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ABSTRACT

Deep learning models often struggle with generalization when deploying on real-
world data, due to the common distributional shift to the training data. Test-time
adaptation (TTA) is an emerging scheme used at inference time to address this
issue. In TTA, models are adapted online at the same time when making pre-
dictions to test data. Neighbor-based approaches have gained attention recently,
where prototype embeddings provide location information to alleviate the feature
shift between training and testing data. However, due to their inherit limitation
of simplicity, they often struggle to learn useful patterns and encounter perfor-
mance degradation. To confront this challenge, we study the TTA problem from a
geometric point of view. We first reveal that the underlying structure of neighbor-
based methods aligns with the Voronoi Diagram, a classical computational geom-
etry model for space partitioning. Building on this observation, we propose the
Test-Time adjustment by Voronoi Diagram guidance (TTVD), a novel framework
that leverages the benefits of this geometric property. Specifically, we explore two
key structures: (I) Cluster-induced Voronoi Diagram (CIVD): This integrates the
joint contribution of self-supervision and entropy-based methods to provide richer
information. (II) Power Diagram (PD): A generalized version of the Voronoi
Diagram that refines partitions by assigning weights to each Voronoi cell. Our
experiments under rigid, peer-reviewed settings on CIFAR-10-C, CIFAR-100-C,
ImageNet-C, and ImageNet-R shows that TTVD achieves remarkable improve-
ments compared to state-of-the-art methods. Moreover, extensive experimental
results also explore the effects of batch size and class imbalance, which are two
scenarios commonly encountered in real-world applications. These analyses fur-
ther validate the robustness and adaptability of our proposed framework.

1 INTRODUCTION

Deep learning models have demonstrated impressive capabilities across a multitude of recognition
tasks, thanks to substantial large datasets, advanced network architectures and computing capabil-
ity (He et al., 2016; Zagoruyko & Komodakis, 2016; Vaswani et al., 2017; Sutskever et al., 2014;
Goodfellow et al., 2014; Ho et al., 2020). Nevertheless, they always struggle with generalization
when faced with distribution shifts in test data, which is a common challenge in real-world scenar-
ios. For instance, natural images sourced from diverse geographic locations, timeframes, and angles
inherently exhibit variations in appearance, such as differences in brightness and contrast. Similarly,
medical images acquired through various devices may vary due to differences in imaging protocols.

Test-time adaptation (TTA) (Wang et al., 2021; Sun et al., 2020; Liu et al., 2021b; Niu et al., 2023;
Iwasawa & Matsuo, 2021; Zhang et al., 2021; Gong et al., 2022; Wang et al., 2022; Goyal et al.,
2022; Niu et al., 2022; Zhao et al., 2023) has emerged as an online adaptation strategy to tackle the
problem. While TTA shares some similarities with domain adaptation (French et al., 2017; Ganin
et al., 2016), it differs in two key aspects: the source data is unavailable at test time, and only
the current mini-batch of unlabeled test data is used for adaptation. Recent studies on TTA have
primarily focused on two categories of methods: self-supervision, as proposed by Sun et al. (2020);
Liu et al. (2021b), and entropy minimization, as proposed by Wang et al. (2021). Despite these
advances, current TTA methods still face two critical limitations as follows.
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Figure 1: (A) Visualization of space partitions induced by Voronoi Diagram, Power Diagram and
Augmented Voronoi Diagram (by self-supervision) on MNIST-C (Mu & Gilmer, 2019) (digit “0” ∼
“2” only, gaussian-noise-corrupted) in R2. (B) Visualization of adaptation performance on MNIST-
C using T3A (Iwasawa & Matsuo, 2021), Tent (Wang et al., 2021) and VD and Augmented VD with
joint influence. See Appendix C for details.

(I) The first challenges is the reliance on insufficient or incomplete information during test-time,
which restricts the ability of these methods to fully adapt to unseen data. For instance, self-
supervision may inadvertently lead to overfitting on auxiliary tasks, which in turn degrades the
model’s performance on the primary objective, such as object recognition (Liu et al., 2021b). Ad-
ditionally, more recent work (Press et al., 2024) points out that entropy minimization may fail after
many iterations due to test feature embeddings drifting from the training data class means. In re-
sponse to these challenges, neighbor-based methods (Liang et al., 2020; Jang et al., 2022; Liang
et al., 2021; Zhang et al., 2023; Hardt & Sun, 2024) have gained attention in recent state-of-the-art
approaches, as they leverage information from the training data neighborhood to mitigate overfit-
ting and align test embedding. However, these methods often fail to adjust the model sufficiently to
learn better patterns (Figure 1), resulting in suboptimal performance, and leaving the issue of robust
and effective test-time adaptation unresolved. (II) A second critical challenge arises from nega-
tive model updates, which stem from two main factors: noisy samples and conflicting gradients.
Niu et al. (2023) highlights that noisy samples can adversely affect entropy minimization, leading
to suboptimal adaptation. Moreover, Gandelsman et al. (2022) demonstrates that jointly training
self-supervision and entropy minimization can degrade accuracy on the ImageNet validation set due
to negative transfer (Jiang et al., 2023; Javaloy & Valera, 2022). This often occurs when conflict-
ing gradients happens from sharing a single set of network parameters for multiple task objectives,
ultimately leading to diminished performance. Neighbor-based methods often handle these issues
poorly due to their inherent limitations in addressing noisy samples and conflicting objectives.

In essence, the underlying geometric structure of these neighbor-based methods is Voronoi Diagram
(VD) (Aurenhammer, 1991), a classical geometry model for space partition. This geometric frame-
work has been applied across various domains of deep learning due to its inherent mathematical
benefits (Ma et al., 2022; 2023; You et al., 2022; Balestriero et al., 2023). VD offers high inter-
pretability, with visualizations derived from its construction algorithm in R2, allowing for analytical
solutions to all partition boundaries (Figure 1). Additionally, recent advancements in geometric
structures (Aurenhammer, 1987; Chen et al., 2013; 2017; Huang et al., 2021a) based on VD offer
improved properties over its original form, creating more complex space partitions.

Building on the strengths of geometric structures, in this paper, we revisit the TTA problem from
geometric view and utilize their potential to address the challenges by introducing our proposed
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framework, Test-time adjustment by Voronoi Diagram guidance (TTVD). Specifically, we focus on
two key structures, Cluster-induced Voronoi Diagram (CIVD, (Chen et al., 2013; 2017; Huang et al.,
2021a)) and the Laguerre–Voronoi Diagram (a.k.a Power Diagram, PD (Aurenhammer, 1987)). (I)
CIVD, a recent breakthrough in computational geometry, extends VD from a point-to-point distance-
based diagram to a cluster-to-point influence-based structure. It enables us to assign partitions
(Voronoi cells) not only based on a point (e.g class prototypes), but also a cluster of points, thereby
enhancing robustness during test time. (II) PD generalizes VD to create more flexible partitions by
weighting each cell differently. This weighted structure enables PD to handle varying levels of influ-
ence for different points, making it particularly effective in identifying noisy samples near decision
boundaries. Our contributions are summarized as follows,

• We revisit the Test-Time Adaptation problem from geometric view and formulate it using Voronoi
Diagram. It is a powerful structure with two key advantages: (I) VD is highly interpretable,
allowing for clear visualizations and analytical boundary solutions in R2, and (II) advancements
in VD-based structures offer robust partitioning, which have not yet been explored in TTA. Based
on these insights, we first introduce the foundation of guiding TTA by VD, paving the way to
integrate more advanced geometric structures to further adaptation improvements.

• We propose to use Cluster-induced Voronoi Diagram, a recent breakthrough geometric structure
to guide TTA. Specifically, extending the traditional VD to CIVD allows us to create more robust
space partitions, as Voronoi cells are determined by a cluster of points rather than individual
points. Furthermore, the joint influence mechanism of its cluster-to-point structure can unify
multiple objectives, enables a seamless integration of self-supervision and entropy minimization,
thereby improving adaptation in dynamic test environments.

• We conducted a fine-grained analysis of loss landscape utilizing the iterpretability of VD, uncov-
ering that current sample filtering strategies may not effectively remove noisy samples. To address
this, we propose to filter samples near partition boundaries by incorporating the Power Diagram.
PD’s flexible boundaries allow for more precise identification of noisy samples, thereby improving
the efficiency of sample filtering and enhancing model robustness.

