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Abstract

Direct preference optimization (DPO) methods have shown strong potential in
aligning text-to-image diffusion models with human preferences by training on
paired comparisons. These methods improve training stability by avoiding the
REINFORCE algorithm but still struggle with challenges such as accurately esti-
mating image probabilities due to the non-linear nature of the sigmoid function
and the limited diversity of offline datasets. In this paper, we introduce Diffusion
Denoising Ranking Optimization (Diffusion-DRO), a new preference learning
framework grounded in inverse reinforcement learning. Diffusion-DRO removes
the dependency on a reward model by casting preference learning as a ranking
problem, thereby simplifying the training objective into a denoising formulation
and overcoming the non-linear estimation issues found in prior methods. More-
over, Diffusion-DRO uniquely integrates offline expert demonstrations with online
policy-generated negative samples, enabling it to effectively capture human prefer-
ences while addressing the limitations of offline data. Comprehensive experiments
show that Diffusion-DRO delivers improved generation quality across a range of
challenging and unseen prompts, outperforming state-of-the-art baselines in both
both quantitative metrics and user studies. Our source code and pre-trained models
are available at https://github.com/basiclab/DiffusionDRO.

1 Introduction

Text-to-image diffusion models have recently emerged as a powerful class of generative models,
achieving impressive results in synthesizing high-fidelity images from textual descriptions [37, 27,
33, 5, 32, 22]. These models use iterative denoising to progressively transform random noise into
coherent visuals aligned with the input text [13]. Despite their capabilities, users often expect outputs
that not only match the text but also reflect implicit aesthetic or stylistic preferences that are hard to
encode explicitly. As a result, aligning these models with nuanced human preferences has become an
emerging challenge.

Existing approaches to preference alignment in generative models have predominantly relied
on reinforcement learning frameworks, such as Reinforcement Learning from Human Feedback
(RLHF) [6, 2, 9, 3, 16, 28]. In these methods, models are fine-tuned using reward signals derived from
human evaluations, often requiring paired datasets where one output is deemed better than another.
Methods such as Direct Preference Optimization (DPO) have been employed in large language
models (LLMs) and diffusion models to optimize for human preferences effectively [30, 35, 24].

However, the necessity for paired comparative data introduces substantial practical limitations.
Collecting this data is labor-intensive and time-consuming, and it might not encompass the full
spectrum of user preferences, potentially omitting users’ favored choices. Moreover, even when
successfully obtained, paired data may not effectively optimize for user preferences. For example,
differentiating between two high-quality options may not yield meaningful insights for preference
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determination, as both already meet the desired criteria. Conversely, comparing two poor examples
fails to provide the model with positive references needed to avoid undesirable features. In both cases,
the comparative data may be too limited to enable the model to discern and learn the nuances that
truly align with human preferences, potentially resulting in inconsistent or suboptimal outputs.

In this paper, we propose a novel approach for fine-tuning diffusion models to optimize user pref-
erences using only demonstration examples—images that embody the desired qualities—without
comparing them to less preferred outputs. This method departs from traditional approaches reliant on
paired data, where examples are ranked against each other. Instead, we use these positive examples
as direct guides, teaching the model to produce outputs that reflect the desired attributes. By theo-
retically deriving a novel optimization objective, we enable the diffusion model to learn from these
demonstration examples while mitigating the risk of overfitting.

The contributions can be summarized as follows.

• We introduce a novel framework for preference optimization in diffusion models that requires
expert demonstrations only, addressing the limitations of methods that depend on paired
comparative data.

• We derive an optimization objective that compares the model’s outputs with the demonstra-
tion examples. This formulation ensures effective learning from positive examples while
preventing overfitting.

• Through extensive experiments, we demonstrate that our method achieves a preference rate
exceeding 70% in terms of PickScore compared to state-of-the-art models. Our approach
not only better aligns with desired human preferences but also exhibits robustness and strong
generalization to unseen data.

2 Related Work

To guide diffusion models toward preferred outcomes, Reinforcement Learning (RL) has been widely
adopted, including DDPO [3] and TDPO-R [42], which apply REINFORCE to optimize generation
trajectories based on human feedback. However, these methods often suffer from complex reward
design and high variance, leading to unstable training [8]. To address these challenges, Fan et al. [9]
propose DPOK, introducing a KL divergence term to penalize deviation from the base model and
prevent reward hacking [10]. Similarly, PRDP [8] uses a distillation-like strategy where a reward
model predicts preferences to guide diffusion model updates, though it remains reliant on the reward
model’s accuracy.

Recent work has also explored Direct Preference Optimization (DPO) in diffusion settings. D3PO [39]
and Diffusion-DPO [35] adapt DPO techniques from LLMs to fine-tune diffusion models directly
from preference-paired data without a separate reward model. Diffusion-KTO [17] further simplifies
supervision by decoupling preference pairs into binary positive/negative sets, though this can introduce
semantic biases—e.g., if negative sets are skewed toward specific concepts such as cats, the model
may learn undesirable associations.

While RL and DPO-based methods advance preference alignment, they heavily rely on large-scale
paired data. SPIN-Diffusion [41] circumvents this by leveraging earlier model checkpoints as
negative samples, enabling self-improvement from positive-only data. However, its multi-stage
pipeline demands careful hyperparameter tuning to ensure consistent performance.

In contrast, we formulate preference alignment as a max-margin inverse reinforcement learning (IRL)
problem, deriving a single-stage objective that encourages the generation of high-quality samples.
This formulation eliminates the need for negative samples, thereby reducing semantic bias to some
extent. Moreover, it provides a more stable and interpretable training process without requiring
iterative self-play or stage-wise tuning.
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3 Method

3.1 Background

We begin with a brief overview of the reinforcement learning framework and the foundational
equations for our subsequent derivations. Specifically, for a given text-image pair (c, x0), there exists
an optimal reward model r(c,x0) that assigns a score representing the level of human preference for
the provided text-image pair. Building on prior work [9, 8, 35, 39], the objective of reinforcement
learning from human preferences, as defined by the reward model, is formulated as follows:

max
pθ

Ec∼C,x0∼pθ(x0|c)

[
r(c,x0)

]
− βDKL

[
pθ(x0|c)

∥∥pθref(x0|c)
]
, (1)

where C represents the set of prompts, β is the regularization weight, and pθref denotes the reference
distribution, typically provided by a pre-trained diffusion model. As shown in prior work [11, 15, 25,
26], the optimal density function for Eq. (1) can be derived as:

p∗θ(x0|c) =
1

Z(c)
pθref(x0|c) exp

(
1

β
r(x0, c)

)
, (2)

where Z(c) =
∫
x0

pθref(x0|c) exp
(
1
β r(x0, c)

)
dx0 is the partition function. Through algebraic

manipulation, the reward function can be reformulated as:

r(x0, c) = β log
p∗θ(x0|c)
pθref(x0|c)

+ β logZ(c). (3)

Nevertheless, calculating the probability of a clean image in a diffusion model requires marginalizing
over the joint distribution pθ(x0|c) =

∫
x1:T

pθ(x0:T |c)dx1:T . This approach necessitates back-
propagation through time [7, 38] to update the model, leading to a substantial increase in memory
requirements for training. To mitigate this, we propose a reward model for the entire denoising
trajectory, which enables a stepwise gradient calculation to improve computational efficiency.

