otherwise

(5)

Then, we obtain the initial object masks:

Mi = f(Ŝi) (i = 1, 2, . . . , k) (6)

where Mi has the same size as Ii.
We observe that the output of SAM is always close to the object silhouettes,

leading to unsatisfactory inpainting results near the mask boundaries due to
abrupt changes. Inspired by image dilation [7] proposed in morphology, we use
a modified mask to solve the above problem. Finally, the refined mask M̂i for Ii
is obtained as follows:

M̂i =
∨

(m,n)∈B

Mi(x+m, y + n), (i = 1, 2, . . . , k) (7)

(x, y) is the pixel coordinates of Mi, (m,n) is the pixel coordinate of the structure
element B.

4.3 Hybridizing 2D Inpainting with NeRF

Benefiting from large-scale vision pre-training, T-Fill [49] learns a well-aligned
feature and demonstrates strong power in 2D image inpainting. Our inpainting
backbone model is directly adopted from T-Fill [49]. The network architecture
and the updated process are illustrated in Fig. 2(b) and (c).

Specifically, we propose a self-training-like approach that utilizes the ability
of NeRF to extract multi-view information and obtain inpainted images of multi-
view 3D consistency. Different from directly training a 3D inpainter, our method
leverages the inpainted images Ĩ to train a NeRF model, the rendered view Îk
can be obtained as follows:

Îk = FΘ(Ĩk, Gk,K) (8)

Gk is the corresponding camera pose of Ĩk and K is the camera intrinsic matrix.
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Then we update the initial parameters of T-Fill Fθ with the set of inpainted
images Î = {Î1, Î2, ..., Îk} and the corresponding masks M̂ = {M̂1, M̂2, ..., M̂k}.
We obtain the updated model parameters F ′

θ to generate 3D-consistent inpainted
images Ī = {Ī1, Ī2, ..., Īk}. Finally, we train the Instant-NGP with these 3D-
consistent inpainted images Ī and obtain the 3D inpainted synthetic result of
any view.

4.4 Loss Design

Loss design is of great significance to ensure multi-view consistency and keep the
texture style. To boost the synthetic performance of Hi-NeRF, our total loss func-
tion, termed Multi-View Perceptual Loss (MVPL), consists of two parts:LINP
and LNeRF which denote 2D inpainter loss and NeRF loss, respectively. We uti-
lize LPIPS loss [48] to increase the global-content perceptibility in the masked
regions and aggregate feature information of the NeRF model from multiple
perspectives. Formally, we have

LPIPS(Î , I) =
∑
j

1

Cj ×Hj ×Wj

∥∥∥φj(Î)− φj(I)
∥∥∥2 , (9)

φj(I) and φj(Î) are the feature maps of generated images and target images,
respectively. They have similar Cj ×Hj ×Wj and are extracted by the j-th layer
of the convolutional network that can be VGG, Alexnet, or Squeezenet. The
NeRF regularization item with a weighting factor λreg is defined as follows:

LNeRF =
1

N

N∑
n=1

(
∑
r∈Rn

∥∥∥Ĩn(r)− În(r)
∥∥∥2 + λreg

∑
r∈Mn

LPIPS(Ĩn(r), În(r))), (10)

where N is the number of multi-view images used for training the NeRF model
in each epoch. Rn and Mn are the entire domain and masked domain of image
In. Ĩn(r) is the RGB value for pixel r in the original inpainted images. The
predicted image În(r) is obtained by volume rendering.

On the other hand, we employ a combination of LLPIPS and the perceptual
loss [13] LPer to supervise the fitting of T-Fill for aggregating the multi-view
inpainted images Î. Then we finetune the parameters of T-Fill using the following
inpainting loss:

LINP = λLPIPSLLPIPS + λPerLPer, (11)

Finally, the total multi-view perceptual loss of our framework is as follows:

LMVPL = λ1LINP + λ2LNeRF, (12)

5 Experiments

We perform extensive experiments on both realistic and synthetic scenes in our
proposed dataset to evaluate our method. We compare the results of Hi-NeRF
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with state-of-the-art 2D inpainting methods and several NeRF-based baselines.
Furthermore, we also conduct ablation study to evaluate the key components
and demonstrate the robustness of Hi-NeRF with various 2D inpainters.

5.1 Implementation Details

NeRF setting. We implement our framework with Python 3.9 and train NeRF
in PyTorch [42]. The coarse network and fine network use 64 samples each. The
backbone of NeRF is trained for 50,000 iterations with a batch size of 2048
rays, requiring approximately 7 hours on a single GeForce RTX 3090 GPU. The
MLPs consist of 4 fully-connected hidden layers, each with 64 channels and ReLU
activation. The Adam optimizer [16] is used with default parameters. In each
iteration, we compute the Multi-view perceptual loss with a batch number N
set to 20. Each view is divided into perceptual patches of size 50 × 50, and we
randomly sample these patches to calculate LPIPS by emitting 2500 rays. To
maintain consistency in input image size between T-Fill and NeRF, we resize
the captured images to 512× 512 during the 2D inpainting process and scale up
the inpainted result to align with the NeRF training process.
Training details. We rely on the pre-trained generator to synthesize high-
quality inpainting images and refine them during training. Our backbone T-
Fill follows the implementation in [49]. T-Fill setting: we optimize the encoders,
mappers, and recurrent module with learning rate 1×10−5, 1×10−3, and 1×10−3,
respectively. We update the parameters of T-Fill with 1000 iterations and a
batch size of 20. It takes less than an hour to fine-tune a T-Fill Network that
can handle different views. Loss weights (λreg, λLPIPS, λPer, λ1, λ2) are set to
(0.1, 0.5, 0.5, 1.0, 1.0).