2 RELATED WORK

Domain Adaptation. Domain adaptation (DA.) (French et al., 2017; Ganin et al., 2016; Li et al.,
2018) aims to alleviate the performance degradation caused by the distribution discrepancies be-
tween training and testing data. Classical approaches involve joint optimization on both source and
target domains to enable domain generalization (Ganin et al., 2016; Li et al., 2018). Source-free do-
main adaptation (SFDA) (Liang et al., 2020; 2021; Kundu et al., 2020; Liu et al., 2021a) is a subset
of DA where source data is unavailable during adaptation. This setting has been explored in various
studies, including SHOT (Liang et al., 2020), USFDA (Kundu et al., 2020).SFDA methods can be
roughly categorized into self-supervised training (Achituve et al., 2021; Pan et al., 2020; Chen et al.,
2020), neighborhood clustering (Yang et al., 2023; 2021), and adversarial alignments (Tang & Jia,
2020; Kang et al., 2018).

Test-time Adaption and its Neighbor-based Methods. Test-Time Adaptation refers to the process
of adapting a pre-trained model to distribution shifts encountered during testing, without access-
ing the original training data. Unlike domain adaptation, which focuses on both source and target
domains during training, TTA operates solely at test time, making it more flexible for real-world
applications where training data may no longer be available. Many approaches to TTA have focused
on neighbor-based methods, which utilize neighborhood information for adaptation. For example,
Test-Time Template Adjuster (T3A, (Iwasawa & Matsuo, 2021)) adjusts the classifier by updating
the linear layer with pseudo-prototype representations derived from the test data. Similarly, Test-
Time Adaptation via Self-Training (TAST, (Jang et al., 2022)) introduces trainable adaptation mod-
ules on top of a frozen feature extractor, while AdaNPC (Zhang et al., 2023) leverages deep nearest
neighbor classifiers for adaptation. In addition to these neighbor-based methods, other approaches
explore TTA from different perspectives, including self-training (Sun et al., 2020; Liu et al., 2021b)
and entropy minimization (Wang et al., 2021; Gong et al., 2022; Niu et al., 2023; Wang et al., 2022).
It is worth noting that these methods are not always mutually exclusive; many TTA techniques com-
bine multiple strategies to improve performance, blending ideas from neighbor-based adaptation
with self-training or entropy-based optimization. Some previous algorithms (e.g. SHOT (Liang
et al., 2020)) in DA can also be repurposed and adapted to be used in TTA.
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Computational Geometry for Deep Learning. Although deep learning has achieved remarkable
success, the theoretical understanding of DL architectures is still under development. Balestriero
(Balestriero et al., 2019; Balestriero & Baraniuk, 2021) establish a connection between convolu-
tional neural network and computational geometry, revealing that elemental layers such as convo-
lution, normalization, pooling, linear layers operate as Power Diagrams. In essence, this implies
that a deep network recursively divides the input space into cells. Concurrently, a study (Wang
et al., 2019) presents a geometric analysis of recurrent neural networks (RNNs), showing that RNNs
also partition input space. More recently, research (Balestriero et al., 2023) unveils that the output
of the multi-head attention block, a key unit in the transformer model, is the Minkovsky sum of
convex hulls. This insight can subsequently be leveraged to extract informative features for down-
stream tasks. With the help of the theory outlined above, computational geometry has been used
in various deep learning applications. For instance, DeepVoro (Ma et al., 2022) consolidates di-
verse various kinds of Few-shot learning methods and utilizes the Cluster-induced Voronoi Diagram
(Huang et al., 2021b) to aggregate heterogeneous features effectively. iVoro (Ma et al., 2023) en-
ables accurate exemplar-free class-incremental learning by progressively constructing new Voronoi
cells for new classes. Additionally, SplineCam (Humayun et al., 2023) is capable of computing the
precise visualization of the decision boundaries and input partition geometries, leveraging the theory
of continuous piece-wise linear splines.

3 METHODOLOGY

In this section, we first revisit the general setting of TTA. Then, we introduce the geometric frame-
work based on the Voronoi Diagram and further extend it to two well-established geometric struc-
tures, the Power Diagram and the Cluster-induced Voronoi Diagram.

Problem Setup. Test-time adaptation refers to the process of adapting a pre-trained model to dis-
tribution shifts that occur between the training and testing phases, without accessing the original
training data or labels during test time. Formally, let Dtrain and Dtest be the training and test dis-
tributions, respectively, where Dtest exhibits a shift from Dtrain. The goal of TTA is to adapt the
model fθ, with parameters θ learned from Dtrain, using only the unlabeled test data Xtest to improve
performance on the shifted distribution. For a K-way classification problem, online test stream of
data {xt} ∈ Xtest are used to update the model θ as follows at every time step t,

infer: ỹt = fθt(xt), adapt: θt+1 = θt − λ∇L(ỹt) (1)

where ỹt represents the model’s prediction for xt, and L is the user-defined loss function. For
example, Tent (Wang et al., 2021) minimizes the entropy loss L = −

∑
p(ỹt) log p(ỹt), while

TTT (Sun et al., 2020) minimizes the self-supervised rotation prediction loss from the auxiliary
classifier. Commonly, only the channel-wise affine parameters in normalization layers are updated
during TTA, while the rest of the model remains unchanged. This approach ensures computational
efficiency, making it suitable for real-time adaptation during testing. For convenience in notation
and throughout the following analysis, the parameter set θ is separated into two components: the
feature extractor, denoted as σ, and the classifier, denoted as ψ. The time step subscript t is dropped
unless otherwise specified.

3.1 VORONOI DIAGRAM: FOUNDATIONAL GEOMETRIC STRUCTURE FOR NEIGHBOR-BASED
TEST-TIME ADAPTATION

Geometrically, Voronoi Diagram has long been a foundational structure for the analysis of nearest
neighbor algorithms. It partitions space based on distances to a set of points as follows,

Definition 3.1 (Voronoi Diagram). Let d be the distance function associated with Rℓ, where ℓ is
the dimensionality of feature space. A Voronoi Diagram partitions the space into K disjoint cells
Ω = {ω1, · · · , ωK} such that ∪K

r=1ωr = Rℓ. Each cell is obtained via ωr = {z ∈ Rℓ : r(z) = r},
r ∈ {1, · · · ,K}, with

r(z) = argmin
k∈{1,··· ,K}

d(z, µk), (2)

where µk is the center (also referred to as Voronoi site) of k-th cell. VD partitions into the space
K disjoint cells, where the boundaries between these cells are determined by the distances that are
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equidistant from two or more sites. These boundaries form the edges of the Voronoi cells, and they
help to define distinct regions around each site. Based on this property, VD can classify feature
points by Equation 2, assigning each point to the site that minimizes the distance between them.
In TTA, since the training distribution Dtest deviates from Dtrain, feature points may not fall into
correct cells (Figure 1). Therefore, at every time step, the adaptation can be formulated based on
alignments between feature points and Voronoi cells, with our propsed VD-based loss,

infer: ỹk = β(−d(σ(x), µk) + ϵ; τ), VD loss: LVD(ỹk) = −
∑
k

ỹk log ỹk (3)

Algorithm 1: VD-based Guidance for Test-time Adaptation
Input: Pretrained feature extractor σ0, Voronoi sites µ, test

stream {x}t
Output: Prediction stream {ỹk}t
for each online batch {x}t do

infer: ỹk = β(−d(σ(x), µk) + ϵ; τ) ; // Equation 3
adapt: σt+1 = σt − λ∇LVD(ỹt) ; // Equation 1

end

where β(zj ; τ) = e
zj
τ∑

j e
zj
τ

is a softmax function with
temperature scaling factor
τ , ϵ is the machine ep-
silon for improving numer-
ical stability in code im-
plementation and ỹk is the
predicted soft label of x.
The intuition behind this
distance-based loss is to
encourage feature points to move closer to one of the Voronoi sites. The scaling factor τ con-
trols the regulation strength towards the sites. When a feature point is sufficiently close to a site,
the VD loss is minimized. This formulation can be seamlessly integrated into TTA, as presented in
Algorithm 1, forming the basis for more advanced geometric structures that will be introduced later.
Commonly, the Voronoi site can be set using the class mean of the training data Xtrain.