3.2 Trajectory Reward Modeling

Conventional reward models typically predict preference scores solely for the final clean image x0,
without considering the denoising trajectory. To decompose the full denoising process into individual
steps, we follow prior work [35, 42] and assume the existence of a trajectory reward model R(x0:T , c)
for a diffusion model pθ(x0:T |c) such that:

r(x0, c) = Ex1:T∼pθ(x1:T |x0,c)

[
R(x0:T , c)

]
, (4)

where r(x0, c) aligns with human preferences as defined in Eq. (1). By substituting the reward
function in Eq. (4) into Eq. (1) and applying the data processing inequality to expand the KL
divergence, we have:

Ec∼C,x0:T∼pθ(x0:T |c)

[
R(x0:T , c)

]
− βDKL

[
pθ(x0|c)

∥∥pθref(x0|c)
]

≥ Ec∼C,x0:T∼pθ(x0:T |c)

[
R(x0:T , c)

]
− βDKL

[
pθ(x0:T |c)

∥∥pθref(x0:T |c)
]
. (5)

Following the similar derivation as in Eq. (2), the optimal joint density for the lower bound in Eq. (5)
is given by:

p∗θ(x0:T |c) =
1

Z(c)
pθref(x0:T |c) exp

(
1

β
R(x0:T , c)

)
, (6)

where Z(c) =
∫
x0:T

pθref(x0:T |c) exp
(
1
βR(x0:T , c)

)
dx0:T is the partition function for the joint

density.

3.3 Max-Margin Inverse Reinforcement Learning

Human preferences are represented by the labeled data originally used to train reward models.
To avoid issues of error accumulation and reward hacking [10], it is advantageous to remove the
reward model from preference fine-tuning entirely. This approach aligns with inverse reinforcement
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learning (IRL), which aims to learn a policy based on expert demonstrations. We apply a max-margin
approach [1, 23] to train a reward model that satisfies the the inductive step condition:

Ec∼C,x̄0∼D(c)

[
r(x̄0, c)

]
≥ Ec∼C,x0∼pθ(x0|c)

[
r(x0, c)

]
, (7)

where x̄0 and x0 are samples from the expert demonstration D(c) and the policy model pθ(x0|c),
respectively. Once we establish a reward model r̂(x0, c) based on Eq. (7), a new policy model p̂θ is
then obtained by maximizing the KL-regularized objective (Eq. (5)) using the reward model r̂(x0, c).
Through altering these two optimization processes, we can obtain the optimal policy model that
aligns with the expert demonstrations [1].

However, the reward model aims to maximize the margin between the expert and the policy, while
the policy model seeks to minimize this margin to align more closely with the expert. This minimax
optimization usually suffers from instability and an exhaustive tuning process. To this end, we
further simplify the optimization procedure. First, the inductive criteria Eq. (7) can be rewritten by
substituting the reward function from Eq. (4) into it:

Ec∼C,x̄0:T∼D(c)

[
R(x̄0:T , c)

]
≥ Ec∼C,x0:T∼pθ(x0:T |c)

[
R(x0:T , c)

]
. (8)

We propose to parameterize the trajectory reward model R by using a formulation similar to Eq. (3):

Rϕ(x0:T , c) = β log
pϕ(x0:T |c)
pθref(x0:T |c)

+ β logZ(c), (9)

where ϕ represents the learnable parameters of the probability model pϕ. Assuming that there exist a
reward model R̂ϕ, parameterized as in Eq. (9) and satisfying the inductive criteria in Eq. (8), we can
further obtain the optimal policy by substituting R̂ϕ into Eq. (6):

p̂θ(x0:T |c) =
pθref(x0:T |c)

Z(c)
exp

(
1

β
R̂ϕ(x0:T , c)

)
=

pθref(x0:T |c)
Z(c)

exp

(
log

p̂ϕ(x0:T |c)
pθref(x0:T |c)

+ logZ(c)

)
= p̂ϕ(x0:T |c). (10)

This result implies that the optimal policy model p̂θ is identical to reward probability model p̂ϕ.
Therefore, the alternating optimization reduces to reward modeling alone, where the maximum
expected reward is implicitly achieved by Eq. (10) for any given R̂ϕ.

To optimize the reward model, we subtract the right hand side from the left hand side of Eq. (8), and
substitute the reward parameterization from Eq. (9) into it. Moreover, we use the forward diffusion
q(x̄1:T |x̄0) to approximate sampling expert trajectory x̄0:T from the expert demonstration D(c):

Ec∼C,x̄0∼D(c)x̄1:T∼q(x̄1:T |x̄0)

[
β log

pϕ(x̄0:T |c)
pθref(x̄0:T |c)

]
− Ec∼C,x0:T∼pθ(x0:T |c)

[
β log

pϕ(x0:T |c)
pθref(x0:T |c)

]
.

(11)
Through algebraic manipulation, this ranking objective is equivalent to (a detailed step-by-step
derivation is provided in Appendix D):

T∑
t

Ec,x̄0,ϵ̄

[∥∥∥ϵ̄− ϵθref(x̄t, c, t)
∥∥∥2 − ∥∥∥ϵ̄− ϵϕ(x̄t, c, t)

∥∥∥2]

−
T∑
t

Ec,xt

[∥∥∥ϵ− ϵθref(xt, c, t)
∥∥∥2 − ∥∥∥ϵ− ϵϕ(xt, c, t)

∥∥∥2], (12)

where x̄t ∼ q(x̄t|x̄0) represents samples drawn from forward diffusion with perturbation noise
ϵ̄ ∼ N (0, I), and ϵ = ϵθ(xt, c, t) is the noise predicted by the policy diffusion model.