5.2 Datasets, Baselines and Evaluation Metrics

Datasets. Since there are few multi-view 3D scene datasets and corresponding
masks available for evaluating NeRF-based inpainting methods, we construct a
multi-view 3D scene dataset with corresponding labeled masks, which contains
both synthetic scenes and realistic scenes. Real-word scenes consists of fifteen
indoor and fifteen outdoor scenes and each scene contains 20 ∼ 30 image triplets.
We provide the input GT views, camera poses, object masks, and GT without
the target object. Synthetic scenes is generated from the Real Forward-Facing
dataset [23], DTU [11], and Combined Room dataset3. All the realistic images
are captured by an Apple iPhone 12 with a resolution of 1276×1276 pixels in size.
We utilize COLMAP [31] to generate the camera parameters of all synthetic and
realistic scenes. A visualization of synthetic and real-world scenes of our dataset
is presented in Fig.3. This dataset contains different challenging 3D scenarios
and can be used for further research on quantitative evaluations.
Baselines. We compare Hi-NeRF with several existing methods that are widely
utilized in 2D inpainting tasks and self-defined NeRF-based inpainting methods.
3 https://www.3dzx.net/
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Fig. 3. Overview of our proposed dataset. In this dataset, real scenes consist
of indoor scenes and outdoor scenes, including ground truth, target object masks of
different viewpoints, and ground truth without target objects.

Additionally, related strong baselines, Masked-NeRF, NeRF-In [20] and SPIn-
NeRF [24] are also compared to demonstrate the effectiveness of our method.
Inpainting-NeRF is proposed by infilling the masked region with latent dif-
fusion models [30] and training inpainted images on vanilla NeRF. Masked-
NeRF trains a NeRF without calculating the masked regions in the loss func-
tion. NeRF-In [20] is the first proposed method for inpainting objects based
on NeRF. It utilizes the unmasked regions to optimize the parameters of NeRF.
SPIn-NeRF[24] is a recently proposed state-of-the-art method for image gen-
eration with a pre-trained NeRF. It learns a NeRF by leveraging a learned 2D
image inpainter.

Metrics. We adopt a variety of metrics to quantitatively evaluate our results
from the perspectives of both visual and geometric quality. Specifically, we em-
ploy peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) [37],
the Frechet Inception Distance (FID) [8] and learned perceptual image patch
similarity (LPIPS) [48] between the ground-truth and the output results of Hi-
NeRF.
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Fig. 4. Qualitative comparison on realistic and synthetic scenes of our dataset. Given
the input images and corresponding masks, we visualize the output results of Deep-
Fillv2 [43], LaMa [34], ZITS [6] and LDMs [30] in a consistent view. The above scenes
are sampled from our realistic dataset.

5.3 Comparison with 2D Inpainters

We compare our method with 2D inpainting methods and inpainting-NeRF. For
these methods, we follow the parameter settings in their proposed paper.

Qualitative results. Qualitative results are shown in Fig. 4, which indicate that
our method generates visual-consistent inpainted results and outperforms the ex-
isting single-view independent inpainted methods on all the presented datasets.
Furthermore, our results are almost invisible for the bag that is initially placed
on the sofa in the Bag scene. The same observation can be seen in the Buddha
and Statue scenes. In contrast, the inpainted views of LaMa demonstrate blurry
output and inconsistent inpainted results in the masked regions. DeepFillv2 [43]
demonstrates obviously severe ghost artifacts in the inpainted regions on the
Buddha scene. The overall textural color is changed in LDMs [30]. The bound-
ary of the target object in the inpainted results of ZITS [6] is still clearly visible
on the Room scene and Bag scene.

Quantitative results. The ground truth of our real scene data is used to eval-
uate the quantitative metrics. The comparison results are presented in Table 1.
Our method outperforms the second-best model LaMa 8.1% in the metric of
PSNR. Similar improvements could be observed in terms of the SSIM, LPIPS
and FID metrics.
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Table 1. Quantitative comparison with existing 2D inpainting methods and the effec-
tiveness between the SAM masks(Ours-SAM) and refined SAM(Ours-RSAM) masks
as input on our proposed dataset. The best results are in bold.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

DeepFillv2 20.41 0.86 0.29 22.90
LDMs 21.30 0.86 0.28 18.77
LaMa 22.62 0.87 0.26 18.63
ZITS 22.24 0.86 0.27 19.14
Ours-SAM 22.53 0.87 0.27 10.73
Ours-RSAM 24.43 0.90 0.25 8.60