3.2 CLUSTER-INDUCED VORONOI DIAGRAM: MULTI-SITE INFLUENCES MECHANISM
IMPROVES ROBUSTNESS

Cluster-induced Voronoi Diagram is a generalization of the ordinary Voronoi Diagram that extends
VD from a point-to-point distance-based diagram to a cluster-to-point influence-based structure.
While VD has been extensively studied for its exceptional utility in a wide range of analyses, its
inherent simplicity can be limiting in certain complex scenarios. One key characteristic of VD
is that the influence from each site is independent and does not interact or combine with other
sites. However, in real-world applications, it is common for influences from multiple sources to
be ”combined” to create a joint influence. For example, in physics, a point mass p may receive
forces from a number of other masses, and the combined effect of these forces jointly determines
the motion of p. CIVD improves VD by introducing such a multi-source influence as below,
Definition 3.2 (Cluster-induced Voronoi Diagram (Chen et al., 2013; 2017; Huang et al., 2021b)).
Let C = {C1, . . . , CK} be a set of cluster and F (z, Ck) is a pre-defined influence function. A Cluster-
induced Voronoi Diagram partitions the space into K disjoint cells Ω = {ω1, · · · , ωK} such that
∪K
r=1ωr = Rℓ. Each cell is obtained via ωr = {z ∈ Rℓ : r(z) = r}, r ∈ {1, · · · ,K}, with

r(z) = argmax
k∈{1,...,K}

F (z, Ck), where the influence between z and Ck = {µ(α)
k } are commonly defined

as
F (z, Ck) = − sign(γ)

∑
α

(d(µ
(α)
k , z))γ . (4)

Here, α denotes the item index of the cluster Ck and γ is a hyperparameter that controls the scale
of the influence. Similar to VD, CIVD partitions the space into K disjoint cells, while the bound-
aries are determined by a cluster of points Ck, given the influence function F (Equation 4). Inspired
by this, CIVD shows great promise for robust adaptation through its multi-source influence mech-
anism, offering greater effectiveness in scenarios where a single-point influence is insufficient. It
is particularly well suited for TTA, where only small batches of data are available at each time
step. The multi-source framework allows the model to dynamically adapt to the limited information
provided, improving its ability to generalize and maintain performance in challenging, real-time set-
tings where traditional methods may struggle to capture the full complexity of the data distribution.
Specifically, Ck can be established via self-supervision, benefiting from data augmentation for im-
proved robustness. We utilize rotation augmentation, where images are rotated at 4 different angles
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Figure 2: Noisy sample filtering by diagram subtraction. (a) Entropy landscape of MNIST. Loss
value quickly shrinks once a sample leave the boundaries. (b) Multi-site provides more reliable
samples. The solid and dash line are boundaries given by PD and VD, respectively. Reliable samples
can be identified by subtracting Voronoi cells, marked in deeper colors.

Rotα ∈ {0, 90, 180, 270} to generate Ck, and each rotation corresponds to a Voronoi site µ(α)
k . This

process is performed using self-supervised label augmentation (Lee et al., 2020). Similar to Equa-
tion 3, the soft label given by CIVD can be calculated from the influence function, incorporating the
expanded sites µ(α)

k , enhancing robustness against individual predictions.

Additionally for TTA, CIVD expands Voronoi site µk to a cluster of site Ck, integrating the approach
of self-supervision and entropy minimization. The joint label ỹ(α)k avoids the negative transfer since
the objective is now unified.

3.3 POWER DIAGRAM: IDENTIFYING NOISY SAMPLES BY FLEXIBLE BOUNDARIES

Laguerre–Voronoi Diagram (a.k.a Power Diagram) is another generalization of the Voronoi Diagram
that extends the concept by moving from equally-weighted sites to variably-weighted sites. In tra-
ditional VD, each site is treated equally, which may not be suitable for all scenarios. PD improves
VD by introducing the power distance between a point and a site as follows,
Definition 3.3 (Power Diagram (Aurenhammer, 1987)). Let d be the distance function associated
with space Rℓ, a Power Diagram partitions the space into K disjoint cells Ω = {ω1, · · · , ωK} such
that ∪K

r=1ωr = Rℓ. Each cell is associated with a weight vk and is obtained via ωr = {z ∈ Rℓ :
r(z) = r}, r ∈ {1, · · · ,K}, with

r(z) = argmin
k∈{1,··· ,K}

d(z, µk)
2 − v2k. (5)

Lemma 3.1 ((Ma et al., 2022; 2023)). A logistic regression model parameterized by WK×ℓ and
bK partitions the feature space Rℓ into a K-cell Power Diagram with µk = 1

2W
k×ℓ and v2k =

bk + 1
4

∥∥W k×ℓ
∥∥2
2
.

An illustration of the Power Diagram is given in Figure 1. By adding weights to the sites, the
boundaries of the cells can be shifted in orthogonal directions, allowing for more flexible partition-
ing. Noted that CIVD and PD are parallel structures, meaning they can be seamlessly integrated.
CIVD can be retrofitted to CIPD as follows for further robustness improvements,
Definition 3.4 (Cluster-induced Power Diagram). Let C = {C1, . . . , CK} be a set of cluster and
F (z, Ck) is a pre-defined influence function. a Cluster-induced Power Diagram partitions the space
into K disjoint cells Ω = {ω1, · · · , ωK} such that ∪K

r=1ωr = Rℓ. Each cell is obtained via ωr =
{z ∈ Rℓ : r(z) = r}, r ∈ {1, · · · ,K}, with r(z) = argmax

k∈{1,...,K}
F (z, Ck), where the influence

between z and Ck = {µ(α)
k } are defined as

F (z, Ck) = − sign(γ)
∑
α

{d(µ(α)
k , z)2 − v2k}γ . (6)

As mentioned earlier, noisy samples negatively impact entropy minimization, resulting in subopti-
mal adaptation. Existing methods propose addressing this issue by filtering out these samples based
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Figure 3: (Left) Illustrations on differences between VD, CIVD and CIPD. (Right) Illustrations on
Test-time adaptations by Voronoi Diagram(s) guidance.

on their entropy values, drawing from empirical observations of the relationship between adaptation
accuracy and gradient norms. This approach is plausible since models tend to be more confident in
predicting low-entropy samples, and the gradients produced by these samples are considered more
reliable. However, the underlying relationship between entropy values and sample selection re-
mains unclear. To further explore this, we adopt a geometric perspective using the interpretability
of the VD. From the visualization of the entropy loss landscape in Figure 2a, it can be observed
that noisy samples are only identifiable if they are near the boundaries, leaving many noisy samples
undetected. Inspired by the boundary-shifting capability of the PD, we propose incorporating PD
to improve noisy sample filtering. By subtracting the PD from the VD, we can extract a larger re-
gion from the resulting differences, which may also capture areas contributing to unstable gradients.
Noisy samples in these regions are excluded during adaptation, thereby enhancing the robustness of
the model.

Overall, our proposed TTVD is constructed progressively, transitioning from standard VD to CIVD
and CIPD, as summarized in Figure 3. At testing-time, we infer and adapt the model accordingly by
CIPD (Algorithm 3 in Appendix H) using Equation 6.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of our method, benchmarking it against other
approaches using the peer-reviewed, open-source toolkit TTAB (Zhao et al., 2023), a standardized
codebase designed to ensure fair comparisons across methods.

4.1 EXPERIMENT SETUP

Dataset. CIFAR-10-C, CIFAR-100-C, and ImageNet-C (Hendrycks & Dietterich, 2019) are bench-
mark datasets designed to assess model robustness in the presence of various corruptions and shift.
CIFAR-10-C and CIFAR-100-C are corrupted versions of the original CIFAR-10 and CIFAR-100
datasets, where each image has been subjected to 15 different types of common corruptions such
as noise, blur, and weather distortions, with five levels of severity. ImageNet-C applies similar cor-
ruptions to the large-scale ImageNet dataset, providing a higher-resolution challenge for models.
ImageNet-R (ImageNet-Renditions, (Hendrycks et al., 2021)) consists of non-photorealistic rendi-
tions of ImageNet classes, such as paintings, cartoons, and sculptures, testing a model’s ability to
generalize beyond traditional photographic imagery. These datasets allow us to comprehensively
assess the robustness of our method under a range of real-world distortions and domain shifts.