Connection to Supervised Fine-Tuning

The ranking objective in Eq. (12) can be solved by directly minimizing the negative of the margin:

Lmm(ϕ) =

T∑
t

Ec,x̄0,ϵ̄,xt

[∥∥∥ϵ̄− ϵϕ(x̄t, c, t)
∥∥∥2︸ ︷︷ ︸

Same as SFT

−
∥∥∥ϵθ(xt, c, t)− ϵϕ(xt, c, t)

∥∥∥2︸ ︷︷ ︸
Push away pθ

]
. (13)
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Algorithm 1 Diffusion Denoising Ranking Optimization
Input: Reference diffusion model pθref , prompt set C, expert demonstration set {D(c)}c∈C , number

of update steps N , policy model update interval M , batch size B, and clipping threshold m.
1: pθ ← pθref ◁ Initialize policy model
2: pϕ ← pθref ◁ Initialize reward model
3: for i = 1 to N do
4: for n = 1 to B do
5: t ∼ U{1, T}
6: c

iid∼ C, x̄0
iid∼ D(c), ϵ̄ ∼ N (0, I)

7: x̄t ∼ q(x̄t|x̄0) ◁ Forward diffusion
8: xt ∼ pθ(xt|c) ◁ Sample from policy
9: ϵ← ϵθ(xt, c, t)

10: Ln
L ←

∥∥ϵ̄− ϵθref(x̄t, c, t)
∥∥2 − ∥∥ϵ̄− ϵϕ(x̄t, c, t)

∥∥2
11: Ln

R ←
∥∥ϵ− ϵθref(xt, c, t)

∥∥2 − ∥∥ϵ− ϵϕ(xt, c, t)
∥∥2

12: end for
13: LTRL(ϕ)← 1

B

∑B
n=1 max

(
m,−Ln

L + Ln
R

)
◁ Eq. (15)

14: Update ϕ using gradient∇ϕLTRL(ϕ)
15: if i is multiple of M then
16: pθ ← pϕ ◁ Update policy model
17: end if
18: end for

We eliminate terms that do not depend on ϕ, as they do not contribute to the gradients of reward model.
We notice that supervised fine-tuning corresponds to optimizing the first term, which minimizes the
KL-divergence between the expert distribution and the distribution induced by the reward model. The
second term serves a complementary purpose, where the reward model generates negative samples
online to guide the optimization in the correct direction.

Connection to DPO-based Approaches

Previous DPO-based approaches [35, 39, 30, 40] aim to learn preference predictions using the
Bradley-Terry [4] model. Diffusion-DPO applies Jensen’s inequality to transform the objective
from a probability-based form to a noise-prediction form (Eq.(14) in Wallace et al. 35). This
transformation closely resembles solving the ranking problem in Eq. (12) by maximizing the margin
using a cross-entropy loss:

Lce(ϕ) = − log σ

(
T∑
t

Ec,x̄0,ϵ̄,xt

[(∥∥∥ϵ̄− ϵθref(x̄t, c, t)
∥∥∥2 − ∥∥∥ϵ̄− ϵϕ(x̄t, c, t)

∥∥∥2)

−
(∥∥∥ϵ− ϵθref(xt, c, t)

∥∥∥2 − ∥∥∥ϵ− ϵϕ(xt, c, t)
∥∥∥2)]), (14)

where σ(x) = 1/(1 + exp(−x)) denotes the sigmoid function. Unlike prior work, our approach
does not require Jensen’s inequality to minimize the surrogate upper bound. The max-margin
approach enables direct optimization of the margin while ensuring convergence of the policy model.
Specifically, we sample pairs from expert demonstration and policy density, whereas DPO-based
methods compare preference pairs (xw,xl), where xw is preferred over xl. In other words, the
proposed inverse RL approach decouples the need for preference pairs and further eliminates the
reliance on negative samples. In practice, public preferences can be obtained through simple statistical
methods to rank different samples, with higher-ranked ones treated as expert demonstrations that align
with public preferences. The same method can be easily extended to collect expert demonstrations
reflecting individual preferences.

3.4 Thresholded Ranking Loss

While our proposed reward parameterization reduces the learnable parameters to include only the
reward model, two separate models are still maintained to represent the reward and policy, respectively.
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To ensure stable reward model updates, the policy model is periodically synchronized with the latest
reward model after a predefined number of gradient steps (see line 16 in Alg. 1). However, updating
the policy too frequently can limit the reward model’s ability to adapt and distinguish expert behaviors
from policy outputs. Conversely, infrequent updates may cause the reward model to overfit to the
current policy. To balance this trade-off, we introduce a thresholded ranking loss (TRL), which clips
the margin loss once the inductive criterion is sufficiently satisfied:

LTRL(ϕ) =

T∑
t

Ec,x̄0,ϵ̄,xt

[
max

(
m,−

(∥∥∥ϵ̄− ϵθref(x̄t, c, t)
∥∥∥2 − ∥∥∥ϵ̄− ϵϕ(x̄t, c, t)

∥∥∥2)

+

(∥∥∥ϵ− ϵθref(xt, c, t)
∥∥∥2 − ∥∥∥ϵ− ϵϕ(xt, c, t)

∥∥∥2))], (15)

where m is a predefined parameter that adjusts the baseline at which the reward margin is truncated.
For samples that already satisfy the inductive criterion, further optimization of the margin is unnec-
essary. By clipping the margin in these cases, the model can concentrate on rectifying incorrect
rankings, thereby avoiding overfitting to samples that are already ranked correctly.

We refer to the learning process with the objectiveLTRL(ϕ) as Diffusion Denoising Ranking Optimiza-
tion (Diffusion-DRO). This method learns the ranking relationships between expert demonstrations
and policy behaviors. The training process is detailed in Algorithm 1.

4 Experiments

We first outline the datasets, implementation details, and evaluation protocols used in our experiments.
We then evaluate Diffusion-DRO against multiple baselines using quantitative metrics and supplement
our findings with a user study on Amazon Mechanical Turk for qualitative comparison.

Datasets. Following prior works [17, 35, 18], we use the train split of Pick-a-Pic v2 [14] (MIT
license) as our training dataset. For evaluation, we adopt the test split of Pick-a-Pic v2 and the
HPDv2 benchmark [36] (Apache-2.0 license), representing in-domain and out-of-domain scenarios,
respectively. Each sample includes a prompt, two images, and a human preference label. Due to label
sparsity, we simulate expert demonstrations using automated metrics such as PickScore [14] (MIT
license) and HPSv2 [36] (Apache-2.0 license). We rank all training pairs by these scores and select
the top K as expert demonstrations; unless otherwise stated, K=500. Ablation results for varying K
are provided in Section 4.4.