Table 2. Quantitative comparison with NeRF-based baselines on our realistic scenes.
The best results are in bold.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Masked-NeRF 17.42 0.84 0.39 13.29
Inpainting-NeRF 21.71 0.86 0.27 9.47
NeRF-In 21.64 0.86 0.31 11.92
SPIn-NeRF 22.05 0.87 0.27 10.35
Ours 24.43 0.90 0.25 8.60

5.4 Comparison with NeRF-based Baselines

In Fig. 5, we compare our method with NeRF-based inpainting baselines. From
the results, we could see that our synthetic regions are with better 3D consis-
tency and visual plausibility than other NeRF-based baselines. Both Masked-
NeRF and SPIn-NeRF generate artificial textures and are unable to keep the
geometry consistent through all the views in the Fortress and Orchids scenes.
Additionally, NeRF-In results in the loss of fine structures in the inpainting area
because there is no constraint on the multi-view inpainted images. In contrast,
our method produces view-consistent outcomes that are comparable in quality
and show remarkable photo-realistic inpainting effects for unseen views. Quanti-
tative results are present in Tab. 2, which demonstrate the superior performance
of Hi-NeRF in 3D inpainting. Our approach exhibits significant improvements in
PSNR metric, achieving 10.8%, 12.9%, 12.3% and 40.2% superiority over SPIn-
NeRF, NeRF-In, Inpainting-NeRF and Masked NeRF in our realistic scenes.
Similar improvements are observed in SSIM, LPIPS and FID.

5.5 Ablation Study

In this section, we study the robustness of our loss design and explore the ef-
fectiveness of multi-stage strategy, respectively. Furthermore, we replaced the
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NeRF Maked-NeRF NeRF-In OursSPIn-NeRF

Fig. 5. Qualitative comparison with NeRF-based baselines. Since the code of NeRF-
In is unavailable, we compare the experimental results using the same perspectives of
LLFF data presented in the original paper of NeRF-In. Our results show more vivid
results and better temporal consistency than the baseline.

Table 3. Ablation result of our proposed loss function and quantitative evaluation of
different backbones on realistic scenes. The best results are in bold. † indicates the
backbone of Hi-NeRF is replaced by the 2D inpainter.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

DeepFillv2 18.84 0.87 0.26 255.05
DeepFillv2† 20.01 0.90 0.24 217.51
CR-Fill 19.45 0.89 0.25 259.62
CR-Fill† 21.57 0.91 0.22 195.80
A:T-Fill 21.72 0.89 0.21 101.04
B: A + LINP 22.42 0.90 0.20 94.14
C: B+ LNeRF 23.15 0.92 0.17 90.74

inpainting backbone of Hi-NeRF with different 2D inpainters to verify the plug-
and-play capability.
Effectiveness of loss design. We conducted ablation experiments on our pro-
posed dataset. As discussed in Section 4.4, the purpose of LMVPL is to optimize
the inpainting result of the 2D inpainter. The quantitative results are presented
in Tab. 3, from which we can see that the best result is achieved when LNeRF
and LINP are jointly used. Our method integrates these two losses and elimi-
nates undesirable objects while retaining 3D consistency in the masked regions
by learning multi-view information as well as global content. This experiment
shows that our LMVPL significantly improves all metrics.
Effectiveness of different inpainters. To demonstrate the effectiveness of Hi-
NeRF, we replace our inpainting backbone with different inpainters, DeepFillv2
and CR-Fill, denoted as DeepFillv2† and CR-Fill† respectively. The results on
the Ipad scene from our dataset are depicted in Fig. 6. Notably, the original
inpainting result of DeepFillv2 is exceptionally terrible, while DeepFillv2† im-
proves the visual consistency. CR-Fill displays poor performance in inpainting
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Fig. 6. Qualitative comparison with different 2D inpainters. We demonstrate three
views of generated results. Methods marked with † indicate that the backbone of Hi-
NeRF has been replaced with this inpainter.

region. Nevertheless, CR-Fill† surpasses CR-Fill by a significant margin due to
its detailed learning of multi-view information and high-quality fitting of geomet-
ric structures. Consequently, the appearance and 3D structure of masked regions
are highly consistent with the ground truth. The quantitative results presented
in Tab. 3 also indicate that a significant improvement with the introduction of
Hi-NeRF compared to the previous version of 2D inpainting.

6 Conclusion

In this paper, we propose a novel method named Hi-NeRF that exploits the
strength of 2D painters and the synthesis of NeRF to complete the missing
regions in 3D scenes. Since each view is inpainted independently, directly super-
vising a NeRF using the inpainted views will lead to blurry results due to 3D
in consistency. So we take advantage of NeRF’s ability to aggregate multi-view
information and hybridize 2D inpainting methods iteratively via the MVPL loss
to improve the final 3D results. Extensive experiments on our multi-view scene
(mask) dataset show that Hi-NeRF is not only superior to its counterparts but
also effective in improving 2D inpainters on quality and stability.
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