Compared Methods. We include the four groups of state-of-the-art methods for the experiments
listed below, and their extended introduction are given in Appendix F.
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Table 1: Comparison of State-of-the-art Methods Regarding Error (♣) and Expected Calibration
Error (♦). The Top Optimal Results are Highlighted in Bold.1Metrics are Reported Using Level-5
Corruption for CIFAR-C and ImageNet-C, Averaged over 15 Corruption Types. Detailed Results
for Each Corruption Type are Provided in Appendix B.

CIFAR10-C(%)↓ CIFAR100-C(%)↓ ImageNet-C(%)↓ ImageNet-R(%)↓
♣ ♦ ♣ ♦ ♣ ♦ ♣ ♦

T3A(Iwasawa & Matsuo, 2021) 40.3 19.5 67.6 21.1 83.1 26.3 79.4 20.5
TAST(Jang et al., 2022) 39.6 40.5 69.8 29.2 74.8 25.1 78.8 21.1

BN Adapt(Schneider et al., 2020) 27.5 18.1 56.6 18.5 72.3 32.8 68.9 30.9
SHOT(Liang et al., 2020) 21.9(21.0) 16.4 49.8(46.8) 18.5 63.4(62.4) 36.4 68.6 31.2

TTT(Sun et al., 2020)2 21.3(20.0) 15.2 53.4(51.9) 20.2
TENT(Wang et al., 2021) 24.0(21.7) 16.9 53.5(49.9) 18.3 62.7(61.9) 38.7 68.3 31.4
NOTE(Gong et al., 2022) 28.6(24.0) 21.5 58.5(54.5) 23.5 65.7(69.8) 34.1 68.2 31.7
Conjugate PL(Goyal et al., 2022) 24.0(22.9) 16.9 53.5(51.0) 18.3 63.1(62.2) 38.4 68.7 31.2
SAR(Niu et al., 2023) 24.2(21.9) 16.9 53.7(49.7) 18.1 61.4(59.1) 38.4 68.5 31.3
TTVD (Ours) 20.5(20.0) 11.8 49.1(49.0) 17.0 59.8(58.2) 21.0 67.5 16.8

• Neighbor-based methods: (I) T3A (Iwasawa & Matsuo, 2021), (II) TAST (Jang et al., 2022).
• Repurposed domain adaptation methods: (I) BN Adapt (Schneider et al., 2020), (II) SHOT (Liang

et al., 2020).
• Self-training methods: TTT (Sun et al., 2020).
• Entropy-based methods: (I) TENT (Wang et al., 2021), (II) NOTE (Gong et al., 2022), (III) Con-

jugate PL (Goyal et al., 2022), (IV) SAR (Niu et al., 2023).

Implementation Details. We adhere to the standard settings given in TTAB for fairness compar-
ison. Specifically, generic hyperparameters are grid-searched for the best combination, following
guidelines in TTA. Method-specific hyperparameters for each TTA algorithm are selected according
to their original experimental setups. Results are reported using the optimal configuration for each
method. For TTVD, we trained ResNet-26 for CIFAR-10-C and CIFAR-100-C, and ResNet-50 for
ImageNet-C and ImageNet-R, following the official recipe from the torchvision library, using label
augmentation (Lee et al., 2020). We use the full training set of CIFAR-10, CIFAR-100 to compute
the class means for Voronoi sites and 10% of ImageNet for similar calculation.

Evaluation Metrics. Two metrics are used to report the performance: classification error and ex-
pected calibration error (ECE) on online test samples. ECE measures the trustworthiness of the
model’s confidence in its predictions, which is crucial in real-world applications.

4.2 EXPERIMENT RESULTS

Overall Performance Comparison. TTVD demonstrates the best overall performance across mul-
tiple datasets. Even under rigid grid-search tuning, our method consistently achieves the lowest
classification error and ECE, reducing classification errors by 0.8%, 0.7%, 1.6%, 0.7% on the four
datasets, respectively, and ECE by 3.4%, 1.8%, 4.1% and 4.3%, demonstrating its trustworthiness.

Effect of Components in TTVD. We ablate our methods by gradually downgrading CIPD to the
very basic VD. From Table 2, the performance of VD already surpasses that of other neighbor-
based methods. When generalizing VD to CIVD, we observe a significant improvement of 5.7%
overall for all corruption types. across all corruption types. To investigate the reason behind this,
we conducted a sample-level analysis in Appendix A.1, which demonstrates that the multi-influence
structure of CIVD enhances its robustness. Finally, CIPD, with its flexible boundaries and noise

1The subscripted values represent comparisons made under the oracle model selection setting from TTAB.
These values may not reflect real-world performance, as they assume access to ground truth test labels to
select optimal models during test time—a condition rarely available in practical scenarios. Additionally, it has
been shown from TTAB that, in some cases, this approach can lead to overfitting to online batches. While
these results may indicate optimal performance in controlled environments, they do not accurately represent
how the model would perform in real-world, label-free settings.

2The experimental settings of TTAB are followed to omit the values for TTT on the ImageNet dataset. This
omission aligns with the TTAB guidelines for fair comparison across methods.
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Table 2: Ablation Study Using Different Geometric Structures on CIFAR-10-C Across Various
Corruption Types Regarding Error (%)↓.

Noise Blur Weather Digital distortion

gau sho imp def gla mot zoo sno fro bri con ela fog pix jpg Avg.

VD 37.5 34.5 43.8 19.5 42.9 25.6 21.2 26.5 25.6 15.0 20.0 30.1 23.3 27.3 33.5 28.4
CIVD 30.0 27.0 35.9 14.8 36.2 19.7 16.0 21.5 20.0 11.6 15.9 24.6 17.8 21.1 27.9 22.7(↓ 5.7)
CIPD 27.4 24.6 32.8 13.2 36.0 18.1 14.2 19.9 17.5 10.1 13.2 22.6 15.3 18.2 24.6 20.5(↓ 2.2)
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Figure 4: Comparison on the Adaptation Curves on different noise perturbations in ImageNet-C.
Error (%)↓ is calculated over all retrospective test samples. The first four types of perturbations in
the dataset are presented above.

filtering mechanisms, further improves upon CIVD by an additional 2.2%, showcasing its superior
adaptability.

Adaptation Curves. As discussed in earlier sections regarding the phenomenon of model over-
fitting in TTA, it is imperative to thoroughly investigate the adaptation dynamics as the adapta-
tion process unfolds over time. As presented in Figure 4, Tent and SAR do not show signs of
overfitting. This may be due to the rigid experimental settings and thorough grid search pro-
cess we employed, ensuring optimal hyperparameter selection. However, it can be observed that
TTVD consistently outperforms across the four noise throughout the entire sequence of online
batches. The model maintains a significant downward trend over the various time steps, suggest-
ing that it continues to learn and adapt effectively, with the potential for further improvements if
provided with more data. This highlights TTVD’s robustness and resilience against overfitting.

Table 3: Comparison to Neighbor-based Methods Re-
garding Error (%)↓ on Four types of Blur Corruption in
ImageNet-C.

Defoc Glass Motion Zoom

T3A(Iwasawa & Matsuo, 2021) 92.2 90.3 90.7 85.2
TAST(Jang et al., 2022) 83.7 92.0 92.3 76.7
AdaNPC(Zhang et al., 2023) 83.1 83.0 72.3 60.6
TTVD 79.5 77.7 68.6 53.2

In contrast, both TENT and SAR ex-
hibit more modest improvements in
adaptation, and their performance of-
ten stagnates or converges at lower
accuracy levels compared to TTVD.
Specifically, SAR shows a notable
limitation in its ability to adapt, par-
ticularly in the presence of impulse
noise, where it quickly reaches a
plateau and ceases to improve. Fur-
thermore, in the case of defocus blur,
SAR struggles to learn useful patterns
in the early stages of adaptation, resulting in poor performance on the initial batches. TENT, while
slightly better than SAR in some cases, also demonstrates limitations in adapting to these perturba-
tions. The early stagnation of both Tent and SAR may indicate potential overfitting to specific noise
conditions or a failure to effectively generalize across different noise types as TTVD does.