Evaluation. We evaluate the human preference alignment by comparing it with various baseline meth-
ods. Preference scores are computed using five different score models: PickScore [14], HPSv2 [36],
Aesthetic [34] (MIT license), CLIP Score [29] (MIT license) and ImageReward [38] (Apache-2.0
license). For each preference score, we report the win rates between the Diffusion-DRO and the
baseline methods, defined as the proportion of generated results with scores exceeding those of the
baselines. To ensure fairness, we avoid using the same preference score for selecting the expert
demonstrations and calculating the win rates, as this could inadvertently leak score prior information
into the train data. Specifically, we use HPSv2 to select the expert demonstrations and calculate
win rates for all metrics except for HPSv2. The experiments using different metrics to select expert
demonstrations can be found in Appendix B.

Implementation Details. We fine-tune Stable Diffusion 1.5 (SD v1-5) [31] (CreativeML Open
RAIL-M license) using Diffusion-DRO, ensuring consistency across all baseline methods. To sample
xt from the policy model, we employ DPMSolver++ [21] with 20 steps, without using classifier-free
guidance [12]. For inference, we use the DDPM sampler with 50 steps and a classifier-free guidance
scale of 7.5 to generate five images per prompt for all methods. Among these five generations, we
select the image with the median PickScore as the final result. For additional implementation details,
please refer to Appendix A.2.

4.1 Quantitative Results

We compare Diffusion-DRO with strong baselines, including SPIN-Diffusion [41] (Apache-2.0
license), Diffusion-SPO [18] (Apache-2.0 license), Diffusion-DPO [35] (Apache-2.0 license), and
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Table 1: Automated win rates between Diffusion-DRO and baseline methods. The dagger symbol (†)
indicates that the evaluation was performed on the officially released model weights. Note that SD
v1-5 w/ SFT refers to SD v1-5 fine-tuned on expert demonstrations. Win rates greater than 50% are
highlighted in bold.

Baseline Method
Pick-a-Pic v2 Test HPDv2 Benchmark

PickScore Aesthetic
Score

CLIP
Score ImageReward PickScore Aesthetic

Score
CLIP
Score ImageReward

SD v1-5 † 87.80 85.20 48.40 88.60 90.47 82.91 46.59 87.69
SD v1-5 w/ SFT 71.20 58.00 66.40 57.80 70.62 57.22 64.97 62.03
SPIN-Diffusion † 56.20 64.80 58.20 70.60 54.87 62.78 54.78 69.78
Diffusion-SPO † 62.80 63.60 71.40 78.00 60.59 67.66 75.78 77.94
Diffusion-SPO w/ SFT 86.60 81.60 42.40 87.20 88.75 80.25 42.69 85.78
Diffusion-DPO † 78.40 83.20 41.40 84.20 79.75 79.97 39.09 82.25
Diffusion-DPO w/ SFT 64.00 55.00 59.00 56.20 63.62 56.12 59.91 58.75
Diffusion-KTO † 74.20 69.00 42.20 66.60 71.19 71.03 39.81 62.81
Diffusion-KTO w/ SFT 70.20 58.60 64.00 58.60 71.09 56.12 65.31 62.75

Diffusion-KTO [17]. These methods remove the need for a reward model and are fine-tuned from SD
v1-5, consistent with our setup.

Since both expert selection and evaluation rely on automated metrics, there may be concerns about
potential information leakage. To address this, we additionally fine-tune SD v1-5 on our selected
expert demonstrations and select the best checkpoint based on PickScore performance on the Pick-a-
Pic v2 test set, denoting it as SD v1-5 w/ SFT. Using this model, we further fine-tune Diffusion-DPO,
Diffusion-KTO, and Diffusion-SPO with their official implementations1. These variants are labeled
with the postfix “w/ SFT.” Table 1 reports the win rates of Diffusion-DRO against all baselines
using various automated preference scores. Full results with raw scores and standard deviations are
provided in Appendix B.

For the SD v1-5 w/ SFT, performance improves in PickScore, Aesthetic, and ImageReward compared
to SD v1-5 (resulting in lower win rates for our method). We attribute this to expert demonstrations
enhancing preference alignment. However, an interesting observation is the decline in CLIP Score.
This can be attributed to the model slightly deviating from the original text encoder distribution,
which was trained on large-scale data. Since Stable Diffusion and CLIP use identical text encoder
weights, this deviation leads to a decrease in CLIP Score for SD v1-5 w/ SFT. The same phenomenon
is also observed in Diffusion-DPO w/ SFT and Diffusion-KTO w/ SFT since they are fine-tuned
from SD v1-5 w/ SFT. For the Diffusion-SPO w/ SFT, their proposed step-aware preference model
leverages the CLIP vision and text encoders to select the best and worst samples for fine-tuning.
Therefore, the CLIP Score of Diffusion-SPO w/ SFT increases due to the consistent distribution.

We observe that Diffusion-DRO significantly outperforms all state-of-the-art approaches across
multiple metrics, including PickScore, Aesthetic, and ImageReward. Even when compared to
stronger baselines, such as Diffusion-KTO w/ SFT and Diffusion-DPO w/ SFT, Diffusion-DRO
remains the preferred method in terms of all automated evaluation scores. For Diffusion-SPO w/ SFT,
its reliance on online sampling for step-aware preference pairs makes it susceptible to the generation
quality and diversity of the pre-trained Stable Diffusion model. While fine-tuning Stable Diffusion
with expert demonstrations enhances preference alignment, it also reduces the variation in step-aware
preference pairs. As a result, Diffusion-SPO w/ SFT fails to gain any performance improvement over
SD v1-5 w/ SFT. Consequently, Diffusion-DRO significantly outperforms Diffusion-SPO w/ SFT,
achieving win rates exceeding 80% across PickScore, Aesthetic, and ImageReward.

Notably, Diffusion-DRO is fine-tuned directly from SD v1-5, unlike strong baseline methods such
as Diffusion-DPO w/ SFT and Diffusion-KTO w/ SFT. Despite this, Diffusion-DRO outperforms
methods that start fine-tuning from SD v1-5 w/ SFT, demonstrating its capacity to effectively learn
human preferences from expert demonstrations.

1SPIN-Diffusion [41] does not provide valid source code for fine-tuning from SD v1-5 w/ SFT.
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vs. Diffusion-KTO w/ SFT

vs. SD v1-5
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Figure 1: User study results comparing Diffusion-DRO with baseline methods. The win rate
represents the proportion of survey questions where users preferred Diffusion-DRO over the baselines.

Diffusion-DRO SPIN-Diffusion Diffusion-DPO Diffusion-KTO Diffusion-SPO SD v1-5

Figure 2: From top to bottom, the text prompts are: “A Pixar lemon wearing sunglasses on a beach,”
“A dragon sitting on a couch in a digital illustration,” “A detailed painting of Atlantis by multiple
artists, featuring intricate detailing and vibrant colors,” and “A passenger jet aircraft flying in the
sky.”

Compared to SPIN-Diffusion, both methods use generations from diffusion models as negative
samples. However, Diffusion-DRO simplifies the training process into a single stage by adopting a
max-margin inverse reinforcement learning (IRL) formulation. This advantage allows Diffusion-DRO
to achieve over a 60% win rate on Aesthetic Score and nearly a 70% win rate on ImageReward,
outperforming SPIN-Diffusion.

4.2 User Study

The user study compares Diffusion-DRO with baseline methods, including SD v1-5, Diffusion-DPO
w/ SFT, and Diffusion-KTO w/ SFT. Text prompts are randomly sampled from the HPDv2 Benchmark
to generate images for evaluation. Detailed settings of the user study are provided in Appendix C.

Figure 1 presents the results of our user study, showing that Diffusion-DRO achieves a 75% win
rate against SD v1-5. This demonstrates the effectiveness of our training procedure in improving the
pre-trained SD model, as human evaluators consistently prefer images generated by Diffusion-DRO.
Additionally, the win rates of Diffusion-DRO against Diffusion-DPO (56.67%) and Diffusion-KTO
(66.67%) further support the reliability of Table 1. For instance, the average win rate against Diffusion-
DPO w/ SFT is 59.6%, and against Diffusion-KTO w/ SFT is 63.82%, closely aligning with the user
study findings.
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Figure 3: Evaluation results of Diffusion-DRO and SFT trained with varying amounts of expert
demonstrations.

4.3 Qualitative Results

In Figure 2, we present the generation results of different methods. The example prompts from top
to bottom are sampled from the four categories of the HPDv2 Benchmark, namely Anime, Concept
Art, Paintings, and Photos. In the first row, Diffusion-DRO successfully generates a “lemon wearing
sunglasses,” while SPIN-Diffusion, Diffusion-KTO, and SD v1-5 fail to produce accurate results.
In the second row, both Diffusion-DRO and Diffusion-KTO correctly generate the “dragon,” the
couch,” and the action “sit,” whereas other methods produce incorrect objects or actions. For the third
row, Diffusion-DRO captures the intricate details of Atlantis, while Diffusion-DPO and Diffusion-
KTO generate abstract content. In the final row, only Diffusion-DRO produces a realistic airplane,
whereas the outputs from other methods result in implausible shapes. These examples highlight that
Diffusion-DRO significantly improves both text alignment and visual fidelity.

4.4 Ablation of Expert Demonstration

In previous experiments, we observe that SFT delivers competitive performances. Therefore, we are
interested in exploring the performance disparity between Diffusion-DRO and SFT under different
volumes of training data. To investigate this further, we utilize HPSv2 to select varying quantities of
expert demonstrations. These demonstrations are then used to train both Diffusion-DRO and SFT
models. The results, depicted in Figure 3, reveal that the CLIP Score consistently increases with the
size of the training dataset. This phenomenon can be attributed to the fact that the text encoder in SD
v1-5 is identical to the one used in CLIP, resulting in improved scores as the training data volume
increases.

Furthermore, across various test sets, Diffusion-DRO outperforms SFT in terms of PickScore, Aes-
thetic, and ImageReward metrics. These results demonstrate that the thresholded ranking loss
consistently enhances Diffusion-DRO’s alignment with human preferences. We attribute this improve-
ment to a fundamental difference in learning objectives. That is, SFT focuses solely on minimizing
KL divergence, which neglects the additional expert priors embedded in expert demonstrations. In
contrast, Diffusion-DRO leverages these priors by treating policy actions as negative samples, thereby
enabling more effective training.

5 Conclusion

We propose Diffusion-DRO, a preference learning framework for text-to-image diffusion models
based on inverse reinforcement learning. By reformulating the objective to remove the non-linear
sigmoid function, our method simplifies optimization into a denoising task, improving training effi-
ciency and stability. Diffusion-DRO further balances offline and online training by combining expert
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demonstrations with policy-generated negatives, addressing the limitations of offline data. Com-
prehensive experimental evaluations and user studies demonstrate that Diffusion-DRO consistently
outperforms state-of-the-art baseline methods across diverse and unseen prompts. By integrating
human preferences more effectively, our method achieves superior generation quality, making it a
robust and scalable solution for preference alignment in text-to-image generation tasks.
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A Experiment Details

A.1 Datasets

We use the Pick-a-Pic v2 [14] training set as the source of expert demonstrations, consisting of
959,040 preference pairs and 1,029,802 unique text-image pairs. Note that the train set of Diffusion-
SPO [18] is Pick-a-Pic v1, which is a little different from our settings, but in a comparable range.
Our train set is consistent with other baseline methods, i.e., Diffusion-DPO [35] (Apache-2.0 license)
and Diffusion-KTO [17]. For testing, we utilize two datasets to ensure diverse evaluation scenarios.
The first is the Pick-a-Pic v2 test set, which includes 500 unique text prompts collected from users of
the deployed web application. The second is the HPSv2 Benchmark, divided into four categories:
anime, concept art, painting, and photo. Each category contains 800 text prompts. However, we
observe slight discrepancies in the number of unique prompts: 781 for anime, 795 for concept art,
798 for painting, and 800 for photo. To maintain consistency with prior works [17, 8], we use all 800
prompts (including duplicates) for each category during testing. To select the expert demonstrations
from Pick-a-Pic v2, we use a preference metric to give each text-image pair a score representing the
quality of being an expert demonstration. We then sort all pairs in descending order by the scores and
select the top K pairs as the expert demonstrations. If not otherwise specified, K = 500 is used.

A.2 Implementation Details

We fine-tune Stable Diffusion 1.5 (SD v1-5) [31] using Diffusion-DRO. The AdamW optimizer [20]
is used with a learning rate of 10−4 and an effective batch size of 256 (4 samples per GPU, 32 gradient
accumulation steps, yielding 4× 4× 16 = 256). The training consists of 1,600 optimization steps,
resulting in a total of 16× 1, 600 = 25, 600 iterations when accounting for gradient accumulation.
During training, 20% of prompts are randomly replaced with empty strings, which helps preserve the
model’s ability to perform unconditional generation by maintaining a balance between conditional
and unconditional sampling.

Following the standard Stable Diffusion training process, we apply an exponential moving average
(EMA) to aggregate the UNet weights during training, with a decay rate of 0.9999. The clipping
threshold m for the thresholded ranking loss (TRL) is set to −0.001, and the policy model update
interval M is set to 1 for all experiments.

For sampling xt from the policy model, we employ DPMSolver++ [21] with 20 steps, without
utilizing classifier-free guidance [12]. To ensure all time steps in SD v1-5 are adequately fine-tuned,
we uniformly perturb the sampling time steps of DPMSolver++ during training. This approach
allows the time steps used during inference to differ from those used for online sampling in training,
enhancing the model’s robustness across all time steps.