Table 4: Robustness to Class
Mean Precision Using Differ-
ent Proportions of ImageNet
Data.

10% 5% 1%

TTVD 59.8 59.8 59.9

Comparison to Neighbor-based Methods. We follow the report
of an additional nearest neighbor method, AdaNPC (Zhang et al.,
2023), to benchmark our method in four types of blur corruption in
ImageNet-C (defocus blur, glass blur, motion blur and zoom blur).
In Table 3, TTVD consistently outperforms the previous methods,
demonstrating superior robustness to blur distortions.

How Accurate Should the Class Means Be? TTVD requires of-
fline calculation of Voronoi sites, which must be performed during

9
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the pre-training phase. In our experiments, this calculation took
less than 10 minutes on 10% of the ImageNet training set using an
NVIDIA-RTX A6000. However, in the new era of large-scale datasets, this process may become
more resource-intensive. Interestingly, TTVD demonstrates high robustness to the precision of these
Voronoi sites, as shown in Table 4.

Effect of Batch Size and Label Shift. Test-time adaptation often receives small batches every time,
and label shift, i.e., Non iid test stream may happen in online adaptation. We tested TTVD with
various smaller batch sizes and different level of label shifted data in Appendix B, demonstrating its
high ability to adapt under challenging scenarios.

5 CONCLUSION

In this paper, we revisit the Test-Time Adaptation problem from a geometric perspective, formu-
lating it using the Voronoi Diagram—a classical and powerful structure in computational geometry
known for its elegant mathematical properties. Building on the foundation of guiding TTA with tra-
ditional Voronoi Diagram, we extend the approach to more advanced geometric structures, namely
the Cluster-induced Voronoi Diagram and the Power Diagram. These structures offer enhanced
flexibility and robustness, making them particularly well-suited for TTA. Our experiments demon-
strate the effectiveness of our proposed method, TTVD, across a variety of datasets and scenarios,
highlighting its capacity to adapt to diverse challenges in real-world settings.
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A APPENDIX

A.1 SAMPLE ANALYSIS

In Section 4.2, experimental results indicate that CIVD contributes the most to the improvement.
To understand the reason behind this, we investigate how misclassified samples are corrected after
CIVD is employed. We arbitrarily inspect three examples from the “bike”, “bus”, and “clock” class
in Figure 5, Figure 6 and Figure 7, respectively. The distances between the feature points and all
Voronoi sites are shown.

• The “bike” example originally is misclassified as “lobster” in an individual VD. However, the
90-degree rotated image is correctly classified. When the CIVD applies the influence function to
aggregate the information of all four rotations, the model eventually gets the correct prediction.

• In the “bus” example, all four rotated images are misclassified as various classes, such as “bowl”,
“table” or “house”. However, the distances to the ground-true label are all relatively small. CIVD
aggregates these distances and makes the correct prediction. The “clock” example shows a similar
phenomenon.

In conclusion, this sample analysis reveals that the expanded Voronoi sites and rotated image set
contribute to the improvement in CIVD.
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0 20 40 60 80 100

CIVD prediction: bicycle

0 20 40 60 80 100

Individual VD prediction: lobster

0 20 40 60 80 100

Individual VD prediction: bicycle

0 20 40 60 80 100

Individual VD prediction: cockroach

0 20 40 60 80 100

Individual VD prediction: bed

Figure 5: A misclassified “bike” sample corrected by CIVD. The x-axis denotes the index of classes
and y-axis denotes the distance to their corresponding Voronoi sites. The green lines indicate the
ground-true label and the red lines indicate the predicted label.
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0 20 40 60 80 100

CIVD prediction: bus

0 20 40 60 80 100

Individual VD prediction: bowl

0 20 40 60 80 100

Individual VD prediction: bowl

0 20 40 60 80 100

Individual VD prediction: table

0 20 40 60 80 100

Individual VD prediction: house

Figure 6: A misclassified “bus” sample corrected by CIVD. The x-axis denotes the index of classes
and y-axis denotes the distance to their corresponding Voronoi sites. The green lines indicate the
ground-true label and the red lines indicate the predicted label.
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0 20 40 60 80 100

CIVD prediction: clock

0 20 40 60 80 100

Individual VD prediction: orange

0 20 40 60 80 100

Individual VD prediction: orange

0 20 40 60 80 100

Individual VD prediction: camel

0 20 40 60 80 100

Individual VD prediction: worm

Figure 7: A misclassified “clock” sample corrected by CIVD. The x-axis denotes the index of classes
and y-axis denotes the distance to their corresponding Voronoi sites. The green lines indicate the
ground-true label and the red lines indicate the predicted label.
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B ADDITIONAL TABLES

Table 5: Comparison Regarding Error (%)↓ on CIFAR10-C Level-5.

Noise Blur Weather Digital distortion

gau sho imp def gla mot zoo sno fro fog bri con ela pix jpg Avg.

T3A 65.1 59.5 65.3 37.0 47.5 34.5 33.8 24.7 36.4 34.5 10.1 49.8 25.1 51.6 29.7 40.3
TAST 63.0 58.3 64.5 36.7 46.9 33.6 33.0 24.7 35.6 34.1 10.3 49.8 25.0 49.2 29.6 39.6
BN Adapt 39.2 37.0 46.0 17.3 41.3 19.9 17.6 25.2 25.4 20.5 14.0 17.8 29.1 26.5 35.5 27.5
SHOT 29.3 27.0 34.7 14.2 33.6 16.8 15.0 19.2 21.6 18.1 11.5 16.1 25.4 20.1 26.5 21.9
TTT 25.6 23.0 29.8 13.2 34.6 20.0 15.6 19.8 17.7 14.0 9.2 26.1 24.0 16.0 23.2 21.3
TENT 32.5 29.7 39.2 15.6 36.9 18.1 16.1 21.4 23.0 19.3 12.6 16.9 26.5 22.7 29.9 24.0
NOTE 47.3 40.1 43.9 23.3 38.1 22.6 21.3 19.8 23.4 21.3 9.2 30.7 23.8 35.9 27.9 28.6
Conjugate PL 32.5 29.8 39.2 15.6 36.9 18.0 16.1 21.4 23.0 19.3 12.6 16.9 26.5 22.7 29.9 24.0
SAR 33.3 30.0 39.7 15.7 36.8 18.0 16.1 21.9 22.8 19.4 12.7 17.2 26.4 22.8 30.5 24.2
TTVD 27.4 24.6 32.8 13.2 36.0 18.1 14.2 19.9 17.5 15.3 10.1 13.2 22.6 18.2 24.6 20.5

Table 6: Comparison Regarding Error (%)↓ on CIFAR100-C Level-5.

Noise Blur Weather Digital distortion

gau sho imp def gla mot zoo sno fro fog bri con ela pix jpg Avg.

T3A 89.3 88.4 90.4 64.8 60.7 59.8 57.2 57.0 61.1 65.6 43.4 82.3 50.1 82.7 60.6 67.6
TAST 89.2 88.2 90.7 66.3 63.5 63.1 60.0 62.1 64.7 67.9 47.8 82.4 55.0 81.6 64.1 69.8
BN Adapt 70.3 70.1 69.1 46.5 61.1 48.8 45.9 58.9 56.6 55.1 45.1 51.0 53.2 54.2 62.6 56.6
SHOT 58.4 57.6 59.1 41.2 55.2 44.2 41.2 51.9 50.6 48.7 40.2 49.0 48.7 46.2 55.4 49.8
TTT 64.0 63.2 65.5 43.8 57.4 49.6 43.3 54.7 50.5 49.6 38.8 70.0 49.5 45.6 56.4 53.4
TENT 65.1 64.6 65.0 44.1 58.0 46.9 43.4 55.9 54.4 52.4 42.5 49.4 51.6 50.3 59.5 53.5
NOTE 76.1 74.3 74.6 53.8 57.5 50.8 47.6 52.5 51.8 56.1 38.8 67.1 48.6 70.5 57.6 58.5
Conjugate PL 65.1 64.6 65.0 44.1 58.1 46.8 43.4 55.9 54.4 52.4 42.5 49.4 51.7 50.4 59.5 53.5
SAR 65.3 64.9 65.2 44.2 58.3 47.2 47.6 56.5 54.6 52.4 42.6 48.7 51.7 50.5 59.6 53.7
TTVD 58.2 57.4 63.2 38.8 59.9 45.7 40.2 50.7 49.3 45.7 36.6 42.1 50.6 44.1 54.4 49.1

Table 7: Comparison Regarding Error (%)↓ on ImageNet-C Level-5.