All experiments, including the reproduction of baseline methods with updated SD model weights,
were conducted on four NVIDIA RTX 3090 GPUs. Training Diffusion-DRO takes approximately 20
to 25 hours.

Table 2: Automated win rates between Diffusion-DRO and baseline methods. PickScore is used to
select expert demonstrations. The dagger symbol (†) indicates that the evaluation was performed on
the officially released model weights. Note that SD v1-5 w/ SFT refers to SD v1-5 fine-tuned on
expert demonstrations. Win rates greater than 50% are highlighted in bold.

Baseline Method
Pick-a-Pic v2 Test HPDv2 Benchmark

HPSv2 Aesthetic
Score

CLIP
Score ImageReward PickScore Aesthetic

Score
CLIP
Score ImageReward

SD v1-5 † 94.80 79.00 58.60 87.40 97.00 79.44 51.06 88.59
SD v1-5 w/ SFT 71.40 54.40 68.80 60.60 70.34 55.84 69.06 61.53
SPIN-Diffusion † 78.20 57.60 65.80 72.40 80.56 59.81 61.78 72.59
Diffusion-SPO † 84.40 57.60 76.80 78.80 85.78 65.06 79.19 79.16
Diffusion-DPO † 92.20 79.00 51.80 83.00 94.31 77.28 44.81 84.00
Diffusion-KTO † 77.40 68.60 53.60 66.20 74.25 66.22 46.91 65.22
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Table 3: Preference scores of Diffusion-DRO and baseline methods evaluated on the Pick-a-Pic v2 test
set. The metric used to select expert demonstrations for Diffusion-DRO is indicated in parentheses
after “Diffusion-DRO”, e.g., “Diffusion-DRO (PickScore).” Moreover, baseline methods with the
suffix “w/ SFT” are fine-tuned from “SD v1-5 w/ SFT”, which itself is fine-tuned from SD v1-5 using
expert demonstrations selected by HPSv2.

Method PickScore HPSv2 Aesthetic CLIP Score ImageReward

SD v1-5 † 20.68±1.36 26.88±1.81 5.93±1.05 0.3369±.058 0.1765±1.07
SD v1-5 w/ SFT 21.24±1.41 28.11±1.73 6.34±.974 0.3293±.059 0.7623±.906
SPIN-Diffusion † 21.40±1.38 27.78±1.79 6.26±.985 0.3305±.059 0.5619±.971
Diffusion-SPO † 21.17±1.41 27.35±1.75 6.23±.981 0.3150±.060 0.3278±1.07
Diffusion-SPO w/ SFT 20.75±1.37 26.93±1.75 5.93±1.07 0.3419±.056 0.2254±1.06
Diffusion-DPO † 21.00±1.40 27.22±1.80 5.96±1.05 0.3427±.057 0.3369±1.05
Diffusion-DPO w/ SFT 21.31±1.40 28.08±1.72 6.35±.995 0.3334±.059 0.7912±.901
Diffusion-KTO † 21.17±1.36 27.88±1.77 6.20±.954 0.3438±.056 0.6743±.962
Diffusion-KTO w/ SFT 21.25±1.41 28.11±1.74 6.34±.974 0.3296±.059 0.7636±.910
Diffusion-DRO (HPSv2) 21.52±1.42 28.49±1.75 6.40±.976 0.3390±.057 0.8511±.852
Diffusion-DRO (PickScore) 21.76±1.51 28.38±1.78 6.40±.935 0.3446±.057 0.8636±.907

Table 4: Preference scores of Diffusion-DRO and baseline methods evaluated on HPDv2 Benchmark.
The score name that is used to select the expert demonstrations for Diffusion-DRO are denoted in
the parentheses after “Diffusion-DRO”, e.g., “Diffusion-DRO (PickScore).” Moreover, the baseline
methods with suffix “w/ SFT” are fine-tuned from “SD v1-5 w/ SFT”, which is also a fine-tuned from
SD v1.5 with expert demonstrations selected by HPSv2.

Method PickScore HPSv2 Aesthetic CLIP Score ImageReward

SD v1-5 † 20.92±1.20 27.36±1.66 6.22±.923 0.3532±.052 0.2242±.976
SD v1-5 w/ SFT 21.55±1.32 28.74±1.61 6.65±.855 0.3415±.053 0.7554±.871
SPIN-Diffusion † 21.74±1.21 28.38±1.64 6.54±.843 0.3451±.054 0.6071±.924
Diffusion-SPO † 21.63±1.25 28.01±1.54 6.47±.868 0.3217±.054 0.4141±.968
Diffusion-SPO w/ SFT 20.99±1.19 27.39±1.64 6.26±.933 0.3556±.051 0.2619±.962
Diffusion-DPO † 21.30±1.19 27.75±1.67 6.29±.920 0.3584±.051 0.4070±.956
Diffusion-DPO w/ SFT 21.66±1.27 28.77±1.59 6.64±.826 0.3454±.052 0.8001±.861
Diffusion-KTO † 21.51±1.18 28.57±1.61 6.47±.852 0.3579±.052 0.7529±.871
Diffusion-KTO w/ SFT 21.56±1.32 28.74±1.61 6.64±.855 0.3416±.053 0.7557±.870
Diffusion-DRO (HPSv2) 21.82±1.29 29.05±1.66 6.70±.873 0.3521±.053 0.8853±.843
Diffusion-DRO (PickScore) 22.04±1.28 28.99±1.62 6.66±.828 0.3560±.053 0.9069±.833

B Additional Quantitative Results

To alleviate the variation of evaluation results, we sample 5 images per prompt for all models in
our benchmark. Specifically, we sample 2500 images for Pick-a-Pic v2 test and 16000 images for
HPDv2 Benchmark. When calculating the win rates, we sort 5 images for each prompt according to
the corresponding PickScore and select the image with medium score as the comparison target.

We report the win rates of Diffusion-DRO trained with HPSv2 selected expert demonstrations in
Table 1. For the Diffusion-DRO trained with PickScore selected expert demonstrations. The win
rates against baseline methods are show in Table 2. Due to the limited computation resources, we do
not reproduce the baseline methods based on the new SD model (SD v1-5 w/SFT in Table 2). We
only compare the Diffusion-DRO with the officially released model weights.

We present the average preference scores in Table 3 and Table 4, including PickScore [14],
HPSv2 [36], Aesthetic [34], CLIP Score [29], and ImageReward [38].