Noise Blur Weather Digital distortion

gau sho imp def gla mot zoo sno fro fog bri con ela pix jpg Avg.

T3A 89.0 87.7 89.8 91.7 90.9 90.2 84.7 78.7 97.8 70.2 43.2 85.5 94.9 88.6 74.5 83.1
TAST 81.0 79.6 82.0 83.7 92.0 82.3 76.7 70.2 69.4 62.4 34.3 77.6 86.6 89.6 55.3 74.8
BN Adapt 91.1 88.0 91.6 92.0 90.9 79.1 65.9 64.7 63.4 47.0 36.7 81.5 62.5 65.9 64.8 73.1
SHOT 75.2 72.0 76.3 86.7 85.0 75.2 61.9 52.7 53.4 38.7 29.9 96.2 51.4 47.6 48.4 63.4
TENT 83.4 80.2 83.9 83.5 81.7 68.3 56.3 55.9 55.2 39.1 29.9 69.9 52.8 50.3 50.6 62.7
NOTE 80.4 77.3 80.7 86.4 85.4 73.0 59.8 58.5 56.0 42.1 29.8 77.6 57.0 66.7 55.0 65.7
Conjugate PL 84.0 80.7 84.6 83.9 83.4 68.8 56.6 56.5 55.7 39.2 29.9 71.0 52.9 49.5 49.8 63.1
SAR 81.7 82.3 81.9 84.7 82.1 65.1 54.4 54.1 54.0 38.5 29.7 66.8 50.2 47.8 48.3 61.4
TTVD 76.2 75.4 74.4 79.5 77.7 68.6 53.2 55.9 58.7 41.2 30.4 65.0 47.3 42.1 50.8 59.8
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Table 8: Comparison Regarding Expected Calibration Error (%)↓ on CIFAR10-C Level-5.

Noise Blur Weather Digital distortion

gau sho imp def gla mot zoo sno fro fog bri con ela pix jpg Avg.

T3A 13.3 14.9 13.3 22.9 19.2 20.3 23.4 21.7 19.7 18.9 21.4 21.3 23.5 16.1 21.7 19.5
TAST 18.2 22.9 17.6 43.3 33.7 46.2 46.6 54.4 43.8 45.7 68.1 31.4 54.7 30.7 50.4 40.5
BN Adapt 24.8 23.4 28.8 12.4 26.4 13.5 12.8 17.2 16.5 14.1 10.3 11.2 19.1 17.4 22.8 18.1
SHOT 21.5 19.5 25.4 11.1 24.4 12.7 11.2 14.3 15.9 13.8 9.0 13.3 18.8 15.0 19.4 16.4
TTT 18.3 16.5 20.4 10.5 23.8 14.4 12.0 14.4 13.1 10.7 7.7 20.2 17.3 12.0 16.5 15.2
TENT 22.3 20.4 26.8 11.7 25.1 13.0 11.8 15.2 15.9 14.1 9.6 11.9 18.7 16.1 20.6 16.9
NOTE 34.9 31.1 30.8 18.1 28.2 17.6 16.9 14.6 16.9 17.3 7.7 20.4 17.1 31.0 20.5 21.5
Conjugate PL 22.2 20.4 26.9 11.7 25.1 13.0 11.9 15.2 16.0 14.2 9.5 11.9 18.6 16.0 20.5 16.9
SAR 22.4 20.5 26.8 11.8 24.8 12.9 11.9 15.4 16.0 14.0 9.3 11.8 18.6 16.1 20.9 16.9
TTVD 13.8 12.9 15.4 9.9 15.9 11.4 9.8 11.6 11.1 10.6 8.3 9.3 12.4 11.4 13.4 11.8

Table 9: Comparison Regarding Expected Calibration Error (%)↓ on CIFAR100-C Level-5.

Noise Blur Weather Digital distortion

gau sho imp def gla mot zoo sno fro fog bri con ela pix jpg Avg.

T3A 7.9 8.6 6.8 21.4 25.8 25.8 27.7 28.6 25.4 22.6 35.0 10.4 33.0 10.7 26.6 21.1
TAST 9.8 10.8 8.3 32.6 35.4 35.8 39.0 36.8 34.3 31.0 51.1 16.5 43.9 17.3 34.9 29.2
BN Adapt 21.2 21.0 21.3 16.2 19.7 17.0 15.6 20.1 18.4 17.5 16.1 17.4 17.7 18.1 20.4 18.5
SHOT 19.7 19.8 20.0 16.2 20.6 17.1 15.5 18.9 18.9 17.3 16.1 21.5 18.6 17.4 19.9 18.5
TTT 22.4 22.7 23.0 17.1 21.3 18.2 16.6 21.2 18.9 18.2 15.6 32.2 18.2 17.6 20.0 20.2
TENT 20.0 20.5 20.5 16.3 19.5 16.8 15.1 19.5 18.4 17.5 16.0 18.7 17.9 17.3 19.8 18.3
NOTE 32.1 31.3 29.8 20.4 21.6 19.0 18.8 20.8 20.9 21.5 16.1 28.9 18.4 32.7 20.6 23.5
Conjugate PL 20.0 20.5 20.5 16.3 19.5 16.8 15.1 19.5 18.4 17.5 16.0 18.7 17.9 17.3 19.9 18.3
SAR 20.2 20.3 20.6 16.2 19.9 16.6 15.4 19.7 18.1 17.4 16.0 16.8 17.9 17.1 19.5 18.1
TTVD 12.2 12.8 11.0 22.5 12.6 18.4 22.2 15.7 16.0 19.4 23.8 18.1 16.5 19.2 15.2 17.0

Table 10: Comparison Regarding Expected Calibration Error (%)↓ on ImageNet-C Level-5.

Noise Blur Weather Digital distortion

gau sho imp def gla mot zoo sno fro fog bri con ela pix jpg Avg.

T3A 20.4 21.7 19.6 17.7 9.0 19.2 24.7 30.7 31.6 39.2 66.2 23.9 14.5 11.3 45.4 26.3
TAST 18.9 20.3 17.9 16.3 7.9 17.6 23.2 29.7 30.5 37.5 65.6 22.3 13.3 10.3 44.6 25.1
BN Adapt 14.1 17.2 13.6 13.2 14.3 26.0 39.3 40.4 41.7 58.2 68.4 23.7 42.6 39.2 40.4 32.8
SHOT 24.6 27.8 23.6 13.1 14.8 24.7 37.9 47.1 46.4 61.1 69.9 3.7 48.4 52.2 51.4 36.4
TENT 17.9 21.8 17.9 18.1 20.5 33.2 44.8 45.4 46.2 61.5 70.1 31.0 48.3 51.9 51.3 38.7
NOTE 19.4 22.6 19.2 13.5 14.5 26.9 40.0 41.3 43.9 57.7 69.9 22.2 42.8 33.1 44.8 34.1
Conjugate PL 17.1 20.4 16.8 17.1 20.6 34.0 45.0 45.1 45.8 61.6 70.3 28.6 49.8 53.0 51.6 38.4
SAR 18.1 17.6 18.0 15.2 17.8 34.7 45.4 45.8 45.8 61.3 70.1 33.1 49.6 52.0 51.5 38.4
TTVD 10.4 11.0 11.1 8.9 9.7 14.7 24.9 23.0 22.4 33.7 41.8 16.7 28.5 31.5 26.1 21.0
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Table 11: Comparison Regarding Error (%)↓ on ImageNet-C Level-5 with Various Smaller Batch
Size.

Noise Blur Weather Digital distortion

gau sho imp def gla mot zoo sno fro fog bri con ela pix jpg Avg.