C User Study Settings

As shown in Table 1, the automated win rates of our method are decreased after Diffusion-DPO and
Diffusion-KTO using the new SD model as base weights, e.g., the win rate compared to Diffusion-
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DPO and Diffusion-DPO w/ SFT on HPDv2 Benchmark decreases from 79.75 to 63.62 evaluated by
PickScore. This shows that Diffusion-DPO w/ SFT and Diffusion-KTO w/ SFT are more competitive
than the official released models. Therefore, we choose these two baseline models plus an SD v1-5
to be baseline methods in user studies. We use the same images generated for calculating metrics
in Table 3, Table 4 and Table 1. We prepare the prompts by random sampling 60 prompts from
four categoryies of HPDv2 Benchmark (15 prompts for each category). For each category, we use
PickScore to sort the samples for each method and select the image with medium score as the survey
target. To avoid survey participants identifying our generation results, we re-sample the prompts for
each user study between Diffusion-DRO and baseline methods. This could prevent our samples from
repeated occurences in different user studies.

We employ human evaluators via Amazon Mechanical Turk (MTurk) for our user studies. Although
the HPDv2 Benchmark includes additional filtering steps to remove inappropriate prompts, we still
indicate that the user survey may contain adult content. Before beginning the survey, users must
check the box labeled “WARNING: This HIT may contain adult content. Worker discretion is
advised.”

On the survey page, participants can access the evaluation guidelines, which include the following
instructions:

For each text prompt, two AI-generated images will be displayed side by side. You can
evaluate which image better meets human expectations based on (but not limited to) the
following criteria. The importance of each criterion depends on your subjective judgment:

• Completeness of details

• Artistic or aesthetic quality

• Alignment between the image and the given prompt
In short, select the image that you believe demonstrates better generation quality.

On each selection page, the prompt is displayed along with two images labeled Image A and Image
B, accompanied by the question: “Which image do you prefer given the prompt?” Below the
question, two radio buttons allow users to select either Image A or Image B, with at least one selection
required before submission. To ensure fairness, the images generated by Diffusion-DRO and the
baseline methods are randomly assigned to Image A and Image B. Additionally, their sources cannot
be identified through the webpage’s source code.

For each prompt, we collect 35 responses. If the majority of these responses favor Diffusion-DRO,
the prompt is considered to prefer Diffusion-DRO. Finally, we compute the proportion of prompts
that favor our method as the win rate, which is reported in Figure 1.

D Derivation of Denoising Ranking Optimization

For convenience, we repeat Eq. (11) below:

Ec∼C,x̄0∼D(c),x̄1:T∼q(x̄1:T |x̄0)

[
β log

pϕ(x̄0:T |c)
pθref(x̄0:T |c)

]
− Ec∼C,x0:T∼pθ(x0:T |c)

[
β log

pϕ(x0:T |c)
pθref(x0:T |c)

]
.

(16)
The first term on the left-hand side (LHS) and second term on the right-hand side (RHS) share similar
simplification processes. We first present the derivation of the LHS:

Ec∼C,x̄0∼D(c),x̄1:T∼q(x̄1:T |x̄0)

[
β log

pϕ(x̄0:T |c)
pθref(x̄0:T |c)

]
(17)

=Ec∼C,x̄0∼D(c),x̄1:T∼q(x̄1:T |x̄0)

[
β

T∑
t=1

log
pϕ(x̄t−1|x̄t, c)

pθref(x̄t−1|x̄t, c)
+ β log

pϕ(xT |c)
pθref(xT |c)

]
+ C (18)

=β

T∑
t=1

Ec∼C,x̄0∼D(c),x̄t∼q(x̄t|x̄0),x̄t−1∼q(x̄t−1|x̄t,x̄0)

[
log

pϕ(x̄t−1|x̄t, c)

pθref(x̄t−1|x̄t, c)

]
+ C (19)
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=β

T∑
t=1

Ec∼C,x̄0∼D(c),x̄t∼q(x̄t|x̄0),x̄t−1∼q(x̄t−1|x̄t,x̄0)

[
log

pϕ(x̄t−1|x̄t, c)

q(x̄t−1|x̄t, x̄0)

+ log
q(x̄t−1|x̄t, x̄0)

pθref(x̄t−1|x̄t, c)

]
+ C (20)

=β

T∑
t=1

Ec∼C,x̄0∼D(c),x̄t∼q(x̄t|x̄0)

[
− DKL

[
q(x̄t−1|x̄t, x̄0)

∥∥∥pϕ(x̄t−1|x̄t, c)
]

+ DKL

[
q(x̄t−1|x̄t, x̄0)

∥∥∥pθref(x̄t−1|x̄t, c)
]]

+ C (21)

=β

T∑
t=1

β2
t

2σ2
tαt(1− ᾱt)

Ec∼C,x̄0∼D(c),ϵ̄∼N (0,I)

[
−
∥∥ϵ̄− ϵϕ(x̄t, c, t)

∥∥2
+
∥∥ϵ̄− ϵθref(x̄t, c, t)

∥∥2]+ C (22)

=β

T∑
t=1

λtEc∼C,x̄0∼D(c),ϵ̄∼N (0,I)

[
−
∥∥ϵ̄− ϵϕ(x̄t, c, t)

∥∥2 + ∥∥ϵ̄− ϵθref(x̄t, c, t)
∥∥2]+ C. (23)

All diffusion hyperparameter notations, i.e., σt, αt, ᾱt, and βt, follow the definitions from DDPM [13].
Here, β represents the KL regularization weight as defined in Eq. (1) and C is a constant independent
of ϕ. We then derive the RHS:

Ec∼C,x0:T∼pθ(x0:T |c)

[
β log

pϕ(x0:T |c)
pθref(x0:T |c)

]
(24)

=Ec∼C,x0:T∼pθ(x0:T |c)

[
T∑

t=1

β log
pϕ(xt−1|xt, c)

pθref(xt−1|xt, c)
+ β log

pϕ(xT |c)
pθref(xT |c)

]
+ C (25)

=β

T∑
t=1

Ec∼C,xt∼pθ(xt|c),xt−1∼pθ(xt−1|xt,c)

[
log

pϕ(xt−1|xt, c)

pθref(xt−1|xt, c)

]
+ C (26)

=β

T∑
t=1

Ec∼C,xt∼pθ(xt|c),xt−1∼pθ(xt−1|xt,c)

[
log

pϕ(xt−1|xt, c)

pθ(xt−1|xt, c)
+ log

pθ(xt−1|xt, c)

pθref(xt−1|xt, c)

]
+ C

(27)

=β

T∑
t=1

Ec∼C,xt∼pθ(xt|c)

[
− DKL

[
pθ(xt−1|xt, c)

∥∥∥pϕ(xt−1|xt, c)
]
+

DKL

[
pθ(xt−1|xt, c)