Batch-Size-32

T3A 79.5 78.2 80.3 82.2 90.9 80.7 75.2 69.2 68.3 60.7 33.8 76.0 85.3 88.7 54.5 73.6
BN Adapt 86.2 83.4 86.9 87.2 86.4 75.1 62.1 60.8 59.2 43.1 32.9 77.8 59.0 62.2 61.0 68.2
SHOT 75.1 72.0 76.0 91.5 87.5 77.6 63.3 54.3 55.4 40.1 31.2 98.8 53.2 50.1 50.7 65.1
TENT 81.4 79.0 79.5 82.1 81.3 66.9 56.2 54.5 54.1 39.1 30.8 70.0 52.1 48.6 48.9 61.6
NOTE 82.8 79.8 83.5 86.0 84.9 72.6 59.2 58.3 56.6 41.2 30.0 76.0 56.1 62.6 56.4 65.7
Conjugate PL 82.0 78.7 81.1 81.5 81.2 65.0 55.0 53.6 54.0 38.6 30.7 72.9 50.1 46.5 47.8 61.2
SAR 89.4 79.5 78.0 85.6 79.5 67.2 55.0 53.1 53.6 38.9 30.8 67.5 50.8 48.3 51.4 61.9
TTVD 80.7 76.1 73.8 79.5 78.1 67.3 52.2 54.6 59.0 40.6 30.6 63.1 47.7 41.2 49.3 59.6
Batch-Size-16

T3A 79.5 78.2 80.3 82.2 90.9 80.8 75.2 69.2 68.3 60.7 33.7 76.0 85.4 88.6 54.5 73.6
BN Adapt 87.7 85.0 88.0 88.5 88.0 77.7 66.0 63.1 61.7 46.1 35.9 80.0 62.5 65.3 64.4 70.7
SHOT 77.7 74.7 78.2 95.6 91.1 85.9 69.3 57.4 58.5 43.3 34.5 99.4 57.5 53.4 54.6 68.7
TENT 85.1 80.0 79.4 83.6 84.5 68.7 60.6 54.9 56.9 41.4 33.7 76.3 55.0 51.3 54.0 64.4
NOTE 84.0 80.8 84.5 85.8 84.8 72.5 59.0 58.3 56.7 40.6 30.0 75.3 55.7 60.4 57.0 65.7
Conjugate PL 81.2 79.5 78.5 82.7 79.9 66.4 59.1 53.8 54.9 41.8 33.2 69.1 52.8 48.3 52.8 62.3
SAR 81.8 88.1 83.6 93.0 86.6 69.7 58.4 53.7 54.4 40.3 33.2 77.4 53.3 48.9 52.5 65.0
TTVD 74.1 72.4 72.1 78.6 77.3 69.0 54.4 56.4 58.2 42.5 32.3 68.1 48.4 43.7 51.4 59.9
Batch-Size-8

T3A 79.5 78.2 80.3 82.2 90.9 80.8 75.2 69.2 68.3 60.7 33.7 76.0 85.4 88.7 54.5 73.6
BN Adapt 89.8 87.7 89.9 90.8 90.5 82.1 72.5 68.2 66.4 52.6 42.7 83.4 69.1 71.8 70.0 75.2
SHOT 83.8 81.5 84.2 98.2 96.2 90.8 77.7 64.1 63.6 52.8 42.2 99.6 68.5 63.4 62.5 75.3
TENT 97.8 96.6 86.7 95.8 91.1 86.6 75.1 64.8 69.7 48.0 41.6 94.4 69.6 61.6 68.9 76.6
NOTE 84.6 81.4 85.2 85.7 84.6 72.4 58.9 58.3 56.9 40.3 30.2 74.7 55.5 59.3 57.1 65.7
Conjugate PL 87.7 80.0 79.2 86.9 84.1 72.7 65.8 58.9 59.1 47.1 39.5 81.1 59.3 55.4 58.2 67.7
SAR 92.5 90.5 89.1 92.4 90.0 80.2 67.9 60.0 60.0 46.1 38.8 77.3 60.9 56.7 57.4 70.6
TTVD 78.2 75.9 76.3 84.0 83.2 80.0 58.3 59.5 62.1 45.6 35.6 75.8 51.8 46.8 54.5 64.5

Table 12: Comparison Regarding Error on ImageNet-C Level-5 with Non-i.i.d test stream, Gener-
ated by Dirichlet Distribution with Parameter α. Lower Value of α Indicates Worse Label Shift.

Noise Blur Weather Digital distortion
gau sho imp def gla mot zoo sno fro fog bri con ela pix jpg Avg.

α = 1

T3A 79.6 78.3 80.3 82.1 90.8 80.6 75.2 69.1 68.3 60.8 33.7 75.9 85.3 88.6 54.6 73.5
BN Adapt 85.7 82.5 86.4 86.5 85.7 73.8 60.8 59.6 58.1 41.8 31.5 76.4 57.3 60.6 59.6 67.1
SHOT 75.0 71.9 76.5 86.3 87.0 74.3 60.3 53.1 53.8 38.9 30.3 97.9 51.2 47.3 49.0 63.5
TENT 81.7 78.1 81.8 82.1 81.4 66.7 55.1 54.3 54.3 38.6 29.5 68.1 51.8 47.9 51.3 61.5
NOTE 80.5 77.4 80.9 86.6 85.4 72.6 60.0 58.4 56.1 42.2 29.6 78.2 56.8 66.6 54.7 65.7
Conjugate PL 83.0 79.0 83.2 83.4 81.1 66.7 54.6 54.8 54.1 38.3 29.6 71.0 51.0 47.2 51.6 61.9
SAR 86.0 76.6 80.1 88.5 83.6 66.2 55.0 54.6 54.0 38.4 29.6 68.4 50.8 49.7 51.2 62.2
TTVD 77.8 75.0 74.3 79.1 77.1 68.7 53.1 55.9 57.8 41.2 30.5 65.7 47.6 42.6 50.8 59.8
α = 0.1

T3A 79.7 78.2 80.3 82.1 90.9 80.8 75.1 69.2 68.4 60.9 33.8 76.0 85.2 88.7 54.5 73.6
BN Adapt 85.8 82.6 86.4 86.6 85.7 74.1 61.0 59.7 58.5 42.1 32.0 76.3 57.6 60.7 59.7 67.3
SHOT 76.0 72.4 77.2 88.0 85.4 76.7 62.4 53.7 54.5 39.6 30.6 98.1 52.8 47.9 49.8 64.3
TENT 82.3 78.4 82.3 82.5 81.6 67.2 55.7 55.2 54.2 38.9 30.4 70.0 52.4 48.8 48.9 61.9
NOTE 80.6 77.5 80.8 86.5 85.5 72.8 59.9 58.4 56.2 42.4 29.9 78.2 56.8 66.7 54.9 65.8
Conjugate PL 82.6 79.4 83.2 82.8 82.4 67.0 55.4 55.1 54.7 38.5 30.1 70.9 50.8 47.5 48.8 62.0
SAR 85.9 78.6 81.5 86.5 83.0 66.6 55.5 54.7 54.5 39.1 30.2 68.8 52.6 48.3 49.2 62.3
TTVD 77.2 75.1 74.2 79.4 77.1 68.7 53.1 56.5 58.8 41.8 30.8 66.8 47.6 42.6 51.1 60.1
α = 0.01

T3A 79.5 78.2 80.2 82.0 90.8 80.6 75.1 69.1 68.3 61.0 34.0 75.9 85.1 88.5 54.6 73.5
BN Adapt 88.1 85.5 88.5 89.0 88.6 79.3 68.6 66.6 65.4 51.8 42.9 80.4 65.5 69.0 67.7 73.1
SHOT 82.7 79.9 83.2 92.9 90.5 85.9 74.4 66.8 66.4 54.0 46.6 98.5 65.9 63.9 65.3 74.5
TENT 85.1 83.3 85.8 86.3 86.1 75.1 65.9 63.3 62.9 50.1 42.6 76.4 62.4 60.2 60.1 69.7
NOTE 80.6 77.6 80.9 86.8 85.5 72.8 59.8 58.5 56.4 42.8 29.7 78.1 56.8 66.7 55.2 65.9
Conjugate PL 86.2 83.6 86.3 86.5 86.4 76.0 65.1 63.5 63.0 49.1 42.1 76.0 61.8 59.4 62.1 69.8
SAR 89.6 83.8 85.2 91.2 85.8 75.6 65.3 63.0 62.2 49.3 41.5 76.1 61.7 59.5 59.2 69.9
TTVD 80.7 80.6 80.2 83.3 82.7 75.8 62.4 64.3 65.3 50.6 40.6 75.0 57.1 52.3 60.2 67.4
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C DEMONSTRATIVE ILLUSTRATION OF MNIST-C DATASET IN R2

Figure 1 aims to illustrate how our method partitions the space for the MNIST-C (Mu & Gilmer,
2019) dataset. We use the clean MNIST dataset to train a ResNet26 backbone, followed by a linear
layer with an output dimension of 2 for ease of visualizing realistic Voronoi Diagrams in R2. In
the augmented Voronoi Diagram, self-supervision is employed to expand Voronoi sites, with feature
means calculated as the locations of sites. We follow the same training recipe and hyperparameter
settings as those for CIFAR-10-C. The positions of vertices in the boundaries are calculated using
pyvoro (Sobolev, 2014), and cells are plotted using generativepy (McBride, 2014).