∥∥∥pθref(xt−1|xt, c)
]]

+ C (28)

=β

T∑
t=1

β2
t

2σ2
tαt(1− ᾱt)

Ec∼C,xt∼pθ(xt|c)

[
−
∥∥ϵθ(xt, c, t)− ϵϕ(xt, c, t)

∥∥2
+
∥∥ϵθ(xt, c, t)− ϵθref(xt, c, t)

∥∥2]+ C (29)

=β

T∑
t=1

λtEc∼C,xt∼pθ(xt|c)

[
−
∥∥ϵθ(xt, c, t)− ϵϕ(xt, c, t)

∥∥2
∥∥ϵθ(xt, c, t)− ϵθref(xt, c, t)

∥∥2]+ C. (30)
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Substituting Eqs. (23) and (30) into Eq. (16), we obtain:

T∑
t=1

λtEc∼C,x̄0∼D(c),ϵ̄∼N (0,I)

[
−
∥∥ϵ̄− ϵϕ(x̄t, c, t)

∥∥2 + ∥∥ϵ̄− ϵθref(x̄t, c, t)
∥∥2]

−
T∑

t=1

λtEc∼C,xt∼pθ(xt|c)

[
−
∥∥ϵθ(xt, c, t)− ϵϕ(xt, c, t)

∥∥2 + ∥∥ϵθ(xt, c, t)− ϵθref(xt, c, t)
∥∥2]
(31)

Following the DDPM settings, we set λt = 1 to obtain our final result.

E Ethics

The Pick-a-Pic v2 dataset has been identified as containing NSFW prompts, as it is collected from
publicly available user inputs on the internet. To minimize exposure to violent, adult, or otherwise
inappropriate content, we chose HPDv2 as the prompt source for user studies. Participants are also
informed of this facts before they start the study.

For a fair comparison with previous methods, we continue to use Pick-a-Pic v2 as part of the training
data. Given the strong performance of Diffusion-DRO, there is a potential risk that the model could
generate NSFW content. However, Diffusion-DRO does not explicitly learn to produce NSFW
images; its outputs are inherently dependent on the training dataset.

To mitigate this risk in future applications, NSFW content can be filtered at the data level by curating
human preference datasets that exclude inappropriate content, thereby preventing Diffusion-DRO
from learning to generate such images. Before publicly releasing our model, we will ensure the
implementation of an additional safety filter to prevent misuse.

F Limitations

Despite the significant improvements Diffusion-DRO brings to aligning diffusion models with human
preferences, it remains constrained by the data-dependent nature of diffusion models. Specifically,
the approach relies on expert demonstrations extracted from data, which may introduce distributional
biases—for example, simpler prompts tend to yield better outputs and are thus more likely to be
selected as expert data. Diffusion-DRO does not explicitly account for such biases and disregards
non-expert demonstrations, which may result in a model that performs well only in limited domains.

G Future Work

While Diffusion-DRO introduces the concept of expert demonstrations from an inverse reinforcement
learning perspective, future work could extend this framework beyond the current max-margin formu-
lation by incorporating non-expert data to enhance performance in underrepresented or sparse regions
of the data distribution. Furthermore, our current approach treats preferences as binary rankings (i.e.,
preferred vs. not preferred), which results in the loss of list-wise ranking information [19]. We believe
that integrating such richer preference structures into the inverse reinforcement learning framework
could further refine the granularity and stability of the optimization process.
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H Additional Samples

In this section, we provide additional sample comparisons with baseline methods, including Diffusion-
DPO w/ SFT, Diffusion KTO w/ SFT, Diffusion-SPO, and SD v1-5.

Diffusion-DRO SPIN-Diffusion Diffusion-DPO Diffusion-KTO Diffusion-SPO SD v1-5

Figure 4: The prompts used for image generation are sourced from the HPDv2 Benchmark, cate-
gorized as Anime, Concept Art, Painting, and Photo from top to bottom, respectively. The specific
prompts, in order, are: “A portrait of a smiling Dragonite in a sunflower field with a cloudy sky
backdrop,” “Amphitheater filled with crowd looking at a dumpster on fire in patriotic colors,” “Beige
canvas tents set up in an arctic landscape with no vegetation, surrounded by rolling hills - reminiscent
of a romanticist painting,” and “A small bird sitting in a metal wheel.”

19



Diffusion-DRO SPIN-Diffusion Diffusion-DPO Diffusion-KTO Diffusion-SPO SD v1-5

Figure 5: The prompts used for image generation are sourced from the HPDv2 Benchmark, cate-
gorized as Anime, Concept Art, Painting, and Photo from top to bottom, respectively. The specific
prompts, in order, are: “A monkey wearing a jacket,” “Portrait of a cyberpunk gang,” “Bob Ross
painting Mario on an easel in his office,” and “A little girl holding a brown stuffed animal.”
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Diffusion-DRO SPIN-Diffusion Diffusion-DPO Diffusion-KTO Diffusion-SPO SD v1-5

Figure 6: The prompts used for image generation are sourced from the HPDv2 Benchmark, cate-
gorized as Anime, Concept Art, Painting, and Photo from top to bottom, respectively. The specific
prompts, in order, are: “A new artwork depicting Pikachu as a superhero fighting villains with
dramatic lightning,” “A futuristic cyberpunk Paris street,” “A young girl with a red hat at night,” and
“A bike parked in front of a doorway.”
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction are supported by theoretical
derivations in Section 3 and by empirical results, including quantitative evaluations and user
studies, in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of Diffusion-DRO in Appendix F, including its
scope of applicability and potential weaknesses in specific scenarios.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide a step-by-step derivation of our theoretical results in Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the main experimental settings in Section 4, detailed configurations
in Appendix A, and include the source code in the supplementary material to ensure
reproducibility of the main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the source code for training and evaluation in the supplementary
material, along with instructions to reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main experimental settings are provided in Section 4, with full de-
tails—including data splits, hyperparameters, and optimizer configurations—available in
Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation of scores for all evaluated models in Ap-
pendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the training time of our methods and the computing resources used
in Appendix A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of ethics in conducting our user study, with
relevant details provided in Appendix C.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: A discussion of societal impacts is included in Appendix E as part of our ethics
review.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: As described in Appendix E, we will include a safety checker with the released
model to help mitigate potential misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We include the licenses for all publicly available assets used in our work in
Section 4, along with proper attribution to their original creators.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The released source code is accompanied by documentation that describes its
usage and functionality.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Appendix C provides the full text of participant instructions.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: We did not obtain IRB approval. However, we clearly disclosed the potential
risks associated with participating in the user study, as detailed in Appendix C.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use any LLMs as part of the core methodology in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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