D HYPERPARAMETER SETTINGS IN THE EXPERIMENT

We follow the TTAB codebase to to grid search the learning rate from {0.005, 0.001, 0.0005} for
CIFAR dataset and {0.001, 0.0005, 0.0001} for ImageNet dataset. We set γ = −0.8 to scale and re-
duce the influence of distant Voronoi sites. We use τ = 1 as the standard temperature for the softmax
function. For model pretraining, we follow the recipe of ResNet50-Weights. IMAGENET1K-V1
from the torchvision library to train the feature extractor. The batch size is set to 64, aligning to
previous studies for fair comparison.

E EXTENDED INTRODUCTION TO VORONOI DIAGRAM

Voronoi diagrams are a fundamental tool in computational geometry that partition a given space
into regions. The origins of Voronoi diagrams can be traced back to 1644, when philosopher René
Descartes first considered similar ideas. However, they are named after Russian mathematician
Georgy Voronoi, who formally defined and studied them in 1908. Voronoi’s work (Voronoi, 1908a;b)
extended earlier studies on quadratic forms and lattice structures, laying the mathematical ground-
work for partitioning spaces into convex regions, now termed Voronoi cells. In a Voronoi diagram,
space is divided into regions such that each region contains all points closer to a given site, or a
point, than to any other site.

Over the years, Voronoi diagrams have been used to solve problems in various domains due to their
ability to model spatial relationships and proximity. In computer science, they are employed in
tasks such as nearest neighbor search, mesh generation, and image processing. In physics, Voronoi
diagrams help in modeling the behavior of particle systems and simulating crystallization processes.
In biology, they are used to understand the structure of cells and tissues, where natural divisions
often resemble Voronoi partitions. In urban planning, Voronoi diagrams assist in the allocation of
resources, such as determining optimal locations for services like hospitals or fire stations, where
regions of influence need to be defined based on proximity.

Their versatility comes from the diagram’s intrinsic ability to partition space in an efficient and
meaningful way, especially when dealing with problems that involve spatial clustering or resource
distribution. More recently, in machine learning and artificial intelligence, Voronoi diagrams have
been applied to various fields (Ma et al., 2022; 2023; Humayun et al., 2023; Balestriero et al., 2023;
You et al., 2022). This geometric approach forms the foundation of our proposed method, TTVD,
which leverages Voronoi diagrams to guide Test-Time Adaptation, ultimately leading to enhanced
model performance in dynamically changing environments.

F EXTENDED INTRODUCTION TO COMPARED METHODS

T3A is a method designed to improve domain generalization by adjusting models during the test
phase without requiring backpropagation or changes to the feature extractor. T3A creates pseudo-
prototypes from online, unlabeled test data and adjusts the classifier by measuring the distance
between test samples and these prototypes. By focusing only on the classifier’s linear layer, T3A is
lightweight and efficient, enhancing model performance on unseen domains while avoiding the risks
of complex optimization processes.

TAST introduces trainable adaptation modules on top of a frozen feature extractor and generates
pseudo-labels for test data using nearest neighbor information. This method improves upon exist-
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ing TTA techniques by ensuring more robust adaptation in scenarios where test-time domain shifts
occur.

BN Adapt explores how deep learning models can become more robust to common image cor-
ruptions like blur and noise. The authors highlight that in many real-world applications, models
can adapt to recurring corruptions using unsupervised methods. By modifying batch normaliza-
tion statistics during inference, the paper demonstrates that adapting to corrupted data significantly
boosts model robustness, surpassing baseline performance across several benchmarks. This simple
yet effective strategy improves the performance of models on corrupted image datasets.

SHOT addresses unsupervised domain adaptation (UDA) without requiring access to source data, a
key limitation in existing UDA methods. SHOT leverages a pre-trained source model and transfers
its knowledge to the target domain by freezing the classifier module (source hypothesis) and adapting
the feature extraction module for the target domain using self-supervised learning and information
maximization.

TTT involves updating the model at test time using a self-supervised learning task on each individual
test sample before making a prediction. By using tasks like image rotation prediction as the auxiliary
self-supervised task, TTT allows the model to adapt better to the test distribution.

TENT Entropy minimization in the TENT method works by reducing the uncertainty of a model’s
predictions during test-time. This is done by minimizing the entropy, or uncertainty, of the predicted
probability distribution. Specifically, TENT updates the model’s parameters—focusing on the affine
transformations in normalization layers—based on the gradient of the entropy with respect to these
parameters. By iteratively adjusting the model in response to test data, TENT improves the model’s
confidence in its predictions without needing labeled data, resulting in better adaptation to new or
corrupted data at test time.

NOTE aims to address challenges in adapting models to non-i.i.d. test data streams, common
in real-world applications like autonomous driving. NOTE includes two components: Instance-
Aware Batch Normalization (IABN), which adjusts for out-of-distribution instances, and Prediction-
Balanced Reservoir Sampling (PBRS), which simulates i.i.d. samples from temporally correlated
data.

Congugate PL leverages the convex conjugate of the training loss to create a new TTA loss function.
The authors demonstrate that meta-learning the optimal TTA loss consistently recovers a function
similar to the softmax-entropy for classifiers trained with cross-entropy. For models trained with
other losses, such as squared loss or PolyLoss, the optimal TTA loss differs. By interpreting this
through the lens of convex conjugates, the paper presents a general framework for designing TTA
losses.

SAR investigates the challenges of TTA when faced with real-world distribution shifts, such as
mixed shifts, small batch sizes, and imbalanced label distributions. The authors find that traditional
batch normalization can destabilize TTA, proposing instead the use of group and layer normalization
for better stability. To further enhance stability, they introduce a sharpness-aware and reliable en-
tropy minimization method that removes noisy samples and encourages robust model updates under
challenging test scenarios.

AdaNPC constructs a memory bank containing features and labels from the source domain, and
during inference, it retrieves the nearest neighbors from this memory to predict labels for incoming
test samples. This memory is dynamically updated with test features and predictions, making the
method effective for handling distribution shifts.

G EXPERIMENTS COMPUTE RESOURCES

All experiments are conducted using GPU NVIDIA RTX A6000.
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H ALGORITHMS

Algorithm 2: CIVD Guidance for Test-time Adaptation
Input: Pretrained feature extractor σ0, a set of Voronoi sites C, test stream {x}t
Output: Prediction stream {ỹk}t
for each online batch {x}t do

infer: ỹk = β(−F (z, Ck) + ϵ; τ) ; // Equation 4
adapt: σt+1 = σt − λ∇LVD(ỹt) ; // Equation 1

end

Algorithm 3: CIPD Guidance for Test-time Adaptation
Input: Pretrained feature extractor σ0, a set of Voronoi sites C, weights of Voronoi sites v, test

stream {x}t
Output: Prediction stream {ỹk}t
for each online batch {x}t do

infer: ỹk = β(−F (z, Ck) + ϵ; τ) ; // Equation 6
adapt: σt+1 = σt − λ∇LVD(ỹt) ; // Equation 1

end